
Distributed, Private, Sparse Histograms in the Two-Server Model
James Bell

Google

London, UK

jhbell@google.com

Adrià Gascón

Google

London, UK

adriag@google.com

Badih Ghazi

Google

Mountain View, CA, US

badih.ghazi@gmail.com

Ravi Kumar

Google

Mountain View, CA, US

ravi.k53@gmail.com

Pasin Manurangsi

Google

Mountain View, CA, US

pasin@google.com

Mariana Raykova

Google

New York, NY, US

marianar@google.com

Phillipp Schoppmann

Google

Berlin, Germany

schoppmann@google.com

ABSTRACT
We consider the computation of sparse, (Y, 𝛿)-differentially pri-

vate (DP) histograms in the two-server model of secure multi-party

computation (MPC), which has recently gained traction in the con-

text of privacy-preserving measurements of aggregate user data.

We introduce protocols that enable two semi-honest non-colluding

servers to compute histograms over the data held by multiple users,

while only learning a private view of the data. Our solution achieves

the same asymptotic ℓ∞-error of𝑂
(
log(1/𝛿)

Y

)
as in the central model

of DP, butwithout relying on a trusted curator. The server communi-

cation and computation costs of our protocol are independent of the

number of histogram buckets, and are linear in the number of users,

while the client cost is independent of the number of users, Y, and 𝛿 .

Its linear dependence on the number of users lets our protocol scale

well, which we confirm using microbenchmarks: for a billion users,

Y = 0.5, and 𝛿 = 10
−11

, the per-user cost of our protocol is only

1.04 ms of server computation and 275 bytes of communication. In

contrast, a baseline protocol using garbled circuits only allows up

to 10
6
users, where it requires 600 KB communication per user.

ACM Reference Format:
James Bell, Adrià Gascón, Badih Ghazi, Ravi Kumar, Pasin Manurangsi,

Mariana Raykova, and Phillipp Schoppmann. 2022. Distributed, Private,

Sparse Histograms in the Two-Server Model. In CCS ’22: ACM Conference on
Computer and Communications Security, November 14–19, 2022, Los Angeles,
CA, USA. ACM, New York, NY, USA, 21 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
Aggregate statistics computed over large user populations arewidely

used to discover general trends in user behavior and preferences.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’22, November 14–19, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Applications can be found in many different contexts including

product analysis and browser telemetry [9, 14, 25, 26], understand-

ing the spread of viruses [4, 57], and detecting distributed attacks

and fraud behavior [12, 62]. Designing techniques for computing

such analytics with high accuracy while protecting the privacy of

individual users has been an active research topic [6, 9, 10, 12, 14,

22, 25, 26, 32, 39, 42, 62, 66–68, 73, 78].

The notion of differential privacy (DP) [30, 31] formalizes the

guarantee that the output of an algorithm does not reveal substan-

tial information about individual user contributions. The techniques

for achieving DP inject noise during the computation, which also

affects the accuracy of the output. Central DP mechanisms [31]

provide the best known trade-off between privacy guarantees and

accuracy. However, they rely on the strong assumption of the exis-

tence of a trusted curator that has access to the entire dataset. The

local DP setting [31, 34, 54] alleviates the privacy implications of

the central curator by distributing the privacy mechanism to the

clients, which however comes at a high cost in accuracy [8, 20].

Secure multiparty computation (MPC) [44, 45, 59, 76] offers tech-

niques that allow two or more parties to jointly compute a function

that depends on their private inputs, while revealing nothing be-

yond the function output during the computation. A natural idea

for achieving strong privacy and high accuracy in a distributed

setting is to use MPC to execute central DP mechanisms [30]. How-

ever, applying this idea directly to compute aggregate user statistics

would require executing a multi-round protocol across the devices

of all users whose data is included in the aggregate statistics. Given

the high computation and communication overhead of existing

large-scale MPC implementations [3, 55, 75], and the unpredictable

availability patterns of client devices, this approach becomes chal-

lenging with user populations of hundreds of millions or billions.

An intermediate trust model, which avoids a central aggrega-

tor and the scalability challenges of fully distributed MPC, is the

outsourced MPC model. Here, the functionality of the aggregator

is split across a small number of non-colluding parties. These re-

ceive secret-shared (or encrypted) inputs from the clients, and then

compute the desired aggregate statistics using an MPC protocol

between them. As long as at least one of the parties remains honest,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the clients’ inputs remain private and only the desired aggregate is

revealed. Apart from a lower communication and computation over-

head, the outsourced MPC model can handle client drop-outs, since

usually only a single message from each client is required. The par-

ticular case of two computing servers is called the two-server model,
which has been applied in many large MPC deployments [4, 26].

While honest-majority protocols with a larger number of parties

can result in better efficiency, it remains challenging to ensure that

the honest-majority assumption indeed holds. On the other hand,

dishonest-majority MPC protocols for more than two parties suffer

from performance drawbacks compared to their two-party counter-

parts (see, e.g., [17, Table 6] for a comparison). Therefore, in this

work, we focus on this setting with two non-colluding servers and

a large number of clients that each only send a single message.

Sparse histograms.Many popular aggregation functions can be

described by histograms over user data. Here, each user has a single

value from a domain 𝐷 , and the goal is to compute the number

of users holding each possible input value. In many settings, the

domain 𝐷 of the user contributions is much larger than the actual

number of unique values among the inputs, and in some settings it

is also larger than the total number of users. Hence, the resulting

histograms will often be sparse, i.e., most values in the domain will

have a count of zero. Examples include the computation of heavy

hitters among strings held by the users [15, 56], finding commuter

patterns in location data [24], or spatial decompositions [24].

In the case of sparse histograms the question of computational ef-

ficiency becomes even more pronounced—ideally, protocols should

achieve computation and communication complexities that are in-
dependent of the domain size |𝐷 | and only depend on the number

of contributions that need to be processed. The first question to

answer in the search for such a protocol is if there is a central DP

mechanism that has output length and computation cost that are

independent of |𝐷 |. While mechanisms that add DP noise to every

possible entry in the histogram do not satisfy this property, the

work of Korolova et al. [56] provides such a solution by guarantee-

ing that zero counts are always (implicitly) reported as zeros and

only a subset of the non-empty histogram locations are reported.

Leveraging existing MPC techniques to realize the central DP

mechanism of [56] comes with a set of challenges. Clearly, tech-

niques that require the clients to send inputs proportional to |𝐷 | [25]
are undesirable. Distributed point functions [16] compress the client

computation and communication to 𝑂 (log |𝐷 |), and can be used

as frequency oracles to discover non-zero locations in the sparse

histogram [15]. This approach, however, will incur an error due

to DP that is also 𝑂 (log |𝐷 |), which is worse than that of [56]. To

the best of our knowledge, there is no efficient DP protocol for

computing sparse histograms that achieves an error independent

of |𝐷 |, without relying on a trusted curator.

Our contributions. In this work, we present distributed protocols

in the two-server model for computing sparse histograms. Our

protocols require one-shot communication of𝑂 (log(|𝐷 |)) bits from
the clients, and the communication between the two servers is linear

in the number of contributions from the clients. It provides (𝜖, 𝛿)-
DP for the output with ℓ∞-error of𝑂

(
log(1/𝛿)

𝜖

)
, which matches the

best possible bound in the central DP model.

Our protocols guarantee that the output is DP; furthermore, they

also guarantee that the view of each server satisfies a computational

version of DP called SIM
+
-CDP [64]. Unlike previous work on

distributed DP protocols, however, we explicitly specify the DP

leakage that is revealed during the protocol execution. This enables

comparisons of different approaches beyond the guarantees of DP,

and in particular allows distinguishing pure MPC solutions from

protocols revealing additional information.

Our result is summarized in the following informal theorem.

Theorem 1. Consider𝑛 clients each holding a pair ind𝑖 ∈ 𝐷, val𝑖 ∈
[Δ]. There is a one-round protocol relying on two non-colluding servers
P1, P2 for P1 to obtain a histogram of the input data with 𝑙∞-error
𝑂 (Δ log(1/𝛿)/Y). The combination of the output histogram of the
protocol and its leakage (see Definition 3 for a formal definition) is
(𝜖, 𝛿)-DP. For constant 𝜖 and 𝛿 inverse polynomial in 𝑛, the com-
munication and computation are 𝑂 (log |𝐷 | · 𝑛) for the servers, and
𝑂 (log |𝐷 |) for the clients.

At the core of our solution is a reduction from the problem

of computing DP histograms in a distributed manner over large

(exponential-sized) domains to the problem of computing anony-

mous histograms over small domains proportional to the number

of non-zeros in the output histogram. To achieve this, we leverage

cryptographic techniques for distributed evaluation of oblivious

pseudorandom functions (OPRFs) [53, 63], which enable the two

computing parties to transform the indices from the histogram

domain to a pseudorandom domain that allows aggregation while

hiding the actual values.

We also develop new distributed DP protocols for computing

anonymous histograms, where the servers do not have access to

the indices of the inputs in the clear. Our first technique relies on

duplication and rerandomization of ciphertexts, and our second

alternative technique builds on a secure two-server implementation

of a heavy-hitters like the one of Boneh et al. [15].

Beyond asymptotic analysis of our protocols, we present an

experimental evaluation of the communication and computation

costs, and compare our protocols to a baseline that uses garbled

circuits [76]. Our results show that our protocols scale well with

increasing numbers of parties, due to their linear complexity in the

number of inputs. For a billion users and domain size up to 2
252

,

we can compute a DP histogram using just 1.04 ms of total server

computation, and 275 bytes of communication between the servers

per user. At the same time, each user only needs to perform 0.46ms

of computation and communicate 192 bytes in a single message.

Related work. Böhler and Kerschbaum [13] present a two-party

protocol for computing approximate heavy hitters with DP. Like

our baseline (Section 3.1), their protocol uses generic MPC. In fact,

their Algorithm 1 with 𝑡 = 𝑛 is functionally equivalent to Figure 14,

with smaller values of 𝑡 trading off accuracy against performance.

In contrast, our main protocol outperforms the garbled circuit base-

line by orders of magnitude, by allowing the two servers to learn

additional, private information about the inputs.

The clones technique we use in Section 4.2 is similar to the fake
users technique used in [23]. A crucial difference is that even for real

users, they have to randomize their inputs using a RAPPOR-like

procedure (cf. [33]), i.e., flipping the bit in each bucket (see [23, Al-

gorithm 2]). This cannot be easily done for anonymous histograms

2

because the “buckets” here are the multiplicities that cannot be

determined from each (encrypted) input. Therefore, their protocol

cannot be applied to our setting.

2 BACKGROUND & MODEL
2.1 Privacy
We use supp(U) to denote the support of a distribution U. We

also write 𝑝U (𝑥) to denote the probability mass of U at 𝑥 . For

𝑘 ∈ N, we write U★𝑘
to denote the distribution of the sum of 𝑘

independent samples from U, i.e., the 𝑘-wise convolution of U.

For convenience, we write 𝑎 + U for some 𝑎 ∈ R to denote the

distribution of 𝑎 + 𝑋 where 𝑋 ∼ U. We also sometimes write a

random variable in place of its distribution and vice versa.

The Y-hockey stick divergence between distributionsU,U ′ is

𝑑Y (U∥U ′) :=
∑︁

𝑥 ∈supp(U)
[𝑝U (𝑥) − 𝑒Y · 𝑝U′ (𝑥)]+,

where [𝑦]+ := max{𝑦, 0}.
We say that two distributionsU,U ′ are (Y, 𝛿)-indistinguishable,

denoted byU ≡Y,𝛿 U ′, iff𝑑Y (U∥U ′), 𝑑Y (U ′∥U) ≤ 𝛿 . We consider

two datasets 𝑋,𝑋 ′ to be neighboring if 𝑋 ′ results from changing a

single user’s contribution in 𝑋 .

Differential privacy. A function 𝑓 is said to be (Y, 𝛿)-differentially
private (or (Y, 𝛿)-DP) [30] if, for every pair of neighboring datasets

𝑋,𝑋 ′ it holds that, 𝑓 (𝑋) ≡Y,𝛿 𝑓 (𝑋 ′).
The above neighboring notion is referred to in the literature as

substitution DP. We will as part of the proof make use of the notion

of add/remove DP. This is defined by saying 𝑋 ′ neighbors 𝑋 if one

is reached from the other by removing a single user. We will use the

fact that add/remove DP implies substitution DP.
1
However we do

not provide an add/remove DP guarantee for the whole protocol as

the view of a server in our protocol includes the number of users.

We use the following probability distribution families. The Pois-
son distribution, denoted Poi([), is the discrete non-negative dis-
tribution with mass function exp(−[)[𝑥/𝑥 !. The negative binomial
distribution, denoted NBin(𝑟, 𝑝), is the discrete non-negative dis-
tribution with mass function given by

(𝑥+𝑟−1
𝑥

)
(1 − 𝑝)𝑟𝑝𝑥 . The dis-

crete Laplace distribution, denoted DLap(_), is the discrete distribu-
tion with mass function ∝ exp(−|𝑥 |/_). We will use the (discrete)
Laplace Mechanism, i.e., the fact that adding a noise sample from

DLap(_), with _ = Δ/𝜖 , to the result of a sensitivity-Δ (discrete)

query provides (𝜖, 0)-DP. The truncated discrete Laplace distribu-
tion, denoted TDLap(_, 𝑡), is the discrete distribution on {−𝑡, ..., 𝑡}
with mass function ∝ exp(−|𝑥 |/_). We will use the fact that adding

a noise sample from TDLap(_, 𝑡), with _ = Δ/𝜖 , to the result of

a sensitivity Δ query provides (𝜖, 2𝑒−(𝑡−Δ)𝜖/Δ)-DP. This follows
from the following tail bound, which we use throughout the pa-

per: for 𝑋 ∼ DLap(_), it holds that 𝑃𝑟 [|𝑋 | ≥ 𝑠_] ≤ 2𝑒−𝑠 . Thus,
setting 𝑡 = ⌈Δ + Δ/𝜖 log(2/𝛿)⌉ provides (𝜖, 𝛿)-DP. We use this

mechanism in situations where we require bounded noise sam-

ples. The truncated shifted discrete Laplace distribution, denoted
TSDLap(_, 𝑡), is the discrete distribution on {0, ..., 2𝑡} with mass

function ∝ exp(−|𝑥 − 𝑡 |/_). An analogous result holds in this case:

adding a noise sample from TSDLap(_, 𝑡 = ⌈Δ + Δ/𝜖 log(2/𝛿)⌉) to

1
If 𝑓 is (Y, 𝛿)-add/remove DP, then 𝑓 is (2Y, (1 + exp(Y))𝛿)-substitution DP.

Public parameters: group G of prime order 𝑞 with generator 𝑔.

GenElGamal (1^):
Sample secret key SK←𝑅 Z𝑞 . Set public key PK = 𝑔SK ∈
G. Output (SK, PK).

EncElGamal (PK,𝑚):
Choose 𝑥 ←𝑅 G and output ciphertext (ct1, ct2) ←
(𝑔𝑥 , PK𝑥 ·𝑚).

DecElGamal (SK, (ct1, ct2)):
Output𝑚 = ct2/ctSK

1
.

PartialDecElGamal (SK, (ct1, ct2)):
Let𝑚 = ct2/ctSK

1
. Output (𝑚, ct2).

RandomizeElGamal (ct1, ct2):
Output (ct′

1
, ct′

2
) ← (𝑔𝑥 ′ · ct1, PK𝑥

′ · ct2) where 𝑥 ′ ←𝑅 Z𝑞 .

Figure 1: The ElGamal cryptosystem.

the result of a sensitivity Δ query provides (𝜖, 𝛿)-DP. We use this

mechanism in situations where we require positive noise samples.

2.2 Security
Homomorphic encryption. Homomorphic encryption (HE) is a

primitive that allows computation on encrypted data. In our con-

struction we only use additive HE schemes with function secrecy,

denoted by AHE. Our main construction relies on ElGamal encryp-

tion in its additively-homomorphic variant (Figure 1).

Garbled circuits. Garbled circuits [76] are a generic approach for

secure two-party computation that enables the secure evaluation

of any function that can be represented by a Boolean circuit. This a

one-round protocol where one of the parties, the garbler, prepares

an encoding of the evaluated circuit referred to as a garbled circuit
(GC) and sends it to the other party, the evaluator, which can only

evaluate the GC on a set of inputs for which it has the corresponding

garbled encodings. The garbler provides the encodings of its own

input and the parties run a protocol to enable the evaluator to obtain

the encodings for its input.

Oblivious pseudorandom function (OPRF). A pseudorandom

function (PRF) [43] is a keyed function FK such that the output

FK (𝑥) is indistinguishable from random even when the input 𝑥 is

known, as long as the key K is secret. An oblivious PRF [53, 63] is

a PRF that has a mechanism for evaluating it such that the party

holding the keyK does not learn the input 𝑥 , and the party providing

the input 𝑥 learns FK (𝑥).
In our protocols we use the PRF FK (𝑥) = H(𝑥)K introduced by

Jarecki et. al [53], who showed that this function is pseudorandom

when H is modeled as a random oracle.

