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Abstract

Fully Homomorphic Encryption (FHE) is a powerful cryptographic primitive that enables
performing computations over encrypted data without having access to the secret key. We intro-
duce OpenFHE, a new open-source FHE software library that incorporates selected design ideas
from prior FHE projects, such as PALISADE, HElib, and HEAAN, and includes several new
design concepts and ideas. The main new design features can be summarized as follows: (1) we
assume from the very beginning that all implemented FHE schemes will support bootstrapping
and scheme switching; (2) OpenFHE supports multiple hardware acceleration backends using a
standard Hardware Abstraction Layer (HAL); (3) OpenFHE includes both user-friendly modes,
where all maintenance operations, such as modulus switching, key switching, and bootstrap-
ping, are automatically invoked by the library, and compiler-friendly modes, where an external
compiler makes these decisions. This paper focuses on high-level description of OpenFHE de-
sign, and the reader is pointed to external OpenFHE references for a more detailed/technical
description of the software library.

∗This work is supported in part by DARPA through HR0011-21-9-0003 and HR0011-20-9-0102. The views,
opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the
official views or policies of the Department of Defense or the U.S. Government.
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1 Introduction

Fully Homomorphic Encryption (FHE) is a powerful cryptographic primitive that enables perform-
ing computations over encrypted data without having access to the secret key. There are several
open-source software libraries implementing FHE schemes, including HElib [39], PALISADE [50],
SEAL [52], HEAAN [22], FullRNS-HEAAN [20], Concrete [25], and FHEW [30]. This paper in-
troduces a new open-source FHE library designed by (some of) the authors of PALISADE, HElib,
HEAAN, and FHEW libraries. Similar to PALISADE, which was used as the starting point for
the design of the new library, the OpenFHE library supports all common FHE schemes. Note that
several new scheme variants recently proposed in [43, 44, 45], which are not part of PALISADE,
are also implemented in OpenFHE. Moreover, OpenFHE introduces several new design features:

• It is assumed that all supported FHE schemes will eventually support bootstrapping and
scheme switching;

• The library can support multiple hardware acceleration backends using a standard Hardware
Abstraction Layer (HAL);

• OpenFHE includes both user-friendly modes, where maintenance operations (such as modulus
switching, key switching, and bootstrapping) are automatically invoked by the library, and
compiler-friendly modes where an external compiler makes these decisions.

OpenFHE design also supports “importing” functionality from its predecessors, such as advanced
plaintext encoding based on general cyclotomic rings and static noise estimation from HElib, mixed
multiprecision-Residue-Number-System arithmetic from HEAAN, and other new capabilities that
are yet to be developed.

This paper presents a high-level description of OpenFHE design, focusing on new functionality
and design ideas and concepts. For a more detailed and technical description of the library, the
reader is referred to the documentation sources listed in Section 5 of this paper.

2 Cryptographic Capabilities

OpenFHE includes the implementation of all common FHE schemes for integer, real-number, and
Boolean arithmetic. All of these schemes are based on the hardness of the ring variant of the
Learning With Errors (LWE) problem, which will be denoted by RLWE. Note that currently only
power-of-two cyclotomic rings are supported. The library also includes multiparty extensions to
support scenarios with multiple secret keys or secret shares. OpenFHE is designed under the
assumptions that bootstrapping is available for all implemented schemes and switching ciphertexts
between schemes is possible. Note that there are still open research problems related to some
scenarios of scheme switching, but we assume that these problems will eventually be solved and
the corresponding solutions will be implemented in OpenFHE.

2.1 FHE Schemes

Common FHE schemes are typically grouped into three classes based on the data types they sup-
port computations on. The first class supports modular arithmetic over finite fields, which typically
correspond to vectors of integers mod t, where t is a prime or a prime power, that is commonly

3



called as the plaintext modulus. This class is also sometimes used for small-integer arithmetic.
The class includes Brakerski-Gentry-Vaikuntantan (BGV) and Brakerski/Fan-Vercauteren (BFV)
schemes [13, 14, 31]. The second class primarily works with Boolean circuits and decision dia-
grams and includes the Ducas-Micciancio (DM) and Chillotti-Gama-Georgieva-Izabachene (CGGI)
schemes [24, 30], originally implemented in the FHEW and TFHE libraries, respectively. The
third, and most recent, class supports approximate computations over vectors of real and complex
numbers, and is represented by the Cheon-Kim-Kim-Song (CKKS) scheme [23]. All these schemes
are based on the hardness of the RLWE problem, where noise is added during encryption and key
generation to achieve the hardness properties. The noise grows as encrypted computations are per-
formed, and the main functional parameter in all these schemes, the ciphertext modulus Q, needs
to be large enough to accommodate the noise growth, or a special bootstrapping procedure may
be used to reset the noise and keep the value of Q relatively small. For a high-level introduction
to common FHE schemes, the reader is referred to [18].

