Low-Delay 4, 5 and 6-Term Karatsuba Formulae in $\mathbb{F}_2[x]$ Using Overlap-free Splitting

Haining Fan

fhn@tsinghua.edu.cn

Abstract

The overlap-free splitting method, i.e., even-odd splitting and its generalization, can reduce the XOR delay of a Karatsuba multiplier. We use this method to derive Karatsuba formulae with one less XOR delay in each recursive iteration. These formulae need more multiplication operations, and are trade-offs between space and time.

We also show that "finding common subexpressions" performs better than "the refined identity" in 4-term formula: we reduce the number of XOR gates given by Cenk, Hasan and Negre in *IEEE T. Computers* in 2014.

Index Terms

Karatsuba algorithm, polynomial multiplication, even-odd splitting, overlap-free splitting

I. INTRODUCTION

Even-odd splitting of polynomials and its generalization were first used in Karatsuba algorithms in 2007 [1]. These splitting methods eliminate overlaps in the reconstruction step, and reduce XOR gate delays of subquadratic Karatsuba multipliers in $\mathbb{F}_2[x]$ by about 33% and 25% for $n = 2^t$ and $n = 3^t$ (t > 1), respectively. On the other hand, many efforts have been made to reduce the multiplicative complexity M(n) of a Karatsuba formula, and these improvements reduce space complexities of Karatsuba multipliers.

In this work, we focus on optimising the time complexity, and give 4-term and 5-term Karatsuba formulae with one less XOR gate delay in each recursive iteration. We first replace the original splitting method by the above overlap-free splitting method in splitting steps of the two existing low-M(n) formulae, and then reduce XOR delays by increasing M(n) slightly.

We also give an improvement on the 4-term formula presented by Cenk, Hasan and Negre in [2]. Their formula combines the overlap-free splitting method and "the refined identity" together to reduce both the XOR space complexity $S^{\oplus}(n)$ and the XOR time complexity $\mathcal{D}^{\oplus}(n)$. The idea behind "the refined identity" is presented by Zhou and Michalik [3] (for the case $n = 2^i$) and Bernstein [4]. The space and time complexities of formula in [2] are as follows:

$$\mathcal{S}^{\oplus}(n) = 9\mathcal{S}^{\oplus}(n/4) + 10n - 17 = \frac{47}{8}n^{\log_4 9} - 8n + \frac{17}{8} \quad and \quad \mathcal{D}^{\oplus}(n) = 4\log_4 n T_X = 2\log_2 n T_X,$$

where " T_X " is the delay of one 2-input XOR gate.

We optimise $S^{\oplus}(n)$ by marking common subexpressions explicitly. While the method "finding common subexpressions" performs worse for the case $n = 3^i$, see [2], it wins for $n = 4^i$. The new formula needs 1 less addition in each recursive iteration, and thus improves the above space complexity bound to:

$$\mathcal{S}^{\oplus}(n) = 9\mathcal{S}^{\oplus}(n/4) + 10n - 18 = \frac{46}{8}n^{\log_4 9} - 8n + \frac{18}{8} \quad and \quad \mathcal{D}^{\oplus}(n) = 4\log_4 n T_X = 2\log_2 n T_X.$$

XOR complexities of formulae in this work are listed in the following table.

n	Algorithm	#Multiplication	#XOR	XOR Gate Delay (T_X)
	[2]	9	$\frac{47}{8}n^{\log_4 9} - 8n + \frac{17}{8}$	$4\log_4 n = 2.00\log_2 n$
4^i	Eq. (2)	9	$\frac{46}{8}n^{\log_4 9} - 8n + \frac{18}{8}$	$4\log_4 n = 2.00\log_2 n$
	Eq. (3)	10		$3\log_4 n = 1.50\log_2 n$
	Schoolbook	16		$1.00\log_2 n$
5^i	Eq. (4)	13		$5\log_5 n \approx 2.15\log_2 n$
	Eq. (5)	15		$4\log_5 n \approx 1.72\log_2 n$
6^i	Eq. (8)	17		$5\log_6n\approx 1.93\log_2n$
	Eq. (9)	21		$4\log_6n\approx 1.55\log_2n$

