
U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Almost-Surely Terminating Asynchronous Byzantine Agreement
Against General Adversaries with Optimal Resilience

Ashish Choudhury

International Institute of Information Technology

Bangalore, India

ashish.choudhury@iiitb.ac.in

ABSTRACT
In this work, we present an almost-surely terminating asynchronous
Byzantine agreement (ABA) protocol for 𝑛 parties. Our protocol re-

quires O(𝑛2) expected time and is secure against a computationally-
unbounded malicious (Byzantine) adversary, characterized by a

non-threshold adversary structureZ, which enumerates all possi-

ble subsets of potentially corrupt parties. Our protocol has optimal
resilience where Z satisfies the Q(3)

condition; i.e. union of no
three subsets from Z covers all the 𝑛 parties. To the best of our

knowledge, this is the first almost-surely terminating ABA protocol

with Q(3)
condition. Previously, almost-surely terminating ABA

protocol is known with non-optimal resilience where Z satisfies

the Q(4)
condition; i.e. union of no four subsets from Z covers

all the 𝑛 parties. To design our protocol, we present a shunning
asynchronous verifiable secret-sharing (SAVSS) scheme with Q(3)

condition, which is of independent interest.

ACM Reference Format:
Ashish Choudhury. 2022. Almost-Surely Terminating Asynchronous
Byzantine Agreement Against General Adversaries with Optimal Re-
silience. In Proceedings of ACMConference (Conference’17).ACM,New
York, NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Byzantine agreement (BA) [31], also known as fault-tolerant dis-

tributed consensus, is a fundamental problem in secure distributed

computing. Informally, a BA protocol allows a set P of 𝑛 mutually

distrusting parties with private input bits, to reach agreement on

a common output bit, even if a subset of the parties are corrupted

by a computationally-unbounded malicious (Byzantine) adversary,

who can force the corrupt parties to behave arbitrarily during the

protocol execution. BA protocols serve as a very important building

block in securemultiparty computation (MPC) protocols [9, 36]. The

BA problem has been widely studied over the last three decades

and several fundamental results have been achieved, regarding the

possibility and feasibility of BA protocols in various settings (see

for instance [4, 30]). Recently, the BA problem has also received

attention from several other research communities, after the advent

of blockchain technologies (see for instance [24]).

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

The traditional way of characterizing the adversary is through a

threshold, by assuming that adversary can corrupt any subset of up

to 𝑡 parties. In this setting, BA is is achievable iff 𝑡 < 𝑛/3 [31]. Hirt

and Maurer [26] and later Fitzi and Maurer [23] generalized the

threshold model by introducing the general-adversary model (also

known as the non-threshold setting in the literature). In the non-

threshold setting, the adversary is characterized by an adversary
structure Z = {𝑍1, . . . , 𝑍ℎ} ⊂ 2

P
, which enumerates all possible

subsets of potentially corrupt parties, such that adversary can select

any subset fromZ for corruption during the execution of a protocol.

In the general-adversary model, BA is achievable iffZ satisfies

the Q(3) (P,Z) condition [23, 26].
1
There are several well-known

motivations for modelling the distrust in the system through a non-

threshold adversary (see for instance [19, 22, 25, 27]). For example,

it allows for more flexibility, compared to the threshold model,

especially when P is not too large. To understand this, let P =

{𝑃1, . . . , 𝑃6}. Then in the threshold setting, any BA protocol can tol-

erate at most 1 corrupt party. However, in the non-threshold setting,

one can design a BA protocol tolerating an adversary characterized

by the adversary structure Z = {{𝑃1}, {𝑃2, 𝑃4}, {𝑃3, 𝑃5}, {𝑃3, 𝑃6},
{𝑃2, 𝑃5, 𝑃6}, {𝑃4, 𝑃5, 𝑃6}}, where the adversary can corrupt up to 3

parties, by corrupting the subset {𝑃2, 𝑃5, 𝑃6} or {𝑃4, 𝑃5, 𝑃6}.

Our Motivation and Results: All the above results are in the

synchronous communication model, where the parties are assumed

to be synchronized through a global clock, implying strict upper

bounds on the message delays. Consequently, protocol execution

occurs as a sequence of communication rounds, where the par-

ties are well aware of the beginning and end of each round. In a

synchronous protocol, any expected message which does not get

delivered within the known time bound can be attributed to a cor-
rupt sender party. Unfortunately, guaranteeing such strict time-outs

in extremely difficult in the real-world networks like the Internet,

which are better modelled through asynchronous communication

model [13]. In the asynchronous model, no timing assumptions are

made and the messages can be arbitrarily, but finitely delayed. The

only guarantee is that every sent message is eventually delivered,

but the messages need not be delivered in the same order in which

they were sent. To model the worst case scenario, adversary is

given the full control of the message scheduling in an asynchro-

nous network. Consequently, no party can distinguish between a

corrupt sender party (who does not send any message) and a slow
honest sender party (whose messages are arbitrarily delayed). As

an implication of this, in any asynchronous protocol, no party can

afford to wait to receive messages from all the parties, to avoid an

1
Given a set of parties P′ ⊆ P, we say that Z satisfies the Q(𝑘) (P′,Z) condition,
if the union of any 𝑘 subsets from Z does not cover the entire set P′

.

2022-07-24 17:29. Page 1 of 1–14.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Ashish Choudhury

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

endless wait and hence at every step of the protocol, a party may

afford to receive messages from only a subset of parties, ignoring

communication from potentially slow honest parties. As a result of
this, asynchronous protocols are more challenging to design than

their synchronous counterparts.

Unlike synchronous protocols, asynchronous protocols are exe-

cuted as a sequence of events, based on the order in which messages

are delivered. Following the results in the synchronous setting, asyn-
chronous BA (ABA) is possible iff 𝑡 < 𝑛/3 in the threshold setting,

while ABA in the non-threshold setting is possible only if Z satis-

fies the Q(3) (P,Z) condition. Compared to the synchronous BA

protocols, there are several inherent limitations of ABA protocols.

The seminal FLP impossibility result [21] states that any (determin-

istic) ABA protocol must have non-terminating runs, where the

honest parties (who are not under the control of the adversary) keep

on running the protocol forever to obtain an output. A powerful

paradigm to circumvent this impossibility result is to embrace ran-

domness, pioneered by Rabin [35] and Ben-Or [7]. There are two

categories of randomized ABA protocols. The first category is that

of (1−𝜖)-terminating ABA protocols [14, 33], where the honest par-

ties may not terminate the protocol with probability 𝜖 , where 𝜖 > 0

is some error parameter. The second category is that of almost-
surely terminating ABA protocols [1, 5], where the honest parties

terminate the protocol, asymptotically with probability 1. While

the first category of ABA protocols are used in statistically-secure
asynchronous MPC (AMPC) protocols [10, 16] where a negligible

error is allowed in the security properties, the latter category of

protocols are used in perfectly-secure AMPC protocols [6, 8, 18, 34]

where all security properties are achieved without any error.

In this work, we focus on almost-surely terminating ABA proto-

cols. The works of [1, 5] present efficient almost-surely terminating

ABA protocols in the threshold setting with the optimal resilience
of 𝑡 < 𝑛/3. However, to the best of our knowledge, we are not
aware of any almost-surely terminating ABA protocol in the non-
threshold setting with optimal resilience. Motivated by this, we ask

the following central question:

Does there exist an almost-surely terminating ABA protocol where
the adversary structureZ satisfies the Q(3) (P,Z) condition?

We answer the above question affirmatively by presenting an almost-

surely terminating ABA protocol with the Q(3) (P,Z) condition.
Our protocol is efficient and requires O(𝑛2) expected running time,

where the expected computation and communication performed

by the parties is polynomial in 𝑛.

Related Work: Not much work has been done in the domain

of ABA against non-threshold adversaries. In [17], the authors pre-

sented an almost-surely terminating ABA protocol. Compared to our

protocol, the expected running time of their protocol is a constant.
However, their protocol has non-optimal resilience, where the under-
lying adversary structure Z satisfies the Q(4) (P,Z) condition. In
a technical report [29], the authors refer to an ABA protocol in [28]

with Q(3) (P,Z) condition, to show that the condition Q(3) (P,Z)
is sufficient for designing ABA protocol. However, the work of [28]

is not available in the public domain and the exact details of the ABA

protocol is not known. Also, it is not clear whether the protocol in
[28] is (1 − 𝜖) or almost-surely terminating. Given the importance

of ABA and the general-adversary model, our work fills the gap

in the literature by presenting an almost-surely terminating ABA

protocol with complete formal details and formal security proofs.

Technical Overview: To design our ABA protocol, we gener-

alize the framework of [1, 5, 37] in the threshold setting (which

is further based on [7, 20, 35]), to the general-adversary model.

The framework reduces ABA to the design of an asynchronous

common-coin (CC) protocol, which allows the honest parties to

output a common random bit, with certain non-zero success prob-
ability. The design of CC protocol is further reduced to another

well-known primitive called asynchronous verifiable secret sharing
(AVSS) [8, 15]. Informally, an AVSS scheme consists of a sharing-

phase protocol and a reconstruction-phase protocol. During the

sharing-phase, there exists a designated dealer with some private
input (called secret), which it shares among the parties, without

revealing anything about the secret to the adversary. The “verifi-

ability" of the scheme guarantees that even if dealer is corrupt, it
has “consistently" shared some value among the parties. During the

reconstruction-phase protocol, the parties robustly reconstruct the

value shared during the sharing-phase, even if the corrupt parties

(including a potentially corrupt dealer) behaves maliciously.

It is well-known that perfectly-secure (error-free) AVSS in the

threshold setting necessarily requires 𝑡 < 𝑛/4 [2, 8]. Hence to design

a CC protocol with 𝑡 < 𝑛/3, the work of [1] introduces a weaker
variant of AVSS called shunning AVSS (SAVSS). Intuitively, depend-
ing upon the behaviour of the adversary, an SAVSS scheme either

guarantees all the security properties of an AVSS or ensures that

some honest party is able to locally detect and shun at least one cor-
rupt party (also called as local-conflict) for all future communication.

Once all corrupt parties are shunned by all honest parties, then

there will be no further errors and hence SAVSS will provide all the

security guarantees of AVSS. Based on their SAVSS, [1] designed a

shunning-variant of CC called shunning common-coin (SCC) proto-

col, where either all honest parties output a common random bit

with certain success probability or some local-conflict occurs.

To generalize the framework of [1], we present a perfectly-secure

SAVSS scheme with Q(3) (P,Z) condition. The scheme guarantees

that if the properties of AVSS are not achieved, then at least one

new local-conflict occurs. Consequently, it may take O(𝑛2) “failed"
SAVSS instances before all corrupt parties are shunned by all honest

parties. By deploying our SAVSS we then design an SCC protocol

against general adversaries with Q(3) (P,Z) condition, where the
success probability is

1

𝑛 . Finally, this SCC protocol when used in

the (generalized) framework of [7, 35] leads to our ABA protocol

with O(𝑛2) expected running time.

Open Problems: In the threshold setting, almost-surely termi-

nating ABA protocol with optimal resilience (i.e. 𝑡 < 𝑛/3) and best
running time is due to [5], where the expected running time is

O(𝑛). We do not know how to generalize the protocol of [5] and

get an almost-surely terminating ABA protocol with Q(3) (P,Z)
condition and O(𝑛) expected running time. Designing an almost-

surely terminating ABA protocol with a constant expected running

time and with optimal resilience even against threshold adversaries

has been a long-standing open problem.

2022-07-24 17:29. Page 2 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Almost-Surely Terminating Asynchronous Byzantine Agreement Against General Adversaries with Optimal ResilienceConference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2 PRELIMINARIES
We assume the secure-channel model, where the parties in P =

{𝑃1, . . . , 𝑃𝑛} are connected by pair-wise private and authentic chan-
nels. The distrust is modelled by a centralized malicious (Byzan-
tine) adversary Adv, characterized by an adversary structureZ =

{𝑍1, . . . , 𝑍ℎ} ⊂ 2
P
. The adversary is static, who decides the set

of corrupt parties 𝑍★ ∈ Z, at the beginning of the execution of

any protocol. Parties not under the control of Adv are called honest.
Given P ′ ⊆ P, we say that Z satisfies the Q(𝑘) (P ′,Z) condition,
if for every 𝑍𝑖1 , . . . , 𝑍𝑖𝑘 ∈ Z, the condition P ′ ⊈ 𝑍𝑖1 ∪ . . . ∪ 𝑍𝑖𝑘
holds [27]. We follow the asynchronous communication model of

[13], where the channels among the parties are asynchronous and

where the messages are arbitrarily yet finitely delayed, with the

guarantee that every sent message is eventually delivered.