From the scheme design perspective, the first and third classes share a common design, which
was originally introduced for BGV. The design supports a relatively large number of multiplications
without bootstrapping, using the technique of modulus switching, and performs homomorphic
operations over vectors of integers or real numbers in a Single Instruction, Multiple Data (SIMD)
manner, e.g., many multiplications are performed using a single homomorphic multiplication. We
will refer to this scheme design pattern as BGV-like.

The DM and CGGI schemes also share a common design, as explained in [47]. In this design,
first introduced by the DM scheme in [29], messages are small integers modulo t (for a very small
t, e.g. t = 4) and are encrypted as simple LWE ciphertexts modulo q, which directly support
only homomorphic linear operations (e.g., addition). Non-linear operations are implemented via a
form of fast functional bootstrapping (under 100 ms), making internal use of RLWE ciphertexts
and a larger modulus Q. This design allows to work with small moduli q,Q, typically 32-bit or
64-bit numbers, (vs. many hundreds of bits for the other schemes). On the other hand, unlike
BGV-like schemes, homomorphic multiplications cannot be performed in a SIMD-like manner in
DM/CGGI schemes. The CGGI scheme replaces standard LWE ciphertexts modulo q, with LWE
ciphertexts ”over the torus” (i.e., with real coordinates in [0, 1)), and makes use of a different
bootstrapping procedure, but is otherwise identical to DM. In OpenFHE, we always use standard
LWE ciphertexts modulo q, and adapt the CGGI bootstrapping procedure to work directly on DM
ciphertexts. Hence, we will refer to this scheme design pattern as DM-like or the DM scheme.

2.1.1 BGV-like schemes

OpenFHE implements BGV, BFV, and CKKS schemes. Multiple variants of each scheme are
supported. For efficiency, only the Residue Number System (RNS) variants are currently supported.
RNS is used to efficiently perform operations on large integers by decomposing them into small
numbers that fit in machine words, e.g., in 64-bit integers. However, multiprecision or mixed
multiprecision-RNS variants of the schemes can be added in the future without changing the current
design.

BGV scheme. OpenFHE implements both the original BGV scheme (with unscaled messages) [14]
and the Gentry-Halevi-Smart (GHS) variant (with scaled messages) [33]. The main advantage
of the GHS variant is that the RNS moduli qi do not need to satisfy the congruence relation
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qi ≡ 1 mod t to perform modulus switching. OpenFHE currently supports only the static noise
estimation method [44] to choose the size of RNS moduli.

Four modes for BGV are currently implemented in OpenFHE (these modes are distinguished
by the way the modulus switching is performed):

1. FIXEDMANUAL: original BGV variant [14] with RNS optimizations from [33, 44] where
modulus switching is manually done by the user.

2. FIXEDAUTO: original BGV variant [14] with RNS optimizations from [33, 44] where modulus
switching is automatically done right before a homomorphic multiplication (except for the
first multiplication).

3. FLEXIBLEAUTO: GHS variant [33] with RNS optimizations from [44] where modulus switch-
ing is automatically done right before a homomorphic multiplication (except for the first
multiplication).

4. FLEXIBLEAUTOEXT: GHS variant [33] with RNS optimizations from [44] where modulus
switching is automatically done right before a homomorphic multiplication (including the first
multiplication).

For a more detailed discussion of the algorithms for all these modes, the reader is referred to [44].
We suggest the following guidelines when choosing the modulus switching method:

• The FLEXIBLEAUTOEXT mode requires the smallest ciphertext modulus Q, but is some-
what slower for most cases than other options (typically less than 1.5x than the fastest mode).
However, FLEXIBLEAUTOEXT is the fastest when a smaller ring dimension N can be cho-
sen for its smaller Q to satisfy the same level of security.

• The FIXEDMANUAL and FIXEDAUTO methods are often the fastest (when the ring di-
mension N needed to achieve the desired level of security is the same for all four modes).
Note that FIXEDMANUAL can yield better performance than FIXEDAUTO if it is tailored
by an FHE expert or a compiler for a given application.

• The FLEXIBLEAUTO mode can be selected in relatively rare cases where the ring dimen-
sion N is smaller than for FIXEDAUTO (note that FLEXIBLEAUTO is often faster than
FLEXIBLEAUTOEXT for the same ring dimension N).

• The AUTO modes are much easier to use than the FIXEDMANUAL mode as modulus
switching is done automatically by OpenFHE.

• The FLEXIBLEAUTOEXT mode supports larger plaintext moduli than other modes.

Note that the default method is FLEXIBLEAUTOEXT as it easy to use and supports largest
plaintext moduli. Other modes can be considered when there is a need to reduce the runtime
(typically by no more than 1.5x).
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BFV scheme. OpenFHE implements four different RNS variants of the BFV scheme. These
variants differ in the way the homomorphic multiplication is performed. There are also some
differences in evaluating the decryption operation for some of the variants. These four variants are:

• HPS: the homomorphic multiplication and decryption are implemented using the RNS pro-
cedures proposed by Halevi, Polyakov, and Shoup [37]. These RNS procedures use a mix of
integer and floating-point operations.

• BEHZ: the homomorphic multiplication and decryption are implemented using the RNS pro-
cedures described by Bajard, Eynard, Hasan, and Zucca [6]. These RNS procedures are based
on integer arithmetic.

