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Abstract. A secure n-bit tweakable block cipher (TBC) using t-bit
tweaks can be modeled as a tweakable uniform random permutation,
where each tweak defines an independent random n-bit permutation.
When an input to this tweakable permutation is fixed, it can be viewed
as a perfectly secure t-bit random function. On the other hand, when a
tweak is fixed, it can be viewed as a perfectly secure n-bit random per-
mutation, and it is well known that the sum of two random permutations
is pseudorandom up to 2n queries.
A natural question is whether one can construct a pseudorandom func-
tion (PRF) beyond the block and the tweak length bounds using a small
number of calls to the underlying tweakable permutations. As a posi-
tive answer to this question, we propose two PRF constructions based
on tweakable permutations, dubbed XoTP1c and XoTP2c, respectively.
Both constructions are parameterized by c, giving a (t+ n− c)-to-n bit
PRF.
When t < 2n, XoTP1 t

2
becomes an (n+ t

2
)-to-n bit pseudorandom func-

tion, which is secure up to 2n+ t
2 queries. XoTP2 t

3
is even better, giving

an (n+ 2t
3
)-to-n bit pseudorandom function, which is secure up to 2n+ 2t

3

queries, when t < 3n. These PRFs provide security beyond the block and
the tweak length bounds, making two calls to the underlying tweakable
permutations.
In order to prove the security of XoTP1 and XoTP2, we firstly extend
Mirror theory to q � 2n, where q is the number of equations. From a
practical point of view, our constructions can be used to construct TBC-
based MAC finalization functions and CTR-type encryption modes with
stronger provable security compared to existing schemes.

Keywords: Mirror theory, pseudorandom function, tweakable block cipher, sum
of permutations

1 Introduction

Constructing PRFs from PRPs. A block cipher is typically modeled as a
pseudorandom permutation (PRP) in a provable security setting: any adversary



should not be able to distinguish the block cipher from a truly random permu-
tation by making a certain number of encryption and decryption queries in a
black-box manner. However, for some modes of operation, one might want the
block cipher to behave like a pseudorandom function (PRF). For example, a
counter mode generates a keystream

EK(N ‖ 0),EK(N ‖ 1),EK(N ‖ 2), . . .

using a block cipher E with a secret key K and a nonce N . In this mode of oper-
ation, all the blocks are pairwise distinct, allowing an adversary to distinguish it
from a truly random keystream. For this reason, the counter mode is proved to
be secure only up to the birthday bound (in the assumption that E is a pseudo-
random permutation). This observation motivates the problem of constructing a
pseudorandom function from pseudorandom permutations. Sometimes this prob-
lem is called “Luby-Rackoff backward” [3]: the Feistel network transforms a set
of (not necessarily one-to-one) functions into a permutation, and this problem
considers its opposite direction.

A natural way of building a PRF by using PRPs is to xor two independent
pseudorandom permutations. Given two n-bit (keyed) PRPs P and P′, their sum,
denoted XoP, maps X ∈ {0, 1}n to

XoP(X)
def
= P(X)⊕P′(X).

Alternatively, one can simply truncate outputs from a single permutation. This
construction, denoted TRP, maps X ∈ {0, 1}n to

TRPm(X)
def
= Trm (P(X))

where m is a positive integer such that m < n, and Trm is a truncation function
that takes an n-bit string and returns leftmost m bits of the input. There has
been a significant amount of research on these constructions [2, 3, 4, 5, 9, 14,
15, 16, 24, 32, 33].

Tweakable Block Ciphers. Tweakable block ciphers (TBC), first introduced
in [25], are a generalization of standard block ciphers that accept extra inputs
called tweaks. The tweak, providing inherent variability to the block cipher,
makes it easy to design various higher level cryptographic schemes such as mes-
sage authentication codes and modes of operation.

Tweakable block ciphers can either be designed from scratch [8, 13, 35], or
be built upon off-the-shelf cryptographic primitives such as block ciphers and
(public) permutations [6, 23, 27, 30]. Recently, a unified vision for the tweak and
key inputs has been proposed within the TWEAKEY framework [19]. Skinny [1]
and deoxys-BC [20] follow this framework. Theoretically, a secure TBC is mod-
eled as a tweakable pseudorandom permutation (TPRP); when a key is chosen
uniformly at random and kept secret, the keyed TBC should behave like an inde-
pendent random permutation for each tweak. The ideal counterpart of a TPRP
is called a tweakable uniform random permutation (TURP).
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1.1 Our Contribution

Building PRFs from TPRPs. As tweakable block ciphers are widely used and
studied, it is natural to ask how one can efficiently construct a PRF on top of
a tweakable block cipher. The underlying tweakable block cipher being modeled
as an n-bit TURP using t-bit tweaks, denoted P̃, a straightforward construction
is to fix a message input to P̃, obtaining a t-to-n bit function. Then such a
construction is perfectly secure for every possible query; it is secure up to 2t

queries. On the other hand, one can obtain a perfectly random n-bit permutation
by fixing a tweak input to P̃. This construction is secure only up to the birthday
bound. By summing two distinct permutations (using different tweaks), one can
obtain a pseudorandom function that is secure up to 2n queries [32].

The goal of this paper is to construct pseudorandom functions that make a
small number of calls to the underlying TPRPs, providing security beyond the
block and the tweak length bounds. We note that a TBC-based Feistel cipher
provides such a strong security bound with at least 10 rounds, using that many
tweakable block cipher calls [36].

In this work, we propose two PRF constructions using only two calls to the
underlying TPRPs

P̃ :{0, 1}t × {0, 1}n → {0, 1}n,

Q̃ :{0, 1}t × {0, 1}n → {0, 1}n,

where P̃ and Q̃ can be seen as TURPs up to their TPRP-security.
Given a (public) constant C ∈ {0, 1}c for an integer c such that 0 ≤ c ≤ n,

the first construction, dubbed XoTP1c, is defined as follows.

XoTP1c(X,Y )
def
= P̃(Y,C ‖X)⊕ Q̃(Y,C ‖X)

for X ∈ {0, 1}n−c and Y ∈ {0, 1}t (see Figure 1). One can view XoTP1 as XoP in
the multi-user setting, where the number of users is 2t and each user is allowed
to make at most 2n−c queries. Note that XoTP1c is parameterized by c (instead
of C) since its security depends only on the length of the constant.

We prove that the adversarial advantage in breaking the PRF-security of
XoTP1c is upper bounded by O

(
q

2n+c

)
. In particular, when t < 2n, XoTP1 t

2
is

secure up to 2n+
t
2 queries. When t ≥ 2n, XoTP1n is obviously secure up to 2t

queries.
In our second construction, dubbed XoTP2, the position of X and Y are

partially switched over P̃ and Q̃. When t ≥ n− c,

XoTP2c(X,Y,W ) = P̃(W ‖ Y,C ‖X)⊕ Q̃(W ‖X,C ‖ Y )

for X, Y ∈ {0, 1}n−c and W ∈ {0, 1}t−n+c, and when t < n− c,

XoTP2c(X,Y,W ) = P̃(Y,C ‖W ‖X)⊕ Q̃(X,C ‖W ‖ Y )
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P̃ Q̃

C ‖X
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Z

Fig. 1: XoTP1c based on P̃ and Q̃.

for X, Y ∈ {0, 1}t and W ∈ {0, 1}n−t−c (see Figure 2). In this way, XoTP2c
becomes a (t+ n− c)-to-n bit pseudorandom function.

We prove that when t ≥ n− c (resp. t < n− c), the adversarial advantage in
breaking the PRF-security of XoTP2c is upper bounded by O

(
min{ q

2n+2c ,
q2

23n }
)

(resp. O
(
max{ q

2n+t+c ,
q

2n+2c }
)
). In particular, when c < t, the adversarial dis-

tinguishing advantage is upper bounded by O
(

q
2n+2c

)
. Since the input size of

XoTP2c is (t+ n − c) bits, the threshold number of queries is maximized when
c = t

3 (assuming t ≤ 3n). Then XoTP2 t
3
is secure up to 2n+

2t
3 queries. Fig-

ure 3 shows the threshold number of queries q as a function of tweak size t for
XoTP1min{ t2 ,n} and XoTP2 t

3
. We see that XoTP1 t

2
(resp. XoTP2 t

3
) enjoys secu-

rity beyond the block and the tweak length bounds when t < 2n (resp. t < 3n).

P̃ Q̃

C ‖X

W ‖ Y

C ‖ Y

W ‖X

Z

(a) XoTP2c when t ≥ n− c

P̃ Q̃

C ‖W ‖X

Y

C ‖W ‖ Y

X

Z

(b) XoTP2c when t < n− c

Fig. 2: XoTP2c based on P̃ and Q̃.
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Fig. 3: The threshold number of queries q as a function of tweak size t. The
dashed line is the bound for XoTP1min{ t2 ,n}, and the solid line is the bound for
XoTP2 t

3
.

Application. Many deterministic MAC schemes can be viewed as an instance
of the Hash-then-PRF paradigm; a variable-length message is first mapped onto
a fixed-length value through a universal hash function, and then a PRF is ap-
plied to the hashed message, obtaining a tag. When it comes to TBC-based
constructions using two TBC calls at the finalization step, most of such schemes
provide at most n-bit security; PMAC-TBC1k [29] and PMACx [26] provide n-bit
security and ZMAC [18] provides min

{
n, n+t2

}
-bit security.

If XoTP2c is combined with any birthday bound-secure (t+ n− c)-bit hash
function (though constructing such a nice hash function is an independent open
question), then one might expect min{ t+n−c2 ,max{n + 2c, 3n2 }}-bit security for
the resulting MAC scheme. When n < t < 6n, it will provide 2t+3n

5 -bit secu-
rity with c = t−n

5 , which is stronger than existing TBC-based MAC schemes
(providing n-bit security) or using a trivial t-to-n bit PRF with a single TBC
call.

If a TBC is used to construct a CTR-type encryption mode of rate 1 with
a nonce as a tweak input and a block counter as a block cipher input, then
the adversarial distinguishing advantage against this mode will be tightly upper
bounded by

σl

2n

where l is the maximum message length and σ is the total number of message
blocks. This security bound might not be sufficient, in particular when n is small.

In order to achieve stronger security (at the cost of worse efficiency), one
might use an (n + t − c)-to-n bit PRF XoTP2c to construct a CTR-type en-
cryption mode of rate 1

2 . When c = t
3 , n + 2t

3 bits are available for nonces and
counters, while the adversarial distinguishing advantage against this mode is
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upper bounded by

O

(
σ

2n+
2t
3

)
.

