# Low-Delay 4, 5 and 6-Term Karatsuba Formulae in $\mathbb{F}_{2}[x]$ Using Overlap-free Splitting 

Haining Fan<br>fhn@tsinghua.edu.cn


#### Abstract

The overlap-free splitting method, i.e., even-odd splitting and its generalization, can reduce the XOR delay of a Karatsuba multiplier. We use this method to derive Karatsuba formulae with one less XOR delay in each recursive iteration. These formulae need more multiplication operations, and are trade-offs between space and time.

We also show that "finding common subexpressions" performs better than "the refined identity" in 4-term formula: we reduce the number of XOR gates given by Cenk, Hasan and Negre in IEEE T. Computers in 2014.


## Index Terms

Karatsuba algorithm, polynomial multiplication, even-odd splitting, overlap-free splitting

## I. Introduction

Even-odd splitting of polynomials and its generalization were first used in Karatsuba algorithms in 2007 [1]. These splitting methods eliminate overlaps in the reconstruction step, and reduce XOR gate delays of subquadratic Karatsuba multipliers in $\mathbb{F}_{2}[x]$ by about $33 \%$ and $25 \%$ for $n=2^{t}$ and $n=3^{t}(t>1)$, respectively. On the other hand, many efforts have been made to reduce the multiplicative complexity $M(n)$ of a Karatsuba formula, and these improvements reduce space complexities of Karatsuba multipliers.

In this work, we focus on optimising the time complexity, and give 4-term and 5-term Karatsuba formulae with one less XOR gate delay in each recursive iteration. We first replace the original splitting method by the above overlap-free splitting method in splitting steps of the two existing low- $M(n)$ formulae, and then reduce XOR delays by increasing $M(n)$ slightly.

We also give an improvement on the 4-term formula presented by Cenk, Hasan and Negre in [2]. Their formula combines the overlap-free splitting method and "the refined identity" together to reduce both the XOR space complexity $\mathcal{S}^{\oplus}(n)$ and the XOR time complexity $\mathcal{D}^{\oplus}(n)$. The idea behind "the refined identity" is presented by Zhou and Michalik [3] (for the case $n=2^{i}$ ) and Bernstein [4]. The space and time complexities of formula in [2] are as follows:

$$
\mathcal{S}^{\oplus}(n)=9 \mathcal{S}^{\oplus}(n / 4)+10 n-17=\frac{47}{8} n^{\log _{4} 9}-8 n+\frac{17}{8} \quad \text { and } \quad \mathcal{D}^{\oplus}(n)=4 \log _{4} n T_{X}=2 \log _{2} n T_{X}
$$

where " $T_{X}$ " is the delay of one 2-input XOR gate.
We optimise $\mathcal{S}^{\oplus}(n)$ by marking common subexpressions explicitly. While the method "finding common subexpressions" performs worse for the case $n=3^{i}$, see [2], it wins for $n=4^{i}$. The new formula needs 1 less addition in each recursive iteration, and thus improves the above space complexity bound to:

$$
\mathcal{S}^{\oplus}(n)=9 \mathcal{S}^{\oplus}(n / 4)+10 n-18=\frac{46}{8} n^{\log _{4} 9}-8 n+\frac{18}{8} \quad \text { and } \quad \mathcal{D}^{\oplus}(n)=4 \log _{4} n T_{X}=2 \log _{2} n T_{X}
$$

XOR complexities of formulae in this work are listed in the following table.