• HPSPOVERQ: the HPS variant where the homomorphic encryption is optimized using the
technique described in [44].

• HPSPOVERQLEVELED: the HPSOVERQ variant where modulus switching is applied inside
homomorphic encryption to further reduce the computational complexity [44].

Note that all four methods use the modified BFV encryption method proposed in [44], which
has smaller noise than the original BFV encryption method [31].

The HPSPOVERQLEVELED method is the fastest when floating-point arithmetic is available.
The BEHZ method can be used when floating-point arithmetic is not available (it is slightly slower
than HPS, typically by no more than 1.2x). The other two modes, namely, HPS and HPSOVERQ,
are available mostly for academic purposes. For a more detailed comparison of the HPS and
BEHZ variants, the reader is referred to [1, 7]. The default method for BFV in OpenFHE is
HPSPOVERQLEVELED.

OpenFHE also provides two different options for BFV encryption: STANDARD and EX-
TENDED. For the STANDARD option, the encryption is done using fresh modulus Q. For the EX-
TENDED setting, a larger modulus is used for encryption by employing auxiliary moduli available
for homomorphic multiplication and then modulus switching to Q is executed. The EXTENDED
option requires a slightly smaller value of Q (around 5 bits less in the case of public key encryption)
but makes encryption more computationally expensive. The STANDARD option is used as the
default.

CKKS scheme. OpenFHE implements two RNS variants of the CKKS scheme (they are further
split into four modes based on how rescaling is done). The first RNS variant assumes the same
scaling factor 2p for all levels and sets RNS moduli qi ≈ 2p for all i corresponding to multiplicative
levels (all RNS moduli except for the first and possibly last ones, depending on the mode). This
method was indepedently proposed in [21] and [8]. The second RNS variant uses a different scaling
factor for each level [43].

The following rescaling modes are implemented in OpenFHE (labeled the same way as for the
BGV scheme as there are a lot of similarities between CKKS and BGV):

1. FIXEDMANUAL: the RNS variant [8, 21] where modulus switching is manually done by the
user.

2. FIXEDAUTO: the RNS variant [8, 21] where rescaling is automatically done right before a
homomorphic multiplication (except for the first multiplication).
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3. FLEXIBLEAUTO: the RNS variant [43] where rescaling is automatically done right before a
homomorphic multiplication (except for the first multiplication).

4. FLEXIBLEAUTOEXT: the RNS variant [43] where rescaling is automatically done right
before a homomorphic multiplication (including the first multiplication).

For a more detailed discussion of the algorithms for all these modes, the reader is referred
to [43].

We suggest the following guidelines when choosing the rescaling method:

• The FLEXIBLEAUTOEXT mode provides the highest precision for the same parameters.
The computational complexity is typically up to 1.5x higher, as compared to the fastest
approach (FIXEDMANUAL or FIXEDAUTO) for the same parameters.

• The FLEXIBLEAUTO mode provides a precision that is about 3-4 bits smaller than FLEX-
IBLEAUTOEXT, but can be slightly faster.

• The FIXEDMANUAL and FIXEDAUTO modes incur additional precision loss of about 3-4
bits as compared FLEXIBLEAUTO, but have smaller computational complexity. Note that
FIXEDMANUAL can yield better performance than FIXEDAUTO if it is tailored by an FHE
expert or a compiler for a given application.

• The AUTO modes are much easier to use than the FIXEDMANUAL mode as rescaling is
done automatically by OpenFHE.

• If the goal is to minimize the ciphertext modulus Q for the same precision, then the FLEX-
IBALEAUTOEXT mode is the best option. In some scenarios, the decrease in Q may also
result in reduced ring dimension for the same security level, yielding better performance for
FLEXIBLEAUTOEXT as compared to all other modes.

Note that the default method is FLEXIBLEAUTOEXT as it easy to use and achieves highest
precision. Other modes can be considered when there is a need to reduce the runtime (typically by
no more than 1.5x).

2.1.2 DM-like schemes

OpenFHE implements the DM scheme [29] with optimizations described in [47]. The library also
implements the CGGI bootstrapping method [24] with a ternary CMUX optimization [10]. As
explained in [47], the DM and CGGI (functional) bootstrapping procedures are ring versions of
bootstrapping methods first proposed by Alperin-Sheriff and Peikert (AP) [3] and Gama, Izabach-
ene, Nguyen, and Xie (GINX) [32]. See [47] for details.

Both DM and CGGI schemes are referred to as DM in OpenFHE, as they are implemented using
LWE ciphertexts modulo q as originally proposed in [30]. The DM scheme is labeled as the AP
mode of DM, while the GINX mode is used to denote the DM scheme with CGGI bootstrapping.
The GINX mode is set as the default as it achieves smaller runtime and bootstrapping key size for
ternary secret distribution, as compared to the AP mode [47].
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2.2 Multiparty Extensions

OpenFHE supports multiparty FHE extensions for the BGV, BFV, and CKKS schemes: threshold
FHE and Proxy ReEncryption (PRE).