As a numerical example, consider the SKINNY-64-192 tweakable block cipher
operating on 64-bit blocks using 192-bit tweakeys. If 128 bits are used as a key,
then one can use 64-bit tweaks. In this case, one can use 106 input bits to
XoTP221 as nonces and counters (say, 64-bit nonces and 32-bit counters), and
the resulting encryption mode will be secure as long as the total number of
message blocks is small in front of 2106.

If n+ 2t
3 bits are not sufficient for nonces and counters, one can simply take

a small constant c so that the input size of the resulting PRF is almost n + t
bits. For the encryption mode using this PRF, the adversarial distinguishing
advantage is still upper bounded by

O

(
σ2

23n

)
.

Proof Technique. Our proof is based on the standard H-coefficient tech-
nique, where Patarin’s Mirror theory [34] is used for the counting arguments.
Mirror theory allows one to sharply lower bound the number of solutions to a
certain type of system of equations and non-equations. In our security proof,
we will consider the following system of equations; for two sets of unknowns
VP = {P1, . . . , Pq} and VQ = {Q1, . . . , Qq}, and for constants Zi, i = 1, . . . , q,

Γ :


P1⊕Q1 = Z1,

P2⊕Q2 = Z2,
...

Pq ⊕Qq = Zq.

This system of equations can be represented by a simple graph G = (V, E), where
V = VP tVQ and Pi and Qi are connected by a Zi-weighted edge for i = 1, . . . , q.
This graph consists of q isolated edges, so the size of the largest component in
this graph, denoted ξmax, is two. The system of equations with ξmax = 2 appears
in the security proof of the sum of two independent random permutations, where
all the unknowns in VP (resp. VQ) should be distinct since they are supposed to
be outputs from a fixed permutation. These additional constraints can be viewed
as non-equations between the unknowns. The resulting system of equations and
non-equations has been studied in [34], and later revisited with more complete
and detailed arguments [7, 11].

When it comes to a tweakable permutation, all the outputs are not necessarily
distinct, in particular, when they are defined with distinct tweaks. With this
observation, we relax the constraints of non-equations by defining partitions of
VP and VQ; if Pi and Pj (resp. Qi and Qj) are contained in the same block, then
Pi 6= Pj (resp. Qi 6= Qj). In this way, we generalize Mirror theory for ξmax = 2,
and it leads to the security proof of XoTP1 and XoTP2.
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History. A relaxed version of Mirror theory was also studied by Mennink et
al. [28]. However, it was based on the original Mirror theory [34], which has
been controversial due to some mistakes and gaps in the paper. Nandi [31] also
pointed out that some part of [28] is flawed. Many researchers have revisited
Mirror theory in more verifiable ways, while newly established Mirror theory
takes more limited conditions for q and ξmax. Datta et al. [10] studied Mirror
theory for q = O

(
2

2n
3

)
and ξmax = 3 to prove the security of the DWCDM

nonce-based MAC scheme. Dutta et al. [12] extended it to q and ξmax such
that q = O

(
2

2n
3

)
and q · ξmax ≤ 2n−2, and proved the security of the CWC+

AEAD mode. Jha and Nandi [21] further extended it to q and ξmax such that
q = O

(
2

3n
4

)
and q · ξmax ≤ 2n−1 to tightly prove the security of CLRW2. Kim

et al. [22] studied Mirror theory for q = O
(
2

3n
4

)
assuming that the number of

components of size ≥ 3 is smaller than 2
n
2 , and it was sufficient to tightly prove

the security of DbHtS MAC schemes. Recently, Dutta et al. [11] and Cogliati and
Patarin [7] independently revisited Mirror theory for q = O (2n), giving clearer
and verifiable proofs, while both assume ξmax = 2. In this line of research, we
firstly establish Mirror theory for q � 2n.

Open Problems. First of all, the exact security of the XoTP1 and XoTP2 con-
structions still remains open. Secondly, one can consider an alternative approach
to constructing PRFs using a single call to the underlying primitive: to truncate
outputs from a tweakable permutation. Fix two positive integers c and m such
that c, m ≤ n as well as a constant C ∈ {0, 1}c, and let

TTRPc,m(X ‖ Y )
def
= Trm

(
P̃(Y,C ‖X)

)
for X ∈ {0, 1}n−c and Y ∈ {0, 1}t. Since TRPm permits an attack using 2n−

m
2

queries, we need to fix a part of the input, so that an adversary is not able
to make that many queries for a single tweak. We leave the (exact) security of
TTRPc,m as an open problem.

When it comes to Mirror theory, relaxing the constraint ξmax = 2 seems to be
an important open question from both theoretical and practical point of view.
If one can improve Mirror theory in this direction, many practical constructions
based on a tweakable block cipher could be proposed. For example, one would be
able to construct CENC-like encryption modes [17] of stronger provable security.

2 Preliminaries

Notation. Throughout this work, we fix positive integers n, t, and q. We denote
0n (i.e., n-bit string of all zeros) by 0. For integers a and b such that 0 ≤ a < b,
we write [a, b] =def {a, . . . , b} and [b] =def {1, . . . , b}. Given a non-empty set
X , x ←$ X denotes that x is chosen uniformly at random from X . The set of
all functions from X to Y is denoted Func(X ,Y). We use an indicator function,
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denoted 1, such that for a statement E, 1(E) = 1 if a statement E is true, and
1(E) = 0 otherwise. When two sets X and Y are disjoint, their (disjoint) union
is denoted X t Y.

Tweakable Block Cipher. A tweakable block cipher (TBC) is a keyed func-
tion Ẽ : K × T × X → X , where K is the key space, T = {0, 1}t is the tweak
space, and X = {0, 1}n is the message space, such that for any (K,T ) ∈ K× T ,
Ẽ(K,T, ·) is a permutation over X .

A tweakable permutation is the mapping P̃ : T × X → X such that P̃(T, ·)
is a permutation of X for any tweak T ∈ T . When a tweakable permutation is
chosen uniformly at random from the set of all possible tweakable permutations,
such an ideal object is called a tweakable uniform random permutation (TURP).
A secure tweakable block cipher should behave like a tweakable uniform random
permutation with the same message and tweak spaces (when the key is chosen
uniformly at random from the key space and kept secret), and hence it is viewed
as a tweakable pseudorandom permutation (TPRP).

Pseudorandom Function. Let C : K × X → Y be a keyed function with key
space K, domain X , and range Y. We will consider an information theoretic
distinguisher D that makes oracle queries to C, and returns a single bit. The
advantage of D in breaking the PRF-security of C, i.e., in distinguishing C from
a uniformly chosen function F←$ Func(X ,Y), is defined as

Advprf
C (D) =

∣∣∣Pr [K ←$ K : DC(K,·) = 1
]
− Pr

[
F←$ Func(X ,Y) : DF(·) = 1

]∣∣∣ .
We define Advprf

C (q) as the maximum of Advprf
C (D) over all the distinguishers

against C making at most q queries.

H-coefficient Technique. Consider a PRF construction C[P̃, Q̃] : X → Y
based on two TURPs P̃ and Q̃. In this case, P̃ and Q̃ can be viewed as keys. Sup-
pose that an information-theoretic distinguisher D adaptively makes q queries
to the construction oracle, which is either C[P̃, Q̃] (in the real world) or a truly
random function F (in the ideal world), recording all the queries (Xi, Yi)1≤i≤q.
So according to the instantiation, it would imply either C[P̃, Q̃](Xi) = Yi or
F(Xi) = Yi. We will call

τ = ((X1, Y1), . . . , (Xq, Yq))

the transcript of the attack; it contains all the information that D has obtained
at the end of the attack. When we consider an information theoretic distin-
guisher, we can assume that the distinguisher is deterministic without making
any redundant query.

Fix a transcript τ = (Xi, Yi)1≤i≤q. If there exists a function F ∈ Func(X ,Y)
such that F(Xi) = Yi for every i = 1, . . . , q, then we will call the transcript τ
attainable. We denote Γ the set of attainable transcripts. We also denote Tre

(resp. Tid) the probability distribution of the transcript τ induced by the real
world (resp. the ideal world). By extension, we use the same notation to denote a
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random variable distributed according to each distribution. Without considering
“bad events”, the coefficient-H technique is summarized as follows.

Lemma 1. Let ε > 0. Suppose that

Pr [Tre = τ ]

Pr [Tid = τ ]
≥ 1− ε

for any τ ∈ Γ . Then one has

Advprf
C (q) ≤ ε.

Useful Lemma. Dutta et al. [11] proved the following combinatorial lemma.
This lemma will also be used in our extended Mirror theory.

Lemma 2. Let m be a positive integer, and let (Dα,β)α,β be a two-dimensional
sequence of non-negative numbers, where 1 ≤ α ≤ m and β ≤ α − 1. Suppose
that Dα,β = 0 if β ≤ 0, and if 2 ≤ α ≤ m and β ≤ α − 3, then the following
recurrence relation holds.

Dα,β ≤ Dα−1,β−1 + 2A ·Dα−1,β +A2 ·Dα−1,β+1 +
C

(2n − 2A)m−α+β

for some positive constants A and C such that A < 2n−1. Then, for any integer
r such that 1 ≤ r ≤ α

2 − 1, one has

Dα,1 ≤
2r∑
i=r

(
2r

i

)
AiDα−r,1−r+i +

r−1∑
j=0

2j∑
i=j

(
2j

i

)
AiC

(2n − 2A)m−α+1+i
. (1)

Lemma 2 is proved by mathematical induction on r. Its full proof is given in the
Supplementary Material.

3 Mirror Theory for ξmax = 2 with Relaxed Constraints

For a fixed positive integer q, let

VP
def
= {P1, . . . , Pq} ,

VQ
def
= {Q1, . . . , Qq}

be sets of unknowns such that Pi, Qi ∈ {0, 1}n for i ∈ [q]. For a sequence of
constants (Z1, . . . , Zq) ∈ ({0, 1}n)q, consider a system of equations

Γ :


P1⊕Q1 = Z1,

P2⊕Q2 = Z2,
...

Pq ⊕Qq = Zq.

9



We will fix two partitions of [q], namely,

P =
{
P(1), . . . ,P(a)

}
,

Q =
{
Q(1), . . . ,Q(b)

}
for some positive integers a and b, where

[q] = P(1) t · · · t P(a) = Q(1) t · · · t Q(b).

Let
A

def
= max

i∈[a],j∈[b]

{∣∣∣P(i)
∣∣∣ , ∣∣∣Q(j)

∣∣∣}
denote the size of the largest block in the two partitions. Throughout this section,
we will assume

A ≤ 2n

13
.