2.3 Setting & Threat Model
The goal of our paper is to compute a DP histogram over inputs held

by many clients, without trusting any single party. We achieve this

by distributing trust across two servers, and having them compute

the histogram using an interactive secure computation protocol.

The servers are assumed to be semi-honest, i.e., they follow the steps

of the protocol and in addition, are non-colluding and do not share

or receive any information with each other.

3

We require the outputs of our protocols to guarantee (Y, 𝛿)-DP.

However, since the original definition of DP assumes a central,

trusted curator, it does not immediately generalize to multiple par-

ties. Beimel et al. [8] extend the notion of DP to the multi-party set-

ting, by requiring that the views of each subset of parties corrupted

by an adversary be DP; their work focuses on the information-

theoretic setting without computational assumptions. Mironov et al.

[64] introduce computational DP (CDP), which allows for a compu-

tationally bounded adversary, and which has been used in recent

works [40, 72]. Their strongest privacy notion, SIM
+
-CDP, requires

that the protocol in question securely implements (in the ideal/real

simulation paradigm of MPC [44, 58]) a functionality that in turn

provides DP. What this means is that the distributed execution of

the MPC protocol does not reveal to any of the parties anything

more than the output of the computation, which also provides DP

properties. As they show, this is a stronger guarantee than only

requiring that the view of each party during the execution is DP.

In the MPC literature, multiple works [49, 61, 69] explore the

notion ofDP leakage. This relaxes the regular MPC guarantee where

no party can learn anything other than the output, by allowing the

participants to learn additional information, but imposing the re-

quirement that this additional information provided is DP. Formally,

this is modeled by capturing the additional information revealed

during the protocol execution as a leakage term, which is provided

to the simulator used in the security proof. This allows compar-

ing different protocols for the same functionality in terms of their

leakage, which can vastly differ. In particular, it allows a more

fine-grained control over the information leaked, beyond DP.

We follow the same paradigm for our security definition and

require protocols to explicitly define their leakage L that gets re-

vealed in the ideal-world functionality together with the output.

A protocol implementing functionality F is secure with leakage L,
if it computes F and the view can be simulated from (F ,L). We

require that F and L be jointly defined so as to define their joint

distribution in a function
ˆF .

Definition 2 (View). Let Π be a two-party protocol with inputs

from 𝑋1 × 𝑋2. Then ViewΠ
𝑏
(𝑥1, 𝑥2) denotes the view of party 𝑏

during the execution of Π with inputs 𝑥1 ∈ 𝑋1 from P1 and 𝑥2 ∈ 𝑋2
from P2. The view includes all messages received, as well as all

random numbers sampled during the execution (see Goldreich [44,

Section 7.2]).

Definition 3 (Functionality with leakage). Let ˆF = (ˆF1, ˆF2) =(
(F1,L1), (F2,L2)

)
be a two-party functionality from 𝑋1 ×𝑋2. Let

F = (F1, F2) andL = (L1,L2).We say that a two-party protocolΠ
securely implements F with leakageL, if for each𝑏 ∈ {1, 2} there ex-
ists a probabilistic polynomial-time algorithm Sim𝑏 such that for all
𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2, the output of

(
Sim𝑏 (𝑥𝑏 , ˆF𝑏 (𝑥1, 𝑥2)), F (𝑥1, 𝑥2)

)
is

computationally indistinguishable from

(
ViewΠ

𝑏
(𝑥1, 𝑥2),Π(𝑥1, 𝑥2)

)
.

We call
ˆF the functionality with leakage.

Note that this definition does not require the leakage to be ex-

plicitly computed by Π, which would be required if we asked for

a secure computation of
ˆF . This also means however that we will

not rule out the possibility that learning L1 and L2 together might

leak too much about the output. For this reason we require that

the party not colluding with the adversary does nothing to reveal

their leakage to the other party. This includes through any further

actions taken. We do however allow, as in classical MPC, each party

to share their output with the other party, or use it in subsequent

computations.

Malicious clients.While the focus of this work is constructing a

distributed aggregation protocol that protects the privacy of the

contributing clients, another concern for practical deployments

might be malicious clients who provide incorrect inputs that skew

the output and render it useless, or collude with one of the two

servers to reveal the values of honest clients. The main approach

that has been adopted in such a setting is aiming to limit the clients’

contributions to some allowable range by adding zero-knowledge

proofs [46] from the clients that allow the aggregators to verify the

clients’ inputs are valid without learning any further information.

Techniques such as Bulletproofs [19] enable the client to generate

a proof for the range of its input, which can be verified by any

other party. The approach of the Prio work [25] enables range

proofs that leverage two non-colluding verifiers to achieve better

efficiency. Introducing clients’ range proofs and integrating with

our constructions in this paper to protect against malicious clients

is an interesting topic for future work.

3 TARGET FUNCTIONALITY & BASELINES
In this paper we aim to implement a distributed version of the

mechanism of Korolova et al. [56], also introduced by Bun, Nissim,

and Stemmer [18] in a different context, and sometimes referred

as a stability-based histogram. Given a dataset I = (ind𝑖)𝑖∈[𝑛] of
indices from a large domain𝐷 , the mechanism (i) builds a histogram

H of I, (ii) adds DLap(2/Y) noise to each of the non-zero entries

of H , (iii) removes the entries whose value is below a threshold

𝜏 = 2 log(2/𝛿)/Y, and (iv) releases the resulting histogram. The

threshold is chosen so that the probability of releasing an index

with true count 1 is bounded by 𝛿 . The variant where each client

might contribute a larger value val𝑖 ∈ [1, . . . ,Δ] to ind𝑖 , and thus

the input is a set I = (ind𝑖 , val𝑖)𝑖∈[𝑛] can be easily handled by

adding DLap(2Δ/Y) noise and setting 𝜏 = Δ + 2Δ log(2/𝛿)/Y.

3.1 Generic MPC Solution
One direct solution is to apply generic two-party computation (2PC)

between the two servers for the central DP mechanism described

above. Clients secret-share their input across the two servers, and

then the servers engage in a generic 2PC, e.g., using garbled circuits,

to implement our target functionality described above. Recall that

the garbled circuits protocol requires us to express the computed

function as a Boolean circuit. Therefore, using a naive encoding

with too many input-dependent operations blows up the circuit

size, and thus the computational costs (which are linear in the

number of AND gates in the circuit). Figure 14 (Appendix) presents

a data-oblivious algorithm for our target functionality that results

in a circuit of size 𝑂 (log |𝐷 | · 𝑛 log𝑛) by relying on well-known

sorting/permutation networks of size 𝑂 (𝑛 log𝑛) [1]2. The solution
is inspired by the sort-compare-shuffle approach to garbled circuits

based private set intersection [52]. The properties of the resulting

protocol, which we use as a baseline in our experimental evaluation,

2
In practice, sorting networks of size𝑂 (𝑛 log2 𝑛) are used due to their better concrete
efficiency [7].

4

are captured in the following theorem. As mentioned above, a

distinctive aspect of our solution is that the server costs are 𝑂 (𝑛 ·
log(|𝐷 |)).

Theorem 4. Consider𝑛 clients each holding a pair ind𝑖 ∈ 𝐷, val𝑖 ∈
[Δ]. There is a one-round secure protocol relying on two non-colluding
servers P1, P2 for P1 to obtain a DP histogram of the input data with
𝑙∞-error 𝑂 (Δ log(1/𝛿)/Y). The communication and computation are
𝑂 (log |𝐷 | · 𝑛 log𝑛) for the servers, and 𝑂 (log |𝐷 |) for the clients.

Note that the communication and computation cost in Theorem 4

is larger by a log𝑛 factor than the one in our Theorem 1.

3.2 Shuffle DP
Another possible baseline is to use the protocols from the shuffle

DP literature. Recall that the shuffle model of DP [10, 22, 32] is an

intermediate model between the local and central models of DP,

where the client sends messages to a trusted shuffler that randomly

permutes the messages of all users together before sending them

to the analyzer. The requirement is that the view of the analyzer

(or equivalently the multiset of messages) needs to be DP. It is

possible to instantiate the Shuffle DP model in a two-server setting

by implementing secure shuffling (e.g., via onion shuffling).

Histogram queries are well-studied in the shuffle model [5, 22,

23, 35, 38, 39, 41, 42]. Unfortunately, while it is known that an error

of 𝑂Y (log(1/𝛿)) is achievable [5, 41], known protocols suffer from

communication complexity that grows with ΩY
(
|𝐷 |
𝑛

√︁
log(1/𝛿)

)
where |𝐷 | denotes the domain size. This is prohibitively large in

our setting of interest where |𝐷 | ≫ 𝑛; therefore, we cannot use this

as a baseline in our experiments.

4 TECHNICAL OVERVIEW
Recall that the input to our problem is a set {(ind𝑖 , val𝑖)}𝑖∈[𝑛] of
client-held (index, value) pairs.

As mentioned above, our protocol leaks a DP view of the input

data to each of the non-colluding servers. Intuitively, our proto-

col reveals, besides the output, a DP anonymized histogram of

{ind𝑖 }𝑖∈[𝑛] to one of the servers, and a DP anonymized histogram

of {val𝑖 }𝑖∈[𝑛] to the other one. Recall that an anonymized histogram

corresponds to the number of values occurring 𝑖 times, for every

𝑖 > 0. The privacy of individuals’ input (as well as that of small

groups) are thus protected in the precise sense of DP, while protect-

ing the input as a whole (in the sense of standard simulation-based

MPC) is sacrificed in favor of efficiency, as discussed above.

4.1 Main Protocol Description
Outline of the protocol steps. A high-level description of our

main protocol is shown in Figure 2, and involves four steps of

interaction between the servers P1 and P2, as outlined below.

Step (1): Clients submit an encrypted report to P1, constituting
a set S (1) of ciphertexts, encrypted under keys held by P2 – the

values are encrypted directly while the indices are hashed and then

encrypted. Due to the properties of the (ElGamal) encryption,P1 can
manipulate the encrypted reports in S (1) to homomorphically, i.e.,
without prior decryption, (i) randomize the hashed index H(ind𝑖)
into a pseudoindex H(ind𝑖)𝐾 , generated under a key 𝐾 held by P1,
and (ii) duplicate and rerandomize encryptions.

Figure 2: High-level flow of our main protocol.

Step (2): Using these two operations as well as simulating addi-

tional dummy contributions, P1 constructs a setS (2) of encryptions
of (pseudoindex, value) pairs that contains the original set of client

contributions. The second component is encrypted under an AHE

scheme for which P1 has the key and then additionally with a layer

of semantically secure encryption for which P2 has the key, which
protects the values from P1. P1 sends S (2) to P2 in a random order.

Dummy contributions in S (2) are given a value of 0 so that they

do not affect the final histogram estimate.

Step (3): P2 decrypts the ciphertexts in S (2) , and groups them by

their first component. Note that this only reveals the multiplicity

of each index, as the indices are pseudorandom (they are encoded

as H(ind𝑖)𝐾) and the values are encrypted. P2 then adds up values

homomorphically, and returns the resulting set of values to P1,
along with a random number of dummy encryptions of values in

[Δ] (plus Laplace noise) in a random order; let S (3) be this set.

The purpose of the dummy values is to ensure that P1 can decrypt

the values homomorphically aggregated by P1 and threshold them

(with threshold 𝜏) in the clear, while preserving DP.

Step (4): Pseudoindices are inverted and P1 learns the histogram.

The above description is a slight simplification as we cannot

“invert” the pseudoindices. Instead, each client also sends an encryp-

tion of its index encrypted under the keys of both P1, P2 (denoted by
𝑏𝑖 in Figure 6); these encrypted indices are passed around together

with the aforementioned pseudoindices and values, and only fully

decrypted for the indices that pass the threshold.

Dummy contributions and DP. Note that there are two steps

where dummy contributions are injected: step (2) and step (3). In

both cases the distributions for the dummy contributions are care-

fully chosen to ensure that the amount the other party can learn

about the input, observing the traffic in the respective steps, is

bounded in the sense of DP. This results in a trade-off between

computation/communication costs and privacy.

Concretely, in step (3) P2 learns an anonymized histogram (aka

histogram of a histogram) of the set {ind𝑖 }𝑖∈[𝑁] of indices in the

input, which is defined as the histogram H whose 𝑖th entry H𝑖
contains the number of indices with multiplicity 𝑖 in the input. But,

this is leaky sinceS (2) reveals the multiplicity of each of the indices

in the input. Unfortunately, this makes our protocol not DP (e.g.,

if the adversary knows all-but-one of the indices, then it can infer

5

from H with certainty if the remaining index coincides with its

known indices.)

As mentioned above, we overcome this issue by having P1 insert
dummy contributions in S (2) , in addition to the ones correspond-

ing to the input. As we will explain below, a careful selection of

the distribution of the dummy contributions ensures that S (2) now
only leaks a DP anonymized histogram. Note that the situation in

step (3) is analogous, as in that case P2 inserts dummy contribu-

tions to ensure DP of P1’s view of the protocol. A core challenge

of this approach is in balancing the trade-off between privacy and

communication: dummy contributions help provide meaningful DP

protection but can blow-up communication. A main component of

our solution is a mechanism for doing this efficiently, which we

overview next. We build up to our solution by starting with a sim-

pler, less efficient approach and progressing to more sophisticated,

efficient ones.

4.2 Anonymous Histograms via Duplication
In this section we present two different protocols to achieve DP

under complementary assumptions on the input distribution. Our

hybrid protocol will correspond to running these two protocols

sequentially. (In Appendix D, we present and evaluate an entirely

different protocol that is based on private heavy-hitters; this has

communication advantage both asymptotically and numerically

only in settings with a small number of heavy hitters.)

More specifically, for a threshold value 𝑇 , the first protocol (per-

multiplicity noising) provides DP only to user contributions whose

multiplicity is at most 𝑇 , while the second protocol, duplication-

based noising, protects inputs with multiplicity at least 𝑇 .

Per-multiplicity noising: An efficient protocol for small mul-
tiplicities. A standard approach to producing a DP histogram is

to add appropriately scaled (discrete) Laplace noise to each of its

entries. To implement this idea in our setting, P1 would have to

add𝑂Y,𝛿 (𝐷) dummy contributions (𝑂Y,𝛿 (1) many for each possible

index). A slight optimization follows from the fact that, since P2 ob-
serves an anonymized histogram, it is enough to noise a histogram

of multiplicitiesH , whereH𝑖 counts the number of pseudoindices
with multiplicity 𝑖 in S (2) . In our setting, P1 can implement this

mechanism by adding contributions with dummy indices (from a

domain I disjoint with the original domain); adding 𝑖 contributions

with a single dummy index is equivalent to adding a noise of value

one to the 𝑖-anonymized histogram entry H𝑖 . Since H can have

as many as 𝑛 non-zero entries and the noise has to be added to

each entry, P1 needs to add

∑
𝑖∈[𝑛] 𝑂Y,𝛿 (𝑖) = 𝑂Y,𝛿 (𝑛2) different

such contributions to ensure that S (2) is DP. However, if we could
assume that no pseudoindex has multiplicity above a threshold 𝑇 ,

i.e., that ∀𝑖 > 𝑇 : H𝑖 = 0, then noising up to multiplicity 𝑇 suffices,

and the overhead is𝑂Y,𝛿 (𝑇 2); this is clearly undesirable for large𝑇 .

Duplication: An efficient protocol for large multiplicities.
Note that P1 is not limited to simulating dummy contributions:

since ElGamal encryption allows for rerandomization, P1 can obliv-

iously produce an encryption of (ind𝑖 , 0) given an encryption of

(ind𝑖 , val𝑖), learning neither ind𝑖 nor val𝑖 . We will leverage this

“duplication” capability to construct a protocol.

The following observation is crucial. Consider an input dataset

D and another dataset D ′ identical to D except without client 1’s

data, and the corresponding anonymized histogramsH ,H ′ for the
respective set I = {ind𝑖 }𝑖∈[𝑛] and I ′ = {ind𝑖 }𝑖∈[2...𝑛] of indices.
Note that these datasets are neighboring in the add/remove sense

(Section 2.1). Now, let 𝑥 be the multiplicity of ind1 in I, and note

thatH ,H ′ differ only in two adjacent entries 𝑥, 𝑥 − 1, as removing

ind1 from I reduces the number of indices with multiplicity 𝑥 by

one, while increasing the number of indices with multiplicity 𝑥 − 1
by one. More precisely, it holds thatH𝑥 = H ′𝑥 +1,H𝑥−1 = H ′𝑥−1−1,
and ∀𝑦 ∉ {𝑥, 𝑥 − 1},H𝑦 = H ′𝑦 . (Note that this is less general than a

histogram where changes with respect to a neighboring dataset can

happen in arbitrary buckets, although the ℓ1 sensitivity is bounded

by 2 in both cases.)

