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ABSTRACT
In this work, we present an almost-surely terminating asynchronous
Byzantine agreement (ABA) protocol for 𝑛 parties. Our protocol re-

quires O(𝑛2) expected time and is secure against a computationally-
unbounded malicious (Byzantine) adversary, characterized by a

non-threshold adversary structureZ, which enumerates all possi-

ble subsets of potentially corrupt parties. Our protocol has optimal
resilience where Z satisfies the Q(3)

condition; i.e. union of no
three subsets from Z covers all the 𝑛 parties. To the best of our

knowledge, this is the first almost-surely terminating ABA protocol

with Q(3)
condition. Previously, almost-surely terminating ABA

protocol is known with non-optimal resilience where Z satisfies

the Q(4)
condition; i.e. union of no four subsets from Z covers

all the 𝑛 parties. To design our protocol, we present a shunning
asynchronous verifiable secret-sharing (SAVSS) scheme with Q(3)

condition, which is of independent interest.
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1 INTRODUCTION
Byzantine agreement (BA) [31], also known as fault-tolerant dis-

tributed consensus, is a fundamental problem in secure distributed

computing. Informally, a BA protocol allows a set P of 𝑛 mutually

distrusting parties with private input bits, to reach agreement on

a common output bit, even if a subset of the parties are corrupted

by a computationally-unbounded malicious (Byzantine) adversary,

who can force the corrupt parties to behave arbitrarily during the

protocol execution. BA protocols serve as a very important building

block in securemultiparty computation (MPC) protocols [9, 36]. The

BA problem has been widely studied over the last three decades

and several fundamental results have been achieved, regarding the

possibility and feasibility of BA protocols in various settings (see

for instance [4, 30]). Recently, the BA problem has also received

attention from several other research communities, after the advent

of blockchain technologies (see for instance [24]).
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The traditional way of characterizing the adversary is through a

threshold, by assuming that adversary can corrupt any subset of up

to 𝑡 parties. In this setting, BA is is achievable iff 𝑡 < 𝑛/3 [31]. Hirt

and Maurer [26] and later Fitzi and Maurer [23] generalized the

threshold model by introducing the general-adversary model (also

known as the non-threshold setting in the literature). In the non-

threshold setting, the adversary is characterized by an adversary
structure Z = {𝑍1, . . . , 𝑍ℎ} ⊂ 2

P
, which enumerates all possible

subsets of potentially corrupt parties, such that adversary can select

any subset fromZ for corruption during the execution of a protocol.

In the general-adversary model, BA is achievable iffZ satisfies

the Q(3) (P,Z) condition [23, 26].
1
There are several well-known

motivations for modelling the distrust in the system through a non-

threshold adversary (see for instance [19, 22, 25, 27]). For example,

it allows for more flexibility, compared to the threshold model,

especially when P is not too large. To understand this, let P =

{𝑃1, . . . , 𝑃6}. Then in the threshold setting, any BA protocol can tol-

erate at most 1 corrupt party. However, in the non-threshold setting,

one can design a BA protocol tolerating an adversary characterized

by the adversary structure Z = {{𝑃1}, {𝑃2, 𝑃4}, {𝑃3, 𝑃5}, {𝑃3, 𝑃6},
{𝑃2, 𝑃5, 𝑃6}, {𝑃4, 𝑃5, 𝑃6}}, where the adversary can corrupt up to 3

parties, by corrupting the subset {𝑃2, 𝑃5, 𝑃6} or {𝑃4, 𝑃5, 𝑃6}.

Our Motivation and Results: All the above results are in the

synchronous communication model, where the parties are assumed

to be synchronized through a global clock, implying strict upper

bounds on the message delays. Consequently, protocol execution

occurs as a sequence of communication rounds, where the par-

ties are well aware of the beginning and end of each round. In a

synchronous protocol, any expected message which does not get

delivered within the known time bound can be attributed to a cor-
rupt sender party. Unfortunately, guaranteeing such strict time-outs

in extremely difficult in the real-world networks like the Internet,

which are better modelled through asynchronous communication

model [13]. In the asynchronous model, no timing assumptions are

made and the messages can be arbitrarily, but finitely delayed. The

only guarantee is that every sent message is eventually delivered,

but the messages need not be delivered in the same order in which

they were sent. To model the worst case scenario, adversary is

given the full control of the message scheduling in an asynchro-

nous network. Consequently, no party can distinguish between a

corrupt sender party (who does not send any message) and a slow
honest sender party (whose messages are arbitrarily delayed). As

an implication of this, in any asynchronous protocol, no party can

afford to wait to receive messages from all the parties, to avoid an

1
Given a set of parties P′ ⊆ P, we say that Z satisfies the Q(𝑘 ) (P′,Z) condition,
if the union of any 𝑘 subsets from Z does not cover the entire set P′

.
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endless wait and hence at every step of the protocol, a party may

afford to receive messages from only a subset of parties, ignoring

communication from potentially slow honest parties. As a result of
this, asynchronous protocols are more challenging to design than

their synchronous counterparts.

Unlike synchronous protocols, asynchronous protocols are exe-

cuted as a sequence of events, based on the order in which messages

are delivered. Following the results in the synchronous setting, asyn-
chronous BA (ABA) is possible iff 𝑡 < 𝑛/3 in the threshold setting,

while ABA in the non-threshold setting is possible only if Z satis-

fies the Q(3) (P,Z) condition. Compared to the synchronous BA

protocols, there are several inherent limitations of ABA protocols.

The seminal FLP impossibility result [21] states that any (determin-

istic) ABA protocol must have non-terminating runs, where the

honest parties (who are not under the control of the adversary) keep

on running the protocol forever to obtain an output. A powerful

paradigm to circumvent this impossibility result is to embrace ran-

domness, pioneered by Rabin [35] and Ben-Or [7]. There are two

categories of randomized ABA protocols. The first category is that

of (1−𝜖)-terminating ABA protocols [14, 33], where the honest par-

ties may not terminate the protocol with probability 𝜖 , where 𝜖 > 0

is some error parameter. The second category is that of almost-
surely terminating ABA protocols [1, 5], where the honest parties

terminate the protocol, asymptotically with probability 1. While

the first category of ABA protocols are used in statistically-secure
asynchronous MPC (AMPC) protocols [10, 16] where a negligible

error is allowed in the security properties, the latter category of

protocols are used in perfectly-secure AMPC protocols [6, 8, 18, 34]

where all security properties are achieved without any error.

In this work, we focus on almost-surely terminating ABA proto-

cols. The works of [1, 5] present efficient almost-surely terminating

ABA protocols in the threshold setting with the optimal resilience
of 𝑡 < 𝑛/3. However, to the best of our knowledge, we are not
aware of any almost-surely terminating ABA protocol in the non-
threshold setting with optimal resilience. Motivated by this, we ask

the following central question:

Does there exist an almost-surely terminating ABA protocol where
the adversary structureZ satisfies the Q(3) (P,Z) condition?

We answer the above question affirmatively by presenting an almost-

surely terminating ABA protocol with the Q(3) (P,Z) condition.
Our protocol is efficient and requires O(𝑛2) expected running time,

where the expected computation and communication performed

by the parties is polynomial in 𝑛.

Related Work: Not much work has been done in the domain

of ABA against non-threshold adversaries. In [17], the authors pre-

sented an almost-surely terminating ABA protocol. Compared to our

protocol, the expected running time of their protocol is a constant.
However, their protocol has non-optimal resilience, where the under-
lying adversary structure Z satisfies the Q(4) (P,Z) condition. In
a technical report [29], the authors refer to an ABA protocol in [28]

with Q(3) (P,Z) condition, to show that the condition Q(3) (P,Z)
is sufficient for designing ABA protocol. However, the work of [28]

is not available in the public domain and the exact details of the ABA

protocol is not known. Also, it is not clear whether the protocol in
[28] is (1 − 𝜖) or almost-surely terminating. Given the importance

of ABA and the general-adversary model, our work fills the gap

in the literature by presenting an almost-surely terminating ABA

protocol with complete formal details and formal security proofs.

Technical Overview: To design our ABA protocol, we gener-

alize the framework of [1, 5, 37] in the threshold setting (which

is further based on [7, 20, 35]), to the general-adversary model.

The framework reduces ABA to the design of an asynchronous

common-coin (CC) protocol, which allows the honest parties to

output a common random bit, with certain non-zero success prob-
ability. The design of CC protocol is further reduced to another

well-known primitive called asynchronous verifiable secret sharing
(AVSS) [8, 15]. Informally, an AVSS scheme consists of a sharing-

phase protocol and a reconstruction-phase protocol. During the

sharing-phase, there exists a designated dealer with some private
input (called secret), which it shares among the parties, without

revealing anything about the secret to the adversary. The “verifi-

ability" of the scheme guarantees that even if dealer is corrupt, it
has “consistently" shared some value among the parties. During the

reconstruction-phase protocol, the parties robustly reconstruct the

value shared during the sharing-phase, even if the corrupt parties

(including a potentially corrupt dealer) behaves maliciously.

It is well-known that perfectly-secure (error-free) AVSS in the

threshold setting necessarily requires 𝑡 < 𝑛/4 [2, 8]. Hence to design

a CC protocol with 𝑡 < 𝑛/3, the work of [1] introduces a weaker
variant of AVSS called shunning AVSS (SAVSS). Intuitively, depend-
ing upon the behaviour of the adversary, an SAVSS scheme either

guarantees all the security properties of an AVSS or ensures that

some honest party is able to locally detect and shun at least one cor-
rupt party (also called as local-conflict) for all future communication.

Once all corrupt parties are shunned by all honest parties, then

there will be no further errors and hence SAVSS will provide all the

security guarantees of AVSS. Based on their SAVSS, [1] designed a

shunning-variant of CC called shunning common-coin (SCC) proto-

col, where either all honest parties output a common random bit

with certain success probability or some local-conflict occurs.

To generalize the framework of [1], we present a perfectly-secure

SAVSS scheme with Q(3) (P,Z) condition. The scheme guarantees

that if the properties of AVSS are not achieved, then at least one

new local-conflict occurs. Consequently, it may take O(𝑛2) “failed"
SAVSS instances before all corrupt parties are shunned by all honest

parties. By deploying our SAVSS we then design an SCC protocol

against general adversaries with Q(3) (P,Z) condition, where the
success probability is

1

𝑛 . Finally, this SCC protocol when used in

the (generalized) framework of [7, 35] leads to our ABA protocol

with O(𝑛2) expected running time.

Open Problems: In the threshold setting, almost-surely termi-

nating ABA protocol with optimal resilience (i.e. 𝑡 < 𝑛/3) and best
running time is due to [5], where the expected running time is

O(𝑛). We do not know how to generalize the protocol of [5] and

get an almost-surely terminating ABA protocol with Q(3) (P,Z)
condition and O(𝑛) expected running time. Designing an almost-

surely terminating ABA protocol with a constant expected running

time and with optimal resilience even against threshold adversaries

has been a long-standing open problem.
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2 PRELIMINARIES
We assume the secure-channel model, where the parties in P =

{𝑃1, . . . , 𝑃𝑛} are connected by pair-wise private and authentic chan-
nels. The distrust is modelled by a centralized malicious (Byzan-
tine) adversary Adv, characterized by an adversary structureZ =

{𝑍1, . . . , 𝑍ℎ} ⊂ 2
P
. The adversary is static, who decides the set

of corrupt parties 𝑍★ ∈ Z, at the beginning of the execution of

any protocol. Parties not under the control of Adv are called honest.
Given P ′ ⊆ P, we say that Z satisfies the Q(𝑘) (P ′,Z) condition,
if for every 𝑍𝑖1 , . . . , 𝑍𝑖𝑘 ∈ Z, the condition P ′ ⊈ 𝑍𝑖1 ∪ . . . ∪ 𝑍𝑖𝑘
holds [27]. We follow the asynchronous communication model of

[13], where the channels among the parties are asynchronous and

where the messages are arbitrarily yet finitely delayed, with the

guarantee that every sent message is eventually delivered.