In our protocols, each 𝑃𝑖 maintains a local block-set B𝑖 across

all protocol instances and a wait-set W𝑖 , which are initialized to

∅. Note that 𝑃𝑖 maintains a single B𝑖 set, where as a separate W𝑖

set is maintained for each SAVSS instance. Party 𝑃𝑖 includes 𝑃 𝑗
in B𝑖 if during some protocol instance, 𝑥 is expected from 𝑃 𝑗 , but

instead 𝑥 ′ ≠ 𝑥 is received. Party 𝑃𝑖 is said to be in local-conflict
with 𝑃 𝑗 when 𝑃 𝑗 ∈ B𝑖 . Party 𝑃𝑖 includes 𝑃 𝑗 inW𝑖 corresponding to

some SAVSS instance, if during that instance, 𝑃𝑖 is expecting some

message from 𝑃 𝑗 . While a party making an entry in B𝑖 remains

part of it until the end of the execution of the ABA protocol, any

entry in a wait set is temporary and removed as and when the

expected communication happens. Until the receipt of the desired

communication from a party inW𝑖 , party 𝑃𝑖 suspends (saves yet

does not use) its future communication. Looking ahead, the way

W𝑖 and B𝑖 sets are created and maintained, it will be guaranteed

that no honest party is every included in the B𝑖 set of any honest
𝑃𝑖 . Moreover, if any honest 𝑃 𝑗 is ever included in the W𝑖 set of any

honest 𝑃𝑖 , then 𝑃𝑖 eventually removes 𝑃 𝑗 from 𝑃𝑖 .

In our SAVSS scheme, the parties perform computations over an

algebraic structure (K, +, ·), which is either a finite ring or a field

with |K| ≥ 𝑛. Looking ahead, this is required to achieve the desired

success probability in our SCC protocol.

2.1 Definitions
We now present the various definitions, as used in the paper.

Definition 2.1 (Shunning Asynchronous Verifiable Secret
Sharing (SAVSS)). Let (ΠSh,ΠRec) be a pair of protocols for the

parties in P, where each 𝑃𝑖 maintains a local B𝑖 andW𝑖 set, and for

a special party dealer 𝑃D ∈ P that has a private input 𝑠 ∈ K for ΠSh.

Then (ΠSh,ΠRec) is an SAVSS scheme if the following requirements

hold for every possible Adv.
– Output Computation: (a): If 𝑃D is honest and all honest par-

ties participate in ΠSh, then each honest party eventually

obtains an output in ΠSh. (b): If some honest party obtains

an output in ΠSh, then every other honest party eventually

obtains an output in ΠSh. (c): If all honest parties partici-
pate in ΠRec, then every honest party eventually obtains an

output in ΠRec.

– Correctness: If the honest parties compute an output during

ΠSh, then there exists some 𝑠 ∈ K, where 𝑠 = 𝑠 for an honest
𝑃D, such that one of the following holds:

• All honest parties output 𝑠 during ΠRec; or

• Some corrupt parties are included in the B sets of some

honest parties.

– Privacy: If 𝑃D is honest, then the view of Adv during ΠSh is

independent of 𝑠 .

Definition 2.2 (Shunning Common Coin (SCC)). Let ΠSCC be

a protocol for the parties in P, with each 𝑃𝑖 maintaining a local

B𝑖 and W𝑖 set and where each party has some local random input

and a binary output. Then ΠSCC is a 𝑝-SCC protocol for a given 𝑝

where 0 < 𝑝 < 1, if all the following hold for every possible Adv.
– Completion: If all honest parties participate in ΠSCC, then

every honest party eventually obtains an output.

– Correctness: One of the following holds.

• For every 𝜎 ∈ {0, 1}, all honest parties output 𝜎 with proba-

bility at least 𝑝; or

• Some corrupt parties are included in the B sets of some

honest parties.

Remark 2.3 (On the Termination Guarantees of Our Sub-Pro-
tocols). For simplicity and for the ease of analysis, we do not put
any termination criteria for the various sub-protocols (including

SAVSS and SCC) used in our ABA protocol and the parties may keep

on running these sub-protocol instances, even after obtaining an

output. Looking ahead, the termination criteria of our ABA proto-

col will ensure that the parties terminate all sub-protocol instances

upon obtaining their respective outputs in the ABA protocol.

Definition 2.4 (Almost-Surely Terminating Asynchronous
Byzantine Agreement (ABA)). Let ΠABA be a protocol for the

parties in P, where each 𝑃𝑖 has a private input bit 𝑏𝑖 and a possi-

ble output bit. Then, ΠABA is an almost-surely terminating ABA

protocol, if the following requirements hold for every possible Adv.
– Termination: If all honest parties participate in ΠABA, then

asymptotically with probability one, each honest 𝑃𝑖 eventu-

ally terminates the protocol. That is,

lim

𝑇→∞
Pr[An honest 𝑃𝑖 obtains its output by local time 𝑇] = 1,

where the probability is over the random coins of the honest

parties and the adversary in the protocol.

– Agreement: All honest parties output a common bit.

– Validity: If all honest parties have the same input bit 𝜎 , then

all honest parties eventually output 𝜎 .

2.2 Existing Asynchronous Primitives
We use the following existing asynchronous primitives.

Asynchronous Reliable Broadcast (Acast): An Acast proto-

col allows a designated sender 𝑃𝑆 ∈ P to identically send a message

𝑚 ∈ {0, 1}ℓ to all the parties. If 𝑃𝑆 is honest, then all honest par-

ties eventually output𝑚. On the other hand, if 𝑃𝑆 is corrupt and
some honest party outputs an 𝑚★ ∈ {0, 1}ℓ (where 𝑚★

may be

different from𝑚), then every other honest party eventually outputs

𝑚★
. In [29], a perfectly-secure Acast protocol is presented with a

communication complexity of O(𝑛2ℓ) bits, provided the underly-

ing adversary structure Z satisfies the Q(3) (P,Z) condition. The
protocol is obtained by generalizing the Bracha’s Acast protocol

against threshold adversaries with 𝑡 < 𝑛/3 [12]. We will use the

following terminologies while invoking the Acast protocol: we will

say that “𝑃𝑖 broadcasts 𝑚" to mean that 𝑃𝑖 acts as a sender and

2022-07-24 17:29. Page 3 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Ashish Choudhury

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

invokes an instance of the Acast protocol with input 𝑚 and the

parties participate in this instance. Similarly, we will say that “𝑃 𝑗
receives𝑚 from the broadcast of 𝑃𝑖 " to mean that party 𝑃 𝑗 outputs

𝑚 in the corresponding instance of Acast.

AsynchronousVote Protocol: In a voting protocol (also known
as gradecast), every party has a single bit as input and each party’s

output can have five different forms:

– For 𝜎 ∈ {0, 1}, the output (𝜎, 2) stands for “overwhelming

majority for 𝜎”;

– For 𝜎 ∈ {0, 1}, the output (𝜎, 1) stands for “distinct majority

for 𝜎”;

– The output (Λ, 0) stands for “non-distinct majority”.

A voting protocol ensures the following properties:

– If each honest party has the same input 𝜎 , then every honest

party outputs (𝜎, 2).
– If some honest party outputs (𝜎, 2), then every other honest

party outputs either (𝜎, 2) or (𝜎, 1).
– If some honest party outputs (𝜎, 1) and no honest party outputs

(𝜎, 2), then each honest party outputs either (𝜎, 1) or (Λ, 0).
In [14], a voting protocol satisfying the above requirements is pre-

sented against threshold adversaries, provided 𝑡 < 𝑛/3 holds. The

protocol is generalized against non-threshold adversaries in [17],

provided the underlyingZ satisfies the Q(3) (P,Z) condition. The
protocol called ΠVote incurs a communication of O(𝑛5) bits.

3 SAVSS WITH Q(3) (P,Z) CONDITION
In this section, we present our SAVSS scheme (see Fig 1). The scheme

is obtained by modifying the perfectly-secure AVSS scheme of [17]

(which is further based on [32]) and considers a sharing specification
S = {𝑆1, . . . , 𝑆ℎ}, where for 𝑞 = 1, . . . , ℎ the set 𝑆𝑞 = P \ 𝑍𝑞 and

where Z = {𝑍1, . . . , 𝑍ℎ} is the underlying adversary structure.

During the sharing-phase protocol ΠSh, the dealer randomly picks

a vector of shares [𝑠] = (𝑠1, . . . , 𝑠ℎ) for its secret 𝑠 , such that 𝑠 =

𝑠1 + . . . + 𝑠ℎ and distributes the share 𝑠𝑞 , denoted by [𝑠]𝑞 , to all

the parties in the set 𝑆𝑞 . If the dealer is honest, then this does not

reveal any information about 𝑠 to the adversary, as adversary will

be missing at least one share and so the probability distribution of

the shares learnt the adversary will be independent of 𝑠 . To verify

whether a potentially corrupt dealer has distributed a common share

[𝑠]𝑞 to all the honest parties in the set 𝑆𝑞 , the parties in 𝑆𝑞 exchange

the supposedly common share and publicly acknowledge if they

received the same share. Based on these public acknowledgements,

the parties check whether for each set 𝑆𝑞 ∈ S, there exists a subset
of parties 𝑆 ′𝑞 who have acknowledged the receipt of a common

share from the dealer, such that 𝑆 ′𝑞 is guaranteed to have at least

one honest party. Notice that such a subset 𝑆 ′𝑞 is bound to exist for

an honest dealer, since for an honest dealer, all the honest parties in
𝑆𝑞 will receive the same share from the dealer and the set of honest

parties in each set 𝑆𝑞 is non-empty, which follows from the fact

thatZ satisfies the Q(3) (P,Z) condition. To ensure that all honest
parties have an agreement on the subsets 𝑆 ′𝑞 , the dealer is assigned
the task of identifying the subsets 𝑆 ′𝑞 and publicly declaring them.

To find the subsets 𝑆 ′𝑞 , the dealer actually finds a single “core"
subset of parties C where P \ C ∈ Z, such that corresponding to

every 𝑆𝑞 ∈ S, there exists a subset 𝑆 ′𝑞 ⊆ (𝑆𝑞∩C), where 𝑆𝑞 \𝑆 ′𝑞 ∈ Z

and where all the parties in 𝑆 ′𝑞 have publicly acknowledged the

receipt of a common share from the dealer. An honest dealer will
eventually find such a core set C, as the set of honest parties in the

system constitute a candidate C for an honest dealer. Upon finding

a set C satisfying the above conditions, dealer publicly announces

it and the parties “accept" the set C after verifying whether indeed

the announced C satisfies the above properties.

During the reconstruction-phase protocol ΠRec, the goal is to get

the share [𝑠]𝑞 corresponding to every set 𝑆𝑞 ∈ S, upon which the

shared secret can be reconstructed by computing [𝑠]1 + . . . + [𝑠]ℎ .
To get the share [𝑠]𝑞 corresponding to 𝑆𝑞 , all the parties in the

set (𝑆𝑞 ∩ C) are asked to make the share received from the dealer

public. However, due to the asynchronous communication, to avoid

an indefinite wait, the parties cannot afford for all the parties in
(𝑆𝑞 ∩ C) to make their version of the share [𝑠]𝑞 public, as the

potentially corrupt parties in (𝑆𝑞 ∩ C) may never make any share

public. Consequently, as soon as any party from (𝑆𝑞 ∩ C) makes

public its version of [𝑠]𝑞 , it is considered towards the reconstruction
of 𝑠 . However, this may lead to reconstruction of an incorrect 𝑠 , as
a potentially corrupt party from (𝑆𝑞 ∩ C) may make public an

incorrect version of [𝑠]𝑞 . But this will lead to the honest party(ies)

in 𝑆 ′𝑞 getting into local-conflict with this corrupt party.

Each instance of SAVSS is associated with a unique id sid ∈ N.
All messages communicated during the SAVSS instance sid are

tagged with this id. However, for simplicity, we skip tagging every

message explicitly with sid in the formal description of the scheme.

During the protocol ΠSh, once the core set C is agreed upon, the

parties locally populate their respective W sets, anticipating the

values they expect from the various parties during the protocolΠRec.

At the beginning of each instance of the SAVSS, a corresponding

memorymanagement protocolΠMM is also invoked, based onwhich

each party locally decides whether to process a received message

as per the SAVSS, delay it temporarily or block it permanently.

Protocol ΠMM examines the messages produced by the various

parties during the reconstruction phase and accordingly the W
andB sets of the parties are updated. We stress that the parties keep

executing the ΠMM protocol with id sid, even after obtaining their

respective outputs in the ΠSh and ΠRec protocols with id sid. This
ensures that if some message is pending from a party for instance

sid, then its communication is ignored by the ΠMM protocol in any

future instance sid′ > sid.

Protocol ΠSh (P,Z, S, 𝑃D, 𝑠)
• Distribution of Shares – On having the input 𝑠 ∈ K, the dealer

𝑃D executes the following steps.

– Randomly select the shares 𝑠1, . . . , 𝑠ℎ , subject to the condition

that 𝑠1 + . . . + 𝑠ℎ = 𝑠 holds.

– For 𝑞 = 1, . . . , ℎ, set [𝑠]𝑞 = 𝑠𝑞 and send [𝑠]𝑞 to all the parties

in the set 𝑆𝑞 .

• Pair-wise Consistency Check – Each party 𝑃𝑖 ∈ P (including

𝑃D), executes the following steps.