Consider how H changes when we duplicate each index in I
a random number of times sampled from a distributionU. This is

described in the following algorithm Dup(H), which returns the

modified histogramH𝑑
givenH :

Dup(H):
H𝑑 = ∅ ⊲ Empty histogram
For 𝑦 ∈ Dom(H)

RepeatH𝑦 times
Sample 𝑎 ∼ U★𝑦

H𝑑
𝑦+𝑎 ←H𝑑

𝑦+𝑎 + 1

Return H𝑑

Note that the algorithm iterates over each entry 𝑦 of the original

histogramH "shifting" each of the contributions to entry 𝑦 by 𝑎 ∼
U★𝑦

entries. Thus, 𝑎 corresponds to the total number of additional

copies of an index with multiplicity 𝑦, where each of its 𝑦 instances

is duplicated 𝑋 ∼ U times.

To satisfy DP,D should be chosen so that Dup(H) ≡Y,𝛿 Dup(H ′).
SinceH andH differ by one in entries 𝑥 − 1 and 𝑥 , and are equal

elsewhere, this boils down to the property that 𝑎𝑥−1 ≡Y,𝛿 1 + 𝑎𝑥 ,
where 𝑎𝑥−1 ∼ U★(𝑥−1) , 𝑎𝑥 ∼ U★𝑥

. This is almost the same as

the condition for the mechanism that adds U★𝑥
noise to be DP

(which just replaces 𝑎𝑥−1 ∼ U★(𝑥−1)
with 𝑎𝑥−1 ∼ U★𝑥

). Indeed,

we show that several well-known distributionsU such as Negative

Binomial—which have already been used for DP—satisfy our more

stringent condition, assuming that 𝑥 > 𝑇 . Note that the latter

assumption is necessary: if 𝑥 = 1, then the condition obviously fails

as 𝑎𝑥−1 = 0 always whereas 1 + 𝑎𝑥 ≥ 1. To achieve DP, we are

required to have 𝑎𝑥−1 > 0 with at least 𝑂Y,𝛿 (1) probability. Hence,
the expected number of duplicates required per item is 𝑂Y,𝛿 (1/𝑇),
yielding a total of 𝑂Y,𝛿 (𝑛/𝑇) duplicates.
Ahybrid protocol: Best of bothworlds.We sequentially combine

the duplication and per-multiplicity noising protocols to obtain a

hybrid protocol. To do that, we first add per-multiplicity noise up to

a predefined threshold𝑇 , and then apply the duplication protocol to

the resulting set. This leaves us with the task of choosing 𝑇 . Since

our goal is to minimize the total number of dummy contributions

inserted by P1, this boils down to optimizing𝑂Y,𝛿 (𝑇 2 +𝑛/𝑇) (which
in practice we perform numerically), corresponding to the overhead

of this hybrid protocol.

Aswe demonstrate in our experiments later, the hybrid protocol—

instantiatedwith TSDLap(·) andNBin(·) distributions, respectively—
results in a practical protocol, but we can do better. Next, we intro-

duce an optimization that leads to our final protocol.

6

An improved protocol. Notice that once the threshold 𝑇 is fixed,

the hybrid protocol reduces the DP proof to two cases. Let 𝑥 be, as

above, the number of occurrences of the index of the user being

protected. If 𝑥 ≤ 𝑇 , then adding Laplace noise provides DP and, if

𝑥 > 𝑇 , then the duplication provides DP. Let us now consider the

amount of noise that the hybrid protocol adds for a multiplicity

𝑥 = 𝑇 − 1, i.e., when 𝑥 is large, but not large enough to be protected

by duplication. In the hybrid protocol, inputs with multiplicity 𝑥

are protected exclusively by the per-multiplicity noise, even if they

get duplicated almost as many times as necessary to achieve DP via

duplication. This is unsatisfying as duplication in this case results

in "wasted" communication overhead without improving privacy.

To tackle this we will introduce a carefully calibrated Poisson noise

to supplement duplication.

At a high-level, we introduce an intermediate regime (𝑇,𝑇 ′). For
multiplicities up to𝑇 , we will use per-bucket noise; for multiplicities

larger than 𝑇 ′, we will use (appropriately calibrated) duplication.

We next describe how to protect inputs with multiplicity in (𝑇,𝑇 ′).
Let 𝑥 be a multiplicity in (𝑇,𝑇 ′). After duplication, the new mul-

tiplicity 𝑥 +U★𝑥
is "spread out" in the interval [𝑥,∞). In particular,

this means that adding𝑂Y,𝛿 (𝑗) noise to each multiplicity 𝑗 ∈ [𝑥,𝑇 ′]
(as the per-multiplicity noising would do) is an overkill. Instead,

that additional 𝑂Y,𝛿 (𝑗) noise can be spread out analogously to how

𝑥 + U★𝑥
is spread out. We achieve that by adding noise to each

multiplicity 𝑗 by a Poi([𝑗) amount, where [𝑗 ’s are carefully chosen

parameters. Asymptotically this seems to improve the dependence

of the required noise on 𝛿 and makes a practical improvement as

shown in experiments.

The analysis for this approach is largely inspired by the work

on shuffle DP of Feldman et al. [35]. In particular, we view the

supplement Poisson noise as creating (a randomized number of)

“clones” of 𝑥 or 𝑥 − 1. Using properties of Poisson distributions, the

number of these clones also follows the Poisson distribution; we

show that DP is achieved as long as the expected number of clones

is sufficiently large. This condition is then used to select our choice

of [𝑗 ’s both theoretically and numerically in experiments.

Relationship to prior work on DP anonymized histograms.
Before we continue, let us mention that several works have consid-

ered the problem of releasing DP anonymized histograms in the

central model [2, 11, 50, 51, 60, 71]. In fact, the optimal central DP

algorithms [60, 71] also add separate noise for 𝑥 > 𝑇 and 𝑥 ≤ 𝑇 ,
similar to our hybrid protocol. We stress however that our setting

is much more challenging as we cannot add noise directly toH ; we

may only create dummies with new indices or duplicate the existing

ones, without knowing the (encrypted) true indices of the input.

This is why we need to use novel noising schemes for our purposes.

Another related work is Ghazi et al. [40]. Although the work is not
for computing DP histograms, it also suffers from leakage in a form

of the anonymized histogram, and uses a per-multiplicity noising

to make the anonymized histogram DP. However, as explained

in Section 4.2, this technique alone is insufficient for our setting

and we have to develop a couple additional techniques (duplication

and cloning) to make the protocol practical.

Public parameters:
• Threshold 𝜏 .

• Noise parameters _, 𝑡 .

• AHE scheme with public key PK1.
Inputs:
P1: SK1, the secret key corresponding to PK1.
P2: Ciphtertexts (𝑤𝑖)𝑖∈[𝑛] , where each 𝑤𝑖 has the form

Enc(PK1, val𝑖).
Funtionality:
(1) For 𝑖 = 1, . . . , 𝑛:

(a) b
(1)
𝑖
, b
(2)
𝑖
←𝑅 TDLap(_, 𝑡), b𝑖 ← b

(1)
𝑖
+ b (2)

𝑖

(b) val𝑖 ←
{

val𝑖 + b𝑖 if val𝑖 + b𝑖 ≥ 𝜏,
0 otherwise

(2) Return {val𝑖 } to P1 and P2.

Figure 3: The target functionality Fthreshold.

5 OUR PROTOCOLS
In this section we describe our main protocol for DP sparse his-

tograms in detail, following the high-level approach outlined in

Section 4. We split the target functionality (Figure 5) into two parts:

We start in Section 5.1 by describing a thresholding functionality

(Figure 3) and protocol (Figure 4) that allows the two servers to

reveal the DP values among a set of encrypted values that pass

a certain threshold 𝜏 . In Section 5.2, we then use that functional-

ity inside our larger protocol (Figure 6) for computing a private

histogram.

In both of the following subsections, we use the same structure:

First, we describe the target functionality, followed by our proto-

col. Then, we define the leakage functionality of our protocol (see

Definition 3), and prove that our protocol securely implements the

target functionality with the given leakage. Finally, we prove that

the output of the combined functionality (target functionality +

leakage) provides DP.

In Appendix D, we describe another approach to private his-

tograms based on a private heavy-hitters protocol, and compare it

against our main protocol from this section.

5.1 Thresholding Protocol
In this section, as a warmup, we describe the thresholding protocol

that underlies Steps (4) and (5) in Figure 2. Its ideal functional-

ity is given in Figure 3. The inputs of P2 are homomorphically

encrypted ciphertexts (𝑤𝑖)𝑖∈[𝑛] , and P1 holds the corresponding
secret key. The functionality first, in Step (1a), samples noise from

a truncated centered discrete Laplace distribution that is added to

each decrypted value. It then, in Step (1b), sets all values that are

below the threshold 𝜏 to zero. Finally, in Step (2), the thresholded

values are returned to both parties.

Our protocol for implementing the thresholding functionality is

given in Figure 4. There are two sources of leakage in that protocol.

First, each party keeps their own share of the noise value b𝑖 that is

added to each entry 𝑖 ∈ [𝑛]. This means that the parties can locally

compute a version of the output that is less noisy than the ideal

functionality output. Therefore, we have to include each party’s

7

Public parameters:
• Noise parameters _, 𝑡 .

• Threshold 𝜏 > 2𝑡 .

• AHE scheme with public key PK1.
Inputs:
P1: SK1, the secret key corresponding to PK1.
P2: Ciphertexts (𝑤𝑖)𝑖∈[𝑛] , where each 𝑤𝑖 has the form

Enc(PK1, val𝑖).
Protocol:
(1) P2:
(a) For each 𝑖 ∈ [𝑛], add noise to the encrypted values using

the homomorphic encryption properties:

S (1) ←
(
Enc(PK1, val𝑖 + b𝑖)

)
𝑖∈[𝑛]

where b𝑖 ← TDLap(_, 𝑡).
(b) Send S (1) to P1.

(2) P1:
(a) For each record𝑤 ′

𝑖
∈ S (1) received from P2:

(i) Decrypt val′𝑖 ← Dec(SK1,𝑤 ′𝑖).
(ii) Sample b ′

𝑖
← TDLap(_, 𝑡), and compute val′′𝑖 ← val′𝑖 +b

′
𝑖
.

(iii) If val′′𝑖 < 𝜏 , val′′𝑖 ← 0.

(b) Send S (2) ←
(
val′′𝑖

)
𝑖∈[𝑛] to P2.

(3) Both parties output S (2) .

Figure 4: Protocol Πthreshold that implements Fthreshold with
leakage Lthreshold.

respective noise share in the leakage. The second source of leakage

comes from the fact that P1 learns all values with only P2’s noise
added before thresholding.

In the following formal description, we omit the parties’ inputs

for readability, e.g., we write LP1
threshold to denote L

P1
threshold (𝑥0, 𝑥1).

Definition 5 (Leakage of Πthreshold). Let b
(1)
𝑖
, b
(2)
𝑖

be the noise

samples generated in Steps (2ii) and (1a) of Figure 3 respectively.

Then we define leakages for Πthreshold:

LP1
threshold =

{(
b
(1)
𝑖

)
𝑖∈[𝑛] ,

(
val𝑖 + b (2)𝑖

)
𝑖∈[𝑛]

}
,

LP2
threshold =

{(
b
(2)
𝑖

)
𝑖∈[𝑛]

}
.

The functionality with leakage is defined to be the joint distribution(
Fthreshold,LPi

threshold

)
, denoted

ˆFthreshold.

Theorem 6. The protocol Πthreshold in Figure 4, setting _1 =

_, securely implements Fthreshold from Figure 3 with the leakage
Lthreshold =

(
LP1
threshold, L

P2
threshold

)
in Definition 5.

Proof. We construct simulators Simthreshold
𝑖

, 𝑖 ∈ {1, 2} that,
given the inputs, leakage, and outputs to party 𝑖 generate a view that

is indistinguishable from the view of party 𝑖 in protocol Πthreshold.

For P1, Simthreshold
1

performs the following:

(1) For each 𝑖 ∈ [𝑛], computes Enc
(
PK1, val𝑖 + b (2)𝑖

)
, where the

encrypted value is taken from the second component of

LP1
threshold.

Public parameters:
• DP parameters Y, 𝛿 , sensitivity Δ.
• Noise parameters _ = 2Δ/Y and 𝑡 = Δ + _ log(2/𝛿).
• Threshold 𝜏 = Δ + 2𝑡 + 1.
Inputs:
Clients: Index-value pairs (ind𝑖 , val𝑖)𝑖∈[𝑛]
Funtionality:
(1) Let (ind′𝑗) 𝑗 ∈[𝑛′] denote the unique indices in the input. For

each 𝑗 ∈ [𝑛′]:
(a) Sample b

(1)
𝑗
, b
(2)
𝑗
←𝑅 TDLap(_, 𝑡).

(b) Compute b 𝑗 ← b
(1)
𝑗
+ b (2)

𝑗
and

val′𝑖 =
{
⊥ if 𝑠𝑖 + b𝑖 < 𝜏
𝑠𝑖 + b𝑖 otherwise,

where 𝑠𝑖 =
∑

{ 𝑗 | ind𝑗=ind′𝑖 }
val𝑗 .

(2) Output {(ind′𝑗 , val
′
𝑗) | 𝑗 ∈ [𝑛

′], val′𝑗 ≠ ⊥} to P1.

Figure 5: The target private histograms functionality Fhist.

(2) Sets S (2) to the set of ciphertexts generated in the previous

step.

(3) Outputs b
(1)
𝑖

as the value sampled from DLap(_1) in Step

(2a) of Figure 4, and S (2) as the message received from P2
in Step (1b).

This simulated view together with the ideal output is indistin-

guishable from the real view together with the real output as the

AHE scheme provides function secrecy, and the employed noise

distributions TDLap(_, 𝑡) in Figure 3 and Figure 4 are the same.

For P2, Simthreshold
2

performs the following:

(1) Outputs

(
(val𝑖

)
𝑖∈[𝑛] as the message received from P1.

(2) Outputs b
(2)
𝑖

from LP2
threshold as the noise sampled in Step

(1a) of Figure 4.

Observe that since the inputs (𝑤𝑖) are indistinguishable from
random ciphertexts from P2’s view, Simthreshold

2
does not actually

need to use them. The real and simulated views have the same

distribution, and so indistinguishability holds. □

Theorem 7. Let _ = 2Δ/Y and 𝑡 = Δ + _ log(2/𝛿). Then, for 𝑖 ∈
{1, 2}, ˆFthreshold =

(
Fthreshold,LPi

threshold

)
is an (𝜖, 𝛿)-DP function

on a database (val𝑗 ∈ [Δ]) 𝑗 ∈[𝑛] .

Proof. The statement follows from the truncated Laplace mech-

anism as, once we condition on knowing the b
(1)
𝑖

’s (resp. the b
(2)
𝑖

’s),

P1 (resp. P2) observe a Laplace-noised histogram with parameter _.

Note that the thresholding by 𝜏 is then postprocessing. □

5.2 Private Sparse Histograms
We now describe our main protocol for private sparse histograms.

We give a formal description of the target functionality in Figure 5.

It closely follows the high-level description in Section 3, with the

main difference being that we explicitly split up the noise terms b𝑖
into two components, one of which is leaked to each helper server

through the thresholding protocol from the previous section.

8

Public parameters:
• Group G of prime order 𝑞 with generator 𝑔.

• Histogram index domainU = {0, ..., 2𝑑 − 1}, value domainV = {0, . . . ,Δ}. Dummy index domain I withU ∩ I = ∅.
• Random oracle H : U ∪ I → G.
• ElGamal public encryption keys PK = PK1 · PK2, PK′ ∈ G. Public encryption key PKAHE for additive homomorphic encryption. Public

encryption key for semantically secure encryption PK′′.
• DP parameters Y = Y

leakage
+ Ycounts, 𝛿 = 𝛿

leakage
+ 𝛿counts, sensitivity Δ.

• Free Noise Parameters 𝑇,𝑇 ′ chosen by grid search in Section 6.2.

• Determined Noise Parameters _1 = 2Δ/Ycounts, 𝑡1 ≥ Δ + _1 log(2/𝛿counts), _2 = 1/Y
leakage

, 𝑡2 ≥ _2 log(1/𝛿leakage), threshold 𝜏 =

Δ + 2𝑡1 + 1.
Inputs:
Client𝑖 : an index-value pair (𝑢𝑖 , 𝑣𝑖) ∈ U ×V .

P1: ElGamal secret key SK1 ∈ Z𝑞 is the secret key for PK1, additive HE secret key SKAHE corresponding to PKAHE, a secret PRF key
K← Z𝑞
P2: ElGamal secret keys SK2, SK′ ∈ Z𝑞 , where SK2 is the secret key for PK2, and SK′ is the secret for PK′, and decryption key SK′′

corresponging to PK′′ for semantically secure encryption.