We will write i P∼ j (resp. i Q∼ j) if there exists k such that i, j ∈ P(k) (resp. i,
j ∈ Q(k)). With respect to these relations, we will put additional constraints on
Γ as follows.

1. If i P∼ j, then Pi 6= Pj .
2. If i Q∼ j, then Qi 6= Qj .

The goal of our Mirror theory is to sharply lower bound the number of solutions
to Γ , denoted h(Γ, P∼, Q∼), subject to the above constraints. In order to state the
main result of our Mirror theory, we need to define sets

Pi
def
=
{
j ∈ [i− 1]

∣∣∣ j P∼ i
}
, Qi

def
=
{
j ∈ [i− 1]

∣∣∣ j Q∼ i} . (2)

for i ∈ [q]. We note that Pi (resp. Qi) is a subset of the block containing i in
partition P (resp. Q). If i is the smallest element in the block, then Pi or Qi is
an empty set.

Theorem 1. One has

h(Γ,
P∼, Q∼) ≥

(
1−

q∑
i=1

(
2 |Pi ∩Qi|

22n
+

20 |Pi| |Qi|
23n

)
− 6(n+ 1)3

22n

)

×
q∏
i=1

(
(2n − |Pi|)(2n − |Qi|)

2n

)
.

The proof of Theorem 1 will be given in the next section. Let

B
def
= max

i∈[a],j∈[b]

{∣∣∣P(i) ∩Q(j)
∣∣∣} .

Then we have the following lemma.
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Lemma 3. One has
q∑
i=1

|Pi| |Qi| ≤ min
{
A2q,Bq2

}
.

Proof. Since Pi (resp. Qi) is a subset of a single block in P (resp. Q), we have

q∑
i=1

|Pi| |Qi| ≤
q∑
i=1

A2 = A2q. (3)

For k ∈ [a], let Uk =
∣∣P(k) ∩ [q − 1]

∣∣, and for l ∈ [b], let Vl =
∣∣Q(l) ∩ [q − 1]

∣∣.
Then, we see that ∑

k∈[a]

Uk =
∑
l∈[b]

Vl = q − 1.

For i ∈ [q], there exists a unique pair (k, l) such that i ∈ P(k) ∩ Q(l), in which
case |Pi| ≤ Uk and |Qi| ≤ Vl. On the other hand, for (k, l) ∈ [a]× [b], there are
at most B indices i such that i ∈ P(k) ∩Q(l). Therefore, we have

q∑
i=1

|Pi| |Qi| ≤
∑

(k,l)∈[a]×[b]

(BUkVl) = B
∑
k∈[a]

Uk
∑
l∈[b]

Vl = B(q − 1)2. (4)

By (3) and (4), the proof is complete. ut

By Lemma 3 and since |Pi ∩Qi| ≤ B−1 for every i ∈ [q], Theorem 1 is simplified
as follows.

Corollary 1. One has

h(Γ,
P∼, Q∼) ≥

(
1− 2(B − 1)q + 6(n+ 1)3

22n
−

20min
{
A2q,Bq2

}
23n

)

×
q∏
i=1

(
(2n − |Pi|)(2n − |Qi|)

2n

)
.

3.1 Proof of Theorem 1

Graph Representation, Definitions and Notations. Let α ∈ [q]. For a
set of α indices I = {i1, . . . , iα} ⊂ [q], we define

V[I] def= {Pi1 , Qi1 . . . , Piα , Qiα} ,

E [I] def= {(Pi1 , Qi1 , Zi1), . . . , (Piα , Qiα , Ziα)} ,

G[I] def= (V[I], E [I]),
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where (P,Q,Z) ∈ E [I] represents an edge connecting P and Q with weight Z.
When I = [α], we will simply write Gα to denote G[I]. By definition, G0 = ∅.
We will identify G[I] with a system of equations Pi⊕Qi = Zi for i ∈ I. So Gq
becomes Γ .

For a set of edges F such that every edge of F connects vertices of G[I],
we will write G[I] ∪ F to denote (V[I], E [I] ∪ F). The number of solutions to
G[I]∪F subject to relations P∼ and Q∼ will be denoted h(G[I]∪F). By definition,
h(G0) = 1. When h(G[I] ∪ F) > 0, we say that G[I] ∪ F is valid. Note that
Gq (with I = [q] and F = ∅) is valid if A ≤ 2n−1.

Let l be a positive integer. For a trail of length l connecting two vertices V0
and V1, say

T (V0, Vl) : ((V0, V1, E1), . . . , (Vl−1, Vl, El))

in G[I] ∪ F , the weight of T (V0, Vl) is defined as

w(T (V0, Vl))
def
= E1⊕E2⊕ · · · ⊕El.

In order for G[I] ∪ F to be valid, the following conditions should be satisfied.

1. For any distinct i and j such that i P∼ j, and for any trail T (Pi, Pj) in
G[I] ∪ F , w(T (Pi, Pj)) 6= 0.

2. For any distinct i and j such that i Q∼ j, and for any trail T (Qi, Qj) in
G[I] ∪ F , w(T (Qi, Qj)) 6= 0.

For α ∈ [2, q], let I ⊂ [q] be an index set such that |I| = α. For β ∈ [α− 1],
let

J = (j1, . . . , jβ+1) ∈ Iβ+1

be a sequence of distinct indices in I, and let

L = (L1, . . . , Lβ) ∈ ({0, 1}n)β

be a sequence of n-bit weights. Then we define an edge set

F [J ,L] def=
{
(Pj1 , Qj2 , L1), . . . , (Pjβ , Qjβ+1

, Lβ)
}

and a weighted graph

G[I,J ,L] def= G[I] ∪ F [J ,L].

We also define subgraphs of G[I,J ,L] as follows.

G−+[I,J ,L] def= G[I] ∪ (F [J ,L] \ {(Pj1 , Qj2 , L1)}),

G+−[I,J ,L] def= G[I \ {jβ+1}] ∪ (F [J ,L] \
{
(Pjβ , Qjβ+1

, Lβ)
}
),

G−−[I,J ,L] def= G[I \ {jβ+1}] ∪ (F [J ,L] \ {(Pj1 , Qj2 , L1), (Pjβ , Qjβ+1
, Lβ)}).
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(a) G++
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(b) G−+

P1
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(c) G+−
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Q4

P5

Q5

P6
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(d) G−−

Fig. 4: An example of Gx for x ∈ {++,−+,+−,−−}, where q = 6, I =
{1, 3, 4, 5, 6} and J = (5, 6, 4, 3).

When I, J and L are clear from the context, we will simply write

G++ = G[I,J ,L], G−+ = G−+[I,J ,L], G+− = G+−[I,J ,L], G−− = G−−[I,J ,L].

Note that G−+ is obtained from G++ by removing one edge, namely (Pj1 , Qj2 , L1),
while G+− is obtained from G++ by removing two edges that are incident with
Qjβ+1

. See Figure 4 for an example of G++, G−+, G+− and G−−. When β = 0, we
have L = ∅ and F [J ,L] = ∅ by definition, in which case, G[I,J ,L] = G[I]. We
note that if G++ is valid for given I, J , and L, then G−+, G+− and G−− are also
valid.

For an index set I ⊂ [q] and i ∈ [q], we define the following sets.

Pi[I]
def
=
{
j ∈ I

∣∣∣ j P∼ i and j 6= i
}
,

Qi[I]
def
=
{
j ∈ I

∣∣∣ j Q∼ i and j 6= i
}
,

Ri[I]
def
=
{
j ∈ I

∣∣∣ j P∼ i, j Q∼ i, Zj = Zi and j 6= i
}
.

When I = [α] for some α ∈ [q], we will simply write Pα, Qα, and Rα to denote
Pα[I], Qα[I], and Rα[I], respectively.1 Note that Rα ⊂ Pα∩Qα for any α ∈ [q].
1 This notation is consistent with the previous definition of Pi and Qi in (2).
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Orange Equation. We can recursively compute h(Gα) using the following
lemma.

Lemma 4. For any positive integer α ∈ [q], one has

h(Gα) = (2n − |Pα| − |Qα|+ |Rα|)h(Gα−1) +
∑

E∈L[Gα]

h(Gα−1 ∪ {E}) (5)

where

L[Gα] = {(Pi, Qj , Zα) | i ∈ Pα, j ∈ Qα, i 6= j, h(Gα−1 ∪ {(Pi, Qj , Zα)}) > 0} .

Recurrence relation (5) is called the Orange equation in Mirror theory. The proof
of Lemma 4 is given in the Supplementary Material. The Orange equation can
be easily generalized as follows: to any set of indices I such that |I| = α and
j ∈ I,

h(G++) = (2n − |Pj [I]| − |Qj [I]|+ |Rj [I]|)h(G+−) +
∑

E∈L[G++]

h(G+− ∪ {E})

where G++ = G[I,J , ∅](= G[I]) with J = (j) and

L[G++] = {(Pk, Ql, Zj) | k ∈ Pj [I], l ∈ Qj [I], k 6= l}.

Example 1. For n = 2 and q = 3, let P(1) = {1, 3}, P(2) = {2}, Q(1) = {1},
Q(2) = {2, 3}, Z1 = 00, Z2 = 01 and Z3 = 10. For α = 3, we see that

P3 = {1},Q3 = {2},R3 = ∅.

Hence, it follows that

L[G3] = {(P1, Q2, 10)},

and therefore,

h(G3) = (4− 1− 1 + 0)h(G2) + h(G2 ∪ {(P1, Q2, 10)})
= 2 · h(G2) + h(G2 ∪ {(P1, Q2, 10)}). (6)

Graphs G3 and G2∪{(P1, Q2, 10)} are pictorially represented in Figure 5. Since G2
consists of two independent equations, namely, P1⊕Q1 = 00 and P2⊕Q2 = 01,
we have

h(G2) = (2n)2 = 16.

On the other hand, G2∪{(P1, Q2, 10)} consists of a single connected component,
and assignment of an arbitrary value to a fixed vertex determines all the other
unknowns. So, we have

h(G2 ∪ {(P1, Q2, 10)}) = 2n = 4.

By (6), we have h(G3) = 36.
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Q2

P3

Q3

(a) G3

P1

Q1

P2

Q2

(b) G2 ∪ {(P1, Q2, 10)}

Fig. 5: Graphs G3 and G2 ∪ {(P1, Q2, 10)} in Example 1. Vertices in the same
block are represented by the same shape.