In our protocols, each 𝑃𝑖 maintains a local block-set B𝑖 across

all protocol instances and a wait-set W𝑖 , which are initialized to

∅. Note that 𝑃𝑖 maintains a single B𝑖 set, where as a separate W𝑖

set is maintained for each SAVSS instance. Party 𝑃𝑖 includes 𝑃 𝑗
in B𝑖 if during some protocol instance, 𝑥 is expected from 𝑃 𝑗 , but

instead 𝑥 ′ ≠ 𝑥 is received. Party 𝑃𝑖 is said to be in local-conflict
with 𝑃 𝑗 when 𝑃 𝑗 ∈ B𝑖 . Party 𝑃𝑖 includes 𝑃 𝑗 inW𝑖 corresponding to

some SAVSS instance, if during that instance, 𝑃𝑖 is expecting some

message from 𝑃 𝑗 . While a party making an entry in B𝑖 remains

part of it until the end of the execution of the ABA protocol, any

entry in a wait set is temporary and removed as and when the

expected communication happens. Until the receipt of the desired

communication from a party inW𝑖 , party 𝑃𝑖 suspends (saves yet

does not use) its future communication. Looking ahead, the way

W𝑖 and B𝑖 sets are created and maintained, it will be guaranteed

that no honest party is every included in the B𝑖 set of any honest
𝑃𝑖 . Moreover, if any honest 𝑃 𝑗 is ever included in the W𝑖 set of any

honest 𝑃𝑖 , then 𝑃𝑖 eventually removes 𝑃 𝑗 from 𝑃𝑖 .

In our SAVSS scheme, the parties perform computations over an

algebraic structure (K, +, ·), which is either a finite ring or a field

with |K| ≥ 𝑛. Looking ahead, this is required to achieve the desired

success probability in our SCC protocol.

2.1 Definitions
We now present the various definitions, as used in the paper.

Definition 2.1 (Shunning Asynchronous Verifiable Secret
Sharing (SAVSS)). Let (ΠSh,ΠRec) be a pair of protocols for the

parties in P, where each 𝑃𝑖 maintains a local B𝑖 andW𝑖 set, and for

a special party dealer 𝑃D ∈ P that has a private input 𝑠 ∈ K for ΠSh.

Then (ΠSh,ΠRec) is an SAVSS scheme if the following requirements

hold for every possible Adv.
– Output Computation: (a): If 𝑃D is honest and all honest par-

ties participate in ΠSh, then each honest party eventually

obtains an output in ΠSh. (b): If some honest party obtains

an output in ΠSh, then every other honest party eventually

obtains an output in ΠSh. (c): If all honest parties partici-
pate in ΠRec, then every honest party eventually obtains an

output in ΠRec.

– Correctness: If the honest parties compute an output during

ΠSh, then there exists some 𝑠 ∈ K, where 𝑠 = 𝑠 for an honest
𝑃D, such that one of the following holds:

• All honest parties output 𝑠 during ΠRec; or

• Some corrupt parties are included in the B sets of some

honest parties.

– Privacy: If 𝑃D is honest, then the view of Adv during ΠSh is

independent of 𝑠 .

Definition 2.2 (Shunning Common Coin (SCC)). Let ΠSCC be

a protocol for the parties in P, with each 𝑃𝑖 maintaining a local

B𝑖 and W𝑖 set and where each party has some local random input

and a binary output. Then ΠSCC is a 𝑝-SCC protocol for a given 𝑝

where 0 < 𝑝 < 1, if all the following hold for every possible Adv.
– Completion: If all honest parties participate in ΠSCC, then

every honest party eventually obtains an output.

– Correctness: One of the following holds.

• For every 𝜎 ∈ {0, 1}, all honest parties output 𝜎 with proba-

bility at least 𝑝; or

• Some corrupt parties are included in the B sets of some

honest parties.

Remark 2.3 (On the Termination Guarantees of Our Sub-Pro-
tocols). For simplicity and for the ease of analysis, we do not put
any termination criteria for the various sub-protocols (including

SAVSS and SCC) used in our ABA protocol and the parties may keep

on running these sub-protocol instances, even after obtaining an

output. Looking ahead, the termination criteria of our ABA proto-

col will ensure that the parties terminate all sub-protocol instances

upon obtaining their respective outputs in the ABA protocol.

Definition 2.4 (Almost-Surely Terminating Asynchronous
Byzantine Agreement (ABA)). Let ΠABA be a protocol for the

parties in P, where each 𝑃𝑖 has a private input bit 𝑏𝑖 and a possi-

ble output bit. Then, ΠABA is an almost-surely terminating ABA

protocol, if the following requirements hold for every possible Adv.
– Termination: If all honest parties participate in ΠABA, then

asymptotically with probability one, each honest 𝑃𝑖 eventu-

ally terminates the protocol. That is,

lim

𝑇→∞
Pr[An honest 𝑃𝑖 obtains its output by local time 𝑇 ] = 1,

where the probability is over the random coins of the honest

parties and the adversary in the protocol.

– Agreement: All honest parties output a common bit.

– Validity: If all honest parties have the same input bit 𝜎 , then

all honest parties eventually output 𝜎 .

2.2 Existing Asynchronous Primitives
We use the following existing asynchronous primitives.

Asynchronous Reliable Broadcast (Acast): An Acast proto-

col allows a designated sender 𝑃𝑆 ∈ P to identically send a message

𝑚 ∈ {0, 1}ℓ to all the parties. If 𝑃𝑆 is honest, then all honest par-

ties eventually output𝑚. On the other hand, if 𝑃𝑆 is corrupt and
some honest party outputs an 𝑚★ ∈ {0, 1}ℓ (where 𝑚★

may be

different from𝑚), then every other honest party eventually outputs

𝑚★
. In [29], a perfectly-secure Acast protocol is presented with a

communication complexity of O(𝑛2ℓ) bits, provided the underly-

ing adversary structure Z satisfies the Q(3) (P,Z) condition. The
protocol is obtained by generalizing the Bracha’s Acast protocol

against threshold adversaries with 𝑡 < 𝑛/3 [12]. We will use the

following terminologies while invoking the Acast protocol: we will

say that “𝑃𝑖 broadcasts 𝑚" to mean that 𝑃𝑖 acts as a sender and
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invokes an instance of the Acast protocol with input 𝑚 and the

parties participate in this instance. Similarly, we will say that “𝑃 𝑗
receives𝑚 from the broadcast of 𝑃𝑖 " to mean that party 𝑃 𝑗 outputs

𝑚 in the corresponding instance of Acast.

AsynchronousVote Protocol: In a voting protocol (also known
as gradecast), every party has a single bit as input and each party’s

output can have five different forms:

– For 𝜎 ∈ {0, 1}, the output (𝜎, 2) stands for “overwhelming

majority for 𝜎”;

– For 𝜎 ∈ {0, 1}, the output (𝜎, 1) stands for “distinct majority

for 𝜎”;

– The output (Λ, 0) stands for “non-distinct majority”.

A voting protocol ensures the following properties:

– If each honest party has the same input 𝜎 , then every honest

party outputs (𝜎, 2).
– If some honest party outputs (𝜎, 2), then every other honest

party outputs either (𝜎, 2) or (𝜎, 1).
– If some honest party outputs (𝜎, 1) and no honest party outputs

(𝜎, 2), then each honest party outputs either (𝜎, 1) or (Λ, 0).
In [14], a voting protocol satisfying the above requirements is pre-

sented against threshold adversaries, provided 𝑡 < 𝑛/3 holds. The

protocol is generalized against non-threshold adversaries in [17],

provided the underlyingZ satisfies the Q(3) (P,Z) condition. The
protocol called ΠVote incurs a communication of O(𝑛5) bits.

3 SAVSS WITH Q(3) (P,Z) CONDITION
In this section, we present our SAVSS scheme (see Fig 1). The scheme

is obtained by modifying the perfectly-secure AVSS scheme of [17]

(which is further based on [32]) and considers a sharing specification
S = {𝑆1, . . . , 𝑆ℎ}, where for 𝑞 = 1, . . . , ℎ the set 𝑆𝑞 = P \ 𝑍𝑞 and

where Z = {𝑍1, . . . , 𝑍ℎ} is the underlying adversary structure.

During the sharing-phase protocol ΠSh, the dealer randomly picks

a vector of shares [𝑠] = (𝑠1, . . . , 𝑠ℎ) for its secret 𝑠 , such that 𝑠 =

𝑠1 + . . . + 𝑠ℎ and distributes the share 𝑠𝑞 , denoted by [𝑠]𝑞 , to all

the parties in the set 𝑆𝑞 . If the dealer is honest, then this does not

reveal any information about 𝑠 to the adversary, as adversary will

be missing at least one share and so the probability distribution of

the shares learnt the adversary will be independent of 𝑠 . To verify

whether a potentially corrupt dealer has distributed a common share

[𝑠]𝑞 to all the honest parties in the set 𝑆𝑞 , the parties in 𝑆𝑞 exchange

the supposedly common share and publicly acknowledge if they

received the same share. Based on these public acknowledgements,

the parties check whether for each set 𝑆𝑞 ∈ S, there exists a subset
of parties 𝑆 ′𝑞 who have acknowledged the receipt of a common

share from the dealer, such that 𝑆 ′𝑞 is guaranteed to have at least

one honest party. Notice that such a subset 𝑆 ′𝑞 is bound to exist for

an honest dealer, since for an honest dealer, all the honest parties in
𝑆𝑞 will receive the same share from the dealer and the set of honest

parties in each set 𝑆𝑞 is non-empty, which follows from the fact

thatZ satisfies the Q(3) (P,Z) condition. To ensure that all honest
parties have an agreement on the subsets 𝑆 ′𝑞 , the dealer is assigned
the task of identifying the subsets 𝑆 ′𝑞 and publicly declaring them.

To find the subsets 𝑆 ′𝑞 , the dealer actually finds a single “core"
subset of parties C where P \ C ∈ Z, such that corresponding to

every 𝑆𝑞 ∈ S, there exists a subset 𝑆 ′𝑞 ⊆ (𝑆𝑞∩C), where 𝑆𝑞 \𝑆 ′𝑞 ∈ Z

and where all the parties in 𝑆 ′𝑞 have publicly acknowledged the

receipt of a common share from the dealer. An honest dealer will
eventually find such a core set C, as the set of honest parties in the

system constitute a candidate C for an honest dealer. Upon finding

a set C satisfying the above conditions, dealer publicly announces

it and the parties “accept" the set C after verifying whether indeed

the announced C satisfies the above properties.

During the reconstruction-phase protocol ΠRec, the goal is to get

the share [𝑠]𝑞 corresponding to every set 𝑆𝑞 ∈ S, upon which the

shared secret can be reconstructed by computing [𝑠]1 + . . . + [𝑠]ℎ .
To get the share [𝑠]𝑞 corresponding to 𝑆𝑞 , all the parties in the

set (𝑆𝑞 ∩ C) are asked to make the share received from the dealer

public. However, due to the asynchronous communication, to avoid

an indefinite wait, the parties cannot afford for all the parties in
(𝑆𝑞 ∩ C) to make their version of the share [𝑠]𝑞 public, as the

potentially corrupt parties in (𝑆𝑞 ∩ C) may never make any share

public. Consequently, as soon as any party from (𝑆𝑞 ∩ C) makes

public its version of [𝑠]𝑞 , it is considered towards the reconstruction
of 𝑠 . However, this may lead to reconstruction of an incorrect 𝑠 , as
a potentially corrupt party from (𝑆𝑞 ∩ C) may make public an

incorrect version of [𝑠]𝑞 . But this will lead to the honest party(ies)

in 𝑆 ′𝑞 getting into local-conflict with this corrupt party.