Protocol:
(1) Each Client𝑖 computes ℎ𝑖 ← H(𝑢𝑖) and𝑤𝑖 ← EncHE (PKAHE, 𝑣𝑖) and encrypts.

(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) ←
(
EncElGamal (PK′, ℎ𝑖), EncElGamal (PK, 𝑢𝑖), Enc(PK′′,𝑤𝑖)

)
.

(2) P1 receives the ciphertexts from all clients S (1) = {(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)}𝑖∈[𝑛] .
(a) S (1) ← S (1) ∪ SampleDummies(𝑇,𝑇 ′, Y

leakage
, 𝛿

leakage
,S (1)).

(b) Choose random K←𝑅 Z𝑞 and set S (2) ← ∅.
(c) For every tuple (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖) ∈ S (1) :

(i) Unpack (ct1, ct2) ← 𝑎𝑖 .

(ii) 𝑎′
𝑖
← (ctK

1
, ctK

2
).

(iii) S (2) ← S (2) ∪ {(𝑎′
𝑖
, 𝑏𝑖 , 𝑐𝑖)}.

(d) Shuffle S (2) and send the result to P2.
(3) P2 received S (2) = {(𝑎′

𝑖
, 𝑏 ′
𝑖
, 𝑐 ′
𝑖
)}𝑖∈[𝑛′] from P1 and computes:

(a) Decrypts all three components of each ciphertext as follows

ℎ′𝑖 ← DecElGamal (SK′, 𝑎′𝑖), 𝑑𝑖 ← PartialDecElGamal (SK2, 𝑏 ′𝑖),𝑤
′
𝑖 ← Dec(SK′′, 𝑐 ′𝑖)

and sets S (3) =
{(
ℎ′
𝑖
, 𝑑𝑖 ,𝑤

′
𝑖

)}
𝑖∈[𝑛′] .

(b) Partitions the tuples in 𝑆 (3) based on the first component by definingH𝑖 = { 𝑗 | ℎ′𝑗 = ℎ
′
𝑖
}.

(c) For each unique value ℎ′
𝑖
in the first components of the tuples in S (3) , homomorphically adds up all third components and chooses

one of the second components at random. This results in a set (ordered by ℎ′
𝑖
): S (4) =

(
(ℎ′′
𝑖
, 𝑑 ′
𝑖
,𝑤 ′′
𝑖
)
)
𝑖∈[𝑛′′] containing 𝑛

′′ ≤ 𝑛′ tuples
of the form (

H(𝑢 ′′𝑖)
K, EncElGamal (PK1, 𝑢 ′′𝑖), EncHE

(
PKAHE,

∑︁
𝑗 ∈H𝑖

𝑣 ′′𝑗
))
.

(d) S (4) ← S (4) ∪ SampleBuckets(PKAHE, _2, 𝑡2).
(e) Shuffle S (4) .

(4) Let (𝑤 ′′
𝑖
)𝑖∈[𝑛′′] be the ordered set of third components of S (4) . P1 and P2 invoke Πthreshold from Figure 4 where P1 has input SKAHE

and P2 has inputs (𝑤 ′′
𝑖
)𝑖∈[𝑛′′] , setting 𝜏 , _1, and 𝑡1 as above. Let (val𝑖)𝑖∈[𝑛′′] be the outputs that both parties receive (in the same order).

(5) For each 𝑖 = 1, . . . , 𝑛′′, P2
(a) selects 𝑑 ′

𝑖
from the 𝑖-th position in S (4) , and

(b) computes 𝑑 ′′
𝑖
=

{
𝑑 ′
𝑖

if val𝑖 ≠ 0

⊥ otherwise

.

P2 then sends (𝑑 ′′
𝑖
)𝑖∈[𝑛′′] to P1, again in the same order.

(6) For each 𝑑 ′′
𝑖
≠ ⊥, P1 decrypts ind𝑖 ← DecElGamal (SK1, 𝑑 ′′𝑖) and outputs {(ind𝑖 , val𝑖) | 𝑖 ∈ [𝑛′′] and 𝑑 ′′𝑖 ≠ ⊥}.

Figure 6: Our full protocol Πhist for computing private histograms.

9

Parameters: Thresholds 𝑇 and 𝑇 ′, privacy parameters Y
leakage

and 𝛿
leakage

, dummy index domain I, a set of messages

S = {(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)}𝑖∈[𝑛] .
Algorithm:
(1) Find _3, 𝑡3, 𝑟 , 𝑝,𝑇

′′
and {[𝑗 }𝑇 ≤ 𝑗≤𝑇 ′′ to satisfy Theorem 15

with 𝑇,𝑇 ′, Y = Y
leakage

/2, 𝛿 = 𝛿
leakage

/2(1 + exp(Y)) and
ˆ𝛿 = 𝛿

leakage
/2.

(2) S ← S ∪ SampleFrequencyDummies(_3, 𝑡3,𝑇 ,I).
(3) S ← S ∪ SampleDuplicateDummies(S, 𝑟 , 𝑝).
(4) S ← S ∪ SampleBlanketDummies({[𝑗 } 𝑗 ,𝑇 ,𝑇 ′′).
(5) Return S.

Figure 7: Algorithm SampleDummies.

Parameters: Threshold 𝑇 , noise parameters _3 and 𝑡3, dummy

index domain I
Algorithm:
(1) R ← ∅
(2) For every 𝑖 = 1, . . . ,𝑇 :

(a) Randomly draw 𝑁𝑖 from TSDLap(_3, 𝑡3).
(b) For 𝑗 = 1, . . . , 𝑁𝑖 :

(i) Randomly select 𝑥 ′ ←𝑅 I.
(ii) Perform Step 1 of Figure 6 𝑖 times, simulating a client

with input (𝑥 ′, 0). Add the resulting ciphertexts to R.
(3) Return R.

Figure 8: Algorithm SampleFrequencyDummies.

Parameters: AHE Public key PK, noise parameters 𝑟 and 𝑝 ,

dummy index domain I, a set of messages

S = {(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)}𝑖∈[𝑛] , where all 𝑏𝑖 are re-randomizeable

ElGamal ciphertexts.

Algorithm:
(1) R ← ∅
(2) For every 𝑖 ∈ [𝑛]:
(a) Randomly draw 𝑁𝑖 from NBin(𝑟, 𝑝).
(b) For 𝑗 = 1, . . . , 𝑁𝑖 add (𝑎𝑖 , 𝑏 ′𝑗 , EncAHE (PK, 0)) to R, where

𝑏 ′
𝑗
= RandomizeElGamal (𝑏 𝑗).

(3) Return R.

Figure 9: Algorithm SampleDuplicateDummies.

Parameters: Public key PK, noise intensities [𝑗 , dummy index

domain I, thresholds 𝑇,𝑇 ′′.
Algorithm:
(1) R ← ∅
(2) For every 𝑇 ≤ 𝑗 ≤ 𝑇 ′′:
(a) Repeat Poi([𝑗) times.

(i) Randomly select 𝑥 ′ ←𝑅 I.
(ii) Perform step 1 of fig. 6 𝑗 times, simulating a client with

input (𝑥 ′, 0). Add the resulting ciphertexts to R.
(3) Return R.

Figure 10: Algorithm SampleBlanketDummies.

Our main protocol is in Figure 6. It follows the outline in Figure 2.

In Step (1), each client 𝑖 starts by preparing three ciphertexts from

its (ind𝑖 , val𝑖) pair: One containing an encryption of the hash of

ind𝑖 , which is going to be used to obtain an OPRF value for ind𝑖 . The
second encrypts ind𝑖 (without the hash). This is used to recover the
cleartext bucket IDs that pass the threshold after aggregating. Fi-

nally, the clients generate homomorphic encryptions of their values,

using P1’s AHE public key, and then again encrypting the resulting

ciphertext under P2’s public key using standard encryption. This

allows P2 to homomorphically add up client contributions belong-

ing to the same bucket, while hiding the values from P1 until they
are aggregated via the outer encryption layer.

In Step (2), P1 exponentiates each first component with its secret

PRF key K, to hide the cleartext indices from P2. It then proceeds

to add dummy values as discussed in Section 4, using encryptions

of zero as the third component to ensure the dummies do not add

to the aggregated values. We describe the details of the dummy

sampling algorithm in Figures 7–10. The resulting set of ciphertexts

is shuffled and then sent to P2.
P2 can now in Step (3) decrypt all three components. After de-

cryption in Step (3a),

• ℎ′
𝑖
is equal to H(𝑢 ′

𝑖
)K,

• 𝑑𝑖 is, equivalent to EncElGamal (PK1, 𝑢 ′𝑖) (up to ciphertext ran-
domization), and

• 𝑤 ′
𝑖
is similarly equivalent to EncHE (PKAHE, 𝑣 ′𝑖),

for some index-value pair (𝑢 ′
𝑖
, 𝑣 ′
𝑖
), either contributed by a client, or

added by P1 as a dummy.

After decrypting, P2 homomorphically aggregates all third com-

ponents of triples that share the same first component, choosing

one of the second components arbitrarily. Now observe that at this

point, the number of aggregate buckets is not differentially private

from P1’s view, since P1 knows exactly how many dummy buckets

were added in Step (2a). To account for this, P2 has to add addi-

tional dummy buckets, which is done in the call to SampleBuckets
in Step (3d). After that, the parties invoke Πthreshold on the aggre-

gated values, obtaining the cleartext values above the threshold 𝜏 .

We have chosen to set 𝜏 to be more than Δ + 2𝑡1 to guarantee that

the dummies added by P2 in Step (2a) are always below 𝜏 even

after adding two TDLap samples. Note that this can potentially

be optimized if we allow dummies to be above the threshold with

probability 2
−𝜎

for a statistical security parameter 𝜎 . We leave this

optimization for future work.

Finally, in Step (5), P2 sends to P1 the second components corre-

sponding to values above the threshold, which allows P1 to obtain

the cleartext indices for those values.

Next, in Figure 11, we define the functionality with leakage, ˆFhist
for our protocol. While Fhist is already described in Figure 5, we

include it in Figure 11 to make the correlation between Fhist and
Lhist explicit. The definition of

ˆFhist follows Πhist (Figure 6). The

components of the leakage correspond to the noisy (anonymized)

histograms revealed to both parties throughout the protocol, where

one party learns the noise samples, and the other learns the noisy

histogram. Steps (3)–(5) in
ˆFhist correspond to the call to SampleDummies

in Step (2a) of Πhist, whereas Step (6) in
ˆFhist corresponds to the

call to SampleBuckets in Step (3d) of Πhist. Note that H4
is not

revealed to P1 directly, but only after adding noise to each entry, as

10

Public parameters:
• Boundary 𝑇 .

• Noise distribution parameters _1, _2, _3, 𝑡1, 𝑡2, 𝑡3, 𝑟 , 𝑝 and [𝑖
for 𝑖 ≥ 𝑇

Inputs:
Clients: Index-value pairs I = (ind𝑖 , val𝑖)𝑖∈[𝑛] .
Functionality:
(1) LetH0

be an anonymized histogram of the first components

of the inputs. That is, H0

𝑖
denotes the number of distinct

buckets in the input that appear exactly 𝑖 times.

(2) Initialize N1,N3,N4
to ∅.

(3) InitializeH1 ←H0
. For every 𝑖 = 1, . . . ,𝑇 :

(a) Draw 𝑁𝑖 ←𝑅 TSDLap(_3, 𝑡3).
(b) N1 ← N1 ∪ {(𝑖, 𝑁𝑖)}
(c) H1

𝑖
←H1

𝑖
+ 𝑁𝑖

(4) InitializeH2
to an empty histogram.

For every 𝑖 s.t.H1

𝑖
≠ 0, repeatH1

𝑖
times:

(a) Draw 𝑎 ←𝑅 NBin(𝑖 · 𝑟, 𝑝).
(b) H2

𝑖+𝑎 ←H
2

𝑖+𝑎 + 1
(5) InitializeH3 ←H2

. For every 𝑇 ≤ 𝑖 ≤ 𝑇 ′′:
(a) Draw 𝑁 ′

𝑖
←𝑅 Poi([𝑖)

(b) N3 ← N3 ∪ {(𝑖, 𝑁 ′
𝑖
)}

(c) H3

𝑖
←H3

𝑖
+ 𝑁 ′

𝑖

(6) Let I ′ =
(
(ind′𝑖 , val

′
𝑖)
)
𝑖∈[𝑛′] be the input I grouped by first

component, summing up the second components, shuffled.

For each 𝑗 ∈ [Δ]:
(a) Draw𝑀𝑗 from TSDLap(_2, 𝑡2)
(b) N4 ← N4 ∪ {(𝑗, 𝑀𝑗)}
(c) I ′ ← I ′ | |

(
(⊥, 𝑗)

)𝑀𝑗

(7) Let b (1) , b (2) ←𝑅 TDLap(_1, 𝑡1) |I
′ |
, and let b = b (1) + b (2) .

(8) Let I ′′ =
(
(ind𝑗 , val𝑗 + b 𝑗) | 𝑗 ∈ [|I ′ |],I ′𝑗 = (ind𝑗 , val𝑗)

)
.

(9) Define F P1
hist ← {(ind, val) | (ind, val) ∈ I

′′, val ≥ 𝜏}.
(10) Define F P2

hist ← ∅.
(11) Define V⊥ ← {val | (ind, val) ∈ I ′′, val < 𝜏} and V⊤ ←
{val | (ind, val) ∈ I ′′, val ≥ 𝜏}.

(12) LP1
hist ←

(
N1,N3, b (1) ,V⊥

)
, LP2

hist ←
(
H3,N4, b (2) ,V⊤

)
.

(13) The functionality with leakage ˆFhist is defined to be the joint

distribution

(
ˆF P1
hist,

ˆF P2
hist

)
with

ˆF Pi
hist =

(
F Pi
hist,L

Pi
hist

)
.

Figure 11: Functionality ˆFhist =
(
Fhist,Lhist

)
. We show that

Πhist securely implements Fhist with leakage Lhist.

part of LP1
threshold. Steps (7)–(9) correspond to the call to Πthreshold

in Step (4) of Πhist. Note that all dummy buckets added by P2 in
Step (6) will be below 𝜏 = Δ + 2𝑡1 + 1, and so no dummy buckets

will appear in F P1
hist. In Step (12) we define the leakage Lhist to both

parties. Note that we make the output of Πthreshold to P2 part of
the leakage here, since P2 does not have any output in Fhist.3

The following theorem establishes the security property of our

protocol, i.e., that it implements the intended functionality with

3
We could instead choose to reveal the output histogram to both parties in Fhist .
Since this would require an additional round of communication, we instead only have

P1 learn the output and thus regard the noisy values P2 learns in the thresholding

subprotocol as leakage.

Parameters: AHE Public key PK, noise parameters _2, 𝑡 .

Algorithm:
(1) R ← ∅
(2) For 𝑗 ∈ [Δ]:
(a) Sample𝑀𝑗 ← TSDLap(_2, 𝑡).
(b) For 𝑘 ∈ [𝑀𝑗], generate dummy record

(
⊥,⊥, Enc(PK, 𝑗)

)
,

and concatenate these dummies with R.
(3) Return R.

Figure 12: Algorithm SampleBuckets.

the intended leakage to each of the parties. Afterwards, we show

that the joint distribution of output and leakage is DP.

Theorem 8. Protocol Πhist (Figure 6) securely implements Fhist
(Figures 5, 11) with leakage Lhist (Figure 11).

Note that Y and 𝛿 in Figure 5 correspond to Ycounts and 𝛿counts in
Figures 5 and 11.

Proof. First, observe that the output of Πhist follows the same

distribution as Fhist from Figure 11 (or, equivalently, Figure 5). This

follows from the fact that the dummies added by P1 all have values
of 0, the correctness of the AHE scheme, and the fact that the noise

samples b follow the same distribution in Figure 11 and Figure 4.

We describe a simulator Simhist
1

, which takes as inputs 𝑛,LP1
hist =(

N1,N3, b (1) ,V⊥
)
, and (ind′𝑖 , val

′
𝑖)𝑖∈[𝑛′] from the output of Fhist,

and simulates the view ViewSimhist
1

in the protocol as follows:

(1) Simhist
1

generates 𝑛 random client contributions of the form(
EncElGamal (PK′,H(𝑢𝑖)), EncElGamal (PK, 𝑢𝑖), Enc(PK′′,𝑤𝑖)

)
,

where 𝑢𝑖 ←𝑅 U, 𝑣𝑖 ←𝑅 V ,𝑤𝑖 ← EncHE (PKAHE, 𝑣𝑖).
(2) To produce the noise samples generated in Steps (2) and

(4) of Figure 7, Simhist
1

uses N1,N3
from LP1

hist. For Step (3),

Simhist
1

samples [𝑛] times independently from NBin(𝑟, 𝑝).
(3) Simhist

1
recomputesLP1

threshold fromV
⊥
and the second com-

ponents of F P1
hist, subtracting b

(1)
.