Purple Equation. In order to use Lemma 4, we need to sharply lower bound
h(Gα−1∪E) for a certain set of edges E . We can recursively estimate h(Gα−1∪E)
using graphs with a smaller number of connected components.

Lemma 5. Fix integers α and β such that 1 ≤ β < α ≤ q, an index set I ⊂ [q]
such that |I| = α, a sequence of distinct indices J = (j1, . . . , jβ+1) ∈ Iβ+1,
and a sequence of weights L = (L1, . . . , Lβ) ∈ ({0, 1}n)β. If G++(= G[I,J ,L]) is
valid, then one has

h(G++) = h(G+−)−
∑

E∈M[G++]

h(G+− ∪ {E}) +
∑

{E,E′}∈N[G++]

h(G+− ∪ {E,E′}). (7)

where

M[G[I,J ,L]] = {E = (Pjβ , Qk, Lβ ⊕Zk ⊕Zjβ+1
) |

k ∈ Pjβ+1
[I \ J ], h(G+− ∪ {E}) > 0}

∪ {E = (Pjβ , Qk, Lβ) | k ∈ Qjβ+1
[I \ J ], h(G+− ∪ {E}) > 0},

N[G[I,J ,L]] = {{E,E′} = {(Pjβ , Qk, Lβ ⊕Zk ⊕Zjβ+1
), (Pk, Ql, Zjβ+1

)} |
k ∈ Pjβ+1

[I \ J ], l ∈ Qjβ+1
[I \ J ], k 6= l, h(G+− ∪ {E,E′}) > 0}.

Recurrence relation (7) is called the Purple equation. The proof of Lemma 5 is
given in the Supplementary Material.

Example 2. For n = 2 and q = 6, let

P(1) = {1, 3, 4}, P(2) = {2}, P(3) = {5, 6},
Q(1) = {1, 5, 6}, Q(2) = {2, 3, 4},
Z1 = 00, Z2 = 01, Z3 = 10, Z4 = 10, Z5 = 11, Z6 = 11.

For α = m = 6 and β = 2, let

I = {1, 2, 3, 4, 5, 6},
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J = (5, 6, 4) (with j1 = 5, j2 = 6, j3 = 4),

L = (10, 01).

One can see that G++ is valid and,

F [J ,L] = {(P5, Q6, 10), (P6, Q4, 01)},
G+− = G[{1, 2, 3, 5, 6}] ∪ {(P5, Q6, 10)},
Pjβ+1

[I \ J ] = P4[{1, 2, 3}] = {1, 3},
Qjβ+1

[I \ J ] = Q4[{1, 2, 3}] = {2, 3}.

Then we have

M[G++] = {(P6, Q1, 11), (P6, Q2, 01), (P6, Q3, 01)}, N[G++] = {E1, E2, E3},

where

E1 = {(P6, Q1, 11), (P1, Q2, 10)},
E2 = {(P6, Q1, 11), (P1, Q3, 10)},
E3 = {(P6, Q3, 01), (P3, Q2, 10)}.

Note that G+− ∪ {(P6, Q1, 11)} is invalid since it implies Q1 ⊕ Q6 = 0. Since
G+− ∪ E1 and G+− ∪ E2 are also invalid, we have

h(G++) = h(G+−)− h(G+− ∪ {(P6, Q2, 01)})
− h(G+− ∪ {(P6, Q3, 01)}) + h(G+− ∪ {(P6, Q3, 01), (P3, Q2, 10)}).

See Figure 6 for a pictorial representation of this example.

Size Lemma. Our next step is to estimate the size of sets L[Gα], M[G++] and
N[G++] appearing in Lemmas 4 and 5. In order to state Lemma 6, we need to
reorder the indices of Gq; any reordering of the indices does not affect the number
of solutions to Gq.

For k = 1, . . . , q, there is a unique pair (ik, jk) ∈ [a] × [b] such that k ∈
P(ik) ∩ Q(jk). In this way, we can define an ordered multiset of q elements
{(i1, j1, Z1), . . . , (iq, jq, Zq)}. From this multiset, we choose as many different
elements as possible, put them in a separate list, remove them from the mul-
tiset, and recursively perform the same procedure for the remaining elements.
This reordering of triples obviously defines a reordering of the edges (indices)
since we can associate each triple with a unique k ∈ [q]. With this reordering of
the indices, we have

max
i,j∈[α],
Z∈{0,1}n

{|{k ∈ Pi ∩Qj | Zk = Z}|} ≤ |Rα+1| . (8)

Example 3. For n = 1 and q = 6, graph Gq and partitions P and Q are defined
as follows.

P(1) = {1, 2, 3, 4, 5} , P(2) = {6} ,
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(e) G+− ∪ {(P6, Q3, 01), (P3, Q2, 10)}

Fig. 6: Graphs appearing in Example 2. Vertices in the same block are represented
by the same shape.
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Q(1) = {1, 2, 3, 6} , Q(2) = {4, 5} ,
Z1 = 0, Z2 = 0, Z3 = 0, Z4 = 0, Z5 = 1, Z6 = 0.

Then we can define an ordered multiset

{(1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 2, 0), (1, 2, 1), (2, 1, 0)} ,

where the k-th element is associated with index k for k ∈ [6]. By the procedure
described above, we can reorder the elements of the multiset as follows.

{(1, 1, 0), (1, 2, 0), (1, 2, 1), (2, 1, 0), (1, 1, 0), (1, 1, 0)}

This reordering corresponds to a permutation π on the set of indices, where
π(1) = 1, π(2) = 5, π(3) = 6, π(4) = 2, π(5) = 3, π(6) = 4 (though such a
correspondence is not unique). With this permutation, we obtain the following
partitions and sequence of weights.

P(1) = {1, 2, 3, 5, 6} , P(2) = {4} ,
Q(1) = {1, 4, 5, 6} , Q(2) = {2, 3} ,
Z1 = 0, Z2 = 0, Z3 = 1, Z4 = 0, Z5 = 0, Z6 = 0.

For the reordered graph, we have

R1 = R2 = R3 = R4 = ∅, R5 = {1}, R6 = {1, 5}.

Assuming (8), we can prove the following lemma.

Lemma 6. Fix positive integers α, β and m such that 2 ≤ β < α ≤ m ≤ q.
Then one has

|L[Gα]| = (|Pα| − |Rα|)(|Qα| − |Rα|)− |Pα ∩Qα|+ |Rα| .

For an index set I ⊂ [m] such that |I| = α, a sequence of distinct indices
J = (j1, . . . , jβ+1) ∈ Iβ+1, and a sequence of weights L ∈ ({0, 1}n)β such that
G++(= G[I,J ,L]) is valid, one has

|M[G−+]| − 2(|Rm+1|+ 1) ≤ |M[G++]| ≤ 2A,

|N[G−+]| − 2A(|Rm+1|+ 1) ≤ |N[G++]| ≤ A2.

When β = 1, one has

|Pj2 [I]|+ |Qj2 [I]| − |Rj2 [I]| − 2(|Rm+1|+ 1) ≤ |M[G++]| ≤ 2A,

|L[G−+]| − 2A(|Rm+1|+ 1) ≤ |N[G++]| ≤ A2.

Lemma 6 is called the Size Lemma. Its proof is given in the Supplementary
Material.

Adding a Single Edge to Gα. Fix a positive integer m such that m ≤ q.
We will define a two-dimensional sequence Dm

α,β , where 1 ≤ α ≤ m and β is an
integer, as follows.
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– When 1 ≤ β ≤ α− 1,

Dm
α,β = max

I,J ,L

{∣∣∣∣h(G−+[I,J ,L])2n
− h(G[I,J ,L])

∣∣∣∣} ,
where the maximum is taken over all possible index sets I ⊂ [m] such that
|I| = α, sequences of distinct indices J ∈ Iβ+1, and sequences of weights
L ∈ ({0, 1}n)β such that G[I,J ,L] is valid.

– When β ≤ 0,
Dm
α,β = 0.

In order to upper bound Dm
α,β , we begin with the following lemma.

Lemma 7. For any I ⊂ [m], J ∈ Iβ+1, L ∈ ({0, 1}n)β such that |I| = α and
G[I,J ,L] is valid, one has

h(G[I,J ,L]) ≤ h(Gm)

(2n − 2A)m−α+β
.

The proof of Lemma 7 is given in the Supplementary Material. For h(G++)(=
G[I,J ,L]),

h(G−+)
2n

≤ h(Gm)

(2n − 2A)m−α+β−1 · 2n
≤ h(Gm)

(2n − 2A)m−α+β
.

Therefore, we have

Dm
α,β ≤ max

{
h(G−+)
2n

, h(G++)

}
≤ h(Gm)

(2n − 2A)m−α+β
. (9)

When β = 1, we have a sharper upper bound on Dα
α,1 as follows.

Lemma 8. If 2n+ 2 ≤ m < q, then one has

Dm
m,1 ≤

(15 |Rm+1|+ 17)h(Gm)

22n
.

The proof is given in Section 3.2. Note that Dm
m,1 compares the number of solu-

tions between a graph Gm (=G−+[I,J ,L]) and the graph obtained by adding a
single edge to Gm, namely G[I,J ,L], and Lemma 8 upper bounds their differ-
ence.

Proof of Theorem 1. For m ≥ 0, let

Hm = 2nmh(Gm),

Jm =

m∏
i=1

(2n − |Pi|)(2n − |Qi|).

If HqJq ≥ 1− ε for some ε ≥ 0, then we have

h(Gq) =
Hq

Jq
·
∏q
i=1(2

n − |Pi|)(2n − |Qi|)
2nq
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≥ (1− ε) ·
q∏
i=1

(
(2n − |Pi|)(2n − |Qi|)

2n

)
. (10)

On the other hand, by Lemma 4, for any m ≤ q − 1, we have

h(Gm+1) = (2n − |Pm+1| − |Qm+1|+ |Rm+1|)h(Gm)

+
∑

E∈L[Gm+1]

h(Gm ∪ {E}). (11)

If m ≥ 2n+ 2 and (Pi, Qj , Zm+1) ∈ L[Gm+1], then we have∣∣∣∣h(Gm)

2n
− h(Gm ∪ {(Pi, Qj , Zm+1)})

∣∣∣∣ ≤ (15 |Rm+1|+ 17)h(Gm)

22n

by Lemma 8. So we have

h(Gm ∪ {(Pi, Qj , Zm+1)}) ≥
h(Gm)

2n

(
1− 15 |Rm+1|+ 17

2n

)
. (12)

In the following computation, we simply write a = |Pm+1|, b = |Qm+1|, c =
|Pm+1 ∩Qm+1|, and d = |Rm+1|. Combining (11), (12) and Lemma 6, we have

h(Gm+1)

h(Gm)
≥ 2n − a− b+ d+

(a− d)(b− d)− c+ d

2n

(
1− 15d+ 17

2n

)
.