Each instance of SAVSS is associated with a unique id sid ∈ N.
All messages communicated during the SAVSS instance sid are

tagged with this id. However, for simplicity, we skip tagging every

message explicitly with sid in the formal description of the scheme.

During the protocol ΠSh, once the core set C is agreed upon, the

parties locally populate their respective W sets, anticipating the

values they expect from the various parties during the protocolΠRec.

At the beginning of each instance of the SAVSS, a corresponding

memorymanagement protocolΠMM is also invoked, based onwhich

each party locally decides whether to process a received message

as per the SAVSS, delay it temporarily or block it permanently.

Protocol ΠMM examines the messages produced by the various

parties during the reconstruction phase and accordingly the W
andB sets of the parties are updated. We stress that the parties keep

executing the ΠMM protocol with id sid, even after obtaining their

respective outputs in the ΠSh and ΠRec protocols with id sid. This
ensures that if some message is pending from a party for instance

sid, then its communication is ignored by the ΠMM protocol in any

future instance sid′ > sid.

Protocol ΠSh (P,Z, S, 𝑃D, 𝑠)
• Distribution of Shares – On having the input 𝑠 ∈ K, the dealer

𝑃D executes the following steps.

– Randomly select the shares 𝑠1, . . . , 𝑠ℎ , subject to the condition

that 𝑠1 + . . . + 𝑠ℎ = 𝑠 holds.

– For 𝑞 = 1, . . . , ℎ, set [𝑠 ]𝑞 = 𝑠𝑞 and send [𝑠 ]𝑞 to all the parties

in the set 𝑆𝑞 .

• Pair-wise Consistency Check – Each party 𝑃𝑖 ∈ P (including

𝑃D), executes the following steps.

– Wait to receive a share 𝑠𝑞𝑖 from 𝑃D, corresponding to every

𝑆𝑞 ∈ S such that 𝑃𝑖 ∈ 𝑆𝑞 . Upon receiving, send the share 𝑠𝑞𝑖

to every party 𝑃 𝑗 ∈ 𝑆𝑞 .

– Broadcast an OK(𝑖, 𝑗) message, if all the following hold.

Scheme SAVSS
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1. 𝑃𝑖 has received a share 𝑠𝑞𝑗 from 𝑃 𝑗 , corresponding to every

𝑆𝑞 ∈ S such that 𝑃𝑖 , 𝑃 𝑗 ∈ 𝑆𝑞 ;

2. The condition 𝑠𝑞𝑖 = 𝑠𝑞𝑗 holds.

• Constructing CORE Set and Public Announcement — 𝑃D exe-

cutes the following steps.

– Check if there exists a subset of parties C ⊆ P, such that all the

following hold. Upon finding such a C, broadcast it.

1. P \ C ∈ Z;

2. Corresponding to every 𝑃𝑖 , 𝑃 𝑗 ∈ C, the messages OK(𝑖, 𝑗)
and OK( 𝑗, 𝑖) have been received from the broadcast of 𝑃𝑖

and 𝑃 𝑗 respectively.

3. Corresponding to every 𝑆𝑞 ∈ S, there exists a subset 𝑆′𝑞 ⊆
(𝑆𝑞 ∩ C) , such that 𝑆𝑞 \ 𝑆′𝑞 ∈ Z.

• Verifying CORE Set and Populating Waiting Sets – Each 𝑃𝑖 ∈
P (including 𝑃D) executes the following steps.

– Wait to receive a set C from the broadcast of 𝑃D and then accept
and output C, if all the following hold.

1. P \ C ∈ Z;

2. Corresponding to every 𝑃𝑖 , 𝑃 𝑗 ∈ C, the messages OK(𝑖, 𝑗)
and OK( 𝑗, 𝑖) have been received from the broadcast of 𝑃𝑖

and 𝑃 𝑗 respectively.

3. Corresponding to every 𝑆𝑞 ∈ S, there exists a subset 𝑆′𝑞 ⊆
(𝑆𝑞 ∩ C) , such that 𝑆𝑞 \ 𝑆′𝑞 ∈ Z.

– If a set C is accepted, then populate the set W(𝑖,sid) as follows.
◦ If 𝑃𝑖 = 𝑃D, then for each 𝑃 𝑗 ∈ C and each 𝑆𝑞 ∈ S where

𝑃 𝑗 ∈ 𝑆𝑞 , add the tuple (𝑞, 𝑃 𝑗 , [𝑠 ]𝑞) to W(𝑖,sid) . This is
interpreted as 𝑃D expects 𝑃 𝑗 to reveal the share [𝑠 ]𝑞 on the

behalf of the set 𝑆𝑞 during the reconstruction protocol.

◦ If 𝑃𝑖 ∈ C, then corresponding to each 𝑆𝑞 ∈ S where 𝑃𝑖 ∈ 𝑆𝑞

and each 𝑃 𝑗 ∈ 𝑆𝑞 ∩ C, add the tuple (𝑞, 𝑃 𝑗 , 𝑠𝑞𝑖 ) to W(𝑖,sid) .
This is interpreted as 𝑃𝑖 expects 𝑃 𝑗 to reveal the share 𝑠𝑞𝑖 on

the behalf of the set 𝑆𝑞 during the reconstruction protocol.

◦ Else corresponding to every 𝑃 𝑗 ∈ C and every 𝑆𝑞 ∈ S where
𝑃 𝑗 ∈ 𝑆𝑞 , add the tuple (𝑞, 𝑃 𝑗 ,★) to W(𝑖,sid) . This is inter-
preted as 𝑃𝑖 expects 𝑃 𝑗 to reveal some share on the behalf

of the set 𝑆𝑞 during the reconstruction protocol.

Protocol ΠRec (P,Z, S, 𝑃D, 𝑠)
• Making the Shares Public – For 𝑞 = 1, . . . , ℎ, each party 𝑃𝑖 ∈

C ∩ 𝑆𝑞 broadcasts the shares {𝑠𝑞𝑖 }𝑃𝑖 ∈𝑆𝑞∩C .
• Reconstructing the Secret – Each 𝑃 𝑗 ∈ P outputs 𝑠★ = [𝑠 ]★

1
+

. . . + [𝑠 ]★
ℎ
, where for 𝑞 = 1, . . . , ℎ, party 𝑃 𝑗 computes [𝑠 ]★𝑞 as

follows.

– If 𝑃 𝑗 ∈ (C ∩ 𝑆𝑞) , then set [𝑠 ]★𝑞 = 𝑠𝑞𝑗 .

– If 𝑃 𝑗 ∉ (C ∩𝑆𝑞) , then set [𝑠 ]★𝑞 to the value 𝑠𝑞𝑖 , if 𝑠𝑞𝑖 is received

from the broadcast of some 𝑃𝑖 ∈ C ∩ 𝑆𝑞 .
a

Protocol ΠMM (P,Z, S, 𝑃D, 𝑠)
The following code is executed by 𝑃𝑖 ∈ P, if a set C is accepted:

• Initialization: Initialize W(𝑖,sid) and B𝑖 to ∅. The set B𝑖 is a set

that is initialized by the party 𝑃𝑖 only once (when sid = 0) and

dynamically updated during the various instances of ΠMM. The

set W(𝑖,sid) is initialized in and maintained for SAVSS instance

with id sid only.

• Suspending Messages: If any message is received from 𝑃 𝑗 during

SAVSS with id sid, then block the message as per the following

conditions.

– If 𝑃 𝑗 ∈ B𝑖 , then discard the message.

– If there exists a tuple of the form (★, 𝑃 𝑗 ,★) in the W(𝑖,sid′) set
for any sid′ < sid, then do not forward the message to SAVSS

with id sid.
• Filtering Parties from Waiting Lists: Corresponding to every

𝑃 𝑗 ∈ P, if 𝑃 𝑗 ∉ B𝑖 and if a share 𝑠𝑞𝑗 is received from the

broadcast of 𝑃 𝑗 on the behalf of the set 𝑆𝑞 during ΠRec with id

sid, then do the following, provided 𝑃 𝑗 ∈ 𝑆𝑞 ∩ C and there exists

a tuple of the form (𝑞, 𝑃 𝑗 , val) ∈ W(𝑖,sid) .
– If val = ★, then remove (𝑞, 𝑃 𝑗 , val) from W(𝑖,sid) .
– If val ≠ ★ and val = 𝑠𝑞𝑗 , then remove (𝑞, 𝑃 𝑗 , val) from W(𝑖,sid) .
– If val ≠ ★ and val ≠ 𝑠𝑞𝑗 , then add 𝑃 𝑗 to B𝑖 .

a
If there are multiple such parties 𝑃𝑖 from whose broadcast 𝑃 𝑗 receives some 𝑠𝑞𝑖 ,

then consider the first party 𝑃𝑖 among them.

Figure 1: The SAVSS scheme with protocols for sharing, reconstruc-
tion and memory management with session id sid

We next prove the properties of our SAVSS.

Lemma 3.1 (Properties of SAVSS Memory Management Pro-
tocol). The following hold for every honest 𝑃𝑖 ∈ P during the protocol
ΠMM with id sid for any sid ∈ N, irrespective of 𝑃D.
– If 𝑃 𝑗 is included in B𝑖 then 𝑃 𝑗 is corrupt.
– If 𝑃 𝑗 is honest, then any triplet of the form (★, 𝑃 𝑗 ,★) present in

W(𝑖,sid) is eventually removed.

Proof. If 𝑃 𝑗 is honest, then it eventually broadcasts all the mes-

sages it is supposed to broadcast during the protocol ΠRec with

id sid, which are eventually received by every honest 𝑃𝑖 . Hence

every triplet of the form (★, 𝑃 𝑗 ,★) will be eventually removed from

W(𝑖,sid) . Moreover, an honest 𝑃 𝑗 broadcasts the shares as received
from 𝑃D during the protocol ΠSh with id sid. So the conditions for

including 𝑃 𝑗 to B𝑖 are never satisfied. □

Lemma 3.2. For any sid ∈ N, the following hold during the (ΠSh,

ΠRec) protocols with id sid: (a): If 𝑃D is honest and all honest parties
participate in ΠSh, then each honest party eventually outputs C. (b):
If some honest party outputs C in ΠSh, then every other honest party
eventually outputs C in ΠSh. (c): If all honest parties participate in
ΠRec, then every honest party eventually obtains an output in ΠRec.

Proof. We note that during ΠSh and ΠRec, the messages of

every honest party is cleared by the ΠMM protocol and eventually

delivered to the honest recipients, which follows from Lemma 3.1.

We first consider an honest 𝑃D. In this case, corresponding to every

𝑆𝑞 ∈ S, every honest party 𝑃𝑖 ∈ 𝑆𝑞 receives the share 𝑠𝑞𝑖 from

𝑃D, which will be the same as [𝑠]𝑞 . Consequently, every honest

𝑃𝑖 eventually broadcasts an OK(𝑖, 𝑗) message, corresponding to

every honest 𝑃 𝑗 . Let 𝑍𝑐 ∈ Z be the set of corrupt parties and let

H = P \ 𝑍𝑐 be the set of honest parties. Next consider an arbitrary

𝑆𝑞 ∈ S. It is easy to see that 𝑆𝑞 \ (𝑆𝑞 ∩H) ⊆ 𝑍𝑐 ∈ Z. It then follows

that 𝑃D eventually finds a candidate C set and broadcasts the same,

since we have shown that the set H satisfies all the properties of a

candidate C set. Consequently, every honest party will eventually

receive a C set from the broadcast of 𝑃D, accepts it and outputs C.
This proves the first part of the lemma.