TABLE I Comparisons of complexities

II. Improve $\mathcal{S}^\oplus(n)$ of the 4-Term Karatsuba Formula

Let $A = a_3x^3 + a_2x^2 + a_1x + a_0$, $B = b_3x^3 + b_2x^2 + b_1x + b_0$ and $C = AB = \sum_{i=0}^{6} c_ix^i$. Cenk, Hasan and Negre combine the overlap-free splitting method and the refined identity, and present a formula with low XOR delay [2, Section 3.3]. For the initial step n = 4, the numbers of XOR gates needed in the reconstruction step are listed in the following table:

Computations	Degree	#XOR
$R_0 = P_0 + xP_1 + x^2P_2 + x^3P_3$	$Deg(R_0) = 3$	0
$R_1 = (1+x)R_0$	$Deg(R_1) = 4$	3
$R_2 = R_1 + xP_{01} + x^3P_{23}$	$Deg(R_2) = 4$	2
$R_3 = P_{02} + x P_{13}$	$Deg(R_3) = 1$	0
$R_4 = (1+x)R_3$	$Deg(R_4) = 2$	1
$R_5 = R_4 + x P_{0123}$	$Deg(R_5) = 2$	1
$R_6 = (1 + x^2)R_2$	$Deg(R_6) = 6$	3
$C = R_6 + x^2 R_5$	x^2R_5 has 3 bits	3
Total		13

TABLE II Reconstruction Step for n = 4

In this table, product terms $P_i = a_i b_i$, $P_{01} = (a_0 + a_1)(b_0 + b_1)$, $P_{02} = (a_0 + a_2)(b_0 + b_2)$, $P_{13} = (a_1 + a_3)(b_1 + b_3)$, $P_{23} = (a_2 + a_3)(b_2 + b_3)$ and $P_{0123} = (a_0 + a_1 + a_2 + a_3)(b_0 + b_1 + b_2 + b_3)$ are elements in \mathbb{F}_2 . There are 2 * 5 = 10 XOR gates in P_{01} , P_{02} , P_{13} , P_{23} and P_{0123} . So we have $S^{\oplus}(4) = 10 + 13 = 23$.

The total number of XOR gates for $n = 4^i$ is given in Table 3 and Eq. (8) of [2]:

$$\begin{aligned} \mathcal{S}^{\oplus}(1) &= 0, \quad \mathcal{S}^{\oplus}(4) = 10 + 13 = 23, \\ \mathcal{S}^{\oplus}(n) &= 9\mathcal{S}^{\oplus}(n/4) + 10n - 17 = \frac{47}{8}n^{\log_4 9} - 8n + \frac{17}{8} \end{aligned}$$

We now optimise $S^{\oplus}(n)$ by finding common subexpressions. Given a k-term Karatsuba formula using the original Karatsuba splitting method, it is easy to transform it to a formula using the overlap-free splitting method: combining coefficients of x^i and x^{i+k} together for $0 \le i \le k-2$. Take k = 4 as an example, we transform the following 9-multiplication formula

$$C = P_0 + x(P_{01} + P_0 + P_1) + x^2(P_0 + P_1 + P_2 + P_{02}) + x^3(P_{0123} + P_{13} + P_{02} + P_{23} + P_2 + P_3 + P_{01} + P_0 + P_1) + x^4(P_{13} + P_1 + P_2 + P_3) + x^5(P_{23} + P_2 + P_3) + x^6P_3$$

to

$$C = x^{0}[P_{0} + x^{4}(P_{13} + P_{1} + P_{2} + P_{3})] + x^{2}[(P_{0} + P_{1} + P_{2} + P_{02}) + x^{4}P_{3}]$$
(1)
$$x[(P_{01} + P_{0} + P_{1}) + x^{4}(P_{23} + P_{2} + P_{3})] + x^{3}(P_{0123} + P_{13} + P_{02} + P_{23} + P_{2} + P_{3} + P_{01} + P_{0} + P_{1}).$$

This is a rewrite of the overlap-free formula in [2, Section 3.3]. Please note that coefficients of x^0 , x, x^2 and x^3 are summations of product terms P_* , and they are polynomials in $x^k = x^4$.