– Wait to receive a share 𝑠𝑞𝑖 from 𝑃D, corresponding to every

𝑆𝑞 ∈ S such that 𝑃𝑖 ∈ 𝑆𝑞 . Upon receiving, send the share 𝑠𝑞𝑖

to every party 𝑃 𝑗 ∈ 𝑆𝑞 .

– Broadcast an OK(𝑖, 𝑗) message, if all the following hold.

Scheme SAVSS

2022-07-24 17:29. Page 4 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Almost-Surely Terminating Asynchronous Byzantine Agreement Against General Adversaries with Optimal ResilienceConference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1. 𝑃𝑖 has received a share 𝑠𝑞𝑗 from 𝑃 𝑗 , corresponding to every

𝑆𝑞 ∈ S such that 𝑃𝑖 , 𝑃 𝑗 ∈ 𝑆𝑞 ;

2. The condition 𝑠𝑞𝑖 = 𝑠𝑞𝑗 holds.

• Constructing CORE Set and Public Announcement — 𝑃D exe-

cutes the following steps.

– Check if there exists a subset of parties C ⊆ P, such that all the

following hold. Upon finding such a C, broadcast it.

1. P \ C ∈ Z;

2. Corresponding to every 𝑃𝑖 , 𝑃 𝑗 ∈ C, the messages OK(𝑖, 𝑗)
and OK(𝑗, 𝑖) have been received from the broadcast of 𝑃𝑖

and 𝑃 𝑗 respectively.

3. Corresponding to every 𝑆𝑞 ∈ S, there exists a subset 𝑆′𝑞 ⊆
(𝑆𝑞 ∩ C) , such that 𝑆𝑞 \ 𝑆′𝑞 ∈ Z.

• Verifying CORE Set and Populating Waiting Sets – Each 𝑃𝑖 ∈
P (including 𝑃D) executes the following steps.

– Wait to receive a set C from the broadcast of 𝑃D and then accept
and output C, if all the following hold.

1. P \ C ∈ Z;

2. Corresponding to every 𝑃𝑖 , 𝑃 𝑗 ∈ C, the messages OK(𝑖, 𝑗)
and OK(𝑗, 𝑖) have been received from the broadcast of 𝑃𝑖

and 𝑃 𝑗 respectively.

3. Corresponding to every 𝑆𝑞 ∈ S, there exists a subset 𝑆′𝑞 ⊆
(𝑆𝑞 ∩ C) , such that 𝑆𝑞 \ 𝑆′𝑞 ∈ Z.

– If a set C is accepted, then populate the set W(𝑖,sid) as follows.
◦ If 𝑃𝑖 = 𝑃D, then for each 𝑃 𝑗 ∈ C and each 𝑆𝑞 ∈ S where

𝑃 𝑗 ∈ 𝑆𝑞 , add the tuple (𝑞, 𝑃 𝑗 , [𝑠]𝑞) to W(𝑖,sid) . This is
interpreted as 𝑃D expects 𝑃 𝑗 to reveal the share [𝑠]𝑞 on the

behalf of the set 𝑆𝑞 during the reconstruction protocol.

◦ If 𝑃𝑖 ∈ C, then corresponding to each 𝑆𝑞 ∈ S where 𝑃𝑖 ∈ 𝑆𝑞

and each 𝑃 𝑗 ∈ 𝑆𝑞 ∩ C, add the tuple (𝑞, 𝑃 𝑗 , 𝑠𝑞𝑖) to W(𝑖,sid) .
This is interpreted as 𝑃𝑖 expects 𝑃 𝑗 to reveal the share 𝑠𝑞𝑖 on

the behalf of the set 𝑆𝑞 during the reconstruction protocol.

◦ Else corresponding to every 𝑃 𝑗 ∈ C and every 𝑆𝑞 ∈ S where
𝑃 𝑗 ∈ 𝑆𝑞 , add the tuple (𝑞, 𝑃 𝑗 ,★) to W(𝑖,sid) . This is inter-
preted as 𝑃𝑖 expects 𝑃 𝑗 to reveal some share on the behalf

of the set 𝑆𝑞 during the reconstruction protocol.

Protocol ΠRec (P,Z, S, 𝑃D, 𝑠)
• Making the Shares Public – For 𝑞 = 1, . . . , ℎ, each party 𝑃𝑖 ∈

C ∩ 𝑆𝑞 broadcasts the shares {𝑠𝑞𝑖 }𝑃𝑖 ∈𝑆𝑞∩C .
• Reconstructing the Secret – Each 𝑃 𝑗 ∈ P outputs 𝑠★ = [𝑠]★

1
+

. . . + [𝑠]★
ℎ
, where for 𝑞 = 1, . . . , ℎ, party 𝑃 𝑗 computes [𝑠]★𝑞 as

follows.

– If 𝑃 𝑗 ∈ (C ∩ 𝑆𝑞) , then set [𝑠]★𝑞 = 𝑠𝑞𝑗 .

– If 𝑃 𝑗 ∉ (C ∩𝑆𝑞) , then set [𝑠]★𝑞 to the value 𝑠𝑞𝑖 , if 𝑠𝑞𝑖 is received

from the broadcast of some 𝑃𝑖 ∈ C ∩ 𝑆𝑞 .
a

Protocol ΠMM (P,Z, S, 𝑃D, 𝑠)
The following code is executed by 𝑃𝑖 ∈ P, if a set C is accepted:

• Initialization: Initialize W(𝑖,sid) and B𝑖 to ∅. The set B𝑖 is a set

that is initialized by the party 𝑃𝑖 only once (when sid = 0) and

dynamically updated during the various instances of ΠMM. The

set W(𝑖,sid) is initialized in and maintained for SAVSS instance

with id sid only.

• Suspending Messages: If any message is received from 𝑃 𝑗 during

SAVSS with id sid, then block the message as per the following

conditions.

– If 𝑃 𝑗 ∈ B𝑖 , then discard the message.

– If there exists a tuple of the form (★, 𝑃 𝑗 ,★) in the W(𝑖,sid′) set
for any sid′ < sid, then do not forward the message to SAVSS

with id sid.
• Filtering Parties from Waiting Lists: Corresponding to every

𝑃 𝑗 ∈ P, if 𝑃 𝑗 ∉ B𝑖 and if a share 𝑠𝑞𝑗 is received from the

broadcast of 𝑃 𝑗 on the behalf of the set 𝑆𝑞 during ΠRec with id

sid, then do the following, provided 𝑃 𝑗 ∈ 𝑆𝑞 ∩ C and there exists

a tuple of the form (𝑞, 𝑃 𝑗 , val) ∈ W(𝑖,sid) .
– If val = ★, then remove (𝑞, 𝑃 𝑗 , val) from W(𝑖,sid) .
– If val ≠ ★ and val = 𝑠𝑞𝑗 , then remove (𝑞, 𝑃 𝑗 , val) from W(𝑖,sid) .
– If val ≠ ★ and val ≠ 𝑠𝑞𝑗 , then add 𝑃 𝑗 to B𝑖 .

a
If there are multiple such parties 𝑃𝑖 from whose broadcast 𝑃 𝑗 receives some 𝑠𝑞𝑖 ,

then consider the first party 𝑃𝑖 among them.

Figure 1: The SAVSS scheme with protocols for sharing, reconstruc-
tion and memory management with session id sid

We next prove the properties of our SAVSS.

Lemma 3.1 (Properties of SAVSS Memory Management Pro-
tocol). The following hold for every honest 𝑃𝑖 ∈ P during the protocol
ΠMM with id sid for any sid ∈ N, irrespective of 𝑃D.
– If 𝑃 𝑗 is included in B𝑖 then 𝑃 𝑗 is corrupt.
– If 𝑃 𝑗 is honest, then any triplet of the form (★, 𝑃 𝑗 ,★) present in

W(𝑖,sid) is eventually removed.

Proof. If 𝑃 𝑗 is honest, then it eventually broadcasts all the mes-

sages it is supposed to broadcast during the protocol ΠRec with

id sid, which are eventually received by every honest 𝑃𝑖 . Hence

every triplet of the form (★, 𝑃 𝑗 ,★) will be eventually removed from

W(𝑖,sid) . Moreover, an honest 𝑃 𝑗 broadcasts the shares as received
from 𝑃D during the protocol ΠSh with id sid. So the conditions for

including 𝑃 𝑗 to B𝑖 are never satisfied. □

Lemma 3.2. For any sid ∈ N, the following hold during the (ΠSh,

ΠRec) protocols with id sid: (a): If 𝑃D is honest and all honest parties
participate in ΠSh, then each honest party eventually outputs C. (b):
If some honest party outputs C in ΠSh, then every other honest party
eventually outputs C in ΠSh. (c): If all honest parties participate in
ΠRec, then every honest party eventually obtains an output in ΠRec.

Proof. We note that during ΠSh and ΠRec, the messages of

every honest party is cleared by the ΠMM protocol and eventually

delivered to the honest recipients, which follows from Lemma 3.1.

We first consider an honest 𝑃D. In this case, corresponding to every

𝑆𝑞 ∈ S, every honest party 𝑃𝑖 ∈ 𝑆𝑞 receives the share 𝑠𝑞𝑖 from

𝑃D, which will be the same as [𝑠]𝑞 . Consequently, every honest

𝑃𝑖 eventually broadcasts an OK(𝑖, 𝑗) message, corresponding to

every honest 𝑃 𝑗 . Let 𝑍𝑐 ∈ Z be the set of corrupt parties and let

H = P \ 𝑍𝑐 be the set of honest parties. Next consider an arbitrary

𝑆𝑞 ∈ S. It is easy to see that 𝑆𝑞 \ (𝑆𝑞 ∩H) ⊆ 𝑍𝑐 ∈ Z. It then follows

that 𝑃D eventually finds a candidate C set and broadcasts the same,

since we have shown that the set H satisfies all the properties of a

candidate C set. Consequently, every honest party will eventually

receive a C set from the broadcast of 𝑃D, accepts it and outputs C.
This proves the first part of the lemma.

For the second part of the lemma, let 𝑃ℎ be the first honest party
who outputs C during ΠSh. This implies that 𝑃ℎ receives the set C
from the broadcast of 𝑃D and accepts it. It then follows that every

other honest party also eventually receives C from the broadcast

2022-07-24 17:29. Page 5 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Ashish Choudhury

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

of 𝑃D and the conditions for accepting C will eventually hold for

those honest parties as well. Consequently, every other honest party

eventually outputs C during ΠSh.

For the third part, we first note that honest parties participate in

ΠRec, only after accepting C. We also note that corresponding to

every 𝑆𝑞 ∈ S, there exists at least one honest party in the set 𝑆𝑞 ∩ C,
that is 𝑆𝑞∩C∩H ≠ ∅. This is because as per the protocol conditions,
P \C ∈ Z, 𝑆𝑞 = P \𝑍𝑞 andH = P \𝑍𝑐 , so if 𝑆𝑞 ∩C∩H = ∅, then
it implies that Z does not satisfy the Q(3) (P,Z) condition, which
is a contradiction. Let 𝑃 𝑗 be an honest party in the set 𝑆𝑞∩C. During
ΠRec, party 𝑃 𝑗 will broadcast the share 𝑠𝑞𝑗 received from 𝑃D on the

behalf of the set 𝑆𝑞 , which is eventually delivered to every honest

party. Consequently, every honest party 𝑃𝑖 will eventually set the

share [𝑠]★𝑞 to some value and reconstructs some value 𝑠★. □

Lemma 3.3. For any sid ∈ N, the following holds during the
(ΠSh,ΠRec,ΠMM) protocols with id sid: If the honest parties out-
put C during ΠSh, then there exists a unique value 𝑠 , where 𝑠 = 𝑠 for
an honest 𝑃D, such that one of the following holds.
– All honest parties output 𝑠★ = 𝑠 during ΠRec; or
– At least one new local-conflict occurs during ΠMM between an

honest and a corrupt party.

Proof. Let the honest parties output a set C during ΠSh. This

implies that the honest parties have accepted C, broadcasted by 𝑃D.
Now consider an arbitrary 𝑆𝑞 ∈ S. As shown in the proof of Lemma

3.2, there exists at least one honest party in the set 𝑆𝑞 ∩ C. We first

note that all honest parties in the set 𝑆𝑞 ∩ C receive the same share,

say 𝑠𝑞 , from 𝑃D. This is because every honest party 𝑃𝑘 ∈ 𝑆𝑞 ∩C has

broadcasted an OK(𝑘, 𝑙) message, corresponding to every honest

𝑃𝑙 ∈ 𝑆𝑞 ∩ C, implying that the condition 𝑠𝑞𝑘 = 𝑠𝑞𝑙 holds, where 𝑠𝑞𝑘
and 𝑠𝑞𝑙 are the shares corresponding to 𝑆𝑞 , received by 𝑃𝑘 and 𝑃𝑙
respectively. We define

𝑠
𝑑𝑒𝑓
=

∑︁
𝑞=1,...,ℎ

𝑠𝑞 .

It is easy to see that if 𝑃D is honest, then 𝑠 = 𝑠 holds.