TABLE I
COMPARISONS OF COMPLEXITIES

| $n$ | Algorithm | \#Multiplication | \#XOR | XOR Gate Delay $\left(T_{X}\right)$ |
| :--- | :--- | :---: | :---: | :---: |
| $4^{i}$ | $[2]$ | Eq. (2) | 9 | $\frac{47}{8} n^{\log _{4} 9}-8 n+\frac{17}{8}$ |
|  | Eq. (3) | $4 \log _{4} n=2.00 \log _{2} n$ |  |  |
|  | Schoolbook | 16 | $\frac{46}{8} n^{\log _{4} 9}-8 n+\frac{18}{8}$ | $4 \log _{4} n=2.00 \log _{2} n$ |
|  | Eq. (4) | 13 |  | $3 \log _{4} n=1.50 \log _{2} n$ |
|  | Eq. (5) | 15 |  | $5 \log _{5} n \approx 2.15 \log _{2} n$ |
| $6^{i}$ | Eq. (8) | 17 |  | $4 \log _{5} n \approx 1.72 \log _{2} n$ |
|  | Eq. (9) | 21 |  | $5 \log _{6} n \approx 1.93 \log _{2} n$ |

## II. Improve $\mathcal{S}^{\oplus}(n)$ of the 4-TERm Karatsuba Formula

Let $A=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}, B=b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$ and $C=A B=\sum_{i=0}^{6} c_{i} x^{i}$. Cenk, Hasan and Negre combine the overlap-free splitting method and the refined identity, and present a formula with low XOR delay [2, Section 3.3]. For the initial step $n=4$, the numbers of XOR gates needed in the reconstruction step are listed in the following table:

TABLE II
Reconstruction Step for $n=4$

| Computations | Degree | \#XOR |
| :---: | :---: | :---: |
| $R_{0}=P_{0}+x P_{1}+x^{2} P_{2}+x^{3} P_{3}$ | $\operatorname{Deg}\left(R_{0}\right)=3$ | 0 |
| $R_{1}=(1+x) R_{0}$ | $\operatorname{Deg}\left(R_{1}\right)=4$ | 3 |
| $R_{2}=R_{1}+x P_{01}+x^{3} P_{23}$ | $\operatorname{Deg}\left(R_{2}\right)=4$ | 2 |
| $R_{3}=P_{02}+x P_{13}$ | $\operatorname{Deg}\left(R_{3}\right)=1$ | 0 |
| $R_{4}=(1+x) R_{3}$ | $\operatorname{Deg}\left(R_{4}\right)=2$ | 1 |
| $R_{5}=R_{4}+x P_{0123}$ | $\operatorname{Deg}\left(R_{5}\right)=2$ | 1 |
| $R_{6}=\left(1+x^{2}\right) R_{2}$ | $\operatorname{Deg}\left(R_{6}\right)=6$ | 3 |
| $C=R_{6}+x^{2} R_{5}$ | $x^{2} R_{5}$ has 3 bits | 3 |
| Total |  | 13 |

In this table, product terms $P_{i}=a_{i} b_{i}, P_{01}=\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right), P_{02}=\left(a_{0}+a_{2}\right)\left(b_{0}+b_{2}\right), P_{13}=\left(a_{1}+a_{3}\right)\left(b_{1}+\right.$ $\left.b_{3}\right), P_{23}=\left(a_{2}+a_{3}\right)\left(b_{2}+b_{3}\right)$ and $P_{0123}=\left(a_{0}+a_{1}+a_{2}+a_{3}\right)\left(b_{0}+b_{1}+b_{2}+b_{3}\right)$ are elements in $\mathbb{F}_{2}$. There are $2 * 5=10$ XOR gates in $P_{01}, P_{02}, P_{13}, P_{23}$ and $P_{0123}$. So we have $\mathcal{S}^{\oplus}(4)=10+13=23$.

The total number of XOR gates for $n=4^{i}$ is given in Table 3 and Eq. (8) of [2]:

$$
\begin{aligned}
& \mathcal{S}^{\oplus}(1)=0, \quad \mathcal{S}^{\oplus}(4)=10+13=23 \\
& \mathcal{S}^{\oplus}(n)=9 \mathcal{S}^{\oplus}(n / 4)+10 n-17=\frac{47}{8} n^{\log _{4} 9}-8 n+\frac{17}{8}
\end{aligned}
$$