In order to count the number of XOR gates in this formula, we mark common subexpressions in different colors, denote the 3 shift-adds $((\cdots) + x^4(\cdots))$ by \oplus , and label the 12 actual "+"s in subscripts:

$$C = [P_0 \oplus x^4 (P_{13} +_1 P_1 +_2 P_2 +_3 P_3)] + x^2 [(P_0 +_4 P_1 +_5 P_2 +_6 P_{02}) \oplus x^4 P_3] + (2)$$
$$x[(P_{01} +_7 P_0 +_4 P_1) \oplus x^4 (P_{23} +_{11} P_2 +_3 P_3)] + x^3 (P_{0123} +_8 P_{13} +_9 P_{02} +_{10} P_{23} +_{11} P_2 +_3 P_3 +_{12} P_{01} +_7 P_0 +_4 P_1).$$

There are $2 * 5 * \frac{n}{4}$ XORs in products $P_{01}, P_{02}, P_{13}, P_{23}$ and P_{0123} . These products are polynomials in x^4 with the same degree $2 * (\frac{n}{4} - 1) = \frac{n}{2} - 2$. So the 3 shift-add \oplus operations need $3 * (\frac{n}{2} - 2)$ XOR gates, and the 12 actual $+_i$ operations $12 * (\frac{n}{2} - 1)$ XOR gates. Therefore, we have $10 * \frac{n}{4} + 3 * (\frac{n}{2} - 2) + 12 * (\frac{n}{2} - 1) = 10n - 18$ and

$$\begin{split} \mathcal{S}^{\oplus}(1) &= 0, \quad \mathcal{S}^{\oplus}(4) = 10 + 12 = 22, \qquad \text{Note} : \mathcal{S}^{\oplus}(4) = 23 \text{ in } [2] \\ \mathcal{S}^{\oplus}(n) &= 9 \mathcal{S}^{\oplus}(n/4) + 10n - 18 = \frac{46}{8} n^{\log_4 9} - 8n + \frac{18}{8}. \end{split}$$

This improves the bound $S^{\oplus}(n) = 9S^{\oplus}(n/4) + 10n - 17 = \frac{47}{8}n^{\log_4 9} - 8n + \frac{17}{8}$ presented in [2].

The XOR gate delay of coefficient of x^3 in (2) is $4T_X$ because we can compute it using

$$P_{0123} +_8 [P_{13} +_9 P_{02}] +_{10} [P_{23} +_{11} (P_2 +_3 P_3)] +_{12} [P_{01} +_7 (P_0 +_4 P_1)]$$

where P_{0123} and three $[\cdots]$ need $2T_X$ each. Therefore, the XOR gate delay of Eq. (2) is $\mathcal{D}^{\oplus}(n) = 4 \log_4 n T_X$.

The other advantage of this new overlap-free formula (2) is that products P_{01} , P_{02} , P_{13} , P_{23} and P_{0123} each have $2*(\frac{n}{4}-1)+1=\frac{n}{2}-1$ bits because their degrees are all $2*(\frac{n}{4}-1)=\frac{n}{2}-2$. But R_0 in [2, Table 3], which also uses the overlap-free splitting and has the same $\mathcal{D}^{\oplus}(n) = 4\log_4 n T_X$, has $4*(\frac{n}{2}-1) = 2n-4$ bits. We need to manipulate this long polynomial in the following step of R_1 , R_2 and R_6 .