Next consider an arbitrary honest party 𝑃 𝑗 . From Lemma 3.2,

party 𝑃 𝑗 eventually reconstructs some value 𝑠★ during ΠRec. Let

𝑠★ ≠ 𝑠 . This implies that there exists at least one 𝑆𝑞 ∈ S, such that

during ΠRec, party 𝑃 𝑗 has set [𝑠]★𝑞 to 𝑠𝑞𝑖 where 𝑠𝑞𝑖 is received from

the broadcast of some 𝑃𝑖 ∈ 𝑆𝑞 ∩ C and 𝑠𝑞𝑖 ≠ 𝑠𝑞 . Note that 𝑃𝑖 is

corrupt, as every honest party in 𝑆𝑞 ∩ C broadcasts the share 𝑠𝑞
during ΠRec. We also note that the share 𝑠𝑞𝑖 broadcasted by 𝑃𝑖 is

eventually received by all honest parties in 𝑆𝑞 ∩C. Now consider an

arbitrary honest party 𝑃𝑘 ∈ 𝑆𝑞 ∩ C. From the protocol steps, during

ΠSh, party 𝑃𝑘 broadcasts the message OK(𝑘, 𝑖) corresponding to 𝑃𝑖
and adds the tuple (𝑞, 𝑃𝑖 , 𝑠𝑞) to W(𝑘,sid) . Since during ΠRec party

𝑃𝑖 broadcasts 𝑠𝑞𝑖 ≠ 𝑠𝑞 , it follows that during the protocol ΠMM, the

local-conflict (𝑃𝑘 , 𝑃𝑖) occurs and party 𝑃𝑘 adds 𝑃𝑖 to B𝑘 .

Finally, to complete the proof we need to show that 𝑃𝑖 is not
included in B𝑘 during any instance of ΠMM with sid′, where sid′ <
sid. On contrary, if 𝑃𝑖 is included in B𝑘 during ΠMM with sid′,
where sid′ < sid, then 𝑃𝑘 will never broadcast theOK(𝑘, 𝑖) message

during the instance ofΠSh with id sid, which is a contradiction. This
is because if 𝑃𝑖 ∈ B𝑘 , then all the messages from 𝑃𝑖 are discarded

by 𝑃𝑘 during the instance of ΠSh with id sid, due to the protocol

ΠMM with id sid. □

Lemma 3.4. For any sid ∈ N, if 𝑃D is honest, then the view of the
adversary is independent of the input 𝑠 of 𝑃D during ΠSh with id sid.

Proof. Let 𝑃D be honest. In the protocol, 𝑃D randomly selects the

shares 𝑠1, . . . , 𝑠ℎ , subject to the condition that 𝑠1 + . . . + 𝑠ℎ = 𝑠 holds.

Moreover, since each 𝑆𝑞 = P \𝑍𝑞 where 𝑍𝑞 ∈ Z, it follows that the

probability distribution of the shares learnt by the adversary during

ΠSh, will be independent of the input 𝑠 of 𝑃D. More specifically,

let 𝑍𝑐 ∈ Z be the set of corrupt parties. Then throughout ΠSh, the

adversary does not not learn anything about the share 𝑠𝑐 , which

is available only to the parties in 𝑆𝑐 = P \ 𝑍𝑐 . This is because the
share 𝑠𝑐 is distributed by 𝑃D to the parties in 𝑆𝑐 over pair-wise

secure channels. Moreover, during the pair-wise consistency tests,

the parties in 𝑆𝑐 exchange the share 𝑠𝑐 only among themselves. It

now follows that for every candidate value of 𝑠 from the point of

view of the adversary, there is a corresponding unique 𝑠𝑐 , which

will be consistent with the shares seen by the adversary during ΠSh.

Now since the share 𝑠𝑐 is chosen randomly, it follows that the view

of the adversary during ΠSh remains independent of 𝑠 . □

Lemma 3.5. Protocol ΠSh incurs a communication of O(|Z| ·
𝑛2

log |K| + 𝑛4
log𝑛) bits, while protocol ΠRec incurs a communi-

cation of O(|Z| · 𝑛3
log |K|) bits.

Proof. During ΠSh, the dealer 𝑃D needs to send a share 𝑠𝑞 of

size log |K| bits to each set 𝑆𝑞 ∈ S, consisting of O(𝑛) parties. This
requires a communication of O(|S| ·𝑛 log |K|) bits. During the pair-
wise consistency test, every party in 𝑆𝑞 sends its share to every other

party in 𝑆𝑞 , incurring a communication of O(|S| · 𝑛2
log |K|) bits.

There are O(𝑛2) OK(★,★) messages which are broadcasted, where

each message is of size 2 log𝑛 bits, encoding the identity of 2 parties.

Moreover, 𝑃D broadcasts a C set, encoded using O(𝑛 log𝑛) bits.
DuringΠRec, a partymay need to broadcast up toO(|S|) shares. The
communication complexity now follows from the communication

complexity of the Acast protocol and the fact that |S| = |Z|. □

4 SCCWITH Q(3) (P,Z) CONDITION
The SCC protocol is presented in Fig 3. The protocol is almost

the same as the CC protocol of [17] with the following difference:
while the CC protocol of [17] uses their perfectly-secure AVSS with

Q(4) (P,Z) condition, we replace the instances of AVSS with our

SAVSS scheme with Q(3) (P,Z) condition (presented in the last

section), thus leading to an SCC with Q(3) (P,Z) condition.
The SCC protocol ΠSCC consists of two stages. In the first stage,

a uniformly random, yet unknown value Coin𝑖 ∈ {0, . . . , 𝑛 − 1} is
“attached" to every party 𝑃𝑖 . Then, once it is ensured that “suffi-

ciently many" number of parties in a set FS (called final set) have
been attached with their respectiveCoin values, in the second stage,
these Coin values are publicly reconstructed, and an output bit is

computed taking into account the reconstructed values. However,

due to the asynchronous communication, each (honest) party may

have a different FS set and hence, a potentially different output.

To circumvent this problem, the protocol ensures that there is a

non-empty overlap among the FS sets of all the (honest) parties.

Ensuring this common overlap is the crux of the protocol.

2022-07-24 17:29. Page 6 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Almost-Surely Terminating Asynchronous Byzantine Agreement Against General Adversaries with Optimal ResilienceConference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

During the first stage, each party acts as a dealer and shares

a random value from K on the behalf of each party, by invoking

an instance of ΠSh. To ensure that each Coin𝑖 ∈ {0, . . . , 𝑛 − 1},
the parties set K to either a finite ring or a field, where |K| ≥ 𝑛.

Each party 𝑃𝑖 creates a dynamic set of accepted dealersAD𝑖 , which

includes all the dealers in whose ΠSh instances, 𝑃𝑖 computes an

output. The properties of ΠSh guarantee that these dealers are

eventually included in the set of accepted dealer of every other

honest party as well. Party 𝑃𝑖 then waits for “sufficiently many"

number of dealers to be accepted, such that AD𝑖 is guaranteed to

contain at least one honest dealer. For this, 𝑃𝑖 keeps on expanding

AD𝑖 until P \ AD𝑖 ∈ Z holds (which eventually happens for an

honest 𝑃𝑖). Once AD𝑖 achieves this property, 𝑃𝑖 assigns AD𝑖 to

the set AD𝑖 and publicly announces the same. This is interpreted

as 𝑃𝑖 having attached the set of dealers AD𝑖 to itself. Then, the

summation of the values modulo 𝑛, shared by the dealers in AD𝑖 on

the behalf of 𝑃𝑖 , is set to be Coin𝑖 . Note that the value of Coin𝑖 will
not be known to anyone at this point (including 𝑃𝑖), as the value(s)

shared by the honest dealer(s) in the set AD𝑖 on the behalf of 𝑃𝑖
is(are) not yet known, owing to the privacy property of ΠSh.

On receivingAD𝑗 from any 𝑃 𝑗 , party 𝑃𝑖 verifies if the set is “valid"

by checking if the ΠSh instances of dealers in AD𝑗 has produced

an output for 𝑃𝑖 as well; i.e. ,AD𝑗 ⊆ AD𝑖 holds. Once the validity

of AD𝑗 is confirmed, 𝑃𝑖 “partially accepts" 𝑃 𝑗 and includes it in its

set of partially-accepted parties PAP𝑖 . Additionally, 𝑃𝑖 publicly

“approves" the partial-acceptance of 𝑃 𝑗 , by broadcasting anOKmes-

sage for 𝑃 𝑗 (this implicitly means 𝑃𝑖 ’s approval for the yet unknown,

but well-defined value Coin𝑗). Notice that partial-acceptance of 𝑃 𝑗
by 𝑃𝑖 implies that every other honest party will also eventually

partially accept 𝑃 𝑗 . This is because every other honest party will

eventually receive the set AD𝑗 and will find it valid.

Party 𝑃𝑖 then waits for the approval of AD𝑗 from a set of parties

𝑆 𝑗 including itself, such that P \ 𝑆 𝑗 ∈ Z holds, thus guaranteeing

that Z satisfies the Q(2) (𝑆 𝑗 ,Z) condition. Once P \ 𝑆 𝑗 ∈ Z holds,

𝑃 𝑗 is shifted from PAP𝑖 to a dynamic set of accepted parties AP𝑖 .

Looking ahead, ensuring thatZ satisfies theQ(2) (𝑆 𝑗 ,Z) condition,
coupled with maintaining separate PAP𝑖 and AP𝑖 sets, plays

a crucial rule to ensure a non-empty overlap among the FS sets

of honest parties. Notice that the acceptance of 𝑃 𝑗 by 𝑃𝑖 implies

the eventual acceptance of 𝑃 𝑗 by every other honest party, as the

corresponding approval (namely the OK messages) for AD𝑗 are

publicly broadcasted. Party 𝑃𝑖 keeps on expanding its set of accepted

parties AP𝑖 until P \ AP𝑖 ∈ Z holds, which happens eventually.

Once ensured, 𝑃𝑖 publicly announces it with a ready message and

the corresponding AP𝑖 set, denoted by AP𝑖 , along with its set of

partially-accepted parties PAP𝑖 .
2

On receiving the ready message and AP𝑗 ,PAP 𝑗 sets from any

party 𝑃 𝑗 , party 𝑃𝑖 verifies the “validity" of AP𝑗 and PAP 𝑗 . For

this, 𝑃𝑖 checks if the parties in AP𝑗 are accepted by 𝑃𝑖 as well; i.e. if
AP𝑗 ⊆ AP𝑖 holds. And if the partially-accepted parties in PAP 𝑗

are either accepted or partially-accepted by 𝑃𝑖 ; i.e. if PAP 𝑗 ⊆
(AP𝑖 ∪ PAP𝑖) holds. Upon successful verification, 𝑃 𝑗 is included

by 𝑃𝑖 in a dynamic set of supportive parties SP𝑖 . The interpretation

2
We note that the sets AP𝑖 were not built in the CC protocol of [17]. However, these

sets are essential even in their CC protocol, as otherwise a non-empty overlap among

the FS sets of honest parties is not guaranteed in their CC protocol.

of SP𝑖 is that each party in SP𝑖 is “supporting" the beginning of

the second stage of the protocol, by presenting a “sufficiently large"

valid set of accepted and partially-accepted parties (and hence Coin
values). Notice that the inclusion of 𝑃 𝑗 to SP𝑖 implies the eventual

inclusion of 𝑃 𝑗 by every other honest party in its respective SP
set. Once the set of supportive parties becomes sufficiently large,

i.e. P \ SP𝑖 ∈ Z holds, 𝑃𝑖 sets a boolean indicator Flag𝑖 to 1,

marking the beginning of the second stage. Let SP𝑖 denote the set
of supportive parties SP𝑖 when Flag𝑖 is set to 1.

The second stage involves publicly reconstructing the unknown

Coin values which were accepted and partially-accepted by 𝑃𝑖 till it

sets Flag𝑖 to 1. Let FS𝑖 be the set of accepted and partially-accepted
parties when Flag𝑖 is set to 1. This implies that the union of the

AP𝑗 and PAP 𝑗 sets of all the parties in SP𝑖 is a subset of FS𝑖 , as
each (AP𝑗 ∪ PAP 𝑗) ⊆ (AP𝑖 ∪ PAP𝑖). The parties proceed to

reconstruct the value Coin𝑘 corresponding to each 𝑃𝑘 ∈ FS𝑖 . For
this, the parties start executing the corresponding ΠRec instances,

that are required for reconstructing the secrets shared by the ac-

cepted dealers AD𝑘 on the behalf of 𝑃𝑘 . If any of the Coin𝑘 values

turns out to be 0, party 𝑃𝑖 sets its output to 0, else, it outputs 1.

To argue that there exists a non-empty overlap among the FS
sets of the honest parties, we consider the first honest party 𝑃𝑖 who
broadcasts a ready message and show that the set AP𝑖 will be the
common overlap (see Lemma 4.3).

3
For the ease of understanding,

we pictorially depict the various sets computed in the protocol

ΠSCC in Fig 2. Notice that the parties may end up reconstructing

a different coin value Coin′
𝑘
≠ Coin𝑘 , corresponding to 𝑃𝑘 ∈ FS𝑖 ,

which will end up affecting the required success probability of the

protocol ΠSCC. However, in this case, at least one new local-conflict

occurs between an honest and a corrupt party.