(4) Simhist
1

then invokes the simulator Simthreshold
1

with inputs

SKAHE, F P1
threshold and LP1

threshold to generate the part of the

view coming from the thresholding protocol Πthreshold.

(5) Finally, to simulate the message received in Step (5), P1 com-

putes

(
EncElGamal (PK1, ind′′𝑖)

)
𝑖∈[𝑛′′] .

The indistinguishability of the simulated view ViewSimhist
1

that con-

sists of the messages generated above and the real execution view

ViewΠP1
hist

of P1 follows from a standard hybrid argument. We can

replace the random ciphertexts in Step (1) above by the real client

encryptions due to the semantic security of the encryption schemes

used. For Step (2), observe that the noise samples in LP1
hist follow

the same distribution as in SampleDummies. For Step (3), we rely

on the fact that the view produced by Simthreshold
1

is indistinguish-

able of the real view ViewΠP1
threshold

of the thresholding subprotocol

(Theorem 6). Finally, the encryptions in Step (4) encrypt the same

values as in the real protocol, since all indices drawn from I are

guaranteed to be below the threshold, as 𝜏 > 2𝑡 and all b𝑖 , b
′
𝑖
≤ 𝑡 in

11

Figure 4. Indistinguishability of the distributions follows from the

fact that ciphertexts are rerandomized by P2 in the real protocol.

Next we describe a simulator Simhist
2

for the view ViewΠP2
hist

of

P2 . It takes as inputs LP2
hist =

(
H3,N4, b (2) ,V⊤

)
, and simulates

the ViewSimhist
2

as follows:

(1) Simhist
2

samples random K←𝑅 Z𝑞 .

(2) Let 𝑖 ∈ H3
denote that H3

𝑖
> 0. For each 𝑖 ∈ H3

, Simhist
2

generatesH3

𝑖
values 𝑢𝑖

0
, . . . , 𝑢𝑖H3

𝑖

←𝑅 U, and then for each

𝑗 ∈ [H3

𝑖
] computes(

EncElGamal (PK′, (H(𝑢𝑖𝑗))
K), EncElGamal (PK, 𝑢𝑖𝑗), Enc(PK

′′,𝑤𝑖𝑗)
)

𝑖 times, where 𝑣𝑖
𝑗
←𝑅 V , 𝑤𝑖

𝑖
← EncHE (PKAHE, 𝑣𝑖𝑗), using

fresh randomness for each encryption.

(3) To simulate the noise samples generated in SampleBuckets,
Simhist

2
uses N4

directly.

(4) Let 𝑛′′ =
∑

𝑖∈H3

H3

𝑖
+ ∑
(𝑗,𝑀𝑗) ∈N4

𝑀𝑗 . For each 𝑖 ∈ [𝑛′′], Simhist
2

generates values 𝑣 ′
𝑖
←𝑅 V , and computes

𝑤 ′
𝑖
← EncHE (PKAHE, 𝑣 ′𝑖). Then, Sim

hist
2

invokes Simthreshold
2

with inputs

(𝑤 ′
𝑖
)𝑖∈[𝑛′′] , F P2

threshold = V⊤, and LP2
threshold = b (2) to simu-

late the view from the thresholding subprotocol.

The indistinguishability of the simulated view from the real view

follows again from a hybrid argument. For the message generated in

Step (2), observe that (H(ind𝑖))K is indistinguishable from random

when H is modeled as a random oracle, and hence the first com-

ponent is indistinguishable from the real view. For the second and

third component, indistinguishability follows from the semantic se-

curity of the encryption schemes used. For Step (3), the distribution

of N4
is the same as the one in SampleBuckets. Finally, for Step

(4), observe that 𝑛′′ follows the same distribution as in Step (3c)

of Πhist. Thus, we call the Simthreshold
2

with an input of the correct

size, and the resulting view is indistinguishable by Theorem 6. □

Clients colluding with servers. Note that the above security

arguments still hold when either P1 or P2 collude with any number

of semi-honest clients, as clients do not receive any messages, and

for any input the distribution of the outputs will be the same in

the ideal and real model. However, as mentioned in Section 2.3, our

protocol does not protect against malicious clients. In particular,

observe that our protocol requires the values H(ind𝑖)K to be indis-

tinguishable from random. Now consider an adversary controlling

P2 and client 𝑗 . If the client is allowed to deviate from the protocol,

instead of submitting an encryption of H(ind𝑗) as its first compo-

nent, it could submit H(ind′𝑗)
1

2 for a target ind′𝑗 . After P2 obtains

(𝑎′
𝑖
)𝑖∈[𝑛′] =

(
H(ind𝑖)K

)
𝑖∈[𝑛′] , it can now, for all 𝑖 ∈ [𝑛′], square

𝑎′
𝑖
and check if 𝑎′

𝑖
2 = 𝑎′

𝑖′ for any 𝑖
′ ≠ 𝑖 . If that is the case, then the

adversary knows that 𝑎′
𝑖′ = H(ind𝑗)K and that at least one other

client submitted ind𝑗 .
The above attack could be averted by having the client prove

that it indeed evaluated H correctly, using a ZKP-friendly hash

function as for example proposed by Grassi et al. [48]. However,

this still allows malicious clients to poison the result by providing

arbitrary large val𝑗 . We leave a complete extension of our protocol

to malicious clients for future work.

5.2.1 The Privacy Guarantees. We now prove that the outputs to

both parties combined with either of the leakages is DP.

Lemma 9. (F P1
hist,L

P1
hist, F

P2
hist) is (Y, 𝛿)-DP.

Proof. Firstly, F P2
hist is a constant and N

1
and N3

are indepen-

dent of the input. They are also independent of F P1
hist and the rest

of LP1
hist so can just be ignored.

P1 can subtract b (1)
𝑗

from each val𝑗 . This is a reversible operation

after which b
(1)
𝑗

is independent of the inputs and the values, so

b
(1)
𝑗

can then be ignored. To summarize, the only leakage left is

Ṽ⊥ :=

{
val𝑗 + b (2)𝑗 | 𝑗 ∈ [|I

′ |],I ′
𝑗
= (ind𝑗 , val𝑗), val𝑗 + b (2)𝑗 < 𝜏

}
.

Now consider two neighboring databases. If the user who has

different inputs (assumed wlog to be the first user) has in both cases

an index that is also held by someone else, then their change in

the values of those indices is (Ycounts, 𝛿counts)-DP by the Laplace

mechanism (using the randomness of b (2)).
If in both cases they have a unique index, then the corresponding

distributions of Ṽ⊥ are exactly the same. Furthermore, neither

indices will be in F P1
hist. Therefore, we achieve (0, 0)-DP in this case.

Finally, if the first user has a unique index in only one of the

databases (wlog 𝐷 ′), then we get DP by the following composition.

Let this has value val ∈ [Δ]; note that 𝑀val ∼ TSDLap(_2, 𝑡2) ad-
ditional indices with the same value were added in Step (6a). This

provides (Y
leakage

, 𝛿
leakage

)-DP forwhether the index is present. The
remaining difference is amongst the common index, whose value

changes by atmostΔ. Thus, the noise b (2) provides (Ycounts/2, 𝛿counts/2)-
DP for this value due to the Laplace mechanism. The result follows

immediately by composition. □

Lemma 10. (F P2
hist,L

P2
hist, F

P1
hist) is (Y, 𝛿)-DP.

Proof. Firstly, F P2
hist is constant,V

⊤
is a function of F P1

hist and

N4
is independent of the input and other components. It therefore

suffices to consider (H3, b (2) , F P1
hist). We have that (b (2) , F P1

hist) is
(Ycounts, 𝛿counts)-DP by exactly the same argument in the proof of

Theorem 7. Meanwhile by Theorem 15 (which we prove next in

Section 5.2.2) we know H3
is (Y

leakage
, 𝛿

leakage
)-DP and it is also

independent of (b (2) , F P1
hist), thus by basic composition of DP we

are done. □

5.2.2 Privacy Analysis of H3. To analyze the privacy of H3
, we

work mainly with the add/remove notion of DP; at the end, we

will transfer our result to substitution DP using the relationship

between the two described in Section 2.1.

Let D be a database and D ′ be the same but with the first entry

removed. Let H3
be computed from D and H3′

from D ′ by the

process in Figure 11. Recall thatH3
corresponds to Algorithm 7,

run by P1, and corresponding to the call to SampleDummies in
Step (2a) of Πhist (Figure 6). Let𝑚1 be the multiplicity of ind1 in D
and𝑚′

1
=𝑚1 − 1 be the multiplicity in D ′.

Hybrid protocol: per-multiplicity and duplication. We will

start by analyzing the hybrid method without Poisson supplement

12

noise described in the overview, i.e., the case 𝑇 = 𝑇 ′ of our final
improved method described in Section 4. As outlined in Section 4,

our analysis consists of two cases, based on whether the count is

below 𝑇 or above 𝑇 ′. In the former, the privacy guarantee follows

that of the truncated Laplace mechanism (e.g., [29]), which gives:

Lemma 11 (Privacy for Low Counts). H3 andH3′ are (Y, 𝛿)-
indistinguishable if𝑚1 ≤ 𝑇 , _ ≥ 2/Y and 𝑡 ≥ 1 + _ log(2/𝛿).

For the latter case, as outlined in Section 4, we can show that

1 + U★(𝑇 ′+1) ≡Y,𝛿 U★𝑇 ′
where U = NBin(𝑟, 𝑝). Using the tail

bound of negative binomial noise, we can select concrete parameters

as follows.

Lemma 12 (Privacy for High Counts). Let Y, 𝛿 ∈ (0, 1).H3 and
H3′ are (Y, 𝛿)-indistinguishable if𝑚1 > 𝑇 ′where𝑇 ′ ≥ 3 (1 + log(2/𝛿))·(
4

Y (1 + log(1/Y)) +
100

Y2

)
, 𝑟 = 3(1+log(2/𝛿))

𝑇 ′ and 𝑝 = 𝑒−0.2Y .

These lemmas are sufficient to prove privacy for the hybrid

method without Poisson supplement noise (i.e., if we take 𝑇 = 𝑇 ′

and [𝑗 = 0 for all 𝑗). In this case, we get the following theorem.

Theorem 13. Let Y, 𝛿 ∈ (0, 1). If 𝑇 = 𝑇 ′ ≥ 3 (1 + log(2/𝛿)) ·(
4

Y (1 + log(1/Y)) +
100

Y2

)
, _ ≥ 2/Y, 𝑡 ≥ 1+_ log(2/𝛿), 𝑟 = 3(1+log(2/𝛿))

𝑇 ′

and 𝑝 = 𝑒−0.2Y , then the algorithm given in Figure 7 is (Y, 𝛿)-add/remove
DP. It is then immediate that it is (2Y, (1 + exp(Y))𝛿)-DP.

Furthermore, for log(1/𝛿)/Y = 𝑜 (𝑛1/3), if we take 𝑇 (= 𝑇 ′) =

Θ(𝑛1/3), then the expected number of dummy messages generated
and sent in step (2) is Θ(𝑛2/3 log(1/𝛿)/Y)

To cover the case 𝑇 < 𝑚1 < 𝑇 ′, we must make use of the [𝑗 . Let

𝑁𝑖 ∼ NBin(𝑟𝑖, 𝑝) and let 𝜏𝑖, 𝑗 = P(𝑁𝑖 = 𝑗 − 𝑖) (this is the probability
that a message with multiplicity 𝑖 is duplicated to have multiplicity

𝑗). To consider the change made by increasing 𝑖 by one, we take

the smallest 𝑞 that allows the following breakdown, with 𝛼𝑖, 𝑗 , 𝛽𝑖, 𝑗
and 𝛾𝑖, 𝑗 distributions:

𝜏𝑖, 𝑗 = 𝑞𝑖𝛼𝑖, 𝑗 + (1 − 𝑞𝑖)𝛾𝑖, 𝑗 , (1)

and

𝜏𝑖+1, 𝑗 = 𝑞𝑖𝛽𝑖, 𝑗 + (1 − 𝑞𝑖)𝛾𝑖, 𝑗 . (2)

Further, define `𝑖 to be the smallest ` such that if 𝐴, 𝐵,𝐶 ∼ Poi(`)
are independent then

P

(
𝑞𝑖𝐴 + (1 − 𝑞𝑖)𝐶 + 1
𝑞𝑖𝐵 + (1 − 𝑞𝑖)𝐶

> exp Y

)
≤ 𝛿. (3)

The main privacy guarantee of this approach is stated below.

As mentioned earlier, this proof employs techniques from [35] by

viewing each supplement Poisson noise as a “clone”. The full proof

is deferred to Appendix A.4.

Lemma 14. If for all 𝑗

[𝑗 ≥ `𝑚′
1

(𝛼𝑚′
1
, 𝑗 + 𝛽𝑚′

1
, 𝑗 + 𝛾𝑚′

1
, 𝑗), (4)

thenH3 andH3′ are (Y, 𝛿)-indistinguishable
The final privacy guarantee is stated in the following theorem,

which is a straightforward combination of Lemmas 11, 12, and 14. It

is shown in our experiments that this protocol in practice achieves

an improvement over the 𝑇 = 𝑇 ′ case in communication. We also

provide a heuristic argument that the asymptotics are improved by

at least a factor of log(1/𝛿)1/3 in Appendix B.

Theorem 15. Let Y, 𝛿 ∈ (0, 1). For given 𝑇,𝑇 ′, let _ ≥ 2/Y, 𝑡 ≥
1 + _ log(2/𝛿), 𝑟 = 3(1+log(2/𝛿))

𝑇 ′ , 𝑝 = 𝑒−0.2Y . Further, let

[𝑗 = max

𝑇<𝑖<𝑇 ′
`𝑖 (𝛼𝑖, 𝑗 + 𝛽𝑖, 𝑗 + 𝛾𝑖, 𝑗), (5)

for all 𝑗 , and choose 𝑇 ′′ so that
∑
𝑗>𝑇 ′′ [𝑗 ≤ ˆ𝛿 .

Then so long as 𝑇 ′ ≥ 3 (1 + log(2/𝛿)) ·
(
4

Y (1 + log(1/Y)) +
100

Y2

)
,

then H3 is (Y, 𝛿)-add/remove DP. It is then immediate that it is
(2Y, (1 + exp(Y))𝛿 + ˆ𝛿)-DP.

6 EXPERIMENTAL EVALUATION
To evaluate our protocol, we optimize the DP parameters to mini-

mize communication. We then perform microbenchmarks to mea-

sure the computation time needed for each encryption scheme

used. The code needed to reproduce our results is available at

https://github.com/google-research/sparse_dp_histograms.

6.1 Encryption Schemes
We compare two instantiations of AHE: the Paillier cryptosys-

tem [28, 65], and the exponential ElGamal cryptosystem [27, 37].

The former is a well-known choice for AHE when ciphertext size

is a concern as in our case. The latter offers even faster encryption

and homomorphic operations, but the cost of decryption scales

with the encrypted value. This happens since 𝑥 is encrypted as

EncElGamal (𝑔𝑥), where 𝑔 is a generator of the underlying group. As
a result, two ciphertexts can be homomorphically added by multi-

plying them, but now standard ElGamal decryption only yields 𝑔𝑥 ,

and so solving for 𝑥 requires a discrete logarithm. Note however

that we have an upper bound on 𝑥 , since (up to the small additive

noise term) the value of every bucket will be less than 𝑛. To de-

crypt all buckets, we can simply pre-compute (𝑔𝑖)𝑖∈[𝑛] , and use

it to look up the decryption value. Therefore, amortized across all

user contributions, in the worst case, decryption requires a single

exponentiation in addition to standard ElGamal decryption. Note

that using Shanks’s algorithm [70] and its optimizations for elliptic

curve groups [21, 36], this cost can be further reduced for large 𝑛.

6.2 Computation and Communication Costs
In this section we report concrete computation and communication

costs for our protocol, as well as for the baseline solution based on

garbled circuits.

Microbenchmarks. In Table 1, we present CPU time microbench-

marks for the cryptographic operations used in our protocol, as

well as the corresponding ciphertext sizes. All experiments were

run on a Intel Xeon Platinum 8373C CPU @ 2.60GHz, single core.

We use an open-source implementation of Paillier and ElGamal

for our microbenchmarks [47]. To compare against the baseline

protocol using garbled circuits, we implement Figure 14 using the

EMP framework [74].

Noise Distributions and Parameters. Recall that our approach
is parameterized by noise distributions for per-entry noising and

duplication. For the former we use TSDLap(·) and for the latter

we use NBin(·). Moreover, our protocol takes a threshold 𝑇 , along

with the parameters of the above distributions to provide privacy

(according to Theorem 15).