We note that Find and Peralta adopt the original splitting method, and obtain the bound $S^{\oplus}(1) = 0$ and $S^{\oplus}(n) = 9S^{\oplus}(n/4) + \frac{34}{4}n - 12$ [5]. This is an improvement to Bernstein's bound $S^{\oplus}(n) = 9S^{\oplus}(n/4) + \frac{34}{4}n - 11$ [4, p. 327] or [2, Eq. (5)]. The XOR gate delays of these formulae are $\mathcal{D}^{\oplus}(n) = 5 \log_4 n T_X$ because of the overlap.

III. 4-TERM KARATSUBA FORMULA WITH 10-MULTIPLICATION AND $3-T_X$

In order to reduce the XOR delay in (1), we eliminate P_{0123} using the following identity

$$P_{0123} = P_{01} + P_{02} + P_{03} + P_{12} + P_{13} + P_{23}$$

This identity introduces 2 new multiplications P_{12} and P_{03} . So we have the following 10-multiplication formula:

$$C = x^{0}[P_{0} + x^{4}(P_{13} + P_{1} + P_{2} + P_{3})] + x^{2}[(P_{0} + P_{1} + P_{2} + P_{02}) + x^{4}P_{3}]$$
(3)

$$x[(P_{01} + P_{0} + P_{1}) + x^{4}(P_{23} + P_{2} + P_{3})] + x^{3}(P_{12} + P_{03} + [P_{2} + P_{3}] + [P_{0} + P_{1}])$$
(3)

$$= x^{0}\{[(P_{0} + x^{4}P_{1}) + x^{4}(P_{2} + P_{3})] + x^{4}P_{13}\} + x^{2}\{[(P_{0} + P_{1}) + (P_{2} + x^{4}P_{3})] + P_{02}\}$$
$$x\{[P_{01} + (P_{0} + P_{1})] + x^{4}[P_{23} + (P_{2} + P_{3})]\} + x^{3}\{P_{12} + P_{03} + (P_{2} + P_{3}) + (P_{0} + P_{1})\}.$$

The XOR gate delays of coefficients of x^0 , x, x^2 and x^3 in "{}" are all $3T_X$. So the final XOR gate delay is $\mathcal{D}^{\oplus}(n) = 3 \log_4 n T_X = 1.5 \log_2 n T_X$.

There are $2 * 6 * \frac{n}{4}$ XORs in products $P_{01}, P_{02}, P_{03}, P_{12}, P_{13}$ and P_{23} . These products are polynomials in x^4 with the same degree $2 * (\frac{n}{4} - 1) = \frac{n}{2} - 2$. So the 3 shift-add operations need $3 * (\frac{n}{2} - 2)$ XOR gates, and the 11 addition operations $11 * (\frac{n}{2} - 1)$ XOR gates. Therefore, we have $12 * \frac{n}{4} + 3 * (\frac{n}{2} - 2) + 11 * (\frac{n}{2} - 1) = 10n - 17$ and

$$\mathcal{S}^{\oplus}(1) = 0, \qquad \mathcal{S}^{\oplus}(4) = 23,$$
$$\mathcal{S}^{\oplus}(n) = 10\mathcal{S}^{\oplus}(n/4) + 10n - 17$$

IV. 5-TERM KARATSUBA FORMULA WITH 15-MULTIPLICATION AND 4- T_X

Let $A = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, $B = b_4x^4 + b_3x^3 + b_2x^2 + b_1x + b_0$ and $C = AB = \sum_{i=0}^{8} c_ix^i$. We transform the following 13-multiplication formula in [6] using the overlap-free splitting method. This formula is based on the CRT moduli polynomials $(x - \infty)^3$, x^3 , $(x + 1)^1$, $x^2 + x + 1$.