1. Initialization: Initialize a set of accepted dealers AD𝑖 , a set of

partially-accepted parties PAP𝑖 , a set of accepted parties AP𝑖

and a set of supportive parties SP𝑖 to ∅. Additionally, initialize a
Boolean variable Flag𝑖 = 0.

2. Sharing Secrets on Behalf of Others:
– For 𝑗 = 1, . . . , 𝑛, choose a random secret 𝑠𝑖 𝑗 ∈ K on the behalf of

𝑃 𝑗 , and as a dealer, invoke an instance ΠSh (P,Z, S, 𝑃𝑖 , 𝑠𝑖 𝑗) of
ΠSh with id (sid, 𝑃𝑖 , 𝑃 𝑗) . Let this instance be denoted as Π (𝑖 𝑗)

Sh .

– Participate in Π (𝑗𝑘)
Sh , corresponding to every 𝑃 𝑗 , 𝑃𝑘 ∈ P.

3. Populating the Set of Accepted Dealers:
– Add party 𝑃 𝑗 to AD𝑖 , if an output is computed in the instances

Π (𝑗1)
Sh , . . . ,Π (𝑗𝑛)

Sh .

– If (P \ AD𝑖) ∈ Z, then assign AD𝑖 = AD𝑖 and broadcast the

message (Attach,AD𝑖 , 𝑃𝑖) . The set AD𝑖 is considered to be

the set of dealers attached to 𝑃𝑖 . Let

Coin𝑖
𝑑𝑒𝑓
=

∑︁
𝑃 𝑗 ∈AD𝑖

𝑠 𝑗𝑖 mod 𝑛.

We say that the coin Coin𝑖 is attached to party 𝑃𝑖 .a

4. Validating the Set of Accepted Dealers:
– If the message (Attach,AD𝑗 , 𝑃 𝑗) is received from the broadcast

of 𝑃 𝑗 , then broadcast a message OK(𝑃𝑖 , 𝑃 𝑗) , if the dealers

Protocol ΠSCC (P,Z)

3
This lemma is borrowed from [17]. However, the proof provided in [17] is flawed,

as they do not consider the PAP sets in their protocol. The proof presented in this

article, can be considered as the correct proof of the lemma for their CC protocol.

2022-07-24 17:29. Page 7 of 1–14.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t f
or
dis
tri
bu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Ashish Choudhury

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) (b)

𝑃!

𝑃!! , ⋯ , 𝑃!"

AD!

𝑃" 𝑃"! , ⋯ , 𝑃"#

AD"

𝑃!

OK(𝑃! , 𝑃")

𝑃"! , ⋯ , 𝑃"#
𝑃" : AD"

𝑆"

OK(⋆, 𝑃")

𝑃# : AD#𝑃$: AD$

𝑆$

OK(⋆, 𝑃$)

⋯

⋯

𝑃! : AP!

(c)

𝑃!!, ⋯ , 𝑃!"
𝑃! : AD!

𝑆!
OK(⋆, 𝑃!)

𝑃" : AD"𝑃# : AD#

𝑆#
OK(⋆, 𝑃#)

⋯

⋯

𝑃$: AP$

𝑃% : AD%

𝑆%
OK(⋆, 𝑃%)

𝑃& : AD&

𝑆&

OK(⋆, 𝑃&)

⋯

⋯

⋯

⋯

𝑃' : AP'

⋯

𝑃(: AD(

𝑆(

OK(⋆, 𝑃()

⋯

⋯

𝑃) : AP)

𝑃* : AD*

𝑆*
OK(⋆, 𝑃*) ⋯

𝑃! : SP!

(d)

𝑃#! , ⋯ , 𝑃#$
𝑃% : AD%

𝑃%! , ⋯ , 𝑃%%⋯

𝑃! : 𝒫𝒜𝒫!

𝑃#! , ⋯ , 𝑃#%

𝑃$: 𝒫𝒜𝒫$

𝑃$! , ⋯ , 𝑃$"

𝑃$! , ⋯ , 𝑃$"

Figure 2: Pictorial depiction of the various sets computed in the protocol ΠSCC. The set AD𝑖 in figure (a) denotes the set of
dealers attached to 𝑃𝑖 ; the values shared by the parties in AD𝑖 on the behalf of 𝑃𝑖 define the value Coin𝑖 . Figure (b) denotes 𝑃 𝑗
broadcasting AD𝑗 . Upon receiving AD𝑗 from 𝑃 𝑗 , party 𝑃𝑖 approves AD𝑗 through the OK(𝑃𝑖 , 𝑃 𝑗) message. Figure (c) denotes the set
of accepted parties AP𝑖 and the set of partially-accepted parties PAP𝑖 for 𝑃𝑖 . For every 𝑃 𝑗 ∈ AP𝑖 , there is a corresponding set 𝑆 𝑗 ,
who has approved AD𝑗 and hence Coin𝑗 . Finally, figure (d) denotes the set SP𝑖 .

attached to 𝑃 𝑗 are accepted by 𝑃𝑖 , i.e. AD𝑗 ⊆ AD𝑖 holds.

Moreover, include 𝑃 𝑗 to PAP𝑖 .

5. Populating the Set of Accepted Parties:
– Shift 𝑃 𝑗 from PAP𝑖 to AP𝑖 , if OK(★, 𝑃 𝑗) is received from

the broadcast of a set of parties 𝑆 𝑗 including 𝑃𝑖 , such that

(P \ 𝑆 𝑗) ∈ Z.

– If (P \ AP𝑖) ∈ Z, then assign AP𝑖 = AP𝑖 and broadcast the

message (ready, 𝑃𝑖 ,AP𝑖 , PAP𝑖) .
6. Populating the Set of Supportive Parties:

– Consider 𝑃 𝑗 to be supportive and include it in SP𝑖 , if 𝑃𝑖 re-

ceives the message (ready, 𝑃 𝑗 ,AP𝑗 , PAP 𝑗) from the broad-

cast of 𝑃 𝑗 and each party in AP𝑗 is accepted by 𝑃𝑖 and each

party in PAP 𝑗 is either accepted or partially-accepted by 𝑃𝑖 ,

i.e. AP𝑗 ⊆ AP𝑖 and PAP 𝑗 ⊆ (AP𝑖 ∪ PAP𝑖) holds.
– If P \ SP𝑖 ∈ Z, then set Flag𝑖 = 1. Let SP𝑖 and FS𝑖 be the

contents of SP𝑖 and (AP𝑖 ∪ PAP𝑖) respectively, when
Flag𝑖 = 1.

b

7. Reconstructing the Coin Values:
• If Flag𝑖 = 1, then reconstruct the value of the coin attached to

each party in FS𝑖 as follows:
– Start participating in the instancesΠRec (P,Z, S, 𝑃 𝑗 , 𝑠 𝑗𝑘) with

id (sid, 𝑃 𝑗 , 𝑃𝑘) corresponding to each 𝑃 𝑗 ∈ AD𝑘 , such that

𝑃𝑘 ∈ FS𝑖 , Denote this instance of ΠRec as Π
(𝑗𝑘)
Rec and let 𝑟 𝑗𝑘

be the corresponding output (Some parties may be included

in the set AP𝑖 ∪ PAP𝑖 after Flag𝑖 is set to 1. In that case,

start participating in the corresponding ΠRec instances).

– For every 𝑃𝑘 ∈ FS𝑖 , compute

Coin′
𝑘
=

∑︁
𝑃 𝑗 ∈AD𝑘

𝑟 𝑗𝑘 mod 𝑛.

We say that the value Coin′
𝑘
is associated to 𝑃𝑘 .

8. Output computation:
• If the values associated to all the parties in FS𝑖 are computed,

then do the following.

– If there exists any 𝑃𝑘 ∈ FS𝑖 where Coin′𝑘 = 0, then output 0.

– Else output 1.

a
The value of Coin𝑖 will not be known to anyone at this step, including 𝑃𝑖 .

b
Note that

⋃
𝑃𝑗 ∈SP𝑖

(AP𝑗 ∪ PAP 𝑗) ⊆ FS𝑖 holds, as

(AP𝑗 ∪ PAP 𝑗) ⊆ (AP𝑖 ∪ PAP𝑖) .

Figure 3: The shunning common-coin protocol for session id sid.
The above code is executed by every 𝑃𝑖 ∈ P

The properties of ΠSCC are stated in the following lemmas and

theorem, which are proved in Appendix A due to space constraints.

Lemma 4.1. If each honest party participates in ΠSCC with id sid,
then each honest party eventually computes an output.

Lemma 4.2. During ΠSCC with id sid, if any honest party receives
the message (Attach,AD𝑘 , 𝑃𝑘) from the broadcast of any party 𝑃𝑘 ,
then a unique value Coin𝑘 is fixed such that all the following hold:

2022-07-24 17:29. Page 8 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Almost-Surely Terminating Asynchronous Byzantine Agreement Against General Adversaries with Optimal ResilienceConference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

– The coin Coin𝑘 is attached to 𝑃𝑘 .
– The value Coin𝑘 is distributed uniformly over {0, . . . , 𝑛− 1} and

is independent of the coins attached to the other parties.
– If any honest party associates Coin′

𝑘
≠ Coin𝑘 to 𝑃𝑘 , then at least

one new local-conflict occurs between an honest and a corrupt
party.

Lemma 4.3. In ΠSCC with id sid, once some honest party sets Flag
to 1, then there exists a set, sayM, such that all the following hold:
– P \M ∈ Z.
– For each 𝑃 𝑗 ∈ M, some honest party receives the message

(Attach,AD𝑗 , 𝑃 𝑗) from the broadcast of 𝑃 𝑗 .
– Whenever any honest party 𝑃𝑖 sets its Flag𝑖 = 1, the condition

M ⊆ FS𝑖 holds.

Lemma 4.4. In ΠSCC with id sid, one of the following holds.
– For every possible 𝜎 ∈ {0, 1}, with probability at least 1

𝑛 , all the
honest parties output 𝜎 ; otherwise

– At least one new local-conflict occurs between an honest and a
corrupt party.

Lemma 4.5. Protocol ΠSCC incurs a communication of O(|Z| ·
𝑛5

log |K| + 𝑛6
log𝑛) bits.

Theorem 4.6. LetAdv be a computationally unbounded adversary,
characterized by an adversary structureZ, satisfying theQ(3) (P,Z)
condition and where |P | = 𝑛 ≥ 3. Then for every possible sid ∈ N,
protocol ΠSCC is a 1

𝑛 -SCC protocol, incurring a communication of
O(|Z| · 𝑛5

log |K| + 𝑛6
log𝑛) bits.

5 ABAWITH Q(3) (P,Z) CONDITION
In this section, we show how to “combine" protocols ΠVote and

ΠSCC to get the protocol ΠABA (see Fig 4), by generalizing the

blueprint of [7, 20, 35] against general adversaries. For an easy

description of the blueprint (against threshold adversaries), we refer
to [3, 11]. The protocol consists of several iterations, where each it-

eration consists of two instances of ΠVote protocol and one instance

of ΠSCC, which are carefully “stitched" together.

In each iteration, during the first instance of ΠVote, the parties

participate with their “current input", which is initialized to their re-

spective bits for ABA in the first iteration. Then, independent of the

output received from the instance of ΠVote, the parties participate in

an instance of ΠSCC. Next, the parties decide their respective inputs

for the second instance of ΠVote protocol, based on the output they

received from the first instance. If a party has received the highest
grade (namely 2) during the first instance of ΠVote, then the party

continues with the bit received from that ΠVote instance for the

second ΠVote instance. Otherwise, the party switches to the output

received from ΠSCC. The output from the second ΠVote instance is

then set as the modified input for the next iteration, if it is obtained

with a grade higher than 0, else the output of ΠSCC is taken as the

modified input for the next iteration.

If during any iteration a party obtains the highest grade from the

second instance of ΠVote, then it indicates this publicly by sending

a ready message to every party, along with the bit received. The

ready message is an indication for the others about the “readiness"

of the sender party to consider the corresponding bit as the output.

Finally, once a party receives this readiness indication for a common

bit 𝑏 from “sufficiently many" parties, then that bit is taken as the

output and the party terminates. To ensure that every other party

also outputs the same bit, once it is guaranteed that a party has

received the ready message for a common bit from at least one

honest party, it itself sends a ready message for the same bit (if it

has not done so earlier) to every other party.

The intuition behind the protocol is the following. In the protocol

there can be two cases. The first case is when all the honest parties

start with the same input bit, say𝑏. Then, they will obtain the output
𝑏 from all the instances ofΠVote protocol in all the iterations and the

outputs from ΠSCC will be never considered. Consequently, each

honest party will eventually send a ready message for 𝑏. Moreover,

only corrupt parties may send a ready message for 1 − 𝑏 and hence

no honest party ever sends a ready message for 1 − 𝑏. Hence, each

honest party eventually outputs 𝑏.