13

https://github.com/google-research/sparse_dp_histograms

ElGamal Paillier Exp. ElGamal

Ciphertext size 64 bytes 256 bytes 64 bytes

Encrypt 102µs ± 1% 921µs ± 2% 152µs ± 1%

Randomize (offline) 101µs ± 1% — —

Randomize (online) 512ns ± 1% — —

Hom. Add — 2.30µs ± 8% 537ns ± 2%

Exp 101µs ± 0% — —

Decrypt 50.7µs ± 1% 369µs ± 1% 101µs ± 1%

Table 1: CPU microbenchmarks for the cryptographic op-
erations we need. For exponential ElGamal decryption, we
report the worst-case, amortized per-user cost.

For every choice of 𝑛 (number of clients) and the privacy param-

eters 𝜖, 𝛿 , we do a grid search over the values of 𝑇, 𝑡, 𝑟, 𝑝, {[𝑖 }𝑖∈[𝑛]
that results in a secure instance of the protocol

4
, and pick the

configuration that minimizes overall server communication, i.e.,

minimizes the number of dummy contributions inserted in step

(2) in Figure 6. In our experiments, we distribute the privacy bud-

get (𝜖, 𝛿) using basic composition as Ycounts = Yleakage = Y/2 (and
analogously for 𝛿) for each step as described in Figure 6. This pri-

vacy budget split is fixed for all our experiments. Throughout this

section, we assume Δ = 1.

Communication costs. Recall that in our protocol the clients do

a one-shot participation to initiate the protocol, and do not need

to stay online during the protocol execution. The communication

cost of our protocol for the client is 192 bytes (for any domain size

smaller than 2
252

, independent of Y and 𝑛). For the remainder, we

study the server communication costs. In Figure 13 (left) and Table 2

we report an upper bound on expected total communication costs

for any execution of our protocols. In other words, the reported

communication costs are for a worst-case input distribution that

maximizes communication, and could be lower in practice. For

example, when grouping by pseudoindices in step (4) of Figure 6,

we assume that the number of different indices in the input is 𝑛,

which results in the maximum possible communication for that

step.

Figure 13 (left) shows that our protocols clearly outperform the

baseline protocol based on garbled circuits. In fact, communication

costs for the baseline are prohibitive, requiring over 400𝐾𝐵 of server

communication per client for 𝑛 = 10
5
clients, with per client cost

that increases with the number of clients (the setting with 𝑛 = 10
6

requires 600𝐾𝐵 of server communication per client). In contrast

(see Table 2), for 𝜖 = 0.5, a high-privacy setting, our protocol

requires roughly 1KB (for 𝑛 = 10
5
) and 0.5KB (for 𝑛 = 10

6
) of server

communication per client. This is more than a 400× and a 1200×
improvement, respectively, for these settings. For larger 𝑛 the per

client cost of our solution keeps decreasing, resulting in less than

0.4KB per client for 𝑛 ≥ 10
7
. Moreover, Figure 13 (left) shows the

improvements offered by our most optimal version. In particular,

for Y = 1, 𝑛 = 10
6
, the optimized version incurs less than 1KB of

total per-client communication, while the basic version requires

over 2KB.

4
We use a “numerical” version of Lemma 12, stated as Lemma 18 in the appendix,

together with the setting of [𝑗 ’s as in Theorem 15.

Figure 13 (right) shows how the total communication scales as

𝑛 grows, for different values of 𝜖 . Note that the per-client cost ap-

proaches a constant as 𝑛 grows. This is a nice feature of an 𝑂 (𝑛)
communication protocol, as opposed to the garbled circuits base-

line, which has communication complexity Ω(𝑛 log𝑛) (ignoring the
logarithmic dependence on |𝐷 |). More concretely, in our protocol,

the overhead on top of sending the encrypted client data, i.e., the

dummy generation in Step (2) of Figure 6, is 𝑜 (𝑛). Thus the per-
client communication across the servers approaches the (constant)

client communication cost as 𝑛 increases. The same observation ap-

plies to computation (Figure 13, right). For large enough 𝑛 the costs

that the servers incur approaches the aggregated cost incurred by

all clients. In particular, for a billion clients, with 𝜖 = 1, our protocol

requires 268 bytes of server communication, per client.

7 CONCLUSIONS AND OPEN QUESTIONS
In this paper we showed how to construct distributed two-server

protocols to compute sparse histograms with DP. Similar to central

DP mechanisms, our protocol achieves communication and com-

putation efficiency that are independent of the domain size and

only proportional to the number of client contributions and the

histogram sparsity. Our protocols outperform the baseline that uses

only garbled circuits, by revealing a DP view of the data to the two

servers. It remains an open question if this is optimal, and if not,

what the lower bound is in terms of communication and computa-

tion overhead for any given leakage and privacy parameters.

While our protocol protects against arbitrary collusions of clients

with one of the two servers, it does not protect against malicious

clients. Possible approaches to protect against these in future work

include using ZKP-friendly hash functions, switching to a mali-

ciously secure shared-key OPRF, and range proofs for client values.

We also pose a full formal treatment of MPC protocols with

DP leakage as an open question. In particular, while our approach

allows composing protocols in an MPC sense, we still proved DP

of our end-to-end protocol by itself, without any composition into

sub-protocols. A composition theorem for MPC protocols with DP

leakage could simplify the development of future protocols with

similar guarantees as ours.

REFERENCES
[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. 1983. An𝑂 (𝑛 log𝑛) Sorting

Network. In STOC. 1–9.
[2] Francesco Aldà and Hans Ulrich Simon. 2018. A lower bound on the release of

differentially private integer partitions. IPL 129 (2018), 1–4.

[3] Abdelrahaman Aly, Emmanuela Orsini, Dragos Rotaru, Nigel P. Smart, and Tim

Wood. 2019. Zaphod: Efficiently Combining LSSS and Garbled Circuits in SCALE.

In WAHC.
[4] Apple and Google. 2021. Exposure Notifications Private Analytics. https://github.

com/google/exposure-notifications-android/blob/master/doc/ENPA.pdf.

[5] Victor Balcer and Albert Cheu. 2020. Separating Local & Shuffled Differential

Privacy via Histograms. In ITC. 1:1–1:14.
[6] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. 2019. The Privacy

Blanket of the Shuffle Model. In CRYPTO. 638–667.
[7] Kenneth E. Batcher. 1968. Sorting Networks and Their Applications. In AFIPS

Spring Joint Computing Conference. 307–314.
[8] Amos Beimel, Kobbi Nissim, and Eran Omri. 2008. Distributed private data

analysis: Simultaneously solving how and what. In CRYPTO. 451–468.
[9] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-

iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic

Overhead. In CCS.
[10] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnés, and Bernhard

14

https://github.com/google/exposure-notifications-android/blob/master/doc/ENPA.pdf
https://github.com/google/exposure-notifications-android/blob/master/doc/ENPA.pdf

Y 𝑛 P1 offline P1 online P1 total P1 comm. P2 offline P2 online P2 total P2 comm. total time total comm.

0.5

10
5

3.67 0.92 4.59 1539 0.15 1.22 1.37 64 5.97 1603

10
6

1.15 0.36 1.51 482 0.15 0.38 0.54 64 2.05 547

10
7

0.70 0.26 0.96 294 0.15 0.23 0.39 64 1.34 358

10
8

0.56 0.23 0.78 234 0.15 0.19 0.34 64 1.12 298

10
9

0.50 0.21 0.72 211 0.15 0.17 0.32 64 1.04 275

1.0

10
5

2.11 0.57 2.68 883 0.15 0.70 0.85 64 3.53 947

10
6

0.91 0.31 1.22 382 0.15 0.30 0.46 64 1.67 447

10
7

0.63 0.24 0.87 263 0.15 0.21 0.36 64 1.23 328

10
8

0.53 0.22 0.75 222 0.15 0.18 0.33 64 1.08 287

10
9

0.49 0.21 0.70 205 0.15 0.16 0.32 64 1.02 270

2.0

10
5

1.49 0.43 1.92 623 0.15 0.50 0.65 65 2.57 688

10
6

0.79 0.28 1.06 330 0.15 0.26 0.42 65 1.48 394

10
7

0.59 0.23 0.82 246 0.15 0.20 0.35 65 1.17 310

10
8

0.51 0.22 0.73 215 0.15 0.17 0.32 65 1.05 280

10
9

0.48 0.21 0.69 203 0.15 0.16 0.31 65 1.01 267

Table 2: Per-client computation (in ms) and communication cost (in bytes) of our protocol for different values of Y, 𝑛, and
𝛿 = 10

−11. We use exponential ElGamal as additively homomorphic encryption scheme. See table 3 for results using Paillier.
The client cost, which is independent of Y and 𝑛, is 0.46ms CPU time and 192 bytes of communication.

Figure 13: Per-client cost of our protocols. (Left) Total worst-case communication for the garbled circuits baseline, and the two
variants of our protocol: the one with Negative Binomial noise for duplication (Dup-Hist), and the optimized variant with
additional Poisson noise (Dup-Hist, opt.), for 𝜖 = 1/2 and 𝛿 = 10

−11. (Middle) Total server computation (offline+online), for
several values of 𝜖. (Right) Total worst-case server communication for several values of 𝜖.

Seefeld. 2017. Prochlo: Strong Privacy for Analytics in the Crowd. In SOSP.
441–459.

[11] Jeremiah Blocki, Anupam Datta, and Joseph Bonneau. 2016. Differentially Private

Password Frequency Lists. In NDSS.
[12] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. 2016. Privacy-

preserving tax fraud detection in the cloud with realistic data volumes. Cy-

bernetica Research, Report, https://cyber.ee/research/reports/T-4-24-Privacy-

preserving-tax-fraud-detection-in-the-cloud-with-realistic-data-volumes.pdf.

[13] Jonas Böhler and Florian Kerschbaum. 2021. Secure Multi-party Computation of

Differentially Private Heavy Hitters. In CCS. 2361–2377.
[14] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy-Preserving Machine Learning. In CCS.
[15] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2021. Lightweight Techniques for Private Heavy Hitters. In SP. 762–776.
[16] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Improve-

ments and Extensions. In CCS. 1292–1303.
[17] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko.

2022. MOTION–A Framework for Mixed-Protocol Multi-Party Computation.

ACM Trans. Priv. Sec. 25, 2 (2022), 1–35.

[18] Mark Bun, Kobbi Nissim, and Uri Stemmer. 2019. Simultaneous Private Learning

of Multiple Concepts. JMLR 20 (2019), 94:1–94:34.

[19] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions

and More. In SP.
[20] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. 2012. Optimal Lower Bound for

Differentially Private Multi-party Aggregation. In ESA. 277–288.
[21] Panagiotis Chatzigiannis, Konstantinos Chalkias, and Valeria Nikolaenko. 2021.

Homomorphic decryption in blockchains via compressed discrete-log lookup

tables. In DPM/CBT@ESORICS. 328–339.
[22] Albert Cheu, Adam D. Smith, Jonathan R. Ullman, David Zeber, and Maxim

Zhilyaev. 2019. Distributed Differential Privacy via Shuffling. In EUROCRYPT.
375–403.

[23] Albert Cheu and Maxim Zhilyaev. 2021. Differentially Private Histograms in the

Shuffle Model from Fake Users. CoRR abs/2104.02739 (2021).

[24] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, and Thanh T. L. Tran.

2012. Differentially Private Summaries for Sparse Data. In ICDT.
[25] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In NSDI.
[26] Henry Corrigan-Gibbs, Dan Boneh, Gary Chen, Steven Englehardt, Robert

Helmer, Chris Hutten-Czapski, Anthony Miyaguchi, Eric Rescorla, and Peter

15

https://cyber.ee/research/reports/T-4-24-Privacy-preserving-tax-fraud-detection-in-the-cloud-with-realistic-data-volumes.pdf
https://cyber.ee/research/reports/T-4-24-Privacy-preserving-tax-fraud-detection-in-the-cloud-with-realistic-data-volumes.pdf

Saint-Andre. 2020. Privacy-preserving Firefox telemetry with Prio. https:

//rwc.iacr.org/2020/slides/Gibbs.pdf.

[27] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. 1997. A Secure and

Optimally Efficient Multi-Authority Election Scheme. In EUROCRYPT, Vol. 1233.
103–118.

[28] Ivan Damgård and Mads Jurik. 2001. A Generalisation, a Simplification and

Some Applications of Paillier’s Probabilistic Public-Key System. In PKC, Vol. 1992.
119–136.

[29] Damien Desfontaines, James Voss, Bryant Gipson, and Chinmoy Mandayam.

2022. Differentially private partition selection. PoPETS 2022, 1 (2022), 339–352.
[30] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation.

In EUROCRYPT. 486–503.
[31] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-

ing Noise to Sensitivity in Private Data Analysis. In TCC.
[32] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Abhradeep Thakurta. 2019. Amplification by Shuffling: From Local

to Central Differential Privacy via Anonymity. In SODA. 2468–2479.
[33] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In CCS.
[34] Alexandre Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. 2003. Lim-

iting privacy breaches in privacy preserving data mining. In PODS. 211–222.
[35] Vitaly Feldman, Audra McMillan, and Kunal Talwar. 2021. Hiding Among the

Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by

Shuffling. In FOCS. 954–964.
[36] Steven D. Galbraith, Ping Wang, and Fangguo Zhang. 2017. Computing elliptic

curve discrete logarithms with improved baby-step giant-step algorithm. Adv.
Math. Commun. 11, 3 (2017), 453–469.

[37] Taher El Gamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms. In CRYPTO, Vol. 196. 10–18.
[38] Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin Manurangsi, Rasmus Pagh, and

Ameya Velingker. 2020. Pure Differentially Private Summation from Anonymous

Messages. In ITC. 15:1–15:23.
[39] Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya Velingker.

2021. On the Power of Multiple Anonymous Messages: Frequency Estimation and

Selection in the Shuffle Model of Differential Privacy. In EUROCRYPT. 463–488.
[40] Badih Ghazi, Ben Kreuter, Ravi Kumar, Pasin Manurangsi, Jiayu Peng, Evgeny

Skvortsov, Yao Wang, and Craig Wright. 2022. Multiparty Reach and Frequency

Histogram: Private, Secure, and Practical. PoPETS 2022, 1 (2022), 373–395.
[41] Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. 2021. User-Level Differentially

Private Learning via Correlated Sampling. In NeurIPS.
[42] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Rasmus Pagh. 2020. Private

Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing

Communication Overhead. In ICML. 3505–3514.
[43] Oded Goldreich. 2006. Foundations of Cryptography: Volume 1. Cambridge

University Press, USA.

[44] Oded Goldreich. 2009. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press.

[45] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental

game. In STOC. 218–229.
[46] S Goldwasser, S Micali, and C Rackoff. 1985. The Knowledge Complexity of

Interactive Proof-Systems. In STOC.
[47] Google. 2019. Private Join and Compute. https://github.com/google/private-join-

and-compute/.

[48] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. 2021. Poseidon: A New Hash Function for Zero-Knowledge

Proof Systems. In USENIX. 519–535.
[49] Adam Groce, Peter Rindal, and Mike Rosulek. 2019. Cheaper Private Set Inter-

section via Differentially Private Leakage. PoPETS 2019, 3 (2019), 6–25.
[50] Michael Hay, Chao Li, Gerome Miklau, and David D. Jensen. 2009. Accurate

Estimation of the Degree Distribution of Private Networks. In ICDM. 169–178.

[51] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting

the Accuracy of Differentially Private Histograms Through Consistency. VLDB
3, 1 (2010), 1021–1032.

[52] Yan Huang, David Evans, and Jonathan Katz. 2012. Private Set Intersection: Are

Garbled Circuits Better than Custom Protocols?. In NDSS.
[53] Stanislaw Jarecki and Xiaomin Liu. 2010. Fast Secure Computation of Set Inter-

section. In SCN.
[54] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhod-

nikova, and Adam Smith. 2008. What Can We Learn Privately?. In FOCS.
[55] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computa-

tion. In CCS.
[56] Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros

Ntoulas. 2009. Releasing Search Queries and Clicks Privately. In WWW.

[57] Vasileios Lampos, Andrew C Miller, Steve Crossan, and Christian Stefansen.

2015. Advances in nowcasting influenza-like illness rates using search query

logs. Scientific Reports 12760 (2015). Issue 5.

[58] Yehuda Lindell. 2017. How to Simulate It - A Tutorial on the Simulation Proof

Technique. In Tutorials on the Foundations of Cryptography. Springer International
Publishing, 277–346.

[59] Yehuda Lindell. 2020. Secure Multiparty Computation. CACM 64, 1 (2020), 86–96.

[60] Pasin Manurangsi. 2022. Tight Bounds for Differentially Private Anonymized

Histograms. In SOSA. 203–213.
[61] Sahar Mazloom and S. Dov Gordon. 2018. Secure Computation with Differentially

Private Access Patterns. In CCS. 490–507.
[62] Frank McSherry and Ratul Mahajan. 2010. Differentially-Private Network Trace

Analysis. SIGCOMM Comput. Commun. Rev. 40, 4 (aug 2010), 123–134.
[63] Catherine A. Meadows. 1986. A More Efficient Cryptographic Matchmaking

Protocol for Use in the Absence of a Continuously Available Third Party. In SP.
134–137.