$$C = P_0 + x(P_0 + P_1 + P_{01}) + x^2(P_0 + P_1 + P_2 + P_{02}) + x^3(P_0 + P_4 + P_3 + P_2 + P_{24} + P_{01234} + P_{023} + P_{0134}) + x^4(P_0 + P_1 + P_{01} + P_4 + P_3 + P_{34} + P_{01234} + P_{023} + P_{124}) + x^5(P_0 + P_1 + P_2 + P_{02} + P_4 + P_{01234} + P_{124} + P_{0134}) + x^6(P_4 + P_3 + P_2 + P_{24}) + x^7(P_4 + P_3 + P_{34}) + x^8P_4.$$

The resulting low-delay formula is

$$C = x^{0}[P_{0} + x^{5}(P_{0} + P_{1} + P_{2} + P_{02} + P_{4} + P_{01234} + P_{124} + P_{0134})] + x^{1}[P_{0} + P_{1} + P_{01} + x^{5}(P_{4} + P_{3} + P_{2} + P_{24})] + x^{2}[P_{0} + P_{1} + P_{2} + P_{02} + x^{5}(P_{4} + P_{3} + P_{34})] + x^{3}[P_{0} + P_{4} + P_{3} + P_{2} + P_{24} + P_{01234} + P_{023} + P_{0134} + x^{5}P_{4}] + x^{4}[P_{0} + P_{1} + P_{01} + P_{4} + P_{3} + P_{34} + P_{01234} + P_{023} + P_{124}].$$
(4)

The XOR gate delays of coefficients of x^0 , x^3 and x^4 are all $5T_X$. In order to reduce it to $4T_X$, we use the identity $P_{01234} = P_{0134} + P_{023} + P_{124} + P_{03} + P_{14} + P_2$ to eliminate P_{01234} at the cost of introducing two new products P_{03} and P_{14} , and obtain the following expression of coefficient of x^4

$$c_4 = P_0 + P_1 + P_2 + P_3 + P_4 + P_{01} + P_{34} + P_{03} + P_{14} + P_{0134}$$

But the XOR delay of this formula is still $5T_X$. In order to reduce it to $4T_X$, We use the identity $P_{03} = P_0 + P_3 + a_0 * b_3 + a_3 * b_0$, which introduces two new products $a_0 * b_3$ and $a_3 * b_0$, and get the following $4T_X$ formula

$$c_4 = P_1 + P_2 + P_4 + P_{01} + P_{34} + a_0 * b_3 + a_3 * b_0 + P_{14} + P_{0134}.$$

For other coefficients, we have

$$[P_0 + P_4 + P_3 + P_2 + P_{24} + P_{01234} + P_{023} + P_{0134} + x^5 P_4]$$

= $P_0 + P_4 + P_3 + P_{24} + P_{124} + P_{03} + P_{14} + x^5 P_4$
= $P_4 + P_{24} + P_{124} + a_0 * b_3 + a_3 * b_0 + P_{14} + x^5 P_4$

and

$$[P_0 + x^5(P_0 + P_1 + P_2 + P_{02} + P_4 + P_{01234} + P_{124} + P_{0134})]$$

= $P_0 + x^5(P_0 + P_1 + P_2 + P_{02} + P_4 + P_{023} + P_{03} + P_{14} + P_2)$
= $P_0 + x^5(P_1 + P_3 + P_4 + P_{02} + P_{023} + a_0 * b_3 + a_3 * b_0 + P_{14}).$

The final $4T_X$ formula is

$$C = x^{0}[P_{0} + x^{5}(P_{1} + P_{3} + P_{4} + P_{02} + P_{023} + a_{0} * b_{3} + a_{3} * b_{0} + P_{14})] + x^{1}[P_{0} + P_{1} + P_{01} + x^{5}(P_{4} + P_{3} + P_{2} + P_{24})] + x^{2}[P_{0} + P_{1} + P_{2} + P_{02} + x^{5}(P_{4} + P_{3} + P_{34})] + x^{3}[P_{4} + P_{24} + P_{124} + a_{0} * b_{3} + a_{3} * b_{0} + P_{14} + x^{5}P_{4}] + x^{4}[P_{1} + P_{2} + P_{4} + P_{01} + P_{34} + a_{0} * b_{3} + a_{3} * b_{0} + P_{14} + P_{0134}].$$