For the second part of the lemma, let 𝑃ℎ be the first honest party
who outputs C during ΠSh. This implies that 𝑃ℎ receives the set C
from the broadcast of 𝑃D and accepts it. It then follows that every

other honest party also eventually receives C from the broadcast
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of 𝑃D and the conditions for accepting C will eventually hold for

those honest parties as well. Consequently, every other honest party

eventually outputs C during ΠSh.

For the third part, we first note that honest parties participate in

ΠRec, only after accepting C. We also note that corresponding to

every 𝑆𝑞 ∈ S, there exists at least one honest party in the set 𝑆𝑞 ∩ C,
that is 𝑆𝑞∩C∩H ≠ ∅. This is because as per the protocol conditions,
P \C ∈ Z, 𝑆𝑞 = P \𝑍𝑞 andH = P \𝑍𝑐 , so if 𝑆𝑞 ∩C∩H = ∅, then
it implies that Z does not satisfy the Q(3) (P,Z) condition, which
is a contradiction. Let 𝑃 𝑗 be an honest party in the set 𝑆𝑞∩C. During
ΠRec, party 𝑃 𝑗 will broadcast the share 𝑠𝑞𝑗 received from 𝑃D on the

behalf of the set 𝑆𝑞 , which is eventually delivered to every honest

party. Consequently, every honest party 𝑃𝑖 will eventually set the

share [𝑠]★𝑞 to some value and reconstructs some value 𝑠★. □

Lemma 3.3. For any sid ∈ N, the following holds during the
(ΠSh,ΠRec,ΠMM) protocols with id sid: If the honest parties out-
put C during ΠSh, then there exists a unique value 𝑠 , where 𝑠 = 𝑠 for
an honest 𝑃D, such that one of the following holds.
– All honest parties output 𝑠★ = 𝑠 during ΠRec; or
– At least one new local-conflict occurs during ΠMM between an

honest and a corrupt party.

Proof. Let the honest parties output a set C during ΠSh. This

implies that the honest parties have accepted C, broadcasted by 𝑃D.
Now consider an arbitrary 𝑆𝑞 ∈ S. As shown in the proof of Lemma

3.2, there exists at least one honest party in the set 𝑆𝑞 ∩ C. We first

note that all honest parties in the set 𝑆𝑞 ∩ C receive the same share,

say 𝑠𝑞 , from 𝑃D. This is because every honest party 𝑃𝑘 ∈ 𝑆𝑞 ∩C has

broadcasted an OK(𝑘, 𝑙) message, corresponding to every honest

𝑃𝑙 ∈ 𝑆𝑞 ∩ C, implying that the condition 𝑠𝑞𝑘 = 𝑠𝑞𝑙 holds, where 𝑠𝑞𝑘
and 𝑠𝑞𝑙 are the shares corresponding to 𝑆𝑞 , received by 𝑃𝑘 and 𝑃𝑙
respectively. We define

𝑠
𝑑𝑒𝑓
=

∑︁
𝑞=1,...,ℎ

𝑠𝑞 .

It is easy to see that if 𝑃D is honest, then 𝑠 = 𝑠 holds.

Next consider an arbitrary honest party 𝑃 𝑗 . From Lemma 3.2,

party 𝑃 𝑗 eventually reconstructs some value 𝑠★ during ΠRec. Let

𝑠★ ≠ 𝑠 . This implies that there exists at least one 𝑆𝑞 ∈ S, such that

during ΠRec, party 𝑃 𝑗 has set [𝑠]★𝑞 to 𝑠𝑞𝑖 where 𝑠𝑞𝑖 is received from

the broadcast of some 𝑃𝑖 ∈ 𝑆𝑞 ∩ C and 𝑠𝑞𝑖 ≠ 𝑠𝑞 . Note that 𝑃𝑖 is

corrupt, as every honest party in 𝑆𝑞 ∩ C broadcasts the share 𝑠𝑞
during ΠRec. We also note that the share 𝑠𝑞𝑖 broadcasted by 𝑃𝑖 is

eventually received by all honest parties in 𝑆𝑞 ∩C. Now consider an

arbitrary honest party 𝑃𝑘 ∈ 𝑆𝑞 ∩ C. From the protocol steps, during

ΠSh, party 𝑃𝑘 broadcasts the message OK(𝑘, 𝑖) corresponding to 𝑃𝑖
and adds the tuple (𝑞, 𝑃𝑖 , 𝑠𝑞) to W(𝑘,sid) . Since during ΠRec party

𝑃𝑖 broadcasts 𝑠𝑞𝑖 ≠ 𝑠𝑞 , it follows that during the protocol ΠMM, the

local-conflict (𝑃𝑘 , 𝑃𝑖 ) occurs and party 𝑃𝑘 adds 𝑃𝑖 to B𝑘 .

Finally, to complete the proof we need to show that 𝑃𝑖 is not
included in B𝑘 during any instance of ΠMM with sid′, where sid′ <
sid. On contrary, if 𝑃𝑖 is included in B𝑘 during ΠMM with sid′,
where sid′ < sid, then 𝑃𝑘 will never broadcast theOK(𝑘, 𝑖) message

during the instance ofΠSh with id sid, which is a contradiction. This
is because if 𝑃𝑖 ∈ B𝑘 , then all the messages from 𝑃𝑖 are discarded

by 𝑃𝑘 during the instance of ΠSh with id sid, due to the protocol

ΠMM with id sid. □

Lemma 3.4. For any sid ∈ N, if 𝑃D is honest, then the view of the
adversary is independent of the input 𝑠 of 𝑃D during ΠSh with id sid.

Proof. Let 𝑃D be honest. In the protocol, 𝑃D randomly selects the

shares 𝑠1, . . . , 𝑠ℎ , subject to the condition that 𝑠1 + . . . + 𝑠ℎ = 𝑠 holds.

Moreover, since each 𝑆𝑞 = P \𝑍𝑞 where 𝑍𝑞 ∈ Z, it follows that the

probability distribution of the shares learnt by the adversary during

ΠSh, will be independent of the input 𝑠 of 𝑃D. More specifically,

let 𝑍𝑐 ∈ Z be the set of corrupt parties. Then throughout ΠSh, the

adversary does not not learn anything about the share 𝑠𝑐 , which

is available only to the parties in 𝑆𝑐 = P \ 𝑍𝑐 . This is because the
share 𝑠𝑐 is distributed by 𝑃D to the parties in 𝑆𝑐 over pair-wise

secure channels. Moreover, during the pair-wise consistency tests,

the parties in 𝑆𝑐 exchange the share 𝑠𝑐 only among themselves. It

now follows that for every candidate value of 𝑠 from the point of

view of the adversary, there is a corresponding unique 𝑠𝑐 , which

will be consistent with the shares seen by the adversary during ΠSh.

Now since the share 𝑠𝑐 is chosen randomly, it follows that the view

of the adversary during ΠSh remains independent of 𝑠 . □

Lemma 3.5. Protocol ΠSh incurs a communication of O(|Z| ·
𝑛2

log |K| + 𝑛4
log𝑛) bits, while protocol ΠRec incurs a communi-

cation of O(|Z| · 𝑛3
log |K|) bits.

Proof. During ΠSh, the dealer 𝑃D needs to send a share 𝑠𝑞 of

size log |K| bits to each set 𝑆𝑞 ∈ S, consisting of O(𝑛) parties. This
requires a communication of O(|S| ·𝑛 log |K|) bits. During the pair-
wise consistency test, every party in 𝑆𝑞 sends its share to every other

party in 𝑆𝑞 , incurring a communication of O(|S| · 𝑛2
log |K|) bits.

There are O(𝑛2) OK(★,★) messages which are broadcasted, where

each message is of size 2 log𝑛 bits, encoding the identity of 2 parties.

Moreover, 𝑃D broadcasts a C set, encoded using O(𝑛 log𝑛) bits.
DuringΠRec, a partymay need to broadcast up toO(|S|) shares. The
communication complexity now follows from the communication

complexity of the Acast protocol and the fact that |S| = |Z|. □

4 SCCWITH Q(3) (P,Z) CONDITION
The SCC protocol is presented in Fig 3. The protocol is exactly

the same as the CC protocol of [17] with the following difference:
while the CC protocol of [17] uses their perfectly-secure AVSS with

Q(4) (P,Z) condition, we replace the instances of AVSS with our

SAVSS scheme with Q(3) (P,Z) condition (presented in the last

section), thus leading to an SCC with Q(3) (P,Z) condition.
The SCC protocol ΠSCC consists of two stages. In the first stage,

a uniformly random, yet unknown value Coin𝑖 ∈ {0, . . . , 𝑛 − 1} is
“attached" to every party 𝑃𝑖 . Then, once it is ensured that “suffi-

ciently many" number of parties in a set FS (called final set) have
been attached with their respectiveCoin values, in the second stage,
these Coin values are publicly reconstructed, and an output bit is

computed taking into account the reconstructed values. However,

due to the asynchronous communication, each (honest) party may

have a different FS set and hence, a potentially different output.

To circumvent this problem, the protocol ensures that there is a

non-empty overlap among the FS sets of all the (honest) parties.

Ensuring this common overlap is the crux of the protocol.
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During the first stage, each party acts as a dealer and shares

a random value from K on the behalf of each party, by invoking

an instance of ΠSh. To ensure that each Coin𝑖 ∈ {0, . . . , 𝑛 − 1},
the parties set K to either a finite ring or a field, where |K| ≥ 𝑛.

Each party 𝑃𝑖 creates a dynamic set of accepted dealersAD𝑖 , which

includes all the dealers in whose ΠSh instances, 𝑃𝑖 computes an

output. The properties of ΠSh guarantee that these dealers are

eventually included in the set of accepted dealer of every other

honest party as well. Party 𝑃𝑖 then waits for “sufficiently many"

number of dealers to be accepted, such that AD𝑖 is guaranteed to

contain at least one honest dealer. For this, 𝑃𝑖 keeps on expanding

AD𝑖 until P \ AD𝑖 ∈ Z holds (which eventually happens for an

honest 𝑃𝑖 ). Once AD𝑖 achieves this property, 𝑃𝑖 assigns AD𝑖 to

the set AD𝑖 and publicly announces the same. This is interpreted

as 𝑃𝑖 having attached the set of dealers AD𝑖 to itself. Then, the

summation of the values modulo 𝑛, shared by the dealers in AD𝑖 on

the behalf of 𝑃𝑖 , is set to be Coin𝑖 . Note that the value of Coin𝑖 will
not be known to anyone at this point (including 𝑃𝑖 ), as the value(s)

shared by the honest dealer(s) in the set AD𝑖 on the behalf of 𝑃𝑖
is(are) not yet known, owing to the privacy property of ΠSh.

On receiving the set AD𝑗 from any party 𝑃 𝑗 , party 𝑃𝑖 verifies

if the set is “valid" by checking if the ΠSh instances of dealers in

AD𝑗 has produced an output for 𝑃𝑖 as well; i.e. ,AD𝑗 ⊆ AD𝑖 holds.

Once the validity of AD𝑗 is confirmed, 𝑃𝑖 publicly “approves" the

same by broadcasting an OK message for 𝑃 𝑗 (this implicitly means

𝑃𝑖 ’s approval for the yet unknown, but well-defined value Coin𝑗 ).
Party 𝑃𝑖 then waits for the approval of AD𝑗 from a set of parties 𝑆 𝑗
including itself, such that P \ 𝑆 𝑗 ∈ Z holds, thus guaranteeing that

Z satisfies the Q(2) (𝑆 𝑗 ,Z) condition. Looking ahead, this property
is crucial to ensure a non-empty overlap among the FS sets of honest
parties. Once P \ 𝑆 𝑗 ∈ Z holds, 𝑃 𝑗 is included by 𝑃𝑖 in a dynamic

set of accepted parties AP𝑖 . Notice that the acceptance of 𝑃 𝑗 by 𝑃𝑖
implies the eventual acceptance of 𝑃 𝑗 by every other honest party,

as the corresponding approval (namely the OK messages) for AD𝑗

are publicly broadcasted. Party 𝑃𝑖 keeps on expanding its set of

accepted parties AP𝑖 until P \ AP𝑖 ∈ Z holds, which happens

eventually. Once ensured, 𝑃𝑖 publicly announces it with a ready
message and the corresponding AP𝑖 set, denoted by AP𝑖 .