The threshold FHE extension is based on additive secret sharing instantiated using additive
key homomorphism properties of the FHE schemes. Threshold FHE follows the design introduced
in [5]. The key generation and decryption in single-key FHE are replaced with their distributed
versions while the computation is still performed the same way as in single-key FHE. Typically
the computational overhead of threshold FHE is relatively small, and is primarily determined by a
slightly increased norm of the secret key polynomial.

The PRE extension allows delegating an existing ciphertext to another party, which has a
different secret key. OpenFHE uses the design proposed in [49]. The main idea is to use FHE key
switching to perform proxy reencryption of ciphertexts with the reencryption key, which represents
an encryption of the old secret key using the public key for the new secret key. Pre-randomization is
applied as part of re-encryption to satisfy the security under honest reencryption attacks (HRA) [26],
which is a stronger notion than regular Chosen-Plaintext Attack (CPA) security. The HRA security
is often needed in practical applications of PRE.

2.3 Design for BGV-like FHE Schemes

To support scheme switching and simplify the maintenance of BGV-like schemes, we developed a
design that includes

1. an abstract base scheme that provides the same API for various instantiations of BGV-like
scheme, including full RNS, multiprecision, and hybrid RNS-multiprecision variants;

2. a parent RNS scheme that implements the common functionality for all BGV-like schemes
instantiated in RNS;

3. concrete scheme C++ classes that implement scheme-specific functionality.

2.3.1 Common functionality

All BGV-like schemes support the same key switching methods. Hence all RNS variants share
the common key switching implementation in OpenFHE. Two switching methods are supported:
the Brakerski-Vaikuntanathan [15] digit decomposition method and the Gentry-Halevi-Smart [33]
“hybrid” method (adapted to the RNS design in [41]). Both key switching methods and their RNS
instantiations are described in detail in Appendix A of the ePrint version for [44].

Most of homomorphic operations, such as additions and rotations, are also performed the same
way: they operate on pairs of polynomials, separately working with each polynomial. The only
exception is homomorphic multiplication. These common operations are implemented at the level
of either the base scheme or parent RNS scheme.

2.3.2 Differences between BGV-like schemes

The differences in BGV-like schemes can be summarized as follows:

• Homomorphic multiplication in BFV includes extending to a larger modulus and scaling down
to the original modulus, which is different from BGV and CKKS.
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• BGV and CKKS require operations of modulus switching / rescaling that control the noise /
approximation error growth after homomorphic multiplications and other operations.

• Decryption in BFV requires special RNS procedures.

• There are some differences in encoding and encryption.

These scheme-specific procedures are implemented in the C++ classes for concrete schemes.

2.4 Design for DM-like FHE Cryptosystems

The DM-like cryptosystems encrypt messages as simple LWE ciphertexts, which support only
additions and scalar multiplications, i.e., the scheme additively homomoprhic. Any other functions
are evaluated using functional bootstrapping, which makes internal use of a different RLWE-based
encryption scheme. More specifically, bootstrapping of DM-like ciphertexts is implemented using
RingGSW, an efficient variant of the Gentry-Sahai-Waters (GSW) [34] scheme, adapted to the ring
setting in [29]. For a more detailed information on the schemes and bootstrapping procedure, the
reader is referred to [29, 47].

The original DM cryptosystem [29] and the original CGGI cryptosystem [24] were designed
for evaluating arbitrary Boolean circuits, i.e., mod2 arithmetic. OpenFHE supports this basic
functionality (t = 2). The library also supports operations for larger plaintext moduli. Arbitrary
function evaluation is supported for t = 8, and can be extended to larger moduli by using the ho-
momorphic digit decomposition procedure [45]. The homomorphic comparison/sign evaluation can
be performed for plaintext moduli up to t = 221 (a current limitation of the implementation), with
the underlying algorithm supporting arbitrary precision. To implement these features, OpenFHE
uses the large-precision algorithms proposed in [45]. The development of these capabilities was
funded by the DARPA Cooperative Secure Learning (CSL) program.

2.5 Bootstrapping

We expect OpenFHE to support bootstrapping for all core FHE schemes. Bootstrapping is re-
quired to enable arbitrary computations while working within a single scheme, and often needed in
scenarios where switching between different FHE schemes is beneficial.

The current scheme-specific information about the availability of bootstrapping for core FHE
schemes in OpenFHE is as follows:

• Bootstrapping is currently implemented for DM and CGGI schemes using the designs de-
scribed in [47].

• Approximate bootstrapping is implemented for the CKKS scheme using the RNS design
described in [11, 16, 19].

• There is a prototype implementation of thin BGV bootstrapping based on the design from [17,
38], which was built as part of the DARPAData Protection in Virtual Environments (DPRIVE)
program, but it is not available yet in the main repositories of OpenFHE.