Since (a− d)(b− d)− c+ d ≤ ab, 2n − a− b− 15ab
2n ≥ 0 and a, b ≤ 2n

13 , we have

Hm+1

Jm+1
≥

22n − (a+ b− d)2n + ((a− d)(b− d)− c+ d)
(
1− 15d+17

2n

)
(2n − a)(2n − b)

· Hm

Jm

≥

(
1 +

d(2n − a− b− 15ab
2n )− c+ d2 + d− 17ab

2n

(2n − a)(2n − b)

)
Hm

Jm

≥

(
1−

c+ 17ab
2n

(2n − a)(2n − b)

)
Hm

Jm

≥
(
1− 2c

22n
− 20ab

23n

)
Hm

Jm
.

Therefore we have

Hq

Jq
≥

q∏
i=2n+3

(
1− 2 |Pi ∩Qi|

22n
− 20 |Pi| |Qi|

23n

)
H2n+2

J2n+2

≥

(
1−

q∑
i=2n+3

(
2 |Pi ∩Qi|

22n
+

20 |Pi| |Qi|
23n

))
H2n+2

J2n+2
. (13)

If m ≤ 2n+ 1, then we have

h(Gm+1) ≥ (2n − |Pm+1| − |Qm+1|)h(Gm)
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by Lemma 4. Then it follows that

Hm+1

Jm+1
≥ 2n(2n − |Pm+1| − |Qm+1|)

(2n − |Pm+1|)(2n − |Qm+1|)
· Hm

Jm

≥
(
1− |Pm+1| |Qm+1|

(2n − |Pm+1|)(2n − |Qm+1|)

)
Hm

Jm
.

Since |Pm+1| , |Qm+1| ≤ min{m, 2
n

13 } and H1 = J1 = 22n, we have

H2n+2

J2n+2
≥

(
1− 2

2n+1∑
i=1

i2

22n

)
H1

J1

≥ 1− (2n+ 1)(2n+ 2)(4n+ 3)

3
· 1

22n
≥ 1− 6(n+ 1)3

22n
. (14)

By combining (13) and (14), we have

Hq

Jq
≥

(
1−

q∑
i=2n+3

(
2 |Pi ∩Qi|

22n
+

20 |Pi| |Qi|
23n

))(
1− 6(n+ 1)3

22n

)

≥ 1−
q∑
i=1

(
2 |Pi ∩Qi|

22n
+

20 |Pi| |Qi|
23n

)
− 6(n+ 1)3

22n
.

Setting ε =
∑q
i=1

(
2|Pi∩Qi|

22n + 20|Pi||Qi|
23n

)
+ 6(n+1)3

22n in (10), the proof is completed.

3.2 Proof of Lemma 8

We will prove that if 2 ≤ α ≤ m and β ≤ α− 3, then

Dm
α,β ≤ Dm

α−1,β−1 + 2A ·Dm
α−1,β +A2 ·Dm

α−1,β+1 +
C

(2n − 2A)m−α+β
, (15)

where
C

def
=

(3 |Rm+1|+ 3)h(Gm)

2n
.

The proof of (15) will be given at the end of this section. Then, by Lemma 2,
we obtain an upper bound on Dm

α,1 as follows.

Dm
α,1 ≤

2n∑
i=n

(
2n

i

)
AiDm

α−n,1+i−n +

n−1∑
j=0

2j∑
i=j

(
2j

i

)
AiC

(2n − 2A)m−α+i+1
(16)

for n ≤ α
2 − 1. Since

(
2n
i

)
≤
(
2en
i

)i ≤ (2e)i when n ≤ i ≤ 2n and 2eA
2n−2A ≤

1
2 ,

and by (9), we have

2n∑
i=n

(
2n

i

)
AiDm

α−n,1+i−n ≤
2n∑
i=n

(
2n

i

)
Aih(Gm)

(2n − 2A)m−α+i+1
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≤ h(Gm)

(2n − 2A)m−α+1

2n∑
i=n

(
2eA

2n − 2A

)i
≤ h(Gm)

(2n − 2A)m−α+1

∞∑
i=n

(
1

2

)i
≤ 2h(Gm)

(2n − 2A)m−α+1
· 1

2n
. (17)

We also have

n−1∑
j=0

2j∑
i=j

(
2j

i

)(
A

2n − 2A

)i
≤
n−1∑
j=0

2j∑
i=j

(
2eA

2n − 2A

)i

≤ 2
∞∑
j=0

1

2j
≤ 4. (18)

By (16), (17) and (18) with α = m, we have

Dm
m,1 ≤

2h(Gm)

22n
+

(12 |Rm+1|+ 12)h(Gm)

(2n − 2A)2n
≤ (15 |Rm+1|+ 17)h(Gm)

22n
.

Proof of (15). When α ∈ {2, 3}, (15) trivially holds since Dm
α,β is nonnegative

and Dm
α,β = 0 when β ≤ 0. So we can assume that α ≥ 4.

First, suppose that 2 ≤ β ≤ α − 3. For any G[I,J ,L] such that |I| = α,
J ∈ Iβ+1, and L ∈ ({0, 1}n)β , we have

h(G++) = h(G+−)−
∑

E∈M[G++]

h(G+− ∪ {E}) +
∑

{E,E′}∈N[G++]

h(G+− ∪ {E,E′}), (19)

h(G−+) = h(G−−)−
∑

E∈M[G−+]

h(G−− ∪ {E}) +
∑

{E,E′}∈N[G−+]

h(G−− ∪ {E,E′}) (20)

by Lemma 5. Since G−− = (G+−)−+, we have∣∣∣∣h(G−−)2n
− h(G+−)

∣∣∣∣ ≤ Dm
α−1,β−1. (21)

For each edge E ∈M[G++], we have∣∣∣∣h(G−− ∪ {E})2n
− h(G+− ∪ {E})

∣∣∣∣ ≤ Dm
α−1,β .

Since |M[G++]| ≤ 2A and |M[G−+] \M[G++]| ≤ 2 |Rm+1|+ 2 by Lemma 6, and by
Lemma 7, we have∣∣∣∣∣∣

∑
E∈M[G−+]

h(G−− ∪ {E})
2n

−
∑

E∈M[G++]

h(G+− ∪ {E})

∣∣∣∣∣∣
22



≤
∑

E∈M[G++]

∣∣∣∣h(G−− ∪ {E})2n
− h(G+− ∪ {E})

∣∣∣∣+ ∑
E∈M[G−+]\M[G++]

∣∣∣∣h(G−− ∪ {E})2n

∣∣∣∣
≤ 2A ·Dm

α−1,β +
2(|Rm+1|+ 1)h(Gm)

2n(2n − 2A)m−α+β
, (22)

where G−− ∪ {E} can be seen as G[I ′,J ′,L′] for some I ′, J ′, and L′ such that
|I ′| = α− 1 and |J ′| = β − 1.

For each pair of edges {E,E′} ∈ N[G++], we have G−− ∪ {E,E′} = (G+− ∪
{E,E′})−+, and hence∣∣∣∣h(G−− ∪ {E,E′})2n

− h(G+− ∪ {E,E′})
∣∣∣∣ ≤ Dm

α−1,β+1.

Since |N[G++]| ≤ A2 and |N[G−+] \ N[G++]| ≤ 2A(|Rm+1| + 1) by Lemma 6, and
by Lemma 7, we have∣∣∣∣∣∣

∑
{E,E′}∈N[G−+]

h(G−− ∪ {E,E′})
2n

−
∑

{E,E′}∈N[G++]

h(G+− ∪ {E,E′})

∣∣∣∣∣∣
≤ A2 ·Dm

α−1,β+1 +
2A(|Rm+1|+ 1)h(Gm)

2n(2n − 2A)m−α+β+1
. (23)

By subtracting (19) from 1
2n× (20), combined with (21), (22) and (23), we have∣∣∣∣h(G−+)2n

− h(G++)

∣∣∣∣ ≤ Dm
α−1,β−1 + 2A ·Dm

α−1,β +A2 ·Dm
α−1,β+1

+
(2 |Rm+1|+ 2)h(Gm)

2n(2n − 2A)m−α+β
+

2A(|Rm+1|+ 1)h(Gm)

2n(2n − 2A)m−α+β+1
.

Since 2A
2n−2A ≤ 1, we have

Dm
α,β ≤ Dm

α−1,β−1 + 2A ·Dm
α−1,β +A2 ·Dm

α−1,β+1 +
(3 |Rm+1|+ 3)h(Gm)

2n(2n − 2A)m−α+β
.

Next, suppose that β = 1. Consider G[I,J ,L] such that |I| = α, J = (j1, j2)
for some j1, j2 ∈ I, and L = (L) for some L ∈ {0, 1}n. By definition, we have
G−+ = G[I] and G−− = G[I \ {j2}]. Applying the (generalized) Orange equation
to G−+, we have

h(G++) = h(G+−)−
∑

E∈M[G++]

h(G+− ∪ {E}) +
∑

{E,E′}∈N[G++]

h(G+− ∪ {E,E′}), (24)

h(G−+) = (2n − |Pj2 [I]| − |Qj2 [I]|+ |Rj2 [I]|)h(G−−)

+
∑

E∈L[G−+]

h(G−− ∪ {E}). (25)
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Since G+− = G−−, we have

h(G−−)− h(G+−) = 0. (26)

For each edge E ∈M[G++], we have∣∣∣∣h(G−−)2n
− h(G+− ∪ {E})

∣∣∣∣ ≤ Dm
α−1,1.

Since M[G++] ≤ 2A and

|Pj2 [I]|+ |Qj2 [I]| − |Rj2 [I]| − |M[G++]| ≤ 2 |Rm+1|+ 2

by Lemma 6, and by Lemma 7, we have∣∣∣∣∣∣(|Pj2 [I]|+ |Qj2 [I]| − |Rj2 [I]|)h(G
−−)

2n
−

∑
E∈M[G++]

h(G+− ∪ {E})

∣∣∣∣∣∣
≤ 2A ·Dm

α−1,1 +
2(|Rm+1|+ 1)h(Gm)

2n(2n − 2A)m−α+1
. (27)

Note that each edge E = (Pk, Ql, Zj2) ∈ L[G−+] uniquely determines an edge
E′ = (Pj1 , Qk, L⊕Zk ⊕Zj2) such that {E,E′} ∈ N[G++]. For such a pair of
edges, we have ∣∣∣∣h(G−− ∪ {E})2n

− h(G+− ∪ {E,E′})
∣∣∣∣ ≤ Dm

α−1,2.