On receiving the ready message and AP𝑗 from any party 𝑃 𝑗 ,

party 𝑃𝑖 verifies the “validity" of AP𝑗 by checking if the parties

in AP𝑗 are accepted by 𝑃𝑖 as well; i.e. if AP𝑗 ⊆ AP𝑖 holds. Upon

successful verification, 𝑃 𝑗 is included by 𝑃𝑖 in a dynamic set of

supportive parties SP𝑖 . The interpretation of SP𝑖 is that each party

in SP𝑖 is “supporting" the beginning of the second stage of the

protocol, by presenting a “sufficiently large" valid set of accepted

parties (and hence Coin values). Notice that the inclusion of 𝑃 𝑗 to

SP𝑖 implies the eventual inclusion of 𝑃 𝑗 by every other honest

party in its respective SP set. Once the set of supportive parties

becomes sufficiently large, i.e. P\SP𝑖 ∈ Z holds, 𝑃𝑖 sets a boolean

indicator Flag𝑖 to 1, marking the beginning of the second stage. Let

SP𝑖 denote the set of supportive parties SP𝑖 when Flag𝑖 is set to 1.

The second stage involves publicly reconstructing the unknown

Coin values which were accepted by 𝑃𝑖 till it sets Flag𝑖 to 1. Let

FS𝑖 be the set of accepted parties AP𝑖 when Flag𝑖 is set to 1. This

implies that the union of the AP𝑗 sets of all the parties in SP𝑖 is a

subset of FS𝑖 , as each AP𝑗 ⊆ AP𝑖 . The parties proceed to recon-

struct the value Coin𝑘 corresponding to each 𝑃𝑘 ∈ FS𝑖 . For this,
the parties start executing the corresponding ΠRec instances, that

are required for reconstructing the secrets shared by the accepted

dealers AD𝑘 on the behalf of 𝑃𝑘 . If any of the Coin𝑘 values turns

out to be 0, party 𝑃𝑖 sets its output to 0, else, it outputs 1.

To argue that there exists a non-empty overlap among the FS
sets of the honest parties, we consider the first honest party 𝑃𝑖 who
broadcasts a ready message and show that the set AP𝑖 will be the
common overlap (see Lemma 4.3). For the ease of understanding,

we pictorially depict the various sets computed in the protocol

ΠSCC in Fig 2. Notice that the parties may end up reconstructing

a different coin value Coin′
𝑘
≠ Coin𝑘 , corresponding to 𝑃𝑘 ∈ FS𝑖 ,

which will end up affecting the required success probability of the

protocol ΠSCC. However, in this case, at least one new local-conflict

occurs between an honest and a corrupt party.

1. Initialization: Initialize a set of accepted dealers AD𝑖 to ∅, a set
of accepted parties AP𝑖 to ∅ and a set of supportive parties SP𝑖

to ∅. Additionally, initialize a Boolean variable Flag𝑖 = 0.

2. Sharing Secrets on Behalf of Others:
– For 𝑗 = 1, . . . , 𝑛, choose a random secret 𝑠𝑖 𝑗 ∈ K on the behalf of

𝑃 𝑗 , and as a dealer, invoke an instance ΠSh (P,Z, S, 𝑃𝑖 , 𝑠𝑖 𝑗 ) of
ΠSh with id (sid, 𝑃𝑖 , 𝑃 𝑗 ) . Let this instance be denoted as Π (𝑖 𝑗 )

Sh .

– Participate in Π ( 𝑗𝑘 )
Sh , corresponding to every 𝑃 𝑗 , 𝑃𝑘 ∈ P.

3. Populating the Set of Accepted Dealers:
– Add party 𝑃 𝑗 to AD𝑖 , if an output is computed in the instances

Π ( 𝑗1)
Sh , . . . ,Π ( 𝑗𝑛)

Sh .

– If (P \ AD𝑖 ) ∈ Z, then assign AD𝑖 = AD𝑖 and broadcast the

message (Attach,AD𝑖 , 𝑃𝑖 ) . The set AD𝑖 is considered to be

the set of dealers attached to 𝑃𝑖 . Let

Coin𝑖
𝑑𝑒𝑓
=

∑︁
𝑃 𝑗 ∈AD𝑖

𝑠 𝑗𝑖 mod 𝑛.

We say that the coin Coin𝑖 is attached to party 𝑃𝑖 .a

4. Validating the Set of Accepted Dealers:
– If the message (Attach,AD𝑗 , 𝑃 𝑗 ) is received from the broadcast

of 𝑃 𝑗 , then broadcast a message OK(𝑃𝑖 , 𝑃 𝑗 ) , if the dealers

attached to 𝑃 𝑗 are accepted by 𝑃𝑖 , i.e. AD𝑗 ⊆ AD𝑖 holds.

5. Populating the Set of Accepted Parties:
– Add 𝑃 𝑗 to AP𝑖 , if OK(★, 𝑃 𝑗 ) is received from the broadcast of

a set of parties 𝑆 𝑗 including 𝑃𝑖 , such that (P \ 𝑆 𝑗 ) ∈ Z.

– If (P \ AP𝑖 ) ∈ Z, then assign AP𝑖 = AP𝑖 and broadcast the

message (ready, 𝑃𝑖 ,AP𝑖 ) .
6. Populating the Set of Supportive Parties:

– Consider 𝑃 𝑗 to be supportive and include it in SP𝑖 , if 𝑃𝑖 receives

the message (ready, 𝑃 𝑗 ,AP𝑗 ) from the broadcast of 𝑃 𝑗 and

each party in AP𝑗 is accepted by 𝑃𝑖 , i.e. AP𝑗 ⊆ AP𝑖 holds.

– If P \ SP𝑖 ∈ Z, then set Flag𝑖 = 1. Let SP𝑖 and FS𝑖 be the

contents of SP𝑖 and AP𝑖 respectively, when Flag𝑖 = 1.
b

7. Reconstructing the Coin Values:
• If Flag𝑖 = 1, then reconstruct the value of the coin attached to

each party in FS𝑖 as follows:
– Start participating in the instancesΠRec (P,Z, S, 𝑃 𝑗 , 𝑠 𝑗𝑘 ) with

id (sid, 𝑃 𝑗 , 𝑃𝑘 ) corresponding to each 𝑃 𝑗 ∈ AD𝑘 , such that

𝑃𝑘 ∈ FS𝑖 , Denote this instance of ΠRec as Π
( 𝑗𝑘 )
Rec and let

𝑟 𝑗𝑘 be the corresponding output (Some parties may be in-

cluded in the AP𝑖 set after Flag𝑖 is set to 1. In that case,

Protocol ΠSCC (P,Z)
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(a) (b)

𝑃!

𝑃!! , ⋯ , 𝑃!"

AD!

𝑃" 𝑃"! , ⋯ , 𝑃"#

AD"

𝑃!

OK(𝑃! , 𝑃")

𝑃"! , ⋯ , 𝑃"#
𝑃" : AD"

𝑆"

OK(⋆, 𝑃")

𝑃# : AD#

𝑆#

OK(⋆, 𝑃#)

𝑃$ : AD$

𝑆$

OK(⋆, 𝑃$)

⋯

⋯

⋯

⋯

𝑃! : AP!

(c)

𝑃!!, ⋯ , 𝑃!"
𝑃! : AD!

𝑆!
OK(⋆, 𝑃!)

𝑃" : AD"

𝑆"
OK(⋆, 𝑃")

𝑃# : AD#

𝑆#
OK(⋆, 𝑃#)

⋯

⋯

⋯

⋯

𝑃$ : AP$

𝑃% : AD%

𝑆%
OK(⋆, 𝑃%)

𝑃& : AD&

𝑆&

OK(⋆, 𝑃&)

⋯

⋯

⋯

⋯

𝑃' : AP'

𝑃( : AD(

𝑆(
OK(⋆, 𝑃()⋯

𝑃) : AD)

𝑆)

OK(⋆, 𝑃))

⋯

⋯

𝑃* : AP*

𝑃+ : AD+

𝑆+
OK(⋆, 𝑃+) ⋯

𝑃! : SP!

(d)

Figure 2: Pictorial depiction of the various sets computed in the protocol ΠSCC. The set AD𝑖 in figure (a) denotes the set of
dealers attached to 𝑃𝑖 ; the values shared by the parties in AD𝑖 on the behalf of 𝑃𝑖 define the value Coin𝑖 . Figure (b) denotes party
𝑃 𝑗 broadcasting AD𝑗 . Upon receiving AD𝑗 from 𝑃 𝑗 , party 𝑃𝑖 approves AD𝑗 through the OK(𝑃𝑖 , 𝑃 𝑗 ) message. Figure (c) denotes
the set AP𝑖 for 𝑃𝑖 . For every 𝑃 𝑗 ∈ AP𝑖 , there is a corresponding set 𝑆 𝑗 , who has approved AD𝑗 and hence Coin𝑗 . Finally, figure (d)
denotes the set SP𝑖 .

immediately start participating in the corresponding ΠRec
instances).

– For every 𝑃𝑘 ∈ FS𝑖 , compute

Coin′
𝑘
=

∑︁
𝑃 𝑗 ∈AD𝑘

𝑟 𝑗𝑘 mod 𝑛.

We say that the value Coin′
𝑘
is associated to 𝑃𝑘 .

8. Output computation:
• If the values associated to all the parties in FS𝑖 are computed,

then do the following.

– If there exists any 𝑃𝑘 ∈ FS𝑖 where Coin′𝑘 = 0, then output 0.

– Else output 1.

a
The value of Coin𝑖 will not be known to anyone at this step, including 𝑃𝑖 .

b
Note that

⋃
𝑃𝑗 ∈SP𝑖

AP𝑗 ⊆ FS𝑖 holds, as each AP𝑗 ⊆ AP𝑖 .

Figure 3: The shunning common-coin protocol for session id sid.
The above code is executed by every 𝑃𝑖 ∈ P

The properties of ΠSCC are stated in the following lemmas and

theorem, which are proved in Appendix A due to space constraints.

Lemma 4.1. If each honest party participates in ΠSCC with id sid,
then each honest party eventually computes an output.

Lemma 4.2. During ΠSCC with id sid, if any honest party receives
the message (Attach,AD𝑘 , 𝑃𝑘 ) from the broadcast of any party 𝑃𝑘 ,
then a unique value Coin𝑘 is fixed such that all the following hold:
– The coin Coin𝑘 is attached to 𝑃𝑘 .
– The value Coin𝑘 is distributed uniformly over {0, . . . , 𝑛− 1} and

is independent of the coins attached to the other parties.
– If any honest party associates Coin′

𝑘
≠ Coin𝑘 to 𝑃𝑘 , then at least

one new local-conflict occurs between an honest and a corrupt
party.

Lemma 4.3. In ΠSCC with id sid, once some honest party sets Flag
to 1, then there exists a set, sayM, such that all the following hold:
– P \M ∈ Z.
– For each 𝑃 𝑗 ∈ M, some honest party receives the message

(Attach,AD𝑗 , 𝑃 𝑗 ) from the broadcast of 𝑃 𝑗 .
– Whenever any honest party 𝑃𝑖 sets its Flag𝑖 = 1, the condition

M ⊆ FS𝑖 holds.