• The bootstrapping for BFV will be added together with BGV bootstrapping because both
are based on the same design, with minor scheme-specific differences.
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2.6 Noise Estimation

The current implementation in OpenFHE does not include noise estimation: The user specifies the
multiplicative depth (and for some schemes also the maximum number of additions/key -switching
operations), and OpenFHE selects all the necessary parameters, such as the number of bits needed
for each multiplicative level. Later, the library performs operations on the ciphertexts, applying
scaling/modulus-switching for some schemes, without trying to estimate the noise level in each
ciphertext. It is up to the user to ensure that the bounds that were specified ahead of time are
respected.

In future versions, we plan to add a noise estimator, similar to HElib [39, 40], that will carry a
noise bound with each ciphertext, updating it with the homomorphic computations. In a little more
detail, the noise bound will be a heuristic high-probability bound on the l∞-norm of the canonical
embedding of the term “secret-key×ciphertext” that is calculated during decryption. Various quan-
tities that are chosen during key generation and encryption are similarly tagged with a bound on
their norm (either a high-probability bound or a probability-one bound). Given all these bounds
on the inputs to homomorphic operations, one can derive corresponding bounds on the outputs of
those operations.1

This method allows the library to evolve the noise bound with every low-level homomorphic
operation. The OpenFHE library may also implement APIs that allow users to provide their own
noise-evolution bounds for higher-level operations. (For example, certain homomorphic polynomial-
evaluation routines may induce smaller noise growth than what can be deduced from the raw
multiplications and additions.)

For CKKS, the noise bounds also provide a bound on the approximation error in an encrypted
message. We note, however, that this requires also to keep tight bounds on the magnitude of the
CKKS plaintext, and obtaining these tight bounds without leaking information about the plaintext
takes some care. Moreover, maintaining these tight bounds through the homomorphic operations
often relies on help from the user.

Once noise-estimation is implemented, it can be used to make automatic decisions for rescaling,
modulus switching, and the HPSPOVERQLEVELED mode of BFV, allowing tighter parameters
and simplifying the homomorphic evaluation of deep circuits.

2.7 Scheme Switching

There are many applications that benefit from scheme switching. For instance, in many machine
learning applications CKKS is best suited for polynomial evaluation while DM/CGGI works best
for comparisons and other discontinuous functions [46]. This requires bridging between schemes,
often using procedures based on bootstrapping, e.g., see [12] for an earlier design for switching
between CGGI, CKKS, and BFV schemes.

2.7.1 Classes of scheme switching operations

We expect OpenFHE to support a wide range of scheme switching operations, making different
encryption schemes inter-operable. Scheme switching encompasses a number of different operations
and techniques, that goes well beyond the simple operation of changing the encryption scheme under

1For example, the noise growth due to modulus-switching and key-switching operations are specified in Eqs. (28)
and (31) of [40].
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which a message is encrypted, and it is useful to classify scheme switching operations along several
axes:

• Message space: Different encryption scheme families use different message spaces: e.g.,
Zn
t for BGV/BFV, Z2 for DM/CGGI, and integer vectors Zn with bounded coordinates for

CKKS. Mapping between schemes with different message spaces must necessarily specify also
a map between the corresponding messages. For example, a BGV ciphertext encrypting
a message m⃗ ∈ Zn

t may be mapped to a vector of n log t DM ciphertexts encrypting the
coordinates of m⃗ bit by bit. In its most general form, scheme switching includes a function
f :M0 → M1 between the message space of the source and target scheme, which is applied to
the message. When f is a non-trivial function, the resulting operation may be referred to as
functional scheme-switching.

• Key space: Scheme switching may also change the key under which a message is encrypted.
This is clearly required when switching between schemes with different key spaces. Changing
the key under which a message is encrypted is a useful operation also when the encryption
scheme stays the same. In OpenFHE, key switching is just a special case of scheme switching,
where the source and target encryption schemes are the same.

• Key material: Some simple forms of scheme switching may be publicly computed with-
out the need of any key material. This is often the case when the encryption key remains
unchanged (or is undergoing only “simple changes”). In the most general case, switching be-
tween two arbitrarily chosen keys requires some key material, which we call the “evaluation
key”. (When switching from S0 to S1, that key material is often some form of encryption of
S0 under S1.)

OpenFHE provides APIs for generating the evaluation key, which can then be used in con-
junction with the corresponding key switching algorithm. The plan is for OpenFHE to include
a general interface that on input S0 and S1 (and the associated encryption schemes) produces
a corresponding switching key.

2.7.2 High-level design for scheme switching

Here we describe the design we are planning to implement in future versions of OpenFHE. In its
most general form, scheme switching is parameterized by:

• A source and target encryption schemes Enc0, Enc1

• A function f between the respective message spaces

• An evaluation key, which may depend on the encryption schemes, function f , and secret keys
of the two schemes.