The second case is when the honest parties start the protocol

with different input bits. In this case, the protocol tries to take the

help of ΠSCC to ensure that all honest parties reach an iteration

with a common input bit for that iteration. Once such an iteration

is reached, this second case gets “transformed" to the first case and
hence all honest parties will eventually output that common bit. In

more detail, in each iteration 𝑘 , it will be ensured that either every

honest party have the same input bit for the second instance of

ΠVote with probability at least
1

𝑛 · 1

2
= 1

2𝑛 or else one new local-

conflict occurs. This is because the input for second instance of

ΠVote is either the output bit of the first instance of ΠVote or the

output of ΠSCC, both of which are independent of each other. Hence

if the output of ΠSCC is same for all the parties with probability
1

𝑛 ,

then with probability
1

𝑛 · 1

2
, this bit will be the same as output bit

from the first instance of ΠVote. If in any iteration 𝑘 , it is guaranteed
that all honest parties have the same inputs for the second instance

of ΠVote, then the parties will obtain a common output and with

highest grade from the second instance of ΠVote. And then from

the next iteration onward, all parties will stick to that common bit

and eventually output that common bit.

We show that it requires O(𝑛2) number of iterations in expec-
tation before a “good" iteration is reached where it is guaranteed
that all honest parties have the same input for the second instance

of ΠVote. Intuitively, this is because there can be O(𝑛2) number

of “bad" iterations in which the honest parties may have different

outputs from the corresponding instances of ΠSCC. This follows

from the fact that the corrupt parties may deviate from the pro-

tocol instructions during the instances of ΠSCC. There can be at

most O(𝑛2) local-conflicts which may occur overall during various

“failed" instances of ΠSCC (where a failed instance means that dif-

ferent honest parties obtain different outputs) and only after all

these local-conflicts are identified, the parties may start witnessing

“clean" instances of ΠSCC where all honest parties shun communica-

tion from all corrupt parties and where it is ensured that all honest

parties obtain the same output bit with probability
1

𝑛 . Once all the

bad iterations are over and all potential local-conflicts are identified,

in each subsequent iteration, all honest parties will then have the

same output from ΠSCC (and hence, same input for the second

instance of ΠVote) with probability at least
1

2𝑛 . Consequently, it will

take Θ(𝑛2) expected number of such iterations before the parties

reach a good iteration where it is guaranteed that all honest parties

have the same inputs for the second instance of ΠVote.

2022-07-24 17:29. Page 9 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Ashish Choudhury

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Input: Party 𝑃𝑖 has the bit 𝑏𝑖 as input for the ABA protocol.

– Initialization: Set 𝑏 = 𝑏𝑖 , sid = 0, Committed = False and 𝑘 = 1.

Then do the following.

1. Set sid = sid + 1 and participate in an instance of ΠVote protocol

with id sid and input 𝑏.

2. Once an output (𝑏,𝑔) is received from the instance of ΠVote with

id sid, participate in an instance of ΠSCC with id sid. Let Coin𝑘
denote the output received during ΠSCC with id sid.

3. If 𝑔 < 2, then set 𝑏 = Coin𝑘 .
4. Set sid = sid + 1 and participate in an instance of ΠVote protocol

with id sid and input 𝑏 and let (𝑏′, 𝑔′) be the output received.
If 𝑔′ > 0, then set 𝑏 = 𝑏′.

5. If 𝑔′ = 2 and Committed = False, then set Committed = True and
send (ready, 𝑏) to all the parties.

6. Set 𝑘 = 𝑘 + 1 and repeat from 1.

– Output Computation and Termination:
– If (ready, 𝑏) is received from a set of parties R ∉ Z, then send

(ready, 𝑏) to all the parties.

– If (ready, 𝑏) is received from a set of parties T such that P\ T ∈
Z, then output 𝑏 and terminate.

Protocol ΠABA

Figure 4: The ABA protocol from ΠVote and ΠSCC. The above code is
executed by every 𝑃𝑖 ∈ P

The properties of ΠABA are stated in the following lemmas and

Theorem, which are proved in Appendix B due to space constraints.

Lemma 5.1. In protocol ΠABA, if all honest parties have the same
input bit 𝜎 , then all honest parties eventually output 𝜎 .

Lemma 5.2. In ΠABA, if some honest party terminates with output
𝜎 , then every other honest party eventually terminates with output 𝜎 .

Lemma 5.3. In protocol ΠABA, if all honest parties initiate iteration
𝑘 , then one of the following holds:
– With probability at least 1

2𝑛 , all honest parties have the same
updated bit 𝑏 at the end of iteration 𝑘 ; or

– At least one new local-conflict occurs between an honest and a
corrupt party.

Corollary 5.4. Let I denote the set of iterations 𝑘 in ΠABA, such
that all the honest parties have the same updated bit after iteration 𝑘
with probability less than 1

2𝑛 . Then |I | = O(𝑛2).

Lemma 5.5. In protocol ΠABA, if for every iteration 𝑘 , all the honest
parties have the same updated bit at the end of iteration 𝑘 with
probability at least 1

2𝑛 , then the protocol requires expected O(𝑛2)
iterations to terminate.

Lemma 5.6. Protocol ΠABA terminates for the honest parties in
O(𝑛2) expected running time.

Theorem 5.7. LetAdv be a computationally unbounded adversary,
characterized by an adversary structure Z, such that Z satisfies
the Q(3) (P,Z) condition. Then protocol ΠABA is an almost-surely
terminating ABA protocol with expected running time of R = O(𝑛2).
The protocol incurs an expected communication complexity of O(R ·
(|Z| · 𝑛5

log |K| + 𝑛6
log𝑛)) bits.

REFERENCES
[1] I. Abraham, D. Dolev, and J. Y. Halpern. 2008. An Almost-surely Terminating

Polynomial Protocol for Asynchronous Byzantine Agreement with Optimal

Resilience. In PODC. ACM, 405–414.

[2] I. Abraham, D. Dolev, and G. Stern. 2020. Revisiting Asynchronous Fault Tolerant

Computation with Optimal Resilience. In PODC. ACM, 139–148.

[3] A. Appan, A. Chandramouli, and A. Choudhury. 2022. Perfectly-Secure Synchro-

nous MPC with Asynchronous Fallback Guarantees. To appear in PODC. IACR
Cryptol. ePrint Arch. (2022), 109.

[4] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals,
Simulations, and Advanced Topics. Vol. 19. John Wiley & Sons.

[5] L. Bangalore, A. Choudhury, and A. Patra. 2020. The Power of Shunning: Efficient

Asynchronous Byzantine Agreement Revisited. J. ACM 67, 3 (2020), 14:1–14:59.

[6] Z. Beerliová-Trubíniová and M. Hirt. 2007. Simple and Efficient Perfectly-Secure

Asynchronous MPC. In ASIACRYPT (LNCS, Vol. 4833). Springer Verlag, 376–392.
[7] M. Ben-Or. 1983. Another Advantage of Free Choice (Extended Abstract): Com-

pletely Asynchronous Agreement Protocols. In PODC. ACM, 27–30.

[8] M. Ben-Or, R. Canetti, and O. Goldreich. 1993. Asynchronous Secure Computation.

In STOC. ACM, 52–61.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson. 1988. Completeness Theorems for

Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract).

In STOC. ACM, 1–10.

[10] M. Ben-Or, B. Kelmer, and T. Rabin. 1994. Asynchronous Secure Computations

with Optimal Resilience (Extended Abstract). In PODC. ACM, 183–192.

[11] E. Blum, J. Katz, and J. Loss. 2019. Synchronous Consensus with Optimal Asyn-

chronous Fallback Guarantees. In TCC (LNCS, Vol. 11891). Springer, 131–150.
[12] G. Bracha. 1984. An Asynchronous [(n-1)/3]-Resilient Consensus Protocol. In

PODC. ACM, 154–162.

[13] R. Canetti. 1995. Studies in Secure Multiparty Computation and Applications. Ph.D.
Dissertation. Weizmann Institute, Israel.

[14] R. Canetti and T. Rabin. 1993. Fast Asynchronous Byzantine Agreement with

Optimal Resilience. In STOC. 42–51.
[15] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. 1985. Verifiable Secret Sharing

and Achieving Simultaneity in the Presence of Faults (Extended Abstract). In

FOCS. IEEE Computer Society, 383–395.

[16] A. Choudhury. 2020. Improving the Efficiency of Optimally-Resilient

Statistically-Secure Asynchronous Multi-party Computation. In INDOCRYPT
(LNCS, Vol. 12578). Springer, 810–831.

[17] A. Choudhury and N. Pappu. 2020. Perfectly-Secure Asynchronous MPC for

General Adversaries. In INDOCRYPT (LNCS, Vol. 12578). Springer, 786–809.
[18] A. Choudhury and A. Patra. 2017. An Efficient Framework for Unconditionally

Secure Multiparty Computation. IEEE Trans. Information Theory 63, 1 (2017),

428–468.

[19] R. Cramer, I. Damgård, and U. M. Maurer. 2000. General Secure Multi-party

Computation from any Linear Secret-Sharing Scheme. In EUROCRYPT (LNCS,
Vol. 1807). Springer Verlag, 316–334.

[20] Paul Feldman and Silvio Micali. 1988. Optimal Algorithms for Byzantine Agree-

ment. In STOC. ACM, 148–161.

[21] M. J. Fischer, N. A. Lynch, and M. Paterson. 1985. Impossibility of Distributed

Consensus with One Faulty Process. J. ACM 32, 2 (1985), 374–382.

[22] Matthias Fitzi. 2002. Generalized Communication and Security Models in Byzantine
Agreement. Ph.D. Dissertation.

[23] M. Fitzi and U. M. Maurer. 1998. Efficient Byzantine Agreement Secure Against

General Adversaries. In DISC (LNCS, Vol. 1499). Springer, 134–148.
[24] J. A. Garay and A. Kiayias. 2020. SoK: A Consensus Taxonomy in the Blockchain

Era. In CT-RSA (LNCS, Vol. 12006). Springer, 284–318.
[25] Martin Hirt. 2001. Multi-Party Computation: Efficient Protocols, General Adver-

saries, and Voting. Ph.D. Dissertation. ETH Zurich.

[26] Martin Hirt and Ueli Maurer. 1997. Complete Characterization of Adversaries

Tolerable in Secure Multi-Party Computation. In PODC. ACM, 25–34.

[27] M. Hirt and U. Maurer. 2000. Player Simulation and General Adversary Structures

in Perfect Multiparty Computation. Journal of Cryptology 13, 1 (2000), 31–60.

[28] K. Kursawe. 2001. Distributed Trust. Ph.D. Dissertation. Saarland University.

[29] K. Kursawe and F. C. Freiling. 2005. Byzantine Fault Tolerance on General Hybrid

Adversary Structures. Technical Report, RWTH Aachen.

[30] Nancy A Lynch. 1996. Distributed algorithms. Morgan Kaufmann.

[31] R. Shostak M. Pease and L. Lamport. 1980. Reaching Agreement in the Presence

of Faults. Journal of the ACM (JACM) 27, 2 (1980), 228–234.
[32] U. M. Maurer. 2002. Secure Multi-party Computation Made Simple. In SCN (LNCS,

Vol. 2576). Springer, 14–28.
[33] A. Patra, A. Choudhury, and C. Pandu Rangan. 2014. Asynchronous Byzantine

Agreement with Optimal Resilience. Distributed Computing 27, 2 (2014), 111–146.
[34] A. Patra, A. Choudhury, and C. Pandu Rangan. 2015. Efficient Asynchronous

Verifiable Secret Sharing and Multiparty Computation. J. Cryptology 28, 1 (2015),

49–109.

[35] Michael O. Rabin. 1983. Randomized Byzantine Generals. In 24th Annual Sym-
posium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November

2022-07-24 17:29. Page 10 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Almost-Surely Terminating Asynchronous Byzantine Agreement Against General Adversaries with Optimal ResilienceConference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1983. 403–409.
[36] T. Rabin and M. Ben-Or. 1989. Verifiable Secret Sharing and Multiparty Protocols

with Honest Majority (Extended Abstract). In STOC. ACM, 73–85.

[37] C. Wang. 2015. Asynchronous Byzantine Agreement with Optimal Resilience

and Linear Complexity. CoRR abs/1507.06165 (2015).

A PROPERTIES OF THE PROTOCOL ΠSCC

In this section, we prove the properties of the protocol ΠSCC.

Lemma 4.1. If each honest party participates in ΠSCC with id sid,
then each honest party eventually computes an output.