Lemma 4.4. In ΠSCC with id sid, one of the following holds.
– For every possible 𝜎 ∈ {0, 1}, with probability at least 1

𝑛 , all the
honest parties output 𝜎 ; otherwise

– At least one new local-conflict occurs between an honest and a
corrupt party.

Lemma 4.5. Protocol ΠSCC incurs a communication of O(|Z| ·
𝑛5

log |K| + 𝑛6
log𝑛) bits.
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Theorem 4.6. LetAdv be a computationally unbounded adversary,
characterized by an adversary structureZ, satisfying theQ(3) (P,Z)
condition and where |P | = 𝑛 ≥ 3. Then for every possible sid ∈ N,
protocol ΠSCC is a 1

𝑛 -SCC protocol, incurring a communication of
O(|Z| · 𝑛5

log |K| + 𝑛6
log𝑛) bits.

5 ABAWITH Q(3) (P,Z) CONDITION
In this section, we show how to “combine" protocols ΠVote and

ΠSCC to get the protocol ΠABA (see Fig 4), by generalizing the

blueprint of [7, 20, 35] against general adversaries. For an easy

description of the blueprint (against threshold adversaries), we refer
to [3, 11]. The protocol consists of several iterations, where each it-

eration consists of two instances of ΠVote protocol and one instance

of ΠSCC, which are carefully “stitched" together.

In each iteration, during the first instance of ΠVote, the parties

participate with their “current input", which is initialized to their re-

spective bits for ABA in the first iteration. Then, independent of the

output received from the instance of ΠVote, the parties participate in

an instance of ΠSCC. Next, the parties decide their respective inputs

for the second instance of ΠVote protocol, based on the output they

received from the first instance. If a party has received the highest
grade (namely 2) during the first instance of ΠVote, then the party

continues with the bit received from that ΠVote instance for the

second ΠVote instance. Otherwise, the party switches to the output

received from ΠSCC. The output from the second ΠVote instance is

then set as the modified input for the next iteration, if it is obtained

with a grade higher than 0, else the output of ΠSCC is taken as the

modified input for the next iteration.

If during any iteration a party obtains the highest grade from the

second instance of ΠVote, then it indicates this publicly by sending

a ready message to every party, along with the bit received. The

ready message is an indication for the others about the “readiness"

of the sender party to consider the corresponding bit as the output.

Finally, once a party receives this readiness indication for a common

bit 𝑏 from “sufficiently many" parties, then that bit is taken as the

output and the party terminates. To ensure that every other party

also outputs the same bit, once it is guaranteed that a party has

received the ready message for a common bit from at least one

honest party, it itself sends a ready message for the same bit (if it

has not done so earlier) to every other party.

The intuition behind the protocol is the following. In the protocol

there can be two cases. The first case is when all the honest parties

start with the same input bit, say𝑏. Then, they will obtain the output
𝑏 from all the instances ofΠVote protocol in all the iterations and the

outputs from ΠSCC will be never considered. Consequently, each

honest party will eventually send a ready message for 𝑏. Moreover,

only corrupt parties may send a ready message for 1 − 𝑏 and hence

no honest party ever sends a ready message for 1 − 𝑏. Hence, each

honest party eventually outputs 𝑏.

The second case is when the honest parties start the protocol

with different input bits. In this case, the protocol tries to take the

help of ΠSCC to ensure that all honest parties reach an iteration

with a common input bit for that iteration. Once such an iteration

is reached, this second case gets “transformed" to the first case and
hence all honest parties will eventually output that common bit. In

more detail, in each iteration 𝑘 , it will be ensured that either every

honest party have the same input bit for the second instance of

ΠVote with probability at least
1

𝑛 · 1

2
= 1

2𝑛 or else one new local-

conflict occurs. This is because the input for second instance of

ΠVote is either the output bit of the first instance of ΠVote or the

output of ΠSCC, both of which are independent of each other. Hence

if the output of ΠSCC is same for all the parties with probability
1

𝑛 ,

then with probability
1

𝑛 · 1

2
, this bit will be the same as output bit

from the first instance of ΠVote. If in any iteration 𝑘 , it is guaranteed
that all honest parties have the same inputs for the second instance

of ΠVote, then the parties will obtain a common output and with

highest grade from the second instance of ΠVote. And then from

the next iteration onward, all parties will stick to that common bit

and eventually output that common bit.

We show that it requires O(𝑛2) number of iterations in expec-
tation before a “good" iteration is reached where it is guaranteed
that all honest parties have the same input for the second instance

of ΠVote. Intuitively, this is because there can be O(𝑛2) number

of “bad" iterations in which the honest parties may have different

outputs from the corresponding instances of ΠSCC. This follows

from the fact that the corrupt parties may deviate from the pro-

tocol instructions during the instances of ΠSCC. There can be at

most O(𝑛2) local-conflicts which may occur overall during various

“failed" instances of ΠSCC (where a failed instance means that dif-

ferent honest parties obtain different outputs) and only after all

these local-conflicts are identified, the parties may start witnessing

“clean" instances of ΠSCC where all honest parties shun communica-

tion from all corrupt parties and where it is ensured that all honest

parties obtain the same output bit with probability
1

𝑛 . Once all the

bad iterations are over and all potential local-conflicts are identified,

in each subsequent iteration, all honest parties will then have the

same output from ΠSCC (and hence, same input for the second

instance of ΠVote) with probability at least
1

2𝑛 . Consequently, it will

take Θ(𝑛2) expected number of such iterations before the parties

reach a good iteration where it is guaranteed that all honest parties

have the same inputs for the second instance of ΠVote.

Input: Party 𝑃𝑖 has the bit 𝑏𝑖 as input for the ABA protocol.

– Initialization: Set 𝑏 = 𝑏𝑖 , sid = 0, Committed = False and 𝑘 = 1.

Then do the following.

1. Set sid = sid + 1 and participate in an instance of ΠVote protocol

with id sid and input 𝑏.

2. Once an output (𝑏,𝑔) is received from the instance of ΠVote with

id sid, participate in an instance of ΠSCC with id sid. Let Coin𝑘
denote the output received during ΠSCC with id sid.

3. If 𝑔 < 2, then set 𝑏 = Coin𝑘 .
4. Set sid = sid + 1 and participate in an instance of ΠVote protocol

with id sid and input 𝑏 and let (𝑏′, 𝑔′) be the output received.
If 𝑔′ > 0, then set 𝑏 = 𝑏′.

5. If 𝑔′ = 2 and Committed = False, then set Committed = True and
send (ready, 𝑏) to all the parties.

6. Set 𝑘 = 𝑘 + 1 and repeat from 1.

– Output Computation and Termination:
– If (ready, 𝑏) is received from a set of parties R ∉ Z, then send

(ready, 𝑏) to all the parties.

Protocol ΠABA
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– If (ready, 𝑏) is received from a set of parties T such that P\ T ∈
Z, then output 𝑏 and terminate.

Figure 4: The ABA protocol from ΠVote and ΠSCC. The above code is
executed by every 𝑃𝑖 ∈ P

The properties of the protocol ΠABA are stated in the following

lemmas and Theorem, which are proved in Appendix B due to space

constraints.

Lemma 5.1. In protocol ΠABA, if all honest parties have the same
input bit 𝜎 , then all honest parties eventually output 𝜎 .

Lemma 5.2. In protocol ΠABA, if some honest party terminates
with output bit 𝜎 , then every other honest party eventually terminates
with output 𝜎 .

Lemma 5.3. In protocol ΠABA, if all honest parties initiate iteration
𝑘 , then one of the following holds:
– With probability at least 1

2𝑛 , all honest parties have the same
updated bit 𝑏 at the end of iteration 𝑘 ; or

– At least one new local-conflict occurs between an honest and a
corrupt party.

Corollary 5.4. Let I denote the set of iterations 𝑘 in ΠABA, such
that all the honest parties have the same updated bit after iteration 𝑘
with probability less than 1

2𝑛 . Then |I | = O(𝑛2).
Lemma 5.5. In protocol ΠABA, if for every iteration 𝑘 , all the honest

parties have the same updated bit at the end of iteration 𝑘 with
probability at least 1

2𝑛 , then the protocol requires expected O(𝑛2)
iterations to terminate.

Lemma 5.6. Protocol ΠABA terminates for the honest parties in
O(𝑛2) expected running time.

Theorem 5.7. LetAdv be a computationally unbounded adversary,
characterized by an adversary structure Z, such that Z satisfies
the Q(3) (P,Z) condition. Then protocol ΠABA is an almost-surely
terminating ABA protocol with expected running time of R = O(𝑛2).
The protocol incurs an expected communication complexity of O(R ·
( |Z| · 𝑛5

log |K| + 𝑛6
log𝑛)) bits.
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A PROPERTIES OF THE PROTOCOL ΠSCC

In this section, we prove the properties of the protocol ΠSCC.

Lemma 4.1. If each honest party participates in ΠSCC with id sid,
then each honest party eventually computes an output.

Proof. We begin by showing that if all honest parties partici-
pate in the protocol ΠSCC, then each honest party 𝑃𝑖 eventually sets
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Flag𝑖 = 1. Firstly, each honest party 𝑃 𝑗 invokes its 𝑛 instances of

ΠSh as a dealer. These instances are guaranteed to eventually pro-

duce an output for each honest party, which follows from Lemma

3.2. Hence, 𝑃𝑖 eventually finds a set of accepted-dealers AD𝑖 such

that P \ AD𝑖 ∈ Z, as the set of honest parties constitute a poten-

tial AD𝑖 set. This implies that 𝑃𝑖 eventually broadcasts a message

(Attach,AD𝑖 , 𝑃𝑖 ). Consequently, 𝑃𝑖 eventually receives the mes-

sage (Attach,AD𝑗 , 𝑃 𝑗 ) from the broadcast of every honest party 𝑃 𝑗 .
Also, AD𝑗 ⊆ AD𝑖 eventually holds, which again follows from

Lemma 3.2. Consequently, 𝑃𝑖 eventually broadcasts a message

OK(𝑃𝑖 , 𝑃 𝑗 ) for every honest party 𝑃 𝑗 . Therefore, 𝑃𝑖 eventually in-

cludes every honest party in the set of accepted-parties AP𝑖 , and

eventually P \ AP𝑖 ∈ Z holds. Hence, 𝑃𝑖 eventually broadcasts a

message (ready, 𝑃𝑖 ,AP𝑖 ). Consequently, 𝑃𝑖 eventually receives the

message (ready, 𝑃 𝑗 ,AP𝑗 ) from the broadcast of every other honest

party 𝑃 𝑗 . Also, AP𝑗 ⊆ AP𝑖 eventually holds, which follows from

Lemma 3.2. Therefore, 𝑃𝑖 ’s set of supportive parties SP𝑖 eventually

satisfies the condition P \ SP𝑖 ∈ Z, after which 𝑃𝑖 sets Flag𝑖 = 1.

We now show that if any honest 𝑃𝑖 sets Flag𝑖 = 1, then 𝑃𝑖 eventu-

ally computes an output in ΠSCC. For this to be true, party 𝑃𝑖 needs

to be able to compute the values Coin𝑘 attached with all the parties

𝑃𝑘 ∈ FS𝑖 . Party 𝑃𝑖 can compute Coin𝑘 , if the ΠRec instances Π
( 𝑗𝑘)
Rec

produce some output for 𝑃𝑖 , corresponding to each 𝑃 𝑗 ∈ AD𝑘 . We

show that the ΠRec instances Π
( 𝑗𝑘)
Rec eventually produce an output.

This follows from the properties of ΠRec (Lemma 3.2) and the fact

that every party 𝑃𝑘 ∈ FS𝑖 is eventually accepted by every other hon-
est party 𝑃ℓ (i.e., 𝑃𝑘 ∈ APℓ ) and consequently Π

( 𝑗𝑘)
Rec is eventually

initiated by every honest party.