Focusing for simplicity on the case where f is the identity, scheme/key switching is essentially
just recryption, performing the decryption function of the first scheme homomorphically under the
second. When switching from (Enc0, S0) to (Enc1, S1), the evaluation key is roughly an encryption
of S0 under S1, ek = Enc1S1

(S0). Given this evaluation key and a ciphertext C0 = Enc0S0
(m),

one can evaluate the decryption function S0 7→ DecS0(C0) on ek, using the Enc1 homomorphic
operations, to obtain a ciphertext C1 = Enc1S1

(m).
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The decryption function of (R)LWE-based encryption schemes consists of two steps: the eval-
uation of a linear function of the secret key, followed by a rounding step to remove the encryption
noise. Sometimes when performing scheme switching, it is enough to evaluate only the linear por-
tion of the decryption function without the rounding, in those cases switching can be done much
faster than homomorphic rounding. Other times we have to perform full recryption, including
the rounding part, in these cases switching also serves as a noise control mechanism. For certain
pairs of encryption schemes, full recryption is the only known switching method, even when noise
reduction is not required, e.g., switching from BGV to CKKS requires full recryption as noted in
Section 2.7.3.

We plan to eventually provide switching implementations between any two schemes in OpenFHE.
Internally, the complexity of providing all these switching implementations is managed by using
“(R)LWE encryption” as an intermediate representation. In all the schemes that are supported by
OpenFHE, ciphertexts can be described as a collection of (R)LWE instances relative to the secret
key, where extracting these instances from the ciphertext is simple. Hence, rather than imple-
menting k2 combinations of switching between all pairs, we will only implement O(k) operations,
equipping each FHE scheme with an (R)LWE extraction and an LWE embedding operation.

Extraction is usually a very simple operation that does not require key material, e.g., selecting
part of the ciphertext or some simple encoding. Embedding is where the actual scheme switching
happens, possibly using an evaluation key, but is simplified by starting from an (R)LWE instance
rather than a full ciphertext. The use of LWE or RLWE depends on whether the encryption scheme
supports scalar messages (e.g. DM), or vectors (e.g. BGV). Conversion between LWE and RLWE
is done using ciphertext packing and unpacking operations.

We note that all the transformations above are internal to OpenFHE, from the user’s perspective
OpenFHE will just be providing a general scheme switching procedure, where the user specifies a
pair of encryption schemes, and OpenFHE generates the evaluation key (if needed) and implements
the actual switching.

2.7.3 Scheme-specific remarks

The topic of scheme switching still has open research questions. Here, we summarize the current
understanding for various scenarios:

• Switching between BGV and BFV is trivial and does not require any keys or bootstrapping
(see Appendix A of [2] for details).

• No scheme switching between DM and CGGI is needed as they differ only in the bootstrapping
procedure. The outer scheme implementation is the same in OpenFHE.

• Switching from CKKS to DM/CGGI requires a linear transform to decode CKKS ciphertexts
to coefficient encoding and extraction of the numbers in each slot into LWE ciphertexts,
applying key and modulus switching where needed (see [46] for more details). This procedure
typically does not require bootstrapping.

• Switching from DM/CGGI to CKKS requires applying a linear transformation to perform
CKKS encoding, typically followed by a lightweight version of CKKS bootstrapping to support
further computations using CKKS (see [46] for details).
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• Switching from/to BGV/BFV to/from DM/CGGI follows the same high-level procedures as
the switching from/to CKKS to/from DM/CGGI [12]. The main difference is that BGV/BFV
bootstrapping is used instead of lightweight CKKS bootstrapping.

• Switching between BGV/BFV and CKKS in either direction appears to require bootstrapping
due to the difference in underlying message spaces. This is considered as an open research
question.

There is a prototype implementation of switching between CKKS and DM/CGGI and back,
which was built as part of the DARPA CSL program, but it is not available yet in the main
repositories of OpenFHE. The scheme switching capabilities will be added in future versions of
OpenFHE.

3 Hardware Acceleration Support

FHE is a compute-bound privacy-preserving technology, and hence hardware acceleration is crucial
for practical use of FHE. OpenFHE is designed to support different hardware acceleration technolo-
gies, such as AVX, GPU, FPGA, and ASIC. The computational bottlenecks of FHE are centered
around the polynomial arithmetic used for implementing the FHE schemes. This section first pro-
vides a brief introduction to polynomial arithmetic, discusses the memory bandwidth limitation of
FHE, and then presents the OpenFHE Hardware Abstraction Layer (HAL) to support hardware
acceleration of the polynomial arithmetic. We then discuss the Intel HEXL library backend as an
example of HAL instantiation in OpenFHE.

The development of HAL and related features has been funded in part by the DARPA DPRIVE
program. These features are expected to support the ASIC-based hardware acceleration of crypto-
graphic protocols implemented in OpenFHE, which is one of the goals of DARPA DPRIVE.

3.1 Brief Introduction to Polynomial Arithmetic used in FHE

FHE schemes based on RLWE work with polynomials that contain thousands of large bounded
integers. The bound for integers is ciphertext modulus Q. The polynomials curently supported by
OpenFHE are defined as ZQ[X]/(XN + 1), i.e., they are obtained by applying modulo Q to the
coefficients and then computing the polynomial remainder w.r.t. XN + 1. Here, N is a power-
of-two ring dimension that is typically in the range from 210 to 217. Efficient multiplication of
such polynomials is achieved by using a Number Theoretic Transform (NTT) operation, which is
similar to Fast Fourier Transform but works with modular arithmetic instead of complex numbers.
The NTT allows reducing the computational complexity of polynomial multiplication from O(N2)
to O(N logN). Other common operations for this polynomial arithmetic include component-wise
addition and multiplication, which can be interpreted as modular vector addition and multiplication
with the computational complexity of O(N).