Proof. We begin by showing that if all honest parties partici-
pate in the protocol ΠSCC, then each honest party 𝑃𝑖 eventually sets
Flag𝑖 = 1. Firstly, each honest party 𝑃 𝑗 invokes its 𝑛 instances of

ΠSh as a dealer. These instances are guaranteed to eventually pro-

duce an output for each honest party, which follows from Lemma

3.2. Hence, 𝑃𝑖 eventually finds a set of accepted-dealers AD𝑖 such

that P \ AD𝑖 ∈ Z, as the set of honest parties constitute a poten-

tial AD𝑖 set. This implies that 𝑃𝑖 eventually broadcasts a message

(Attach,AD𝑖 , 𝑃𝑖). Consequently, 𝑃𝑖 eventually receives the mes-

sage (Attach,AD𝑗 , 𝑃 𝑗) from the broadcast of every honest party 𝑃 𝑗 .
Also, AD𝑗 ⊆ AD𝑖 eventually holds, which again follows from

Lemma 3.2. Consequently, 𝑃𝑖 eventually broadcasts a message

OK(𝑃𝑖 , 𝑃 𝑗) for every honest party 𝑃 𝑗 . Therefore, 𝑃𝑖 eventually in-

cludes every honest party in the set of accepted-parties AP𝑖 , and

eventually P \ AP𝑖 ∈ Z holds. Hence, 𝑃𝑖 eventually broadcasts a

message (ready, 𝑃𝑖 ,AP𝑖). Consequently, 𝑃𝑖 eventually receives the

message (ready, 𝑃 𝑗 ,AP𝑗) from the broadcast of every other honest

party 𝑃 𝑗 . Also, AP𝑗 ⊆ AP𝑖 eventually holds, which follows from

Lemma 3.2. Therefore, 𝑃𝑖 ’s set of supportive parties SP𝑖 eventually

satisfies the condition P \ SP𝑖 ∈ Z, after which 𝑃𝑖 sets Flag𝑖 = 1.

We now show that if any honest 𝑃𝑖 sets Flag𝑖 = 1, then 𝑃𝑖 even-

tually computes an output in ΠSCC. For this to be true, party 𝑃𝑖
needs to be able to compute the values Coin𝑘 attached with all the

parties 𝑃𝑘 ∈ FS𝑖 . Party 𝑃𝑖 can compute Coin𝑘 , if the ΠRec instances

Π
(𝑗𝑘)
Rec produce some output for 𝑃𝑖 , corresponding to each 𝑃 𝑗 ∈ AD𝑘 .

We show that the ΠRec instances Π
(𝑗𝑘)
Rec eventually produce an out-

put. This follows from the properties of ΠRec (Lemma 3.2) and the

fact that every party 𝑃𝑘 ∈ FS𝑖 is eventually accepted or partially-

accepted by every other honest party 𝑃ℓ (i.e., 𝑃𝑘 ∈ APℓ ∪ PAPℓ)

and consequently Π
(𝑗𝑘)
Rec is eventually initiated by every honest

party.

Hence, if each honest party participates in protocol ΠSCC, then

each honest party eventually computes an output in ΠSCC. □

We next prove the properties of the Coin values, attached with

various parties.

Lemma 4.2. During ΠSCC with id sid, if any honest party receives the
message (Attach,AD𝑘 , 𝑃𝑘) from the broadcast of any party 𝑃𝑘 , then
a unique value Coin𝑘 is fixed such that all the following hold:
– The coin Coin𝑘 is attached to 𝑃𝑘 .
– The value Coin𝑘 is distributed uniformly over {0, . . . , 𝑛− 1} and

is independent of the coins attached to the other parties.
– If any honest party associates Coin′

𝑘
≠ Coin𝑘 to 𝑃𝑘 , then at least

one new local-conflict occurs between an honest and a corrupt
party.

Proof. Let 𝑃𝑖 be an honest party, who receives the message

(Attach,AD𝑘 , 𝑃𝑘) from the broadcast of 𝑃𝑘 . From the properties

of broadcast, every honest party eventually receives the same mes-

sage (Attach,AD𝑘 , 𝑃𝑘) from the broadcast of 𝑃𝑘 . Let {𝑠 𝑗𝑘 }𝑃 𝑗 ∈AD𝑘

denote the set of values shared by 𝑃 𝑗 ∈ AD𝑘 (as a dealer), on the

behalf of 𝑃𝑘 , during the instance Π
(𝑗𝑘)
Sh . We define

Coin𝑘
𝑑𝑒𝑓
=

∑︁
𝑃 𝑗 ∈AD𝑘

𝑠 𝑗𝑘 mod 𝑛.

Since all the honest parties receive the same set AD𝑘 , the value of

Coin𝑘 will be common from the point of view of all honest parties.

For the second property, we note that the parties start executing

the instances {Π (𝑗𝑘)
Rec }𝑃 𝑗 ∈AD𝑘

only after receiving the broadcasted

message (Attach,AD𝑘 , 𝑃𝑘). This implies that the set AD𝑘 is fixed,

before any instance in {Π (𝑗𝑘)
Rec }𝑃 𝑗 ∈AD𝑘

is invoked. The set AD𝑘

consists of at least one honest party, say 𝑃 𝑗 , as P \ AD𝑘 ∈ Z
and Z satisfies the Q(3) (P,Z) condition. The privacy property

of ΠSh (see Lemma 3.4) ensures that the view of the adversary

during the instance of Π
(𝑗𝑘)
Sh is independent of the secret 𝑠 𝑗𝑘 shared

by 𝑃 𝑗 . Now since the secrets shared by the honest parties during
ΠSCC are mutually independent and uniformly selected from K, it
follows that Coin𝑘 is uniformly and independently distributed over

{0, . . . , 𝑛 − 1}.
For the third property, let 𝑃ℎ be an honest party, who associates

Coin′
𝑘
to 𝑃𝑘 , such that Coin′

𝑘
≠ Coin𝑘 . From the protocol steps,

𝑃ℎ associates Coin′
𝑘
by participating in the instances Π

(𝑗𝑘)
Rec and

computing the values {𝑟 𝑗𝑘 }𝑃 𝑗 ∈AD𝑘
. SinceCoin′

𝑘
≠ Coin𝑘 , it follows

that {𝑠 𝑗𝑘 }𝑃 𝑗 ∈AD𝑘
≠ {𝑟 𝑗𝑘 }𝑃 𝑗 ∈AD𝑘

. Hence, there exists at least one

𝑃 𝑗 ∈ AD𝑘 , such that the value 𝑠 𝑗𝑘 during the instance Π
(𝑗𝑘)
Sh is

different from the value 𝑟 𝑗𝑘 computed during the instance Π
(𝑗𝑘)
Rec .

The proof now follows from Lemma 3.3. □

We next prove the crucial non-empty overlap property among

the FS of all the honest parties, which will further lead to a non-zero
success probability for the protocol ΠSCC.

Lemma 4.3. In protocol ΠSCC with id sid, once some honest party
sets its Flag to 1, then there exists a set, say M, such that all the
following hold:
– P \M ∈ Z.
– For each 𝑃 𝑗 ∈ M, some honest party receives the message

(Attach,AD𝑗 , 𝑃 𝑗) from the broadcast of 𝑃 𝑗 .
– Whenever any honest party 𝑃𝑖 sets its Flag𝑖 = 1, the condition

M ⊆ FS𝑖 holds.

Proof. Let 𝑃𝑓 be the first honest party who broadcasts a ready
message (from the proof of Lemma 4.1, such a party 𝑃𝑓 exists). This

implies that 𝑃𝑓 finds a set of accepted parties AP𝑓 (and probably, an

additional set of parties PAP 𝑓), such that P \AP𝑓 ∈ Z. Moreover,

for each 𝑃 𝑗 ∈ AP𝑓 , party 𝑃𝑓 receives OK(★, 𝑃 𝑗) messages from a

set of parties 𝑆 𝑗 , including 𝑃𝑓 , such that P \ 𝑆 𝑗 ∈ Z. We define

M 𝑑𝑒𝑓
= AP𝑓 and show that AP𝑓 satisfies all the properties ofM, as

stated in the lemma.

The first property holds as P \AP𝑓 ∈ Z holds, before any honest
party 𝑃𝑖 sets Flag𝑖 = 1. This follows from the fact that for an honest

2022-07-24 17:29. Page 11 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Ashish Choudhury

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

𝑃𝑖 to set Flag𝑖 = 1, it must receive a ready message from at least

one honest party, and 𝑃𝑓 is assumed to be the first honest party that

broadcasts a ready message. And 𝑃𝑓 broadcasts the ready message

only when P \ AP𝑓 ∈ Z holds.

We now consider the second property. For each 𝑃 𝑗 ∈ AP𝑓 , the
messages OK(★, 𝑃 𝑗) are received from the broadcasts of parties in

the set 𝑆 𝑗 , which also includes 𝑃𝑓 . Now 𝑃𝑓 broadcasts OK(𝑃𝑓 , 𝑃 𝑗)
only after receiving (Attach,AD𝑗 , 𝑃 𝑗) from the broadcast of 𝑃 𝑗 .

Since 𝑃𝑓 is assumed to be an honest party, the second property

follows.

We now consider the third property. Let 𝑃𝑖 be an arbitrary honest
party who sets Flag𝑖 to 1. We want to show that AP𝑓 ⊆ FS𝑖 holds.
For this, consider an arbitrary party 𝑃 𝑗 ∈ AP𝑓 ; we show that 𝑃 𝑗
belongs to FS𝑖 as well. Since 𝑃 𝑗 ∈ AP𝑓 , it implies that 𝑃𝑓 has

received the messages OK(★, 𝑃 𝑗) from a set of parties 𝑆 𝑗 , such that

P \ 𝑆 𝑗 ∈ Z holds. We also note that from the definition of SP𝑖 ,
the condition P \ SP𝑖 ∈ Z holds. Since Z satisfies the Q(3) (P,Z)
condition, it follows thatZ satisfies theQ(1) (𝑆 𝑗 ∩SP𝑖 ,Z) condition
and hence there exists at least one honest party, say 𝑃ℎ , such that

𝑃ℎ ∈ 𝑆 𝑗 ∩ SP𝑖 holds. Now 𝑃ℎ ∈ 𝑆 𝑗 implies that 𝑃ℎ must have

received the message (Attach,AD𝑗 , 𝑃 𝑗) from the broadcast of 𝑃 𝑗
and after verification, have broadcasted anOK(𝑃ℎ, 𝑃 𝑗) message and

included 𝑃 𝑗 to PAPℎ . Moreover, since 𝑃𝑓 is assumed to be the

first honest party to have broadcasted a ready message, it follows

that 𝑃 𝑗 will be present in PAPℎ ∪ APℎ , when 𝑃ℎ broadcasts the

message (ready, 𝑃ℎ,APℎ,PAPℎ). Since 𝑃ℎ ∈ SP𝑖 , we have (APℎ ∪
PAPℎ) ⊆ FS𝑖 . Consequently, 𝑃 𝑗 ∈ FS𝑖 . This proves the third

property. □

Lemma 4.4. In protocol ΠSCC with id sid, one of the following holds.
– For every possible 𝜎 ∈ {0, 1}, with probability at least 1

𝑛 , all the
honest parties output 𝜎 ; otherwise

– At least one new local-conflict occurs between an honest and a
corrupt party.

Proof. Let 𝑃𝑖 be an arbitrary honest party. In the protocol, 𝑃𝑖
sets its output bit based on the values associated with the parties in

FS𝑖 . Moreover, for every 𝑃𝑘 ∈ FS𝑖 , party 𝑃𝑖 receives the message

(Attach,AD𝑘 , 𝑃𝑘) from the broadcast of 𝑃𝑘 . This further guaran-

tees that a uniformly random and independently distributed value

Coin𝑘 ∈ {0, . . . , 𝑛 − 1} is fixed, which is attached to 𝑃𝑘 (Lemma 4.2).

Moreover, let Coin′
𝑘
be the value, associated to 𝑃𝑘 by 𝑃𝑖 . Further-

more, letM be the set of parties as discussed in Lemma 4.3. From

the same lemma, it holds thatM ⊆ FS𝑖 . Now there are two possible

cases.

1. Case I: For every 𝑃𝑘 ∈ FS𝑖 , party 𝑃𝑖 associates Coin′𝑘 =

Coin𝑘 to 𝑃𝑘 . If Coin𝑘 = 0 holds for some 𝑃𝑘 ∈ M, then

party 𝑃𝑖 outputs 0 in ΠSCC. The probability that for at least

one party 𝑃𝑘 ∈ M, the attached value Coin𝑘 = 0 is 1 − (1 −
1

𝑛)
|M | ≥ 1

𝑛 .

On the other hand, if Coin𝑘 ≠ 0 for every party 𝑃𝑘 ∈ FS𝑖 ,
then 𝑃𝑖 outputs 𝜎 = 1. The probability of this event is at least

(1− 1

𝑛)
𝑛 ≥ 𝑒−1 ≥ 0.36. And for any 𝑛 ≥ 3, we have 0.36 > 1

𝑛 .

This proves the first part of the lemma.

2. Case II: There exists at least one 𝑃𝑘 ∈ FS𝑖 , such that
party 𝑃𝑖 associates Coin′𝑘 ≠ Coin𝑘 to 𝑃𝑘 . In this case, from

the third part of Lemma 4.2, at least one new local-conflict

occurs. This proves the second part of the lemma.

□

Lemma 4.5. ProtocolΠSCC incurs a communication ofO(|Z|·𝑛5
log |K|+

𝑛6
log𝑛) bits.

Proof. The proof simply follows from the communication com-

plexity of ΠSh and ΠRec (Lemma 3.5) and the fact that there are

O(𝑛2) instances of ΠSh and ΠRec involved in the protocol. □

The proof of Theorem 4.6 now simply follows from Lemma 4.1-4.5.