We now optimise $\mathcal{S}^{\oplus}(n)$ by finding common subexpressions. Given a $k$-term Karatsuba formula using the original Karatsuba splitting method, it is easy to transform it to a formula using the overlap-free splitting method: combining coefficients of $x^{i}$ and $x^{i+k}$ together for $0 \leq i \leq k-2$. Take $k=4$ as an example, we transform the following 9-multiplication formula

$$
\begin{aligned}
C= & P_{0}+x\left(P_{01}+P_{0}+P_{1}\right)+x^{2}\left(P_{0}+P_{1}+P_{2}+P_{02}\right)+ \\
& x^{3}\left(P_{0123}+P_{13}+P_{02}+P_{23}+P_{2}+P_{3}+P_{01}+P_{0}+P_{1}\right)+ \\
& x^{4}\left(P_{13}+P_{1}+P_{2}+P_{3}\right)+x^{5}\left(P_{23}+P_{2}+P_{3}\right)+x^{6} P_{3}
\end{aligned}
$$

to

$$
\begin{align*}
C= & x^{0}\left[P_{0}+x^{4}\left(P_{13}+P_{1}+P_{2}+P_{3}\right)\right]+x^{2}\left[\left(P_{0}+P_{1}+P_{2}+P_{02}\right)+x^{4} P_{3}\right]  \tag{1}\\
& x\left[\left(P_{01}+P_{0}+P_{1}\right)+x^{4}\left(P_{23}+P_{2}+P_{3}\right)\right]+x^{3}\left(P_{0123}+P_{13}+P_{02}+P_{23}+P_{2}+P_{3}+P_{01}+P_{0}+P_{1}\right) .
\end{align*}
$$

This is a rewrite of the overlap-free formula in [2, Section 3.3]. Please note that coefficients of $x^{0}, x, x^{2}$ and $x^{3}$ are summations of product terms $P_{*}$, and they are polynomials in $x^{k}=x^{4}$.

In order to count the number of XOR gates in this formula, we mark common subexpressions in different colors, denote the 3 shift-adds $\left((\cdots)+x^{4}(\cdots)\right)$ by $\oplus$, and label the 12 actual " + "s in subscripts:

$$
\begin{align*}
C= & {\left[P_{0} \oplus x^{4}\left(P_{13}+{ }_{1} P_{1}+{ }_{2} P_{2}+{ }_{3} P_{3}\right)\right]+x^{2}\left[\left(P_{0}+{ }_{4} P_{1}+{ }_{5} P_{2}+{ }_{6} P_{02}\right) \oplus x^{4} P_{3}\right]+}  \tag{2}\\
& x\left[\left(P_{01}+{ }_{7} P_{0}+{ }_{4} P_{1}\right) \oplus x^{4}\left(P_{23}+{ }_{11} P_{2}+{ }_{3} P_{3}\right)\right]+ \\
& x^{3}\left(P_{0123}+{ }_{8} P_{13}+{ }_{9} P_{02}+{ }_{10} P_{23}+{ }_{11} P_{2}+{ }_{3} P_{3}+{ }_{12} P_{01}+{ }_{7} P_{0}+{ }_{4} P_{1}\right) .
\end{align*}
$$

There are $2 * 5 * \frac{n}{4}$ XORs in products $P_{01}, P_{02}, P_{13}, P_{23}$ and $P_{0123}$. These products are polynomials in $x^{4}$ with the same degree $2 *\left(\frac{n}{4}-1\right)=\frac{n}{2}-2$. So the 3 shift-add $\oplus$ operations need $3 *\left(\frac{n}{2}-2\right)$ XOR gates, and the 12 actual $+_{i}$ operations $12 *\left(\frac{n}{2}-1\right)$ XOR gates. Therefore, we have $10 * \frac{n}{4}+3 *\left(\frac{n}{2}-2\right)+12 *\left(\frac{n}{2}-1\right)=10 n-18$ and

$$
\begin{aligned}
& \mathcal{S}^{\oplus}(1)=0, \quad \mathcal{S}^{\oplus}(4)=10+12=22, \quad \text { Note }: \mathcal{S}^{\oplus}(4)=23 \text { in }[2] . \\
& \mathcal{S}^{\oplus}(n)=9 \mathcal{S}^{\oplus}(n / 4)+10 n-18=\frac{46}{8} n^{\log _{4} 9}-8 n+\frac{18}{8} .
\end{aligned}
$$