In the case of BGV-like schemes, such as BGV, BFV, and CKKS, the ciphertext modulus Q is
often much larger than the standard machine word size of 64 bits. To support efficient operations
with such large numbers, the Residue Number System (RNS) representation is used where Q is
expressed as a product of small RNS moduli qi (each smaller than the machine word size) and
large numbers are split into “small” residues modulo qi. Multiplication of large integers in RNS
is performed by computing the products of component-wise residues modulo corresponding RNS
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moduli. The RNS arithmetic also includes several special operations that work with multiple RNS
moduli at the same time, e.g., basis extension and scaling [37].

Mathematically, the NTT representation for polynomials and RNS representation of large inte-
gers are based on the Chinese Remainder Theorem (CRT), and the representation of polynomials
in both NTT and RNS formats is often referred to as the double-CRT representation of polynomi-
als [33].

NTT, modular vector addition and multiplication, and RNS basis extension and scaling are the
main bottleneck operations for polynomial arithmetic used in FHE, and hence they are the primary
target for hardware acceleration.

3.2 Memory Bandwidth as Main Hardware Acceleration Challenge

Recent theoretical and practical hardware acceleration studies suggest that deep FHE computa-
tions, which often leverage bootstrapping, are not compute-bound but are rather memory-bound.
For instance, the theoretical study [28] shows that secure implementations of CKKS bootstrapping
exhibit a low arithmetic intensity (< 1 Op/byte) and require large caches (> 100 MB), making
it heavily bound by the main memory bandwidth. An FHE hardware acceleration study [51] de-
scribes data movement as the main bottleneck in FHE hardware acceleration of deep homomorphic
computations based on BGV and CKKS, and proposes a design that minimizes the data movement.
Both studies suggest that key switching is the main memory bandwidth challenge as it works with
large evaluation keys and requires a series of alternating NTT and RNS operations with different
data access patterns. We consider minimizing data movement as one of main design requirements
for OpenFHE hardware acceleration support.

3.3 Hardware Abstraction Layer

Similar to its predecessor PALISADE, OpenFHE has a modular design with multiple layers, which
is illustrated in Figure 1 (this is an updated version of Figure 1 in the PALISADE manual [50]).
All the algorithms for polynomial arithmetic are implemented in the math and lattice/polynomial
layers, and the main goal of HAL is to support multiple instantiations of the bottleneck polynomial
and RNS operations in these layers. This is achieved by defining C++ abstract classes for the
functionality that can have backend-specific implementation.

In the primitive math layer, we define abstract classes for integers, modular vectors, and NTT
transformations. These classes describe the interface for NTT, vector addition, vector multiplica-
tions and other operations needed to support polynomial arithmetic for the integers that fit in the
machine words.

In the lattice/polynomial layer, we define abstract classes for polynomials, focusing on the
double-CRT polynomial respresentation. The RNS subroutines, such as basis extension and scaling,
are part of the double-CRT abstract class specification. More complex RNS subroutines that are
called by key switching and modulus switching in BGV-like schemes are also defined at the double-
CRT class level.

The goal of the design is to provide a backend-aware implementation for integers, modular vec-
tors, NTT transformations, and polynomials while using the same implementation of cryptographic
capabilities for all backends.

Multiple backends are supported by using distinct git repositories. A hardware-specific backend
implementation is housed in a separate repository labeled as openfhe-<backend-name>. There
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Encoding Layer
SIMD packing for vectors of integers

SIMD packing for vectors of real numbers

Other plaintext encoding methods

Application Layer
Examples in OpenFHE

External projects using OpenFHE

Compilers/transpilers

Crypto Layer
BGV, BFV, CKKS, DM, CGGI FHE schemes

Proxy reencryption/threshold FHE extensions

Noise estimation for FHE schemes (future)

Scheme switching for FHE schemes (future)

Lattice/Polynomial Layer
Power-of-two cyclotomic rings

RNS/Double-CRT algorithms

Lattice trapdoor sampling

General cyclotomic rings (future)

Primitive Math Layer
Modular integer/vector operations

NTT/FFT/Blustein’s transform

PRNG/integer sampling algorithms

Figure 1: Layers in OpenFHE

is also a special openfhe-configurator repository that automatically builds OpenFHE for a
selected backend by merging the code from one of the main OpenFHE repositories, i.e., openfhe-
development if using a preview version or openfhe if using the stable version of OpenFHE, with
the code in openfhe-<backend-name>.

3.4 Intel® Homomorphic Encryption Acceleration Library (HEXL)

OpenFHE includes a hardward backend implementation for the Intel Homomorphic Encryption
Acceleration Library (HEXL), which is available in the openfhe-hexl github repository under the
OpenFHE github organization [48].
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HEXL is an open-source C++ library which provides efficient implementations of integer arith-
metic on finite fields. It is available at https://github.com/intel/hexl under the Apache 2.0
license.