Theorem 4.6. Let Adv be a computationally unbounded adversary,
characterized by an adversary structureZ, satisfying theQ(3) (P,Z)
condition and where |P | = 𝑛 ≥ 3. Then for every possible sid ∈ N,
protocol ΠSCC is a 1

𝑛 -SCC protocol, incurring a communication of
O(|Z| · 𝑛5

log |K| + 𝑛6
log𝑛) bits.

B PROPERTIES OF THE PROTOCOL ΠABA

In this section, we prove the properties of the protocol ΠABA. We

first start with the proof of the validity property.

Lemma 5.1. In protocol ΠABA, if all honest parties have the same
input bit 𝜎 , then all honest parties eventually output 𝜎 .

Proof. Let 𝑍𝑐 ∈ Z be the set of corrupt parties. If every honest

party has the same input bit 𝜎 , then from the properties of the

protocol ΠVote, all honest parties eventually output (𝑏,𝑔) = (𝜎, 2)
at the end of the first as well as second instance of the ΠVote pro-

tocol during the first iteration. Consequently, every honest party
eventually sends a (ready, 𝜎) message to all the parties and only the

parties in 𝑍𝑐 may send a (ready, 𝜎) message. It now follows easily

from the steps of the output computation stage that no honest party
ever sends a (ready, 𝜎) message and all honest parties eventually

output 𝜎 . □

We next prove the agreement property.

Lemma 5.2. In protocol ΠABA, if some honest party terminates with
output bit 𝜎 , then every other honest party eventually terminates with
output 𝜎 .

Proof. Wefirst show that if any honest party broadcasts a (ready,
𝜎) message for any 𝜎 ∈ {0, 1} during any iteration 𝑘 , then no honest
party broadcasts a (ready, 𝜎) message during iteration 𝑘 or in the

subsequent iterations. For this, let 𝑃𝑖 be an honest party who broad-

casts a (ready, 𝜎) message during iteration 𝑘 . This implies that 𝑃𝑖
outputs (𝑏,𝑔) = (𝜎, 2) in the second instance of the ΠVote proto-

col during iteration 𝑘 and sets Committed to True. Then, from the

properties of the protocol ΠVote, every other honest party outputs

either (𝜎, 2) or (𝜎, 1) in the second instance of the ΠVote protocol

during iteration 𝑘 . Consequently, no other honest party broadcasts

the (ready, 𝜎) message during iteration 𝑘 . Also, from the protocol

steps, all honest parties update their input to 𝜎 for the next iteration.

This further implies that all honest parties will continue to input

𝜎 to each subsequent invocations of ΠVote, ignoring the output

2022-07-24 17:29. Page 12 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Almost-Surely Terminating Asynchronous Byzantine Agreement Against General Adversaries with Optimal ResilienceConference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

of ΠSCC, for as long as they continue running. Consequently, no

honest party ever sends a (ready, 𝜎) message.

Now let some honest party, say 𝑃ℎ , terminates ΠABA with output

𝜎 during iteration 𝑘 . This implies that 𝑃ℎ receives the (ready, 𝜎)
message from a set of parties T , such that P \ T ∈ Z. Let 𝑍𝑐 ∈ Z
be the set of corrupt parties. Since all the parties in T \𝑍𝑐 are honest,
the (ready, 𝜎) messages of all the parties in T \ 𝑍𝑐 are eventually
delivered to every honest party, during iteration 𝑘 . Moreover, as

shown above, no honest party ever broadcasts a (ready, 𝜎) message.

Furthermore, sinceZ satisfies the Q(3) (P,Z) condition, it follows
that Z satisfies the Q(1) (T \ 𝑍𝑐 ,Z) condition and consequently

T \𝑍𝑐 ∉ Z. Now based on all these, we conclude that every honest

party (including 𝑃ℎ) eventually broadcasts a (ready, 𝜎) message

during iteration 𝑘 , which are eventually delivered to every honest

party. Consequently, every honest party eventually receives suffi-

ciently many number of (ready, 𝜎) messages and terminates with

output 𝜎 . □

We next prove that at the end of each iteration, the updated value

of all honest parties will be the same with probability at least
1

2𝑛 ,

or at least one new local-conflict occurs.

Lemma 5.3. In protocol ΠABA, if all honest parties initiate iteration 𝑘 ,
then one of the following holds:
– With probability at least 1

2𝑛 , all honest parties have the same
updated bit 𝑏 at the end of iteration 𝑘 ; or

– At least one new local-conflict occurs between an honest and a
corrupt party.

Proof. We first note that if 𝑃𝑖 is honest and if at all any local

conflict (𝑃𝑖 , 𝑃 𝑗) occurs during iteration 𝑘 of ΠABA, then the conflict

is different from any local conflict of the form (𝑃𝑖 ,★), which could

have occurred during any iteration 𝑘 ′ of ΠABA, where 𝑘
′ < 𝑘 . On

contrary, let the local conflict (𝑃𝑖 , 𝑃 𝑗) occurs both during iteration

𝑘 ′ as well as 𝑘 . Since the conflict occurs during the iteration 𝑘 ′,
it follows that during the instance of ΠSCC with id 𝑘 ′, party 𝑃𝑖
includes 𝑃 𝑗 to the set B𝑖 as part of one of the underlying memory

management protocols. As a result, any communication from party

𝑃 𝑗 is completely ignored by 𝑃𝑖 in any instance of ΠSCC protocol

with id 𝑘 , where 𝑘 > 𝑘 ′. Consequently, the local conflict (𝑃𝑖 , 𝑃 𝑗)
does not re-occur during iteration 𝑘 , which is a contradiction.

Now to prove the lemma statement, we consider an event Agree,
which denotes that all honest parties have the same input for the

second instance of ΠVote during iteration 𝑘 . If the event Agree
occurs, then from the properties of ΠVote, all honest parties will

have the same updated bit at the end of iteration 𝑘 . We show that

either the event Agree occurs during iteration 𝑘 with probability

at least
1

2𝑛 , or else at least one new local-conflict occurs. For this,

we consider two different possible cases with respect to the output

from the first instance of ΠVote during iteration 𝑘 .

– Case I: No honest party obtains an output (𝑏, 2) for any 𝑏 ∈
{0, 1} during the first instance of ΠVote. In this case, all honest

parties set the output from the instance of ΠSCC with id 𝑘

as the input for the second instance of ΠVote. From Lemma

4.4, either all honest parties will have the same output bit

from the instance of ΠSCC with probability at least
1

𝑛 > 1

2𝑛 ,

or at least one new local-conflict occurs.

– Case II: Some honest party obtains an output (𝑏, 2) during the
first instance of ΠVote. In this case, the properties of ΠVote
ensure that all honest parties obtain the output (𝑏, 2) or
(𝑏, 1) from the first instance of ΠVote. Moreover, from the

protocol steps, the output of the instance of ΠSCC with id

𝑘 is not revealed, until the first honest party generates an

output from the first instance of ΠVote during iteration 𝑘 .

Consequently, the output bit 𝑏 from the first instance of

ΠVote is independent of the output of ΠSCC. From Lemma

4.4, either all honest parties will have the same output bit

from the instance of ΠSCC with probability at least
1

𝑛 , or

at least one new local-conflict occurs. If all honest parties

have the same output Coin𝑘 from the instance of ΠSCC with

probability at least
1

𝑛 , then the probability that Coin𝑘 = 𝑏

holds is at least
1

2
· 1

𝑛 = 1

2𝑛 and all honest parties will have

the same input for the second instance of ΠVote.

□

As a corollary of Lemma 5.3, we can conclude that there can be

O(𝑛2) iterations where the honest parties have the same updated

value at the end with probability strictly less than 1

2𝑛 . This is because

there are O(𝑛2) different local-conflicts which can occur through-

out ΠABA. From Lemma 5.3, if the honest parties do not have the

same updated value at the end of an iteration with probability
1

2𝑛
or more, then at least one new local-conflict occurs. Hence there

can be O(𝑛2) such iterations.

corollary 5.4. Let I denote the set of iterations 𝑘 in ΠABA, such that
all the honest parties have the same updated bit after iteration 𝑘 with
probability less than 1

2𝑛 . Then |I | = O(𝑛2).

We next derive the expected number of iterations required in the

protocol ΠABA for the honest parties to produce an output. We

begin with the simpler case, where we assume that at the end of

each iteration of ΠABA, all honest parties have the same updated
modified bit. Later, we will derive the expected number of iterations

required when this is not the case.

Lemma 5.5. In protocol ΠABA, if for every iteration 𝑘 , all the hon-
est parties have the same updated bit at the end of iteration 𝑘 with
probability at least 1

2𝑛 , then the protocol requires expected O(𝑛2)
iterations to terminate.

Proof. In order to prove the lemma, we need to derive the ex-

pected number of iterations, until all the honest parties have the

same input during the second instance of ΠVote of an iteration.

This is because once all the honest parties have the same input

during the second instance of ΠVote of an iteration, then all honest

parties will set Committed to True at the end of that iteration and

start broadcasting a ready message, followed by terminating the

protocol. Let 𝜏 be the random variable which counts the number of

iterations until all honest parties have the same input during the

second instance of ΠVote in an iteration. Then the probability that

2022-07-24 17:29. Page 13 of 1–14.

U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Ashish Choudhury

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

𝜏 = 𝑘 is given as:

Pr(𝜏 = 𝑘) = Pr(𝜏 ≠ 1) · Pr(𝜏 ≠ 2 | 𝜏 ≠ 1) · . . . ·
Pr(𝜏 ≠ (𝑘 − 1) | 𝜏 ≠ 1 ∩ . . . ∩ 𝜏 ≠ (𝑘 − 2))
· Pr(𝜏 = 𝑘 | 𝜏 ≠ 1 ∩ . . . ∩ 𝜏 ≠ (𝑘 − 1)).

Now as per the lemma condition, every multiplicand on the right

hand side in the above equation, except the last one, is upper

bounded by (1 − 1

2𝑛) and the last multiplicand is upper bounded

by
1

2𝑛 . Hence, we get

Pr(𝜏 = 𝑘) ≤ (1 − 1

2𝑛
)𝑘−1 (1

2𝑛
).

Now the expected value 𝐸 (𝜏) of 𝜏 is computed as follows:

𝐸 (𝜏) =
∞∑︁
𝑘=0

𝜏 · Pr(𝜏 = 𝑘)

≤
∞∑︁
𝑘=0

𝑘 (1 − 1

2𝑛
)𝑘−1 (1

2𝑛
)

=
1

2𝑛

∞∑︁
𝑘=0

𝑘 (1 − 1

2𝑛
)𝑘−1

=
1

1 − (1 − 1

2𝑛)
+

1 − 1

2𝑛(
1 − (1 − 1

2𝑛)
)

2

= 2𝑛 + 4𝑛2 − 2𝑛 = 4𝑛2

The expression for 𝐸 (𝜏) is a sum of𝐴𝐺𝑃 up to infinite terms, which

is given by
𝑎

1−𝑟 + 𝑑𝑟
(1−𝑟)2

, where 𝑎 = 1, 𝑟 = 1 − 1

2𝑛 and 𝑑 = 1. Hence,

we have 𝐸 (𝜏) ≤ 4𝑛2
. □

We next derive the expected number of iterations required in

the protocol ΠABA. This automatically gives the expected running

time of ΠABA, as each iteration in ΠABA requires a constant time.

Lemma 5.6. Protocol ΠABA terminates for the honest parties in O(𝑛2)
expected running time.

Proof. From Corollary 5.4, there can be O(𝑛2) iterations in
ΠABA, where at the end of the iteration, the updated bits of the

honest parties are different with probability more than
1

2𝑛 . After

this, in each iteration of ΠABA, the honest parties will have the same

updated bit at the end of iteration, except with probability at most

1

2𝑛 and as a result, ΠABA will require expected O(𝑛2) iterations to
terminate (follows from Lemma 5.5). As each iterations in ΠABA
requires a constant time, it follows that ΠABA terminates for the

honest parties in O(𝑛2) expected running time. □

The proof of Theorem 5.7 now follows from Lemmas 5.1-5.6. The

communication complexity follows from the fact that two instances

of ΠVote and one instance of ΠSCC is executed in each iteration in

ΠABA and the expected number of such iterations is O(𝑛2).

Theorem 5.7. Let Adv be a computationally unbounded adversary,
characterized by an adversary structureZ, such thatZ satisfies the
Q(3) (P,Z) condition. Then protocol ΠABA is an almost-surely ter-
minating ABA protocol with expected running time of R = O(𝑛2).
The protocol incurs an expected communication complexity of O(R ·
(|Z| · 𝑛5

log |K| + 𝑛6
log𝑛)) bits.

2022-07-24 17:29. Page 14 of 1–14.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Existing Asynchronous Primitives

	3 SAVSS with Q(3)(P, Z) Condition
	4 SCC with Q(3)(P, Z) Condition
	5 ABA with Q(3)(P, Z) Condition
	References
	A Properties of the Protocol SCC
	B Properties of the Protocol ABA