This improves the bound $\mathcal{S}^{\oplus}(n)=9 \mathcal{S}^{\oplus}(n / 4)+10 n-17=\frac{47}{8} n^{\log _{4} 9}-8 n+\frac{17}{8}$ presented in [2].
The XOR gate delay of coefficient of $x^{3}$ in (2) is $4 T_{X}$ because we can compute it using

$$
P_{0123}+{ }_{8}\left[P_{13}+{ }_{9} P_{02}\right]+{ }_{10}\left[P_{23}+{ }_{11}\left(P_{2}+{ }_{3} P_{3}\right)\right]+{ }_{12}\left[P_{01}+{ }_{7}\left(P_{0}+{ }_{4} P_{1}\right)\right]
$$

where $P_{0123}$ and three $[\cdots]$ need $2 T_{X}$ each. Therefore, the XOR gate delay of Eq. (2) is $\mathcal{D}^{\oplus}(n)=4 \log _{4} n T_{X}$.
The other advantage of this new overlap-free formula (2) is that products $P_{01}, P_{02}, P_{13}, P_{23}$ and $P_{0123}$ each have $2 *\left(\frac{n}{4}-1\right)+1=\frac{n}{2}-1$ bits because their degrees are all $2 *\left(\frac{n}{4}-1\right)=\frac{n}{2}-2$. But $R_{0}$ in [2, Table 3], which also uses the overlap-free splitting and has the same $\mathcal{D}^{\oplus}(n)=4 \log _{4} n T_{X}$, has $4 *\left(\frac{n}{2}-1\right)=2 n-4$ bits. We need to manipulate this long polynomial in the following step of $R_{1}, R_{2}$ and $R_{6}$.

We note that Find and Peralta adopt the original splitting method, and obtain the bound $\mathcal{S}^{\oplus}(1)=0$ and $\mathcal{S}^{\oplus}(n)=$ $9 \mathcal{S}^{\oplus}(n / 4)+\frac{34}{4} n-12$ [5]. This is an improvement to Bernstein's bound $\mathcal{S}^{\oplus}(n)=9 \mathcal{S}^{\oplus}(n / 4)+\frac{34}{4} n-11$ [4, p. 327] or [2, Eq. (5)]. The XOR gate delays of these formulae are $\mathcal{D}^{\oplus}(n)=5 \log _{4} n T_{X}$ because of the overlap.

## III. 4-TERM Karatsuba Formula with 10-multiplication and 3-T $T_{X}$

In order to reduce the XOR delay in (1), we eliminate $P_{0123}$ using the following identity

$$
P_{0123}=P_{01}+P_{02}+P_{03}+P_{12}+P_{13}+P_{23}
$$

This identity introduces 2 new multiplications $P_{12}$ and $P_{03}$. So we have the following 10-multiplication formula:

$$
\begin{align*}
C= & x^{0}\left[P_{0}+x^{4}\left(P_{13}+P_{1}+P_{2}+P_{3}\right)\right]+x^{2}\left[\left(P_{0}+P_{1}+P_{2}+P_{02}\right)+x^{4} P_{3}\right]  \tag{3}\\
& x\left[\left(P_{01}+P_{0}+P_{1}\right)+x^{4}\left(P_{23}+P_{2}+P_{3}\right)\right]+x^{3}\left(P_{12}+P_{03}+\left[P_{2}+P_{3}\right]+\left[P_{0}+P_{1}\right]\right) \\
= & x^{0}\left\{\left[\left(P_{0}+x^{4} P_{1}\right)+x^{4}\left(P_{2}+P_{3}\right)\right]+x^{4} P_{13}\right\}+x^{2}\left\{\left[\left(P_{0}+P_{1}\right)+\left(P_{2}+x^{4} P_{3}\right)\right]+P_{02}\right\} \\
& x\left\{\left[P_{01}+\left(P_{0}+P_{1}\right)\right]+x^{4}\left[P_{23}+\left(P_{2}+P_{3}\right)\right]\right\}+x^{3}\left\{P_{12}+P_{03}+\left(P_{2}+P_{3}\right)+\left(P_{0}+P_{1}\right)\right\} .
\end{align*}
$$