Hence, if each honest party participates in protocol ΠSCC, then

each honest party eventually computes an output in ΠSCC. □

We next prove the properties of the Coin values, attached with

various parties.

Lemma 4.2. During ΠSCC with id sid, if any honest party receives the
message (Attach,AD𝑘 , 𝑃𝑘 ) from the broadcast of any party 𝑃𝑘 , then
a unique value Coin𝑘 is fixed such that all the following hold:
– The coin Coin𝑘 is attached to 𝑃𝑘 .
– The value Coin𝑘 is distributed uniformly over {0, . . . , 𝑛− 1} and

is independent of the coins attached to the other parties.
– If any honest party associates Coin′

𝑘
≠ Coin𝑘 to 𝑃𝑘 , then at least

one new local-conflict occurs between an honest and a corrupt
party.

Proof. Let 𝑃𝑖 be an honest party, who receives the message

(Attach,AD𝑘 , 𝑃𝑘 ) from the broadcast of 𝑃𝑘 . From the properties

of broadcast, every honest party eventually receives the same mes-

sage (Attach,AD𝑘 , 𝑃𝑘 ) from the broadcast of 𝑃𝑘 . Let {𝑠 𝑗𝑘 }𝑃 𝑗 ∈AD𝑘

denote the set of values shared by 𝑃 𝑗 ∈ AD𝑘 (as a dealer), on the

behalf of 𝑃𝑘 , during the instance Π
( 𝑗𝑘)
Sh . We define

Coin𝑘
𝑑𝑒𝑓
=

∑︁
𝑃 𝑗 ∈AD𝑘

𝑠 𝑗𝑘 mod 𝑛.

Since all the honest parties receive the same set AD𝑘 , the value of

Coin𝑘 will be common from the point of view of all honest parties.

For the second property, we note that the parties start executing

the instances {Π ( 𝑗𝑘)
Rec }𝑃 𝑗 ∈AD𝑘

only after receiving the broadcasted

message (Attach,AD𝑘 , 𝑃𝑘 ). This implies that the set AD𝑘 is fixed,

before any instance in {Π ( 𝑗𝑘)
Rec }𝑃 𝑗 ∈AD𝑘

is invoked. The set AD𝑘

consists of at least one honest party, say 𝑃 𝑗 , as P \ AD𝑘 ∈ Z
and Z satisfies the Q(3) (P,Z) condition. The privacy property

of ΠSh (see Lemma 3.4) ensures that the view of the adversary

during the instance of Π
( 𝑗𝑘)
Sh is independent of the secret 𝑠 𝑗𝑘 shared

by 𝑃 𝑗 . Now since the secrets shared by the honest parties during
ΠSCC are mutually independent and uniformly selected from K, it
follows that Coin𝑘 is uniformly and independently distributed over

{0, . . . , 𝑛 − 1}.
For the third property, let 𝑃ℎ be an honest party, who associates

Coin′
𝑘
to 𝑃𝑘 , such that Coin′

𝑘
≠ Coin𝑘 . From the protocol steps,

𝑃ℎ associates Coin′
𝑘
by participating in the instances Π

( 𝑗𝑘)
Rec and

computing the values {𝑟 𝑗𝑘 }𝑃 𝑗 ∈AD𝑘
. SinceCoin′

𝑘
≠ Coin𝑘 , it follows

that {𝑠 𝑗𝑘 }𝑃 𝑗 ∈AD𝑘
≠ {𝑟 𝑗𝑘 }𝑃 𝑗 ∈AD𝑘

. Hence, there exists at least one

𝑃 𝑗 ∈ AD𝑘 , such that the value 𝑠 𝑗𝑘 during the instance Π
( 𝑗𝑘)
Sh is

different from the value 𝑟 𝑗𝑘 computed during the instance Π
( 𝑗𝑘)
Rec .

The proof now follows from Lemma 3.3. □

We next prove the crucial non-empty overlap property among

the FS of all the honest parties, which will further lead to a non-zero
success probability for the protocol ΠSCC.

Lemma 4.3. In protocol ΠSCC with id sid, once some honest party
sets its Flag to 1, then there exists a set, say M, such that all the
following hold:
– P \M ∈ Z.
– For each 𝑃 𝑗 ∈ M, some honest party receives the message

(Attach,AD𝑗 , 𝑃 𝑗 ) from the broadcast of 𝑃 𝑗 .
– Whenever any honest party 𝑃𝑖 sets its Flag𝑖 = 1, the condition

M ⊆ FS𝑖 holds.

Proof. Let 𝑃𝑓 be the first honest party who broadcasts a ready
message (from the proof of Lemma 4.1, such a party 𝑃𝑓 exists).

This implies that 𝑃𝑓 finds a set of accepted parties AP𝑓 , such that

P \ AP𝑓 ∈ Z. Moreover, for each 𝑃 𝑗 ∈ AP𝑓 , party 𝑃𝑓 receives

OK(★, 𝑃 𝑗 ) messages from a set of parties 𝑆 𝑗 , including 𝑃𝑓 , such that

P \ 𝑆 𝑗 ∈ Z. We define M 𝑑𝑒𝑓
= AP𝑓 and show that AP𝑓 satisfies all

the properties ofM, as stated in the lemma.

The first property holds as P \AP𝑓 ∈ Z holds, before any honest
party 𝑃𝑖 sets Flag𝑖 = 1. This follows from the fact that for an honest
𝑃𝑖 to set Flag𝑖 = 1, it must receive a ready message from at least

one honest party, and 𝑃𝑓 is assumed to be the first honest party that

broadcasts a ready message. And 𝑃𝑓 broadcasts the ready message

only when P \ AP𝑓 ∈ Z holds.

We now consider the second property. For each 𝑃 𝑗 ∈ AP𝑓 , the
messages OK(★, 𝑃 𝑗 ) are received from the broadcasts of parties in

the set 𝑆 𝑗 , which also includes 𝑃𝑓 . Now 𝑃𝑓 broadcasts OK(𝑃𝑓 , 𝑃 𝑗 )
only after receiving (Attach,AD𝑗 , 𝑃 𝑗 ) from the broadcast of 𝑃 𝑗 .

Since 𝑃𝑓 is assumed to be an honest party, the second property

follows.

We now consider the third property. Let 𝑃𝑖 be an arbitrary honest
party who sets Flag𝑖 to 1. We want to show that AP𝑓 ⊆ FS𝑖 holds.
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For this, consider an arbitrary party 𝑃 𝑗 ∈ AP𝑓 ; we show that 𝑃 𝑗
belongs to FS𝑖 as well. Since 𝑃 𝑗 ∈ AP𝑓 , it implies that 𝑃𝑓 has

received the messages OK(★, 𝑃 𝑗 ) from a set of parties 𝑆 𝑗 , such that

P \ 𝑆 𝑗 ∈ Z holds. We also note that from the definition of SP𝑖 ,
the condition P \ SP𝑖 ∈ Z holds. Since Z satisfies the Q(3) (P,Z)
condition, it follows thatZ satisfies theQ(1) (𝑆 𝑗 ∩SP𝑖 ,Z) condition
and hence there exists at least one honest party, say 𝑃ℎ , such that

𝑃ℎ ∈ 𝑆 𝑗 ∩ SP𝑖 holds. Now 𝑃ℎ ∈ 𝑆 𝑗 implies that 𝑃ℎ must have

received the message (Attach,AD𝑗 , 𝑃 𝑗 ) from the broadcast of 𝑃 𝑗 .

Moreover, since 𝑃𝑓 is assumed to be the first honest party to have

broadcasted a readymessage, it follows that 𝑃 𝑗 is included by 𝑃ℎ in

its set of accepted-parties APℎ (after receiving the OK messages

from the broadcast of the parties in 𝑆 𝑗 ), before 𝑃ℎ broadcasts the

message (ready, 𝑃ℎ,APℎ). Hence, 𝑃 𝑗 ∈ APℎ holds. Since 𝑃ℎ ∈ SP𝑖 ,
we have APℎ ⊆ FS𝑖 . Consequently, 𝑃 𝑗 ∈ FS𝑖 . This proves the third
property. □

Lemma 4.4. In protocol ΠSCC with id sid, one of the following holds.
– For every possible 𝜎 ∈ {0, 1}, with probability at least 1

𝑛 , all the
honest parties output 𝜎 ; otherwise

– At least one new local-conflict occurs between an honest and a
corrupt party.

Proof. Let 𝑃𝑖 be an arbitrary honest party. In the protocol, 𝑃𝑖
sets its output bit based on the values associated with the parties in

FS𝑖 . Moreover, for every 𝑃𝑘 ∈ FS𝑖 , party 𝑃𝑖 receives the message

(Attach,AD𝑘 , 𝑃𝑘 ) from the broadcast of 𝑃𝑘 . This further guaran-

tees that a uniformly random and independently distributed value

Coin𝑘 ∈ {0, . . . , 𝑛 − 1} is fixed, which is attached to 𝑃𝑘 (Lemma 4.2).

Moreover, let Coin′
𝑘
be the value, associated to 𝑃𝑘 by 𝑃𝑖 . Further-

more, letM be the set of parties as discussed in Lemma 4.3. From

the same lemma, it holds thatM ⊆ FS𝑖 . Now there are two possible

cases.

1. Case I: For every 𝑃𝑘 ∈ FS𝑖 , party 𝑃𝑖 associates Coin′𝑘 =

Coin𝑘 to 𝑃𝑘 . If Coin𝑘 = 0 holds for some 𝑃𝑘 ∈ M, then

party 𝑃𝑖 outputs 0 in ΠSCC. The probability that for at least

one party 𝑃𝑘 ∈ M, the attached value Coin𝑘 = 0 is 1 − (1 −
1

𝑛 )
|M | ≥ 1

𝑛 .

On the other hand, if Coin𝑘 ≠ 0 for every party 𝑃𝑘 ∈ FS𝑖 ,
then 𝑃𝑖 outputs 𝜎 = 1. The probability of this event is at least

(1− 1

𝑛 )
𝑛 ≥ 𝑒−1 ≥ 0.36. And for any 𝑛 ≥ 3, we have 0.36 > 1

𝑛 .

This proves the first part of the lemma.

2. Case II: There exists at least one 𝑃𝑘 ∈ FS𝑖 , such that
party 𝑃𝑖 associates Coin′𝑘 ≠ Coin𝑘 to 𝑃𝑘 . In this case, from

the third part of Lemma 4.2, at least one new local-conflict

occurs. This proves the second part of the lemma.

□

Lemma 4.5. ProtocolΠSCC incurs a communication ofO(|Z|·𝑛5
log |K|+

𝑛6
log𝑛) bits.

Proof. The proof simply follows from the communication com-

plexity of ΠSh and ΠRec (Lemma 3.5) and the fact that there are

O(𝑛2) instances of ΠSh and ΠRec involved in the protocol. □

The proof of Theorem 4.6 now simply follows from Lemma 4.1-4.5.

Theorem 4.6. Let Adv be a computationally unbounded adversary,

characterized by an adversary structureZ, satisfying theQ(3) (P,Z)
condition and where |P | = 𝑛 ≥ 3. Then for every possible sid ∈ N,
protocol ΠSCC is a 1

𝑛 -SCC protocol, incurring a communication of
O(|Z| · 𝑛5

log |K| + 𝑛6
log𝑛) bits.

B PROPERTIES OF THE PROTOCOL ΠABA

In this section, we prove the properties of the protocol ΠABA. We

first start with the proof of the validity property.

Lemma 5.1. In protocol ΠABA, if all honest parties have the same
input bit 𝜎 , then all honest parties eventually output 𝜎 .