[64] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Compu-

tational Differential Privacy. In CRYPTO.
[65] Pascal Paillier. 1999. Public-Key Cryptosystems Based on Composite Degree

Residuosity Classes. In EUROCRYPT, Vol. 1592. 223–238.
[66] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Understanding Hierarchi-

cal Methods for Differentially Private Histograms. VLDB 6, 14 (2013).

[67] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen. 2019.

Honeycrisp: Large-Scale Differentially Private Aggregation without a Trusted

Core. In SOSP.
[68] Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C. Pierce. 2020.

Orchard: Differentially Private Analytics at Scale. In OSDI.
[69] Phillipp Schoppmann, Lennart Vogelsang, Adrià Gascón, and Borja Balle. 2020.

Secure and Scalable Document Similarity on Distributed Databases: Differential

Privacy to the Rescue. PoPETS 2020, 2 (2020), 209–229.
[70] Daniel Shanks. 1971. Class number, a theory of factorization, and genera. In Proc.

of Symp. Math. Soc., 1971, Vol. 20. 41–440.
[71] Ananda Theertha Suresh. 2019. Differentially Private Anonymized Histograms.

In NeurIPS. 7969–7979.
[72] Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. 2021. DP-

cryptography: marrying differential privacy and cryptography in emerging ap-

plications. CACM 64, 2 (2021), 84–93.

[73] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. 2017. Locally

Differentially Private Protocols for Frequency Estimation. In USENIX.
[74] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[75] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. 2017. Global-Scale Secure

Multiparty Computation. In CCS.
[76] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In FOCS.

162–167.

[77] Jun Zhang, Xiaokui Xiao, and Xing Xie. 2016. PrivTree: A Differentially Private

Algorithm for Hierarchical Decompositions. In SIGMOD. 155–170.
[78] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li.

2020. Federated Heavy Hitters Discovery with Differential Privacy. In AISTATS.
3837–3847.

A MISSING PROOFS FROM SECTION 5.2.2
Lemma 16 (Post-Processing of DP). Let U1,U2 be distribu-

tions. Let 𝑓 be a possibly randomized function that takes in values in
supp(U1) ∪ supp(U2). Then, 𝑑Y (𝑓 (U1)∥ 𝑓 (U2)) ≤ 𝑑Y (U1∥U2).

Lemma 17 (DP Basic Composition). LetU1,U2,U3,U4 be dis-
tributions. Then, we have 𝑑Y (U1 ⊗U2∥U3 ⊗U4) ≤ 𝑑Y/2 (U1∥U3) +
𝑑Y/2 (U2∥U4).

A.1 Proof of Lemma 11
Proof. Notice that H3

(resp. H ′3) is a post-processing of H1

(resp.H ′1). Therefore, we may apply Lemma 16 to conclude that

𝑑Y (H3∥H ′3) ≤ 𝑑Y (H1∥H ′1) .

Recall that N1 = (𝑁𝑖)𝑖 denote the noise added to the histogram in

the first step. We can further rearrange the RHS above as

𝑑Y (H1∥H ′1)
= 𝑑Y (H0 + N∥H ′0 + N)
= 𝑑Y (H0 −H0 + N1∥N1)
= 𝑑Y (1𝑚1

− 1𝑚1−1 + N1∥N1)
16

https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://rwc.iacr.org/2020/slides/Gibbs.pdf
https://github.com/emp-toolkit

Lemma 17

= 𝑑Y/2 (1 + 𝑁𝑚1
∥𝑁𝑚1

) + 𝑑Y/2 (−1 + 𝑁𝑚1−1∥𝑁𝑚1−1)
≤ 𝛿,

where the last inequality follows from the standard analysis of

the truncated discrete Laplace mechanism (see e.g., [29]) and our

setting of parameters.

The argument above shows that𝑑Y (H3∥H ′3) ≤ Y. An analogous
argument also implies 𝑑Y (H ′3∥H3) ≤ Y. As a result,H3

andH ′3
are (𝜖, 𝛿)-indistinguishable. □

A.2 Proof of Lemma 12
Lemma 18 (Generic Privacy for High Counts). Let U :=

NBin(𝑟, 𝑝). TheH3 andH ′3 are (𝜖, 𝛿)-indistinguishable if𝑚1 > 𝑇 ′

and the following condition holds:

𝑑Y (U★(𝑇 ′+1) + 1∥U★𝑇 ′) ≤ 𝛿, (6)

and

𝑑Y (U★𝑇 ′ ∥U★(𝑇 ′+1) + 1) ≤ 𝛿. (7)

Proof. Suppose that the two conditions hold. Consider𝑑Y (H3∥H ′3).
Since H3

(resp. H ′3) is a post-processing of H2
(resp. H ′2), we

may apply Lemma 16 to derive

𝑑Y (H3∥H ′3) ≤ 𝑑Y (H2∥H ′2) .
Let Dcommon denote the database resulting from removing all oc-
curences of ind1. Then, letHcommon denote the (randomized) output

if we were to run the algorithm on ind1. Notice that we may gen-

erateH2
by letting it beHcommon + 1𝑋 where 𝑋 ∼ NBin(𝑟𝑚1, 𝑝);

similarly,H ′2 has the same distribution asHcommon + 1𝑋 ′ where
𝑋 ′ ∼ NBin(𝑟 (𝑚1 − 1), 𝑝). Therefore, we have

𝑑Y (H2∥H ′2) = 𝑑Y (Hcommon + 1𝑋 ∥Hcommon + 1𝑋 ′)
≤ 𝑑Y (1𝑋 ∥1𝑋 ′)
= 𝑑Y (𝑋 ∥𝑋 ′),

where the first inequality again follows from Lemma 16.

Observe again that if we let𝑌 ∼ NBin(𝑟 (𝑇 ′+1), 𝑝), 𝑌 ′ ∼ NBin(𝑟𝑇 ′, 𝑝)
and 𝑍 ∼ NBin(𝑚 −𝑇 ′ − 1, 𝑝), then we may write 𝑋 = 𝑌 + 𝑍 and

𝑋 = 𝑌 ′ + 𝑍 . Therefore, we may again apply Lemma 16 to arrive at

𝑑Y (𝑋 ∥𝑋 ′) ≤ 𝑑Y (𝑌 ∥𝑌 ′) = 𝑑Y (U★(𝑇 ′+1) + 1∥U★𝑇 ′) ≤ 𝛿,
where the second inequality follows from our first assumption.

Combining the previous three inequalities yields𝑑Y (H3∥H ′3) ≤
𝛿 . Via a similar derivation, we can also conclude that𝑑Y (H3∥H ′3) ≤
𝑑Y (U★𝑇 ′ ∥U★(𝑇 ′+1) + 1) ≤ 𝛿 . Therefore, we can conclude thatH3

andH ′3 are (Y, 𝛿)-indistinguishable as desired. □

A.2.1 Useful Lemmas. The following is a well-known but very

useful fact about hockey stick divergence.

Lemma 19. LetU1,U2,U3 be three distributions. Then,

𝑑Y (U1∥U2) ≤ 𝑑Y/2 (U1∥U3) + 𝑒Y/2 · 𝑑Y/2 (U3∥U2)

Proof of Lemma 19. We have

𝑑Y (U1∥U2) =
∑︁

𝑥 ∈supp(U1)
[𝑝U1

(𝑥) − 𝑒Y · 𝑝U2
(𝑥)]+

=
∑︁

𝑥 ∈supp(U1)

[
𝑝U1
(𝑥) − 𝑒Y/2 · 𝑝U3

(𝑥)

+ 𝑒Y/2 · 𝑝U3
(𝑥) − 𝑒Y · 𝑝U2

(𝑥)
]
+

≤
∑︁

𝑥 ∈supp(U1)
[𝑝U1

(𝑥) − 𝑒Y/2 · 𝑝U3
(𝑥)]+∑︁

𝑥 ∈supp(U1)
[𝑒Y/2 · 𝑝U3

(𝑥) − 𝑒Y · 𝑝U2
(𝑥)]+

≤ 𝑑Y/2 (U1∥U3) + 𝑒Y/2 · 𝑑Y/2 (U3∥U2). □

To instantitate specific parameters for our algorithms, we will

also use the following result, which is a special case of Δ = 1 of [42,

Theorem 13].

Theorem 20. Let Y, 𝛿 ∈ (0, 1), 𝑝 = 𝑒−0.2Y , 𝑟 ≥ 3 (1 + log(1/𝛿))
andU = NBin(𝑟, 𝑝). Then, we have

𝑑Y (U + 1∥U), 𝑑Y (U∥U + 1) ≤ 𝛿.

A.2.2 Proof of Lemma 12.

Proof. For brevity, we write 𝑅 = 𝑟𝑇 ′ and �̃� = 𝑟 (𝑇 ′ + 1). We will

show the following two inequalities:

𝑑Y/2 (NBin(�̃�, 𝑝)∥NBin(𝑅, 𝑝)) ≤ 𝛿/4, (8)

and

𝑑Y/2 (NBin(𝑅, 𝑝)∥NBin(�̃�, 𝑝)) = 0. (9)

Before we prove (8) and (9), let us note how they imply the

(Y, 𝛿)-indistinguishability. Using (8), we may bound 𝑑Y (U★(𝑇 ′+1) +
1∥U★𝑇 ′) as follows:

𝑑Y (U★(𝑇 ′+1) + 1∥U★𝑇 ′)
= 𝑑Y (NBin(�̃�, 𝑝) + 1∥NBin(𝑅, 𝑝))
Lemma 19

≤ 𝑑Y/2 (NBin(�̃�, 𝑝) + 1∥NBin(�̃�, 𝑝))

+ 𝑒Y/2 · 𝑑Y/2 (NBin(�̃�, 𝑝)∥NBin(𝑅, 𝑝))
Theorem 20

≤ 𝛿/2 + 𝑒Y/2 · 𝑑Y/2 (NBin(�̃�, 𝑝)∥NBin(𝑅, 𝑝))
(8)

≤ 𝛿.

Similarly, we can also use (9) to derive 𝑑Y (U★𝑇 ′ ∥U★(𝑇 ′+1) + 1) ≤ 𝛿 .
Therefore, we may apply Lemma 18 to conclude thatH3

andH ′3
are (Y, 𝛿)-indistinguishabile.

We will next prove (8) and (9), starting with the former. For any

𝑥 ∈ N ∪ {0}, we have

𝑝NBin(𝑅,𝑝) (𝑥)
𝑝NBin(�̃�,𝑝) (𝑥)

=

(𝑥+𝑅−1
𝑥

)
(1 − 𝑝)𝑅𝑝𝑥(𝑥+�̃�−1

𝑥

)
(1 − 𝑝)�̃�𝑝𝑥

≤ 1

(1 − 𝑝)𝑟

≤ 1

(0.2Y)𝑟

≤ 𝑒Y/2,

where the last inequality follows from our choice of 𝑇 ′, which
implies that 𝑟 ≤ 4

Y (1 + log(1/Y)). Therefore, we simply have

𝑑Y/2 (NBin(𝑅, 𝑝)∥NBin(�̃�, 𝑝)) = 0, completing the proof of (9).

17

Finally, we will prove (8). In this case, we have

𝑝NBin(�̃�,𝑝) (𝑥)
𝑝NBin(𝑅,𝑝) (𝑥)

=

(𝑥+�̃�−1
𝑥

)
(1 − 𝑝)�̃�𝑝𝑥(𝑥+𝑅−1

𝑥

)
(1 − 𝑝)𝑅𝑝𝑥

=

(𝑥+�̃�−1
𝑥

)(𝑥+𝑅−1
𝑥

)
≤

(
�̃�/𝑅

)𝑥
=
(
1 + 1/𝑇 ′

)𝑥
≤ 𝑒𝑥/𝑇

′
,

which is less than 𝑒Y/2 for all 𝑥 ≤ 𝑇 ′Y/2. Therefore, we have
𝑑Y/2 (NBin(�̃�, 𝑝)∥NBin(𝑅, 𝑝)) ≤ Pr

𝑋∼NBin(�̃�,𝑝)
[𝑋 > 𝑇 ′Y/2] . (10)

It is well known that E[𝑒𝑡𝑋] =
(

1−𝑝
1−𝑝𝑒𝑡

)�̃�
for all 𝑡 < − ln𝑝 . Setting

𝑡 = 0.1Y, we have

Pr[𝑋 > 𝑇 ′Y/2] ≤ E[𝑒𝑡𝑋]/𝑒𝑡𝑇
′Y/2

=

(
1 − 𝑝
1 − 𝑝𝑒𝑡 · 𝑒

−𝑡𝑇 ′Y/(2�̃�)
)�̃�

=

(
(1 + 𝑒0.1Y) · 𝑒−0.05𝑇

′Y2/�̃�
)�̃�
,

≤
(
3 · 𝑒−0.05𝑇

′Y2/�̃�
)�̃�

where the second equality follows from our choice of 𝑡 .

Since 𝑇 ′ ≥ 1, we have �̃� ≤ 2𝑅 = 2𝑟𝑇 ′. Plugging this into the

above, we have

Pr[𝑋 > 𝑇 ′Y/2] ≤
(
3 · 𝑒−0.025Y

2/𝑟
)�̃�
.

Recall from our setting of parameters that 1/𝑟 ≥ 100/Y2 and there-

fore, 𝑒−0.025Y
2/𝑟 ≤ 1/10. Thus, we have

Pr[𝑋 > 𝑇 ′Y/2] ≤ exp(−�̃�) ≤ exp(−𝑅) ≤ 𝛿/4.
The above inequality together with (10) yields (8), which concludes

our proof. □

A.3 Proof of Theorem 13
Proof. The privacy statement is a straightforward combination

of Lemmas 11 and 12.

To analyze the number of dummies added we consider each step

of Figure 7 in turn.

In the first step the number of dummies added is

∑
𝑖 𝑖𝑁𝑖 (note

that adding one to entry 𝑖 of the anonymized histogram requires 𝑖

dummy messages). This has expected value 𝑇 (𝑇 + 1)𝑡/2.
In the second step the number of dummies added is given by the

number of messages so far multiplied by the number of times each

expects to be duplicated, i.e., (𝑛 +𝑇 (𝑇 + 1)𝑡/2)𝑟𝑝/(1 − 𝑝).
In the third step no dummies are added as the [𝑗 are all zero.

If we let 𝑅 = log(1/𝛿)/Y then 𝑡 = Θ(𝑅) and 𝑟𝑝/(1−𝑝) = Θ(𝑅/𝑇)
so the total number of dummies added is Θ(𝑇 2𝑅 +𝑛𝑅/𝑇 +𝑇𝑅2). The
first two terms together are minimised by taking 𝑇 = Θ(𝑛1/3) and
given the assumption that 𝑅 = 𝑜 (𝑛1/3) the final term is negligible.

Thus the optimal number of generated dummies is Θ(𝑛2/3𝑅). □

A.4 Proof of Lemma 14
Proof. Denote `𝑚′

1

and𝑞𝑚′
1

by ` and𝑞 respectively. Let𝐴, 𝐵,𝐶 ∼
Poi(`𝑚′

1

) and Γ ∼ Ber(𝑞𝑚′
1

). We will provide a function 𝑓 such that

bothH3
𝑑
= 𝑓 (𝐴, 𝐵 + Γ,𝐶 + 1 − Γ) andH ′3 𝑑= 𝑓 (𝐴 + Γ, 𝐵,𝐶 + 1 − Γ).

By Lemma 16 we will then have

𝑑Y (H3∥H ′3) ≤ 𝑑Y ((𝐴, 𝐵 + Γ,𝐶 + 1− Γ)∥(𝐴+ Γ, 𝐵,𝐶 + 1− Γ)) . (11)

To bound this divergence note that

P((𝐴+Γ, 𝐵,𝐶+1−Γ) = (𝑎, 𝑏, 𝑐)) = exp(−3`)`𝑎+𝑏+𝑐−1
𝑎!𝑏!𝑐!

(𝑞𝑎+(1−𝑞)𝑐),
(12)

and similarly

P((𝐴, 𝐵+Γ,𝐶+1−Γ) = (𝑎, 𝑏, 𝑐)) = exp(−3`)`𝑎+𝑏+𝑐−1
𝑎!𝑏!𝑐!

(𝑞𝑏+(1−𝑞)𝑐),
(13)

giving a likelihood ratio of

𝑞𝑎 + (1 − 𝑞)𝑐
𝑞𝑏 + (1 − 𝑞)𝑐 . (14)

In either case this is bounded by

𝑞𝐴 + (1 − 𝑞)𝐶 + 1
𝑞𝐵 + (1 − 𝑞)𝐶 , (15)

which by the definition of ` is > exp 𝜖 with probability ≤ 𝛿 . Thus
we have (𝜖, 𝛿)-indistinguishability.