The XOR gate delays of coefficients of $x^{0}, x, x^{2}$ and $x^{3}$ in " $\left\}\right.$ " are all $3 T_{X}$. So the final XOR gate delay is $\mathcal{D}^{\oplus}(n)=3 \log _{4} n T_{X}=1.5 \log _{2} n T_{X}$.

There are $2 * 6 * \frac{n}{4}$ XORs in products $P_{01}, P_{02}, P_{03}, P_{12}, P_{13}$ and $P_{23}$. These products are polynomials in $x^{4}$ with the same degree $2 *\left(\frac{n}{4}-1\right)=\frac{n}{2}-2$. So the 3 shift-add operations need $3 *\left(\frac{n}{2}-2\right)$ XOR gates, and the 11 addition operations $11 *\left(\frac{n}{2}-1\right)$ XOR gates. Therefore, we have $12 * \frac{n}{4}+3 *\left(\frac{n}{2}-2\right)+11 *\left(\frac{n}{2}-1\right)=10 n-17$ and

$$
\begin{aligned}
& \mathcal{S}^{\oplus}(1)=0, \quad \mathcal{S}^{\oplus}(4)=23 \\
& \mathcal{S}^{\oplus}(n)=10 \mathcal{S}^{\oplus}(n / 4)+10 n-17
\end{aligned}
$$

## IV. 5-TERM Karatsuba Formula with 15-multiplication and 4- $T_{X}$

Let $A=a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}, B=b_{4} x^{4}+b_{3} x^{3}+b_{2} x^{2}+b_{1} x+b_{0}$ and $C=A B=\sum_{i=0}^{8} c_{i} x^{i}$. We transform the following 13-multiplication formula in [6] using the overlap-free splitting method. This formula is based on the CRT moduli polynomials $(x-\infty)^{3}, x^{3},(x+1)^{1}, x^{2}+x+1$.

$$
\begin{aligned}
C= & P_{0}+x\left(P_{0}+P_{1}+P_{01}\right)+x^{2}\left(P_{0}+P_{1}+P_{2}+P_{02}\right)+ \\
& x^{3}\left(P_{0}+P_{4}+P_{3}+P_{2}+P_{24}+P_{01234}+P_{023}+P_{0134}\right)+ \\
& x^{4}\left(P_{0}+P_{1}+P_{01}+P_{4}+P_{3}+P_{34}+P_{01234}+P_{023}+P_{124}\right)+ \\
& x^{5}\left(P_{0}+P_{1}+P_{2}+P_{02}+P_{4}+P_{01234}+P_{124}+P_{0134}\right)+ \\
& x^{6}\left(P_{4}+P_{3}+P_{2}+P_{24}\right)+x^{7}\left(P_{4}+P_{3}+P_{34}\right)+x^{8} P_{4} .
\end{aligned}
$$

The resulting low-delay formula is

$$
\begin{align*}
C= & x^{0}\left[P_{0}+x^{5}\left(P_{0}+P_{1}+P_{2}+P_{02}+P_{4}+P_{01234}+P_{124}+P_{0134}\right)\right]+ \\
& x^{1}\left[P_{0}+P_{1}+P_{01}+x^{5}\left(P_{4}+P_{3}+P_{2}+P_{24}\right)\right]+ \\
& x^{2}\left[P_{0}+P_{1}+P_{2}+P_{02}+x^{5}\left(P_{4}+P_{3}+P_{34}\right)\right]+ \\
& x^{3}\left[P_{0}+P_{4}+P_{3}+P_{2}+P_{24}+P_{01234}+P_{023}+P_{0134}+x^{5} P_{4}\right]+ \\
& x^{4}\left[P_{0}+P_{1}+P_{01}+P_{4}+P_{3}+P_{34}+P_{01234}+P_{023}+P_{124}\right] \tag{4}
\end{align*}
$$