It implies that∣∣∣∣∣∣
∑

E∈L[G−+]

h(G−− ∪ {E})
2n

−
∑

{E,E′}∈N[G++]

h(G+− ∪ {E,E′})

∣∣∣∣∣∣
≤ A2 ·Dm

α−1,β+1 +
2A(|Rm+1|+ 1)h(Gm)

2n(2n − 2A)m−α+β+1
. (28)

By subtracting (24) from 1
2n× (25), combined with (26), (27) and (28), we have

Dm
α,1 ≤ 2A ·Dm

α−1,1 +A2 ·Dm
α−1,2 +

(3 |Rm+1|+ 3)h(Gm)

2n(2n − 2A)m−α+β
.

4 TPRP-based PRFs: XoTP1 and XoTP2

In this section, we propose two PRF constructions XoTP1 and XoTP2, and prove
their security, where each construction is based on two n-bit TPRPs P̃ and Q̃
using t-bit tweaks. We will assume that they are independent TURPs.
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4.1 XoTP1: Multiple Instances of XoP

Given a constant C ∈ {0, 1}c for an integer c such that 0 ≤ c ≤ n, a (t+ n− c)-
to-n bit pseudorandom function XoTP1c is defined as follows.

XoTP1c(X,Y )
def
= P̃(Y,C ‖X)⊕ Q̃(Y,C ‖X)

for X ∈ {0, 1}n−c and Y ∈ {0, 1}t.
Security of XoTP1c. Suppose that a distinguisher D makes q queries (Xi, Yi) ∈
{0, 1}n−c ×{0, 1}t, obtaining the corresponding responses Zi for i = 1, . . . , q. In
this way, D obtains a transcript

τ = ((X1, Y1, Z1), . . . , (Xq, Yq, Zq)).

In the real world, Pi =def P̃(Yi, C ‖Xi) and Qi =def Q̃(Yi, C ‖Xi) should be a
solution to the following system of equations.

Γ :


P1⊕Q1 = Z1,

P2⊕Q2 = Z2,
...

Pq ⊕Qq = Zq,

subject to the partitions P =
{
P(M)

}
M∈{0,1}t and Q =

{
Q(M)

}
M∈{0,1}t , where

(Q(M) =)P(M) def
= {i ∈ [q] | Yi =M}

ignoring repetition of the same block. Since D is allowed to make at most 2n−c
queries for each tweak,2 we have

A = max
M∈{0,1}t

{∣∣∣P(M)
∣∣∣ , ∣∣∣Q(M)

∣∣∣} ≤ 2n−c,

B = max
M,M ′∈{0,1}t

{∣∣∣P(M) ∩Q(M ′)
∣∣∣} ≤ 2n−c.

By Corollary 1, if c ≥ 4 (and hence A ≤ 2n−4), then we have

h(τ,
P∼, Q∼) ≥

(
1− 2q

2n+c
−min

{
20q2

22n+c
,

20q

2n+2c

}
− 6(n+ 1)3

22n

)
×

q∏
i=1

(
(2n − |Pi|)(2n − |Qi|)

2n

)
.

Since

Pr[Tre = τ ] =
h(τ,

P∼, Q∼)∏q
i=1(2

n − |Pi|)(2n − |Qi|)
,

2 We can assume that D makes no redundant query.
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Pr[Tid = τ ] =
1

(2n)q
,

we have

Pr [Tre = τ ]

Pr [Tid = τ ]
≥ 1− 2q

2n+c
−min

{
20q2

22n+c
,

20q

2n+2c

}
− 6(n+ 1)3

22n

≥ 1− 2q

2n+c
− 20q

2n+2c
− 6(n+ 1)3

22n
.

By Lemma 1, we obtain the following theorem.

Theorem 2. Let n, t, c and q be positive integers such that 4 ≤ c ≤ n. Then
one has

Advprf
XoTP1c

(q) ≤ 2q

2n+c
+

20q

2n+2c
+

6(n+ 1)3

22n
.

In particular, when c = t
2 and t ≤ 2n, we have an (n+ t

2 )-to-n bit PRF XoTP1 t
2

such that

Advprf
XoTP1 t

2

(q) ≤ 22q

2n+
t
2

+
6(n+ 1)3

22n
.

Remark 1. One can alternatively count the number of solutions by dividing Γ
into sub-systems ΓM , M ∈ {0, 1}t, where ΓM consists of equations Pi⊕Qi = Zi
such that i ∈ P(M). By multiplying all the number of solutions to ΓM , M ∈
{0, 1}t, one obtains

h(Γ,
P∼, Q∼) =

∏
M∈{0,1}t

h(ΓM ,
P∼, Q∼).

By Theorem 1, the number of solutions to ΓM is estimated as follows.

h(ΓM ,
P∼, Q∼) ≥

(
1− 2q2M

22n
− 20q3M

23n
− 6(n+ 1)3

22n

)
×

∏
i∈P(M)

(
(2n − |Pi|)(2n − |Qi|)

2n

)
(29)

where qM =
∣∣P(M)

∣∣. We note that (29) can also be obtained by recent results
of Mirror theory [11, 7], while they do not apply to the security proof of XoTP2
to be discussed in the next section as equations are not partitioned according to
distinct tweaks that determine independent random permutations.

4.2 XoTP2: Xor of Tweakable Permutations with Input Switching

Given a constant C ∈ {0, 1}c for an integer c such that 0 ≤ c ≤ n, a (t+ n− c)-
to-n bit pseudorandom function XoTP2c is defined as follows.
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– When t ≥ n− c,

XoTP2c(X,Y,W ) = P̃(W ‖ Y,C ‖X)⊕ Q̃(W ‖X,C ‖ Y )

for X, Y ∈ {0, 1}n−c and W ∈ {0, 1}t−n+c.
– When t < n− c,

XoTP2c(X,Y,W ) = P̃(Y,C ‖W ‖X)⊕ Q̃(X,C ‖W ‖ Y )

for X, Y ∈ {0, 1}t and W ∈ {0, 1}n−t−c.

Security of XoTP2c when t ≥ n − c. Suppose that a distinguisher D makes
q queries (Xi, Yi,Wi) ∈ {0, 1}n−c×{0, 1}n−c×{0, 1}t−n+c, obtaining the corre-
sponding responses Zi for i = 1, . . . , q. In this way, D obtains a transcript

τ = ((X1, Y1,W1, Z1), . . . , (Xq, Yq,Wq, Zq)).

In the real world, Pi =def P̃(Wi ‖ Yi, C ‖ Xi) and Qi =
def Q̃(Wi ‖ Xi, C ‖ Yi)

should be a solution to the following system of equations.

Γ :


P1⊕Q1 = Z1,

P2⊕Q2 = Z2,
...

Pq ⊕Qq = Zq,

subject to the partitions P =
{
P(M)

}
M∈{0,1}t and Q =

{
Q(M)

}
M∈{0,1}t , where

P(M) def
= {i ∈ [q] |Wi ‖ Yi =M} ,

Q(M) def
= {i ∈ [q] |Wi ‖Xi =M} .

Using these partitions, we can define relations P∼ and Q∼. Since i P∼ j ⇒ i 6Q∼ j

and i Q∼ j ⇒ i 6P∼ j, we have
∣∣∣P(M) ∩Q(M ′)

∣∣∣ = 1 for any M,M ′ ∈ {0, 1}t. Since
D is allowed to make at most 2n−c queries for each tweak, we have

A = max
M∈{0,1}t

{∣∣∣P(M)
∣∣∣ , ∣∣∣Q(M)

∣∣∣} ≤ 2n−c,

B = max
M,M ′∈{0,1}t

{∣∣∣P(M) ∩Q(M ′)
∣∣∣} = 1.

By Corollary 1, if c ≥ 4, then we have

h(τ,
P∼, Q∼) ≥

(
1−min

{
20q

2n+2c
,
20q2

23n

}
− 6(n+ 1)3

22n

)
×

q∏
i=1

(
(2n − |Pi|)(2n − |Qi|)

2n

)
.
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Similarly to the analysis of XoTP1, we have

Pr [Tre = τ ]

Pr [Tid = τ ]
≥ 1−min

{
20q

2n+2c
,
20q2

23n

}
− 6(n+ 1)3

22n
.

By Lemma 1, we obtain the following theorem.

Theorem 3. Let n, t, c and q be positive integers such that t ≥ n − c and
4 ≤ c ≤ n. Then one has

Advprf
XoTP2c

(q) ≤ min

{
20q

2n+2c
,
20q2

23n

}
+

6(n+ 1)3

22n
.

When c = t
3 and 3n

4 ≤ t ≤ 3n, we have an (n+ 2t
3 )-to-n bit PRF XoTP2 t

3
such

that

Advprf
XoTP2 t

3

(q) ≤ 20q

2n+
2t
3

+
6(n+ 1)3

22n
.

When 4 ≤ c ≤ n
4 , we have an (n+ t− c)-to-n bit PRF XoTP2c such that

Advprf
XoTP2c

(q) ≤ 20q2

23n
+

6(n+ 1)3

22n
.

Security of XoTP2c when t < n − c. We can prove the security of XoTP2c
such that t < n−c similarly to the case that t ≥ n−c, where the main difference
is that

A = max
M∈{0,1}t

{∣∣∣P(M)
∣∣∣ , ∣∣∣Q(M)

∣∣∣} ≤ 2n−c,

B = max
M,M ′∈{0,1}t

{∣∣∣P(M) ∩Q(M ′)
∣∣∣} ≤ 2n−t−c.

Then, using Lemma 1, we can prove the following theorem.

Theorem 4. Let n, t, c and q be positive integers such that t < n − c and
4 ≤ c ≤ n. Then one has

Advprf
XoTP2c

(q) ≤ 2q

2n+t+c
+

20q

2n+2c
+

6(n+ 1)3

22n
.