We mark common subexpressions in the above formula as follows:

$$C = x^{0}[P_{0} + x^{5}(P_{1} + (P_{3} + P_{4}) + P_{02} + P_{023} + [a_{0} * b_{3} + a_{3} * b_{0} + P_{14}])] + x^{1}[\{P_{0} + P_{1} + x^{5}(P_{3} + P_{4})\} + x^{5}(P_{2} + P_{24}) + P_{01}] +$$
(5)

$$x^{2}[\{P_{0} + P_{1} + x^{5}(P_{3} + P_{4})\} + x^{5}P_{34} + P_{2} + P_{02}] +$$
(6)

$$x^{3}[P_{4} + P_{24} + P_{124} + [a_{0} * b_{3} + a_{3} * b_{0} + P_{14}] + x^{5}P_{4}] + x^{4}[P_{1} + P_{2} + P_{4} + P_{01} + P_{34} + [a_{0} * b_{3} + a_{3} * b_{0} + P_{14}] + P_{0134}].$$
(7)

There are $2*8*\frac{n}{5}$ XORs in products P_{01} , P_{02} , P_{14} , P_{24} , P_{34} , P_{023} , P_{124} and P_{0134} . These products are polynomials in x^5 with the same degree $2*(\frac{n}{5}-1)=\frac{2n}{5}-2$. We compute two " $\{\cdots\}$ "s in Eq. (5) and (6) once, and save 1 shift-add. Shift-adds $x^5(P_2+P_{24})$ in Eq. (5) and x^5P_{34} in Eq. (6) now become a normal addition. In summary, the 3 shift-add operations need $3*(\frac{2n}{5}-2)$ XOR gates, and the 30-1-2-4=23 addition operations $23*(\frac{2n}{5}-1)$ XOR gates. Therefore, we have $16*\frac{n}{5}+3*(\frac{2n}{5}-2)+23*(\frac{2n}{5}-1)=\frac{68n}{5}-29$ and

$$S^{\oplus}(1) = 0, \quad S^{\oplus}(5) = 16 + 23 = 39$$

 $S^{\oplus}(n) = 15S^{\oplus}(n/5) + \frac{68n}{5} - 29.$

V. 6-TERM KARATSUBA FORMULAE

We transform the following 17-multiplication formula presented by Montgomery in [7]

$$C = P_0 + x * (P_{01} + P_0 + P_1) + x^2 * (P_{012} + P_{12} + P_{01})$$

$$+ x^3 * (P_{0235} + P_{025} + P_{345} + P_{23} + P_{12} + P_{34} + P_{45} + P_1 + P_4)$$

$$+ x^4 * (P_{0235} + P_{025} + P_{345} + P_{23} + P_{14} + P_{0134} + P_{01} + P_{45} + P_1)$$

$$+ x^5 * (P_{0235} + P_{025} + P_{035} + P_{14} + P_1 + P_4 + P_5 + P_0)$$

$$+ x^6 * (P_{0235} + P_{035} + P_{012} + P_{23} + P_{14} + P_{1245} + P_{01} + P_{45} + P_4)$$

$$+ x^7 * (P_{0235} + P_{035} + P_{012} + P_{23} + P_{12} + P_{34} + P_{01} + P_1 + P_4)$$

$$+ x^8 * (P_{345} + P_{34} + P_{45}) + x^9 * (P_{45} + P_4 + P_5) + x^{10} * P_5,$$