It remains to exhibit such a function 𝑓 . To describe 𝑓 , let us

define Dcommon as the histogram resulting from removing all oc-

curences of ind1 from D and letH0

common denote its anonymized

histogram
5
. To compute 𝑓 (𝑎, 𝑏, 𝑐) start fromH0

common. Then apply

all but the SampleBlanketDummies step of Figure 7. Note that so

far the computation is independent of (𝑎, 𝑏, 𝑐).
Next we have the main step, in this step we sample from the

distribution 𝛼𝑚′
1

, 𝑎 times, and for each result 𝑗 increment the count

of multiplicity 𝑗 by one. Then repeat this process with distribution

𝛽𝑚′
1

, 𝑏 times and 𝛾𝑚′
1

, 𝑐 times.

Finally we add Poisson noise with mean [𝑗 − ` (𝛼𝑚′
1
, 𝑗 + 𝛽𝑚′

1
, 𝑗 +

𝛾𝑚′
1
, 𝑗) to multiplicity 𝑗 . The value of 𝑓 (𝑎, 𝑏, 𝑐) is given by the result-

ing histogram.

If (𝑎, 𝑏, 𝑐) were given by (𝐴, 𝐵,𝐶) then the main step is equivalent

to adding Poisson noise with mean ` (𝛼𝑚′
1
, 𝑗 + 𝛽𝑚′

1
, 𝑗 + 𝛾𝑚′

1
, 𝑗) to

multiplicity 𝑗 . Combining this with the noise added in the final step

has the exact same total effect as step SampleBlanketDummies in

Figure 7. In summary, 𝑓 (𝑎, 𝑏, 𝑐) 𝑑= H3

common, where H3

common is

the result of the entire procedure in Figure 11 but starting with

Dcommon.

If the input is instead given by (𝑎, 𝑏, 𝑐) = (𝐴 + Γ, 𝐵,𝐶 + 1 − Γ)
then the output is the same except with one extra value added to

a multiplicity chosen according to the distribution 𝑞𝛼𝑚′
1

+ (1 −
𝑞)𝛾𝑚′

1

i.e. the distribution of the multiplicity the extra value of

multiplicity𝑚′
1
after duplication. The output then exactly matches

the distribution ofH ′3, as required. The argument is identical for

theH3
case. □

5
In other words, H0

common is the result of reducing the𝑚1 entry of H0
by one or,

equivalently, the result of reducing the𝑚1 − 1 entry of H′0 by one.

18

B HEURISTIC ANALYSIS OF ASYMPTOTIC
COMMUNICATION REQUIREMENTS

To analyze the number of dummies sent in step (2) we consider

each step of Figure 7 separately. As in the proof of Theorem 13 we

let 𝑅 denote log(1/𝛿)/Y and find similarly that in the first two steps

we expect to add Θ(𝑅(𝑇 2 + (𝑛 +𝑇 2𝑅)/𝑇 ′)) dummies. The optimal

number of dummies here can be at most 𝑛2/3𝑅 as that bound was

achieved with the extra restrictions of Theorem 13. Therefore it

must be optimal to take 𝑇 ≤ 𝑂 (𝑛1/3) and combining this with

the assumption that 𝑅 = 𝑜 (𝑛1/3) the 𝑇 2𝑅/𝑇 ′ term must then be

negligible. Thus we can simplify this expression to Θ(𝑅𝑇 2 +𝑅𝑛/𝑇 ′).
In the third step we expect to add

∑
𝑗 𝑗[𝑗 dummies. To evaluate

this we must determine reasonable bounds on the values of [𝑗 .

Let us start by considering the value or `𝑖 as a function of 𝑞𝑖 .

Suppose for a given ` we could prove that 𝐴, 𝐵,𝐶 would with prob-

ability 1 − 𝛿 all are between 𝑙 and 𝑢. Then inequality (3) would be

satisfied so long as (𝑢 − 𝑙)/𝑙 ≤ (exp(Y) − 1)/𝑞𝑖 which implies it

suffices that 𝑙 ≥ 𝑢/(1 + Y/𝑞𝑖) or that 𝑙 ≥ 𝑞𝑖𝑢/Y. We thus wish to

show this happens for not too large a value of `.

If we set 𝑢 = 2.5` then using an upper tail bound for the Poisson

distribution P(𝐴 > 𝑢) ≤ exp(−(𝑢 − `)2/2(` + (𝑢 − `)/3) which is

in turn at most exp(−3`/4). We can then take 𝑙 = 2.5𝑞𝑖`/Y, a lower
tail bound for the Poisson distribution now tells us that P(𝐴 < 𝑙) ≤
exp(−(` − 𝑙)2/2` which here is at most exp(−` (1 − 2.5𝑞𝑖/Y)2/2).
If 𝑞𝑖 < Y/5 this is at most exp(−`/8). Thus so long as 𝑞𝑖 < Y/5 we
have `𝑖 ≤ 8 log(6/𝛿).

Let ℎ𝑖 = max𝑗 𝜏𝑖, 𝑗 and ℎ
′
𝑖
= max𝑗 |𝜏𝑖, 𝑗 − 𝜏𝑖+1, 𝑗 | The expression

𝛼𝑖, 𝑗 + 𝛽𝑖, 𝑗 + 𝛾𝑖, 𝑗 ≤ ℎ𝑖/(1 − 𝑞𝑖) + ℎ′𝑖/𝑞𝑖 . Thus so long as 𝑞𝑖 < Y/5

`𝑖 (𝛼𝑖, 𝑗 + 𝛽𝑖, 𝑗 + 𝛾𝑖, 𝑗) = 𝑂 (log(1/𝛿) (ℎ𝑖 + ℎ′𝑖/𝑞𝑖)) (16)

We now consider the values of the remaining uncertain quanti-

ties heuristically. Taking the negative binomial distribution to be

spread out smoothly as much as it’s variance suggests would give

ℎ𝑖 = 𝑂 (Y𝑇 ′/𝑖
√︁
log(1/𝛿)), 𝑞𝑖 ≤ ℎ𝑖 and ℎ′𝑖 = 𝑂 (𝑞𝑖Y𝑇 ′/𝑖

√︁
log(1/𝛿)).

It then follows that the bound 𝑞1 < Y/5 will hold for all 𝑖 that are
at least some Θ(𝑇 ′/

√︁
log(1/𝛿)) amount. To avoid having to worry

about this we can take 𝑇 to be that amount. Then for all 𝑖 > 𝑇 we

can approximate [𝑖 with the maximum of `𝑖 (𝛼𝑖, 𝑗 +𝛽𝑖, 𝑗 +𝛾𝑖, 𝑗) which
is given by 𝑂 (Y

√︁
log(1/𝛿)).

We also neglect the cost of the [𝑗 for 𝑗 > 𝑇
′
on the basis that

after negligibly beyond 𝑇 ′ these will go to zero very quickly.

The number of dummies for the first two steps isΘ(𝑅𝑇 2+𝑅𝑛/𝑇 ′),
which if we take 𝑇 ′ = (𝑛 log(1/𝛿))1/3 is Θ(𝑅𝑛2/3 log(1/𝛿)−1/3).
Meanwhile, the cost for the third step is𝑂 (𝑇 ′Y

√︁
log(1/𝛿)) ≤ Y𝑛1/3 log(1/𝛿),

which is a lower order term.

This suggests an improvement of at least a factor of log(1/𝛿)−1/3
over the 𝑇 = 𝑇 ′ case.

C DATA-OBLIVIOUS SPARSE HISTOGRAM
In this section we present a data-oblivious algorithm for sparse his-

tograms. As described in Section 3, we can directly implement this

functionality using generic MPC (e.g., garbled circuits), to obtain a

baseline protocol.

Input: Index-value pairs (ind𝑖 , val𝑖)𝑖∈[𝑛] , with val𝑖 ∈ [Δ].
Algorithm:

(1) Obliviously sort (ind𝑖 , val𝑖)𝑖∈[𝑛] by index.

(2) Linearly scan the sorted pairs from the previous step: For

each unique value ind𝑖 keep a single pair (ind𝑖 , val′𝑖), with
val′𝑖 as defined below, while replacing all other pairs with

(⊥,⊥).

val′𝑖 =
{
⊥ if 𝑠𝑖 + b𝑖 < 𝜏
𝑠𝑖 + b𝑖 otherwise,

where 𝑠𝑖 =
∑
{ 𝑗 | ind𝑗=ind𝑖 } val𝑗), b𝑖 ← DLap(2Δ/𝜖), and

𝜏 = Δ + 2Δ log(2/𝛿)/𝜖 .
(3) Obliviously shuffle the pairs from the previous step and

output the resulting array.

Figure 14: Data-oblivious implementation of the sparse his-
togram mechanism by Korolova et al. [56]

D A PROTOCOL BASED ON PRIVATE
HEAVY-HITTERS

In our previous protocols, we used the duplication method to pro-

vide DP for the counts at histogram entries that occur at least 𝑇

times in the clients’ input. This technique was leveraging only the

encrypted histogram entries IDs to provide DP without identifying

what is the set of entries that have counts larger than 𝑇 . On the

other hand, if the servers are able to identify those entries, then

they can directly add the appropriate DP noise with sensitivity

one, which would protect the contributions of a single client. (This

would indeed be more in line with the aforementioned central DP

algorithm [60].)

Identifying all items that occur with frequency greater than a

fixed threshold is the functionality of finding heavy hitters, which
has been widely studied in the DP literature. It is thus natural to

consider a solution consisting on (i) running a private HH protocol

to identify frequent indices (with multiplicities above a threshold

𝑇) and (ii) noising the identified indices. These two steps would

replace the duplication-based step mentioned above. We consider

this type of approach which, while it reduces the communication

cost coming purely from duplications of client contributions, it

introduces communication from the secure computation evaluating

the distributed PHH protocol. It also consumes from the DP budget

for the whole execution to identify the heavy hitters. As a result

the approach leveraging PHH as a first step has communication

advantage both asymptotically and numerically only in settings

with very small constant number of heavy hitters. We now present

the details.

Assume that we had a protocol Π that the servers can run for

P1 to obtain an YΠ-DP estimate of the set of all 𝑇 -heavy hitters, i.e.,

all indices with multiplicity greater than 𝑇 in the input. Π should

satisfy the correctness condition that if an index is a heavy hitter

then the protocol will output it, except with probability bounded by

𝛿Π . Then, an alternative protocol relying on Π proceeds as follows.

First, the servers run Π and P1 obtains indices 𝑖1, ..., 𝑖ℎ ∈ 𝐷 , an
estimate of the list of indices whose multiplicity is greater than 𝑇 .

19

Since P1 knows the indices 𝑖 𝑗 in the clear, it can simulate clients

an appropriate random number of times analogously to how multi-

plicities below𝑇 are noised with Laplace noise in step (2) of Figure 6.

This approach trades the dummy elements due to duplication in

step (2) of our protocol by 𝑂Y,𝛿1 (ℎ) dummy elements, at the addi-

tional cost of running Π and its associated privacy budget YΠ, 𝛿𝑃𝑖 .
This approach is thus beneficial for skewed input distributions,

where ℎ is expected to be small.

Let us remark the need for the correctness requirement on Π
mentioned above: consider two neighboring databases differing

in the first input (ind1, val1) and such that ind1 has multiplicity

𝑥 > 𝑇 in the input. If ind1 ∉ {𝑖1, ..., 𝑖𝑚}, i.e., ind1 is missed by Π,
then 𝑥 will not be noised sufficiently, which would break privacy.

However, this happens with probability bounded by 𝛿Π due to the

correctness requirement on Π.

D.1 Instantiating Π
In our experimental evaluation, presented next, we instantiated Π
by a secure 2-party implementation of PrivTree [77]. This approach

is analogous to the secure heavy hitters protocol of [15], which

relies on a hierarchical decomposition to find heavy hitters, with

the exception that a bias term is subtracted from the counts at every

level of the hierarchy. This achieves that the total privacy cost is

independent of the domain size |𝐷 |. In contrast, the approach of

Boneh et al. [15] treats each level of the hierarchical histogram

as an independent frequency oracle query, and applies composi-

tion across all log(|𝐷 |) levels. After experimenting with concrete

parameters, the first approach was superior in our setting.

Enforcing the correctness requirement mentioned above imposes

a constraint on the value of 𝑇 that the mechanism can tolerate, as

setting 𝑇 too small might result in false negatives with probabil-

ity larger than 𝛿 . Accounting for that fact yields the constraint

𝑇 > 𝑂

(
log(1/𝛿Π)+log(|𝐷 |)

YΠ

)
. Since the per-entry noise mechanism

to handle multiplicities below 𝑇 has to operate on a value of 𝑇

of at least that order, it adds a minimum ΩY,𝛿 (log(|𝐷 |)2) dummy

contributions with this approach. Hence, setting 𝑇 to its minimum

acceptable value, the total number of dummy indices added in step

(2) of our protocol (Figure 6) is𝑂Y,𝛿 (log(|𝐷 |)2 + ℎ). This shows the
fact mentioned above that the communication overhead depends

on ℎ, which is a property of the general approach based on heavy

hitters discovery. The dependence on the domain size, on the other

hand, is a consequence of an instantiation using PrivTree.

D.1.1 Experimental Evaluation. We compare the per-client server

communication of our best duplication-based protocol with a heavy-

hitters based solution built upon a secure evaluation of PrivTree.

We split the privacy budget for the duplication-based protocol as

described in Section 6. For the heavy-hitters based solution we use

a splitting so that the accuracy in the reported counts of the two

approaches is the same. In that setting, we compare per-client server

communication for several settings of the domain size (2
32
, 2

64
, and

2
128

) in Figure 15, and values of epsilon. In all the experiments,

the value of 𝑇 used by the heavy hitters protocols is reported, and

ℎ, i.e., the assumed maximum number of 𝑇 -heavy hitters in the

input, is set to 100 log(𝑛). We can see how for large enough 𝑛 the

heavy hitters based solution is competitive, but never results in a

remarkable advantage. Experimenting with alternatives to PrivTree,

as well as a more detailed empirical analysis, including validating

choices of ℎ using real-world data, is left for future work.

E ADDITIONAL EXPERIMENTAL RESULTS

20

Figure 15: Comparison of the approaches based on duplication and a secure evaluation of Privtree [77].

Y 𝑛 P1 offline P1 online P1 total P1 comm. P2 offline P2 online P2 total P2 comm. total time total comm.

0.5

10
5

9.82 1.21 11.02 3077 0.92 1.24 2.16 257 13.19 3334

10
6

3.08 0.63 3.71 965 0.92 0.39 1.31 256 5.02 1221

10
7

1.87 0.53 2.40 587 0.92 0.24 1.16 256 3.56 843

10
8

1.49 0.50 1.99 467 0.92 0.19 1.11 256 3.10 723

10
9

1.34 0.48 1.83 422 0.92 0.17 1.09 256 2.92 678

1.0

10
5

5.63 0.85 6.48 1766 0.92 0.71 1.63 257 8.12 2022

10
6

2.44 0.58 3.02 765 0.92 0.31 1.23 256 4.25 1021

10
7

1.68 0.51 2.19 527 0.92 0.22 1.14 256 3.33 783

10
8

1.42 0.49 1.91 445 0.92 0.18 1.10 256 3.01 701

10
9

1.31 0.48 1.79 411 0.92 0.17 1.09 256 2.88 667

2.0

10
5

3.98 0.71 4.68 1247 0.92 0.51 1.43 257 6.11 1503

10
6

2.10 0.55 2.65 660 0.92 0.27 1.19 257 3.84 916

10
7

1.57 0.50 2.07 491 0.92 0.20 1.12 257 3.19 748

10
8

1.37 0.49 1.86 430 0.92 0.18 1.10 257 2.96 687

10
9

1.29 0.48 1.77 405 0.92 0.17 1.09 257 2.86 661

Table 3: Per-client computation (in ms) and communication cost (in bytes) of our protocol for different values of Y, 𝑛, and
𝛿 = 10

−11, using Paillier as AHE. The client cost is 1.23 ms CPU time and 384 bytes of communication. See also table 2

21

	Abstract
	1 Introduction
	2 Background & Model
	2.1 Privacy
	2.2 Security
	2.3 Setting & Threat Model

	3 Target Functionality & Baselines
	3.1 Generic MPC Solution
	3.2 Shuffle DP

	4 Technical Overview
	4.1 Main Protocol Description
	4.2 Anonymous Histograms via Duplication

	5 Our Protocols
	5.1 Thresholding Protocol
	5.2 Private Sparse Histograms

	6 Experimental Evaluation
	6.1 Encryption Schemes
	6.2 Computation and Communication Costs

	7 Conclusions and Open Questions
	References
	A Missing Proofs from Section 5.2.2
	A.1 Proof of Lemma 11
	A.2 Proof of Lemma 12
	A.3 Proof of Theorem 13
	A.4 Proof of Lemma 14

	B Heuristic analysis of asymptotic communication requirements
	C Data-Oblivious Sparse Histogram
	D A Protocol Based on Private Heavy-Hitters
	D.1 Instantiating Pi

	E Additional experimental results