When c = t
3 and 12 ≤ t < 3n

4 , we have an (n+ 2t
3 )-to-n bit PRF XoTP2 t

3
such

that

Advprf
XoTP2 t

3

(q) ≤ 22q

2n+
2t
3

+
6(n+ 1)3

22n
.
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Supplementary Material

A Proof of Lemma 2

We will use induction on r. One can easily see that (1) holds when r = 1. Suppose
that (1) holds for r such that r ≤ α

2 − 2. By the recurrence relation, we have

2r∑
i=r

(
2r

i

)
AiDα−r,1−r+i ≤

2r∑
i=r

(
2r

i

)
Ai
(
Dα−r−1,i−r + 2A ·Dα−r−1,1−r+i

+A2 ·Dα−r−1,2−r+i +
C

(2n − 2A)m−α+1+i

)
=

2r+1∑
i=r

BiDα−r−1,1−r+i +

2r∑
i=r

(
2r

i

)
AiC

(2n − 2A)m−α+1+i
,

for some Bi, where

Bi =

(
2r

i+ 1

)
Ai+1 +

(
2r

i

)
Ai · 2A+

(
2r

i− 1

)
Ai−1 ·A2

=

((
2r

i+ 1

)
+ 2

(
2r

i

)
+

(
2r

i− 1

))
Ai+1

=

((
2r + 1

i+ 1

)
+

(
2r + 1

i

))
Ai+1

=

(
2r + 2

i+ 1

)
Ai+1

when r + 1 ≤ i ≤ 2r − 1. Even for i ∈ {r, 2r, 2r + 1}, one easily sees that
Bi ≤

(
2r+2
i+1

)
Ai+1. Therefore, we have

2r∑
i=r

(
2r

i

)
AiDα−r,1−r+i ≤

2r+2∑
i=r+1

(
2r + 2

i

)
AiDα−r−1,i−r

+

2r∑
i=r

(
2r

i

)
AiC

(2n − 2A)m−α+1+i
.

Combined with the induction hypothesis, we have

Dα,1 ≤
2r∑
i=r

(
2r

i

)
AiDα−r,1−r+i +

r−1∑
j=0

2j∑
i=j

(
2j

i

)
AiC

(2n − 2A)m−α+1+i

≤
2r+2∑
i=r+1

(
2r + 2

i

)
AiDα−r−1,i−r +

2r∑
i=r

(
2r

i

)
AiC

(2n − 2A)m−α+1+i



+

r−1∑
j=0

2j∑
i=j

(
2j

i

)
AiC

(2n − 2A)m−α+1+i

≤
2r+2∑
i=r+1

(
2r + 2

i

)
AiDα−r−1,i−r +

r∑
j=0

2j∑
i=j

(
2j

i

)
AiC

(2n − 2A)m−α+1+i
,

which completes the proof.

B Proof of Lemma 4

For each solution S = (X1, Y1, . . . , Xα−1, Yα−1) ∈ ({0, 1}n)2α−2 to Gα−1, let

X = {Xi | i ∈ Pα},
Y = {Yj ⊕Zα | j ∈ Qα}.

Once S is fixed, one should choose Pα from {0, 1}n \ (X ∪Y). Therefore we have

h(Gα) =
∑
S∈S

(2n − |X ∪ Y|)

=
∑
S∈S

(2n − |Pα| − |Qα|+ |X ∩ Y|)

= (2n − |Pα| − |Qα|)h(Gα−1) +
∑
S∈S
|X ∩ Y| , (30)

where S denote the set of all solutions to Gα−1. In particular, we have∑
S∈S
|X ∩ Y| =

∑
S∈S

∑
i∈Pα
j∈Qα

1(Xi⊕Yj = Zα).

1. If Xi⊕Yi = Zα for i ∈ Pα ∩Qα, then it should be the case that i ∈ Rα. For
each i ∈ Rα, we have∑

S∈S
1(Xi⊕Yi = Zα) =

∑
S∈S

1 = h(Gα−1).

2. If i ∈ Pα, j ∈ Qα and i 6= j, then we have∑
S∈S

1(Xi⊕Yj = Zα) = h(Gα−1 ∪ {(Pi, Qj , Zα)}).

To summarize, we have∑
S∈S

∑
i∈Pα
j∈Qα

1(Xi⊕Yj = Zα) =
∑
S∈S

∑
i∈Pα∩Qα

1(Xi⊕Yi = Zα)
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+
∑
S∈S

∑
i∈Pα
j∈Qα
i 6=j

1(Xi⊕Yj = Zα)

= |Rα|h(Gα−1) +
∑

E∈L[Gα]

h(Gα−1 ∪ {E}). (31)

Lemma 4 follows from (30) and (31).

C Proof of Lemma 5

Without loss of generality, we assume that I = [α], J = (α−β, α−β+1, . . . , α).
Let S ⊂ ({0, 1}n)2α and S′ ⊂ ({0, 1}n)2α−2 denote the sets of solutions to G++ and
G+−, respectively. Each solution (X1, Y1, . . . , Xα, Yα) ∈ S uniquely determines a
solution to G+−, namely (X1, Y1, . . . , Xα−1, Yα−1) ∈ S′. On the other hand, for
each solution (X1, Y1, . . . , Xα−1, Yα−1) ∈ S′, let

Xα = Xα−1⊕Lβ ⊕Zα,
Yα = Xα−1⊕Lβ .

Then (X1, Y1, . . . , Xα, Yα) is a solution to G++ if and only if Xα and Yα do not
violate the constraints due to the relations P∼ and Q∼. For this condition to hold,
it should be the case that

Xα 6= Xk ⇔ Xα−1⊕Lβ ⊕Zα 6= Xk ⇔ Xα−1 6= Xk ⊕Lβ ⊕Zα

for any index k such that k P∼ α. Furthermore, for an index k such k Q∼ α, the
following non-equation is also required.

Yα 6= Yk ⇔ Xα−1 6= Yk ⊕Lβ .

So, for each solution (X1, Y1, . . . , Xα−1, Yα−1) ∈ S′, (X1, Y1, . . . , Xα, Yα) be-
comes a solution to G++ if and only if Xα−1 ∈ {0, 1}n \ (X ∪ Y), where

X def
= {Xk ⊕Lβ ⊕Zα | k ∈ Pα} ,

Y def
= {Yk ⊕Lβ | k ∈ Qα} .

Therefore we have

h(G++) =
∑
S∈S′

(1− 1(Xα−1 ∈ X ∪ Y))

= h(G+−)−
∑
S∈S′

1(Xα−1 ∈ X )

−
∑
S∈S′

1(Xα−1 ∈ Y) +
∑
S∈S′

1(Xα−1 ∈ X ∩ Y). (32)

Suppose that Xα−1 ∈ X , in which case Xα = Xk for some k ∈ Pα.
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1. If k ∈ Pα[J ], then there exists a trail T (Xk, Xα) such that

w(T (Xk, Xα)) 6= 0

since G++ is a valid graph. It implies that Xα 6= Xk, which is a contradiction.
2. If k ∈ Pα[I \ J ], then a solution to G+− such that Xα = Xk becomes a

solution to
G+− ∪ {(Xα−1, Yk, Lβ ⊕Zk ⊕Zα)}.

Suppose that Xα−1 ∈ Y, in which case Yα = Yk for some k ∈ Qα. Then it follows
that k ∈ Qα[I \ J ]. Furthermore, a solution to G+− such that Yα = Yk becomes
a solution to a graph

G+− ∪ {(Xα−1, Yk, Lβ)}.

To summarize, we have∑
S∈S′

1(Xα−1 ∈ X ) =
∑
E∈M1

h(G+− ∪ {E}), (33)

∑
S∈S′

1(Xα−1 ∈ Y) =
∑
E∈M2

h(G+− ∪ {E}), (34)

where

M1
def
= {(Pα−1, Qk, Lβ ⊕ Zk ⊕ Zα) | k ∈ Pα[I \ J ]},

M2
def
= {(Pα−1, Qk, Lβ) | k ∈ Qα[I \ J ]}.

Suppose that Xα−1 ∈ X ∩ Y, in which case

Xα−1 = Xk ⊕Lβ ⊕Zα,
Xα−1 = Yl⊕Lβ

for some k ∈ Pα[I \ J ] and l ∈ Qα[I \ J ]. Replacing Xk by Yk ⊕Zk in the first
equation, and Xα−1 by Xk ⊕Lβ ⊕Zα in the second equation, we have

Xα−1⊕Yk = Lβ ⊕Zk ⊕Zα,
Xk ⊕Yl = Zα.

There are two cases.

1. If k 6= l, then a solution to G+− such that Xα−1⊕Yk = Lβ ⊕Zk ⊕Zα and
Xk ⊕Yl = Zα is a solution to a graph

G+− ∪ {(Xα−1, Yk, Lβ ⊕Zk ⊕Zα), (Xk, Yl, Zα)}.

2. If k = l, then k ∈ Pα[I \ J ] ∩Qα[I \ J ].
(a) If Zk = Zα, then edge (Xk, Yl, Zα) is redundant. Therefore, a solution to
G+− such that Xα−1⊕Yk = Lβ ⊕Zk ⊕Zα and Xk ⊕Yl = Zα is a solution
to a graph

G+− ∪ {(Xα−1, Yk, Lβ)}.
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(b) If Zk 6= Zα, then there is no solution to the graph.

Therefore we have∑
S∈S′

1(Xα−1 ∈ X ∩ Y) =
∑
E∈M3

h(G+− ∪ {E})

+
∑

{E,E′}∈N[G++]

h(G+− ∪ {E,E′}) (35)

where
M3

def
= {(Pα−1, Qk, Lβ) | k ∈ Rα[I \ J ]}.

Since∑
E∈M[G++]

h(G+− ∪ {E}) =
∑

E∈M1∪M2

h(G+− ∪ {E})

=
∑
E∈M1

h(G+− ∪ {E}) +
∑
E∈M2

h(G+− ∪ {E})−
∑
E∈M3

h(G+− ∪ {E})

and by (32), (33), (34) and (35), the proof is complete.

D Proof of Lemma 6

We can prove the five (in)equalities as follows.

1. Each edge (Pi, Qj , Zα) ∈ L[Gα] falls into one of the following four cases.
– Case 1: i ∈ Pα \ Qα and j ∈ Qα \ Pα. Note that Gα ∪ {(Pi, Qj , Zα)} is

valid. The number of edges of this type is

(|Pα| − |Pα ∩Qα|)(|Qα| − |Pα ∩Qα|).

– Case 2: i ∈ Pα ∩ Qα and j ∈ Qα \ Pα. Equations Pi⊕Qj = Zα and

Pi⊕Qi = Zi imply Qi⊕Qj = Zα⊕Zi. Since i
Q∼ j, it should be the

case that Zi 6= Zα. The number of such edges is

(|Pα ∩Qα| − |Rα|)(|Qα| − |Pα ∩Qα|).

– Case 3: i ∈ Pα \ Qα and j ∈ Pα ∩ Qα. Similarly to Case 2, we see that
the number of edges of this type is

(|Pα ∩Qα| − |Rα|)(|Pα| − |Pα ∩Qα|).