The XOR gate delays of coefficients of $x^{0}, x^{3}$ and $x^{4}$ are all $5 T_{X}$. In order to reduce it to $4 T_{X}$, we use the identity $P_{01234}=P_{0134}+P_{023}+P_{124}+P_{03}+P_{14}+P_{2}$ to eliminate $P_{01234}$ at the cost of introducing two new products $P_{03}$ and $P_{14}$, and obtain the following expression of coefficient of $x^{4}$

$$
c_{4}=P_{0}+P_{1}+P_{2}+P_{3}+P_{4}+P_{01}+P_{34}+P_{03}+P_{14}+P_{0134}
$$

But the XOR delay of this formula is still $5 T_{X}$. In order to reduce it to $4 T_{X}$, We use the identity $P_{03}=$ $P_{0}+P_{3}+a_{0} * b_{3}+a_{3} * b_{0}$, which introduces two new products $a_{0} * b_{3}$ and $a_{3} * b_{0}$, and get the following $4 T_{X}$ formula

$$
c_{4}=P_{1}+P_{2}+P_{4}+P_{01}+P_{34}+a_{0} * b_{3}+a_{3} * b_{0}+P_{14}+P_{0134}
$$

For other coefficients, we have

$$
\begin{aligned}
& {\left[P_{0}+P_{4}+P_{3}+P_{2}+P_{24}+P_{01234}+P_{023}+P_{0134}+x^{5} P_{4}\right] } \\
= & P_{0}+P_{4}+P_{3}+P_{24}+P_{124}+P_{03}+P_{14}+x^{5} P_{4} \\
= & P_{4}+P_{24}+P_{124}+a_{0} * b_{3}+a_{3} * b_{0}+P_{14}+x^{5} P_{4}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[P_{0}+x^{5}\left(P_{0}+P_{1}+P_{2}+P_{02}+P_{4}+P_{01234}+P_{124}+P_{0134}\right)\right] } \\
= & P_{0}+x^{5}\left(P_{0}+P_{1}+P_{2}+P_{02}+P_{4}+P_{023}+P_{03}+P_{14}+P_{2}\right) \\
= & P_{0}+x^{5}\left(P_{1}+P_{3}+P_{4}+P_{02}+P_{023}+a_{0} * b_{3}+a_{3} * b_{0}+P_{14}\right) .
\end{aligned}
$$

The final $4 T_{X}$ formula is

$$
\begin{aligned}
C= & x^{0}\left[P_{0}+x^{5}\left(P_{1}+P_{3}+P_{4}+P_{02}+P_{023}+a_{0} * b_{3}+a_{3} * b_{0}+P_{14}\right)\right]+ \\
& x^{1}\left[P_{0}+P_{1}+P_{01}+x^{5}\left(P_{4}+P_{3}+P_{2}+P_{24}\right)\right]+ \\
& x^{2}\left[P_{0}+P_{1}+P_{2}+P_{02}+x^{5}\left(P_{4}+P_{3}+P_{34}\right)\right]+ \\
& x^{3}\left[P_{4}+P_{24}+P_{124}+a_{0} * b_{3}+a_{3} * b_{0}+P_{14}+x^{5} P_{4}\right]+ \\
& x^{4}\left[P_{1}+P_{2}+P_{4}+P_{01}+P_{34}+a_{0} * b_{3}+a_{3} * b_{0}+P_{14}+P_{0134}\right] .
\end{aligned}
$$