Proof. Let 𝑍𝑐 ∈ Z be the set of corrupt parties. If every honest

party has the same input bit 𝜎 , then from the properties of the

protocol ΠVote, all honest parties eventually output (𝑏,𝑔) = (𝜎, 2)
at the end of the first as well as second instance of the ΠVote pro-

tocol during the first iteration. Consequently, every honest party
eventually sends a (ready, 𝜎) message to all the parties and only the

parties in 𝑍𝑐 may send a (ready, 𝜎) message. It now follows easily

from the steps of the output computation stage that no honest party
ever sends a (ready, 𝜎) message and all honest parties eventually

output 𝜎 . □

We next prove the agreement property.

Lemma 5.2. In protocol ΠABA, if some honest party terminates with
output bit 𝜎 , then every other honest party eventually terminates with
output 𝜎 .

Proof. Wefirst show that if any honest party broadcasts a (ready,
𝜎) message for any 𝜎 ∈ {0, 1} during any iteration 𝑘 , then no honest
party broadcasts a (ready, 𝜎) message during iteration 𝑘 or in the

subsequent iterations. For this, let 𝑃𝑖 be an honest party who broad-

casts a (ready, 𝜎) message during iteration 𝑘 . This implies that 𝑃𝑖
outputs (𝑏,𝑔) = (𝜎, 2) in the second instance of the ΠVote proto-

col during iteration 𝑘 and sets Committed to True. Then, from the

properties of the protocol ΠVote, every other honest party outputs

either (𝜎, 2) or (𝜎, 1) in the second instance of the ΠVote protocol

during iteration 𝑘 . Consequently, no other honest party broadcasts

the (ready, 𝜎) message during iteration 𝑘 . Also, from the protocol

steps, all honest parties update their input to 𝜎 for the next iteration.

This further implies that all honest parties will continue to input

𝜎 to each subsequent invocations of ΠVote, ignoring the output

of ΠSCC, for as long as they continue running. Consequently, no

honest party ever sends a (ready, 𝜎) message.

Now let some honest party, say 𝑃ℎ , terminates ΠABA with output

𝜎 during iteration 𝑘 . This implies that 𝑃ℎ receives the (ready, 𝜎)
message from a set of parties T , such that P \ T ∈ Z. Let 𝑍𝑐 ∈ Z
be the set of corrupt parties. Since all the parties in T \𝑍𝑐 are honest,
the (ready, 𝜎) messages of all the parties in T \ 𝑍𝑐 are eventually
delivered to every honest party, during iteration 𝑘 . Moreover, as

shown above, no honest party ever broadcasts a (ready, 𝜎) message.

Furthermore, sinceZ satisfies the Q(3) (P,Z) condition, it follows
that Z satisfies the Q(1) (T \ 𝑍𝑐 ,Z) condition and consequently

T \𝑍𝑐 ∉ Z. Now based on all these, we conclude that every honest

party (including 𝑃ℎ) eventually broadcasts a (ready, 𝜎) message

during iteration 𝑘 , which are eventually delivered to every honest
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party. Consequently, every honest party eventually receives suffi-

ciently many number of (ready, 𝜎) messages and terminates with

output 𝜎 . □

We next prove that at the end of each iteration, the updated value

of all honest parties will be the same with probability at least
1

2𝑛 ,

or at least one new local-conflict occurs.

Lemma 5.3. In protocol ΠABA, if all honest parties initiate iteration 𝑘 ,
then one of the following holds:
– With probability at least 1

2𝑛 , all honest parties have the same
updated bit 𝑏 at the end of iteration 𝑘 ; or

– At least one new local-conflict occurs between an honest and a
corrupt party.

Proof. We first note that if 𝑃𝑖 is honest and if at all any local

conflict (𝑃𝑖 , 𝑃 𝑗 ) occurs during iteration 𝑘 of ΠABA, then the conflict

is different from any local conflict of the form (𝑃𝑖 ,★), which could

have occurred during any iteration 𝑘 ′ of ΠABA, where 𝑘
′ < 𝑘 . On

contrary, let the local conflict (𝑃𝑖 , 𝑃 𝑗 ) occurs both during iteration

𝑘 ′ as well as 𝑘 . Since the conflict occurs during the iteration 𝑘 ′,
it follows that during the instance of ΠSCC with id 𝑘 ′, party 𝑃𝑖
includes 𝑃 𝑗 to the set B𝑖 as part of one of the underlying memory

management protocols. As a result, any communication from party

𝑃 𝑗 is completely ignored by 𝑃𝑖 in any instance of ΠSCC protocol

with id 𝑘 , where 𝑘 > 𝑘 ′. Consequently, the local conflict (𝑃𝑖 , 𝑃 𝑗 )
does not re-occur during iteration 𝑘 , which is a contradiction.

Now to prove the lemma statement, we consider an event Agree,
which denotes that all honest parties have the same input for the

second instance of ΠVote during iteration 𝑘 . If the event Agree
occurs, then from the properties of ΠVote, all honest parties will

have the same updated bit at the end of iteration 𝑘 . We show that

either the event Agree occurs during iteration 𝑘 with probability

at least
1

2𝑛 , or else at least one new local-conflict occurs. For this,

we consider two different possible cases with respect to the output

from the first instance of ΠVote during iteration 𝑘 .

– Case I: No honest party obtains an output (𝑏, 2) for any 𝑏 ∈
{0, 1} during the first instance of ΠVote. In this case, all honest

parties set the output from the instance of ΠSCC with id 𝑘

as the input for the second instance of ΠVote. From Lemma

4.4, either all honest parties will have the same output bit

from the instance of ΠSCC with probability at least
1

𝑛 > 1

2𝑛 ,

or at least one new local-conflict occurs.

– Case II: Some honest party obtains an output (𝑏, 2) during the
first instance of ΠVote. In this case, the properties of ΠVote
ensure that all honest parties obtain the output (𝑏, 2) or
(𝑏, 1) from the first instance of ΠVote. Moreover, from the

protocol steps, the output of the instance of ΠSCC with id

𝑘 is not revealed, until the first honest party generates an

output from the first instance of ΠVote during iteration 𝑘 .

Consequently, the output bit 𝑏 from the first instance of

ΠVote is independent of the output of ΠSCC. From Lemma

4.4, either all honest parties will have the same output bit

from the instance of ΠSCC with probability at least
1

𝑛 , or

at least one new local-conflict occurs. If all honest parties

have the same output Coin𝑘 from the instance of ΠSCC with

probability at least
1

𝑛 , then the probability that Coin𝑘 = 𝑏

holds is at least
1

2
· 1

𝑛 = 1

2𝑛 and all honest parties will have

the same input for the second instance of ΠVote.

□

As a corollary of Lemma 5.3, we can conclude that there can be

O(𝑛2) iterations where the honest parties have the same updated

value at the end with probability strictly less than 1

2𝑛 . This is because

there are O(𝑛2) different local-conflicts which can occur through-

out ΠABA. From Lemma 5.3, if the honest parties do not have the

same updated value at the end of an iteration with probability
1

2𝑛
or more, then at least one new local-conflict occurs. Hence there

can be O(𝑛2) such iterations.

corollary 5.4. Let I denote the set of iterations 𝑘 in ΠABA, such that
all the honest parties have the same updated bit after iteration 𝑘 with
probability less than 1

2𝑛 . Then |I | = O(𝑛2).

We next derive the expected number of iterations required in the

protocol ΠABA for the honest parties to produce an output. We

begin with the simpler case, where we assume that at the end of

each iteration of ΠABA, all honest parties have the same updated
modified bit. Later, we will derive the expected number of iterations

required when this is not the case.

Lemma 5.5. In protocol ΠABA, if for every iteration 𝑘 , all the hon-
est parties have the same updated bit at the end of iteration 𝑘 with
probability at least 1

2𝑛 , then the protocol requires expected O(𝑛2)
iterations to terminate.

Proof. In order to prove the lemma, we need to derive the ex-

pected number of iterations, until all the honest parties have the

same input during the second instance of ΠVote of an iteration.

This is because once all the honest parties have the same input

during the second instance of ΠVote of an iteration, then all honest

parties will set Committed to True at the end of that iteration and

start broadcasting a ready message, followed by terminating the

protocol. Let 𝜏 be the random variable which counts the number of

iterations until all honest parties have the same input during the

second instance of ΠVote in an iteration. Then the probability that

𝜏 = 𝑘 is given as:

Pr(𝜏 = 𝑘) = Pr(𝜏 ≠ 1) · Pr(𝜏 ≠ 2 | 𝜏 ≠ 1) · . . . ·
Pr(𝜏 ≠ (𝑘 − 1) | 𝜏 ≠ 1 ∩ . . . ∩ 𝜏 ≠ (𝑘 − 2))
· Pr(𝜏 = 𝑘 | 𝜏 ≠ 1 ∩ . . . ∩ 𝜏 ≠ (𝑘 − 1)) .

Now as per the lemma condition, every multiplicand on the right

hand side in the above equation, except the last one, is upper

bounded by (1 − 1

2𝑛 ) and the last multiplicand is upper bounded

by
1

2𝑛 . Hence, we get

Pr(𝜏 = 𝑘) ≤ (1 − 1

2𝑛
)𝑘−1 ( 1

2𝑛
).
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Now the expected value 𝐸 (𝜏) of 𝜏 is computed as follows:

𝐸 (𝜏) =
∞∑︁
𝑘=0

𝜏 · Pr(𝜏 = 𝑘)

≤
∞∑︁
𝑘=0

𝑘 (1 − 1

2𝑛
)𝑘−1 ( 1

2𝑛
)

=
1

2𝑛

∞∑︁
𝑘=0

𝑘 (1 − 1

2𝑛
)𝑘−1

=
1

1 − (1 − 1

2𝑛 )
+

1 − 1

2𝑛(
1 − (1 − 1

2𝑛 )
)

2

= 2𝑛 + 4𝑛2 − 2𝑛 = 4𝑛2

The expression for 𝐸 (𝜏) is a sum of𝐴𝐺𝑃 up to infinite terms, which

is given by
𝑎

1−𝑟 + 𝑑𝑟
(1−𝑟 )2

, where 𝑎 = 1, 𝑟 = 1 − 1

2𝑛 and 𝑑 = 1. Hence,

we have 𝐸 (𝜏) ≤ 4𝑛2
. □

We next derive the expected number of iterations required in

the protocol ΠABA. This automatically gives the expected running

time of ΠABA, as each iteration in ΠABA requires a constant time.

Lemma 5.6. Protocol ΠABA terminates for the honest parties in O(𝑛2)
expected running time.

Proof. From Corollary 5.4, there can be O(𝑛2) iterations in
ΠABA, where at the end of the iteration, the updated bits of the

honest parties are different with probability more than
1

2𝑛 . After

this, in each iteration of ΠABA, the honest parties will have the same

updated bit at the end of iteration, except with probability at most

1

2𝑛 and as a result, ΠABA will require expected O(𝑛2) iterations to
terminate (follows from Lemma 5.5). As each iterations in ΠABA
requires a constant time, it follows that ΠABA terminates for the

honest parties in O(𝑛2) expected running time. □

The proof of Theorem 5.7 now follows from Lemmas 5.1-5.6. The

communication complexity follows from the fact that two instances

of ΠVote and one instance of ΠSCC is executed in each iteration in

ΠABA and the expected number of such iterations is O(𝑛2).

Theorem 5.7. Let Adv be a computationally unbounded adversary,
characterized by an adversary structureZ, such thatZ satisfies the
Q(3) (P,Z) condition. Then protocol ΠABA is an almost-surely ter-
minating ABA protocol with expected running time of R = O(𝑛2).
The protocol incurs an expected communication complexity of O(R ·
( |Z| · 𝑛5

log |K| + 𝑛6
log𝑛)) bits.
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