HEXL uses the Intel® Advanced Vector Extensions 512 (Intel® AVX512) instruction set to
implement polynomial operations with word-sized primes on 64-bit Intel processors. In particular,
HEXL takes advantage of the Intel® Advanced Vector Extensions 512 Integer Fused Multiply Add
(Intel® AVX512-IFMA52) [42] instructions introduced in the 3rd Gen Intel® Xeon® Scalable
Processors to provide significant speedup on primes below 50 bits.

The primary functionality of HEXL is to provide optimized Intel® AVX512-DQ and Intel
AVX512-IFMA52 implementations for the forward and inverse NTT, element-wise vector-vector
multiplication, and element-wise vector-scalar multiplication. The Intel AVX512-IFMA52 imple-
mentations are valid on prime moduli less than 50 bits, while the Intel AVX512-DQ implementations
allow moduli up to 62 bits. HEXL also provides a reference native C++ implementation for each
kernel, which has reduced performance but ensures HEXL is compatible with non-AVX512 proces-
sors. The choice of implementation is determined at runtime based on the CPU feature availability.

HEXL is designed to intercept HE libraries at the polynomial layer with polynomials in RNS
form. Since the majority of each HE operation’s runtime lies at the polynomial layer, speedup at
the polynomial layer typically propagates to higher-level HE operations.

The algorithms used by, and the implementation of HEXL are discussed in detail by Boemer et
al. [9].

3.5 Pseudo Random Number Generators (PRNG)

In key generation, encryption, proxy re-encryption, and sometimes in decryption, sampling using
a random distribution is needed. The current implementation of OpenFHE supports only software
PRNGs based on random seeds. However, in the future we plan to extend HAL to support hardware-
specific PRNGs. The current software engineering design already supports multiple PRNGs.

4 Usability Enhancements

One of the goals of OpenFHE is to make FHE schemes more usable for application developers.
Some of the FHE schemes are already relatively simple to use. For instance, BFV does not need
explicit modulus switching and key switching calls by the user, and has no special constraints on the
selection of RNS moduli. DM and CGGI automatically call bootstrapping for every gate (except for
negation), and do not require any special logic besides minimizing the number of gates. However,
BGV and CKKS are considered much more challenging. For instance, BGV requires careful noise
estimation and invocation of modulus switching in appropriate locations. CKKS requires a careful
analysis of approximation error and invocation of rescaling in appropriate locations to truncate
least significant bits.

4.1 Automation for BGV and CKKS

OpenFHE provides several different modes for BGV and CKKS where the decisions about mod-
ulus/key switching and level adjustments are automatically made by the library. These modes,
which include AUTO in the name, are described in Section 2.1.1.
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In the case of CKKS, the goal of automated logic is to minimize the approximation error, which
under the hood requires a complex handling of ciphertexts at different levels, each with a different
scaling factor; while not exposing this complicated logic to the user.

4.2 Compiler Support

While the built-in automation in OpenFHE helps a user get relatively simple examples up and
running without requiring much FHE expertise, more advanced examples and better performance
can be enabled for non-experts using external FHE compilers [4, 27]. These compilers address
such challenges as FHE parameter selection, e.g., setting the multiplicative depth, the injection
of modulus switching and key switching in a way that optimizes the performance, and dealing
with the complicated encoding of input data into FHE-compatible plaintexts. One of the earliest
works [4] provided a RAMPARTS compilation framework where programmers in the Julia language
can write FHE applications the same way as regular plaintext applications are written. A later
project EVA [27] provided an FHE compiler for CKKS with SIMD support.

To support various compilers, OpenFHE includes CKKS and BGV modes without any au-
tomation (see the modes with MANUAL in the name in Section 2.1.1) along with more granular
operations, e.g., where key switching is broken down into several subroutines and homomorphic
multiplication without relinearization is available. These options are exposed either for compilers
or FHE experts developing higher-level FHE functions.

4.2.1 Google Transpiler

Since the initial version of OpenFHE, the Google Transpiler [36], which enables compiling FHE
applications from C++ code, supports OpenFHE as an FHE backend [35]. The Google Transpiler
uses the CGGI implementation in OpenFHE to evaluate arbitrary Boolean circuits, applying various
optimizations to generate efficient circuits from the original C++ user code. Additional FHE
capabilities of OpenFHE are expected to be supported in future versions of Google Transpiler as a
result of collaboration between the OpenFHE and Transpiler teams.

5 Further Information

This paper provides a high-level description of OpenFHE design. More detailed up-to-date infor-
mation is available from the following sources:

• OpenFHE website: https://openfhe.org

• ReadTheDocs documentation for OpenFHE:

https://openfhe-development.readthedocs.io/en/latest/

• OpenFHE development repository:

https://github.com/openfheorg/openfhe-development

• OpenFHE github organization where various OpenFHE-dependent projects are housed:

https://github.com/openfheorg
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