– Case 4: i, j ∈ Pα ∩ Qα where i 6= j. It should be the case that Zi 6= Zα
and Zj 6= Zα since otherwise the resulting graph is invalid. The number
of such edges is

(|Pα ∩Qα| − |Rα|)(|Pα ∩Qα| − |Rα| − 1).
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Therefore, we conclude that

|L[Gα]| = (|Pα| − |Rα|)(|Qα| − |Rα|)− (|Pα ∩Qα| − |Rα|).

2. Note that M[G++] ⊂ M[G−+] when β ≥ 2. Each edge E in M[G−+] \M[G++] is
of the form either (Pjβ , Qk, Lβ ⊕Zk ⊕Zjβ+1

) for k ∈ Pjβ+1
[(I \J )∪{j1}] or

(Pjβ , Qk, Lβ) for k ∈ Qjβ+1
[(I \ J ) ∪ {j1}]. Such an edge falls into at least

one of the following three cases.
– Case 1: k = j1. At most two edges fall into this case.
– Case 2: E = (Pjβ , Qk, Lβ ⊕Zk ⊕Zjβ+1

) for k ∈ Pjβ+1
[I \ J ]. Since E ∈

M[G−+] \M[G++], G++ and G−− ∪ {E} are valid, while G+− ∪ {E} is invalid,
which means that k Q∼ j1, and w(T (Qj1 , Qk)) = 0 for a (unique) trail
T (Qj1 , Qk) connecting Qj1 and Qk, which means

Zk = Zj1 ⊕ . . . ⊕Zjβ+1
⊕L1⊕ . . . ⊕Lβ(

def
= Z).

The number of such edges E is at most
∣∣{k ∈ Pjβ+1

∩Qj1 | Zk = Z}
∣∣,

where by (8) ∣∣{k ∈ Pjβ+1
∩Qj1 | Zk = Z}

∣∣ ≤ |Rm+1| .

– Case 3: E = (Pjβ , Qk, Lβ) for k ∈ Qjβ+1
[I \ J ]. Similarly to Case 2, we

see that the number of edges of this type is at most |Rm+1|.
It is easy to see that |M[G++]| ≤ 2A. Therefore, we conclude that

|M[G−+]| − 2(|Rm+1|+ 1) ≤ |M[G++]| ≤ 2A.

3. Note that N[G++] ⊂ N[G−+] when β ≥ 2. For each pair of edges {E,E′} in
N[G−+]\N[G++], we can assume that E = (Pjβ , Qk, Lβ ⊕Zk ⊕Zjβ+1

) for some
k ∈ Pjβ+1

[(I \J )∪{j1}], and E′ = (Pk, Ql, Zjβ+1
) for some l such that l 6= k

and l ∈ Qjβ+1
[(I \ J ) ∪ {j1}]. Such a pair (E,E′) falls into at least one of

the following three cases.
– Case 1: k ∈ Pjβ+1

[(I \ J ) ∪ {j1}] and l = j1. Since∣∣Pjβ+1
[(I \ J ) ∪ {j1}]

∣∣ ≤ A,
the number of pairs of edges of this type is at most A.

– Case 2: k = j1 and l ∈ Qjβ+1
[(I \ J ) ∪ {j1}]. Similarly to Case 1, the

number of pairs of edges of this type is at most A.
– Case 3: k ∈ Pjβ+1

[I \ J ] and l ∈ Qjβ+1
[I \ J ]. Since G+− ∪ {E,E′} is

invalid, there exist k′, l′ ∈ {j1, . . . , jβ , k, l} such that either

k′
Q∼ l′ ∧ w(T (Qk′ , Ql′)) = 0

for a (unique) trail T (Qk′ , Ql′) connecting Qk′ and Ql′ , or

k′
P∼ l′ ∧ w(T (Pk′ , Pl′)) = 0

for a (unique) trail T (Pk′ , Pl′) connecting Pk′ and Pl′ . Since G++ and
G−− ∪ {E,E′} are valid, two possibilities remain as follows.
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(a) k Q∼ j1 and w(T (Qk, Qj1)) = 0 for a (unique) trail T (Qk, Qj1) con-
necting Qj1 and Qk, which means

Zk = Zj1 ⊕ . . . ⊕Zjβ+1
⊕L1⊕ . . . ⊕Lβ .

The number of pairs of edges of this type is at most |Rm+1|A.
(b) l P∼ j1 and w(T (Pl, Pj1)) = 0 for a (unique) trail T (Pl, Pj1) connect-

ing Pj1 and Pl, which means

Zl = Zj2 ⊕ . . . ⊕Zjβ ⊕L1⊕ . . . ⊕Lβ .

The number of pairs of edges of this type is at most |Rm+1|A.
It is easy to see that |N[G++]| ≤ A2. Therefore, we conclude that

|N[G−+]| − 2A(|Rm+1|+ 1) ≤ |N[G++]| ≤ A2.

4. Suppose that β = 1. LetM′ be the set of edges of the form either (Pj1 , Qk, L1)
for k ∈ Qj2 [I] or (Pj1 , Qk, L1⊕Zk ⊕Zj2) for k ∈ Pj2 [I]. Note that |M′| =
|Pj2 [I]|+ |Qj2 [I]| − |Rj2 [I]| and M[G++] ⊂ M′. Each edge E in M′ \M[G++]
falls into at least one of the following three cases.

– Case 1: k = j1. At most two edges fall into this case.

– Case 2: E = (Pj1 , Qk, L1⊕Zk ⊕Zj2) for k ∈ Pj2 [I \ J ]. Since E ∈
M′ \M[G++], G++ is valid, while G+− ∪ {E} is invalid, which means that
k
Q∼ j1, and w(T (Qj1 , Qk)) = 0 for a (unique) trail T (Qj1 , Qk) connecting

Qj1 and Qk, which means

Zk = Zj1 ⊕Zj2 ⊕L1(
def
= Z ′).

The number of such edges E is at most |{k ∈ Pj2 ∩Qj1 | Zk = Z ′}|,
where by (8)

|{k ∈ Pj2 ∩Qj1 | Zk = Z ′}| ≤ |Rm+1| .

– Case 3: E = (Pj1 , Qk, L1) for k ∈ Qj2 [I \J ]. Similarly to Case 2, we see
that the number of edges of this type is at most |Rm+1|.

It is easy to see that |M[G++]| ≤ 2A. Therefore, we conclude that

|Pj2 [I]|+ |Qj2 [I]| − |Rj2 [I]| − 2(|Rm+1|+ 1) ≤ |M[G++]| ≤ 2A.

5. Suppose that β = 1. Let N′ denote the set of pairs of edges {E,E′} where
E = (Pj1 , Qk, L1⊕Zk ⊕Zj2) and E′ = (Pk, Ql, Zj2) such that k ∈ Pj2 [I],
l ∈ Qj2 [I], k 6= l and h(G−+ ∪ {E′}) > 0. Then we have N[G++] ⊂ N′ and
|N′| = |L[G−+]| since L[G−+] is obtained by collecting E′ for all {E,E′} ∈ N′.
Each pair {E,E′} ∈ N′ \ N[G++] falls into at least one of the following three
cases.
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– Case 1: k ∈ Pj2 [I] and l = j1. Since |Pj2 [I]| ≤ A, the number of pairs of
edges of this type is at most A.

– Case 2: k = j1 and l ∈ Qj2 [I]. Similarly to Case 1, the number of pairs
of edges of this type is at most A.

– Case 3: k ∈ Pj2 [I \ J ] and l ∈ Qj2 [I \ J ]. Since {E,E′} ∈ N′ \ N[G++],
G++ and G−−∪{E′} are valid, while G+−∪{E,E′} is invalid. Then at least
one of the following two conditions holds:
(a) k Q∼ j1 and w(T (Qk, Qj1)) = 0 for a (unique) trail T (Qk, Qj1) con-

necting Qj1 and Qk, which means Zk = Zj1 ⊕Zj2 ⊕L1. The number
of pairs of edges of this type is at most |Rm+1|A.

(b) l P∼ j1 and w(T (Pl, Pj1)) = 0 for a (unique) trail T (Pl, Pj1) connect-
ing Pj1 and Pl, which means Zl = L1. The number of pairs of edges
of this type is at most |Rm+1|A.

It is easy to see that |N[G++]| ≤ A2. Therefore we conclude that

|L[G−+]| − 2A(|Rm+1|+ 1) ≤ |N[G++]| ≤ A2.

E Proof of Lemma 7

Without loss of generality, we assume that I = [α]. Let S denote the set of solu-
tions to Gα. For each solution (X1, Y1, . . . , Xα, Yα) ∈ S, (X1, Y1, . . . , Xα+1, Yα+1)
becomes a solution to Gα+1 if and only if Xα+1 ∈ {0, 1}n \ (X ∪ Y), where

X def
=
{
Xi

∣∣∣ i P∼ (α+ 1), i ∈ [α]
}
,

Y def
=
{
Yi⊕Zα+1

∣∣∣ i Q∼ (α+ 1), i ∈ [α]
}
.

Therefore, we have

h(Gα+1) ≥
∑
S∈S

(2n − |X ∪ Y|) ≥ (2n − 2A)h(Gα).

By repeatedly applying the above inequality, we have

h(Gα) ≤
h(Gm)

(2n − 2A)m−α
, (36)

which completes the proof of Lemma 7 when β = 0.
Suppose that β ≥ 1. Fix J = (α−β, α−β+1, . . . , α) without loss of general-

ity, and let L = (L1, . . . , Lβ) ∈ ({0, 1}n)β . For each solution (X1, Y1, . . . , Xα, Yα)
to G++(= G[I,J ,L]), Xα−β and Yα−β can be replaced by X ′α−β and Y ′α−β , re-
spectively, giving a solution to G−+, if X ′α−β ∈ {0, 1}n \ (X ′ ∪ Y ′) and Y ′α−β =
X ′α−β ⊕Zα−β , where

X ′ def=
{
Xi

∣∣∣ i P∼ (α− β), i ∈ [α] \ {α− β}
}
,
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Y ′ def=
{
Yi⊕Zα−β

∣∣∣ i Q∼ (α− β), i ∈ [α] \ {α− β}
}
.

Therefore, we have

h(G−+) ≥
∑
S∈S′

(2n − |X ′ ∪ Y ′|) ≥ (2n − 2A)h(G++),

where S′ denotes the set of all solutions to G++. By repeatedly applying the above
inequality, we have

h(G++) ≤ h(Gα)
(2n − 2A)β

(37)

The proof is complete by (36) and (37).
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