and obtain the following $5T_X$ formula

$$C = x^{0} * [P_{0} + x^{6} * (P_{0235} + P_{035} + P_{012} + P_{23} + P_{14} + P_{1245} + P_{01} + P_{45} + P_{4})] + x^{1} * [(P_{01} + P_{0} + P_{1}) + x^{6} * (P_{0235} + P_{035} + P_{012} + P_{23} + P_{12} + P_{34} + P_{01} + P_{1} + P_{4})] + x^{2} * [(P_{012} + P_{12} + P_{01}) + x^{6} * (P_{345} + P_{34} + P_{45})] + x^{3} * [(P_{0235} + P_{025} + P_{345} + P_{23} + P_{12} + P_{34} + P_{45} + P_{1} + P_{4}) + x^{6} * (P_{45} + P_{4} + P_{5})] + x^{4} * [(P_{0235} + P_{025} + P_{345} + P_{23} + P_{14} + P_{0134} + P_{01} + P_{45} + P_{1}) + x^{6} * P_{5}] + x^{5} * (P_{0235} + P_{025} + P_{035} + P_{14} + P_{1} + P_{4} + P_{5} + P_{0}).$$
(8)

In order to find a formula with $4T_X$, we may consider the method in [8], i.e., for all $0 \le i < j \le 5$, we replace $a_i * b_j + a_j * b_i$ in the schoolbook formula by the identity $a_i * b_j + a_j * b_i = P_{ij} + P_i + P_j$. And obtain the following $4T_X$ formula:

$$C = x^{0} * [P_{0} + x^{6} * (P_{15} + P_{24} + P_{1} + P_{2} + P_{3} + P_{4} + P_{5})] + x^{1} * [(P_{01} + P_{0} + P_{1}) + x^{6} * (P_{25} + P_{34} + P_{2} + P_{3} + P_{4} + P_{5})] + x^{2} * [(P_{02} + P_{0} + P_{1} + P_{2}) + x^{6} * (P_{35} + P_{3} + P_{4} + P_{5})] + x^{3} * [(P_{03} + P_{12} + P_{0} + P_{1} + P_{2} + P_{3}) + x^{6} * (P_{45} + P_{4} + P_{5})] + x^{4} * [(P_{04} + P_{13} + P_{0} + P_{1} + P_{2} + P_{3} + P_{4}) + x^{6} * P_{5}] + x^{5} * [(P_{05} + P_{14} + P_{23} + P_{0} + P_{1} + P_{2} + P_{3} + P_{4} + P_{5})].$$
(9)

REFERENCES

- H. Fan and J. Sun and M. Gu and K. Lam, "Overlap-free Karatsuba-Ofman Polynomial Multiplication Algorithms," *IET Information Security*, vol. 4, no. 1, pp. 8-14, 2010. https://eprint.iacr.org/2007/393.
- [2] M. Cenk, M. A. Hasan, and C. Negre, "Efficient subquadratic space complexity binary polynomial multipliers based on block recombination," *IEEE Transactions on Computers*, vol. 63, no. 9, pp. 2273-2287, Sep. 2014.
- [3] G. Zhou and H. Michalik, "Comments on 'A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Field'," *IEEE Transactions on Computers*, vol. 59, no. 7, pp. 1007-1008, 2010.
- [4] D. J. Bernstein, "Batch Binary Edwards," CRYPTO 2009, LNCS 5677 pp. 317-336, 2009.
- [5] M. G. Find and R. Peralta, "Better circuits for binary polynomial multiplication," *IEEE Transactions on Computers*, vol. 68, no. 4, pp. 624-630, 2019.
- [6] M. Cenk and F. Özbudak, "Improved polynomial multiplication formulas over F₂ using Chinese Remainder Theorem," *IEEE Transactions on Computers*, vol. 58, no. 4, pp. 572-576, 2009.
- [7] P. L. Montgomery, "Five, Six, and Seven-Term Karatsuba-Like Formulae," *IEEE Transactions on Computers*, vol. 54, no. 3, pp. 362-369, Mar. 2005.
- [8] A. Weimerskirch and C. Paar, "Generalizations of the Karatsuba algorithm for efficient implementations", https://eprint.iacr.org/2006/224.