We mark common subexpressions in the above formula as follows:

$$
\begin{align*}
C= & x^{0}\left[P_{0}+x^{5}\left(P_{1}+\left(P_{3}+P_{4}\right)+P_{02}+P_{023}+\left[a_{0} * b_{3}+a_{3} * b_{0}+P_{14}\right]\right)\right]+ \\
& x^{1}\left[\left\{P_{0}+P_{1}+x^{5}\left(P_{3}+P_{4}\right)\right\}+x^{5}\left(P_{2}+P_{24}\right)+P_{01}\right]+  \tag{5}\\
& x^{2}\left[\left\{P_{0}+P_{1}+x^{5}\left(P_{3}+P_{4}\right)\right\}+x^{5} P_{34}+P_{2}+P_{02}\right]+  \tag{6}\\
& x^{3}\left[P_{4}+P_{24}+P_{124}+\left[a_{0} * b_{3}+a_{3} * b_{0}+P_{14}\right]+x^{5} P_{4}\right]+ \\
& x^{4}\left[P_{1}+P_{2}+P_{4}+P_{01}+P_{34}+\left[a_{0} * b_{3}+a_{3} * b_{0}+P_{14}\right]+P_{0134}\right] . \tag{7}
\end{align*}
$$

There are $2 * 8 * \frac{n}{5}$ XORs in products $P_{01}, P_{02}, P_{14}, P_{24}, P_{34}, P_{023}, P_{124}$ and $P_{0134}$. These products are polynomials in $x^{5}$ with the same degree $2 *\left(\frac{n}{5}-1\right)=\frac{2 n}{5}-2$. We compute two " $\{\cdots\}$ "s in Eq. (5) and (6) once, and save 1 shift-add. Shift-adds $x^{5}\left(P_{2}+P_{24}\right)$ in Eq. (5) and $x^{5} P_{34}$ in Eq. (6) now become a normal addition. In summary, the 3 shift-add operations need $3 *\left(\frac{2 n}{5}-2\right)$ XOR gates, and the $30-1-2-4=23$ addition operations $23 *\left(\frac{2 n}{5}-1\right)$ XOR gates. Therefore, we have $16 * \frac{n}{5}+3 *\left(\frac{2 n}{5}-2\right)+23 *\left(\frac{2 n}{5}-1\right)=\frac{68 n}{5}-29$ and

$$
\begin{aligned}
& \mathcal{S}^{\oplus}(1)=0, \quad \mathcal{S}^{\oplus}(5)=16+23=39 \\
& \mathcal{S}^{\oplus}(n)=15 \mathcal{S}^{\oplus}(n / 5)+\frac{68 n}{5}-29
\end{aligned}
$$

## V. 6-TERM Karatsuba Formulae

We transform the following 17-multiplication formula presented by Montgomery in [7]

$$
\begin{aligned}
C & =P_{0}+x *\left(P_{01}+P_{0}+P_{1}\right)+x^{2} *\left(P_{012}+P_{12}+P_{01}\right) \\
& +x^{3} *\left(P_{0235}+P_{025}+P_{345}+P_{23}+P_{12}+P_{34}+P_{45}+P_{1}+P_{4}\right) \\
& +x^{4} *\left(P_{0235}+P_{025}+P_{345}+P_{23}+P_{14}+P_{0134}+P_{01}+P_{45}+P_{1}\right) \\
& +x^{5} *\left(P_{0235}+P_{025}+P_{035}+P_{14}+P_{1}+P_{4}+P_{5}+P_{0}\right) \\
& +x^{6} *\left(P_{0235}+P_{035}+P_{012}+P_{23}+P_{14}+P_{1245}+P_{01}+P_{45}+P_{4}\right) \\
& +x^{7} *\left(P_{0235}+P_{035}+P_{012}+P_{23}+P_{12}+P_{34}+P_{01}+P_{1}+P_{4}\right) \\
& +x^{8} *\left(P_{345}+P_{34}+P_{45}\right)+x^{9} *\left(P_{45}+P_{4}+P_{5}\right)+x^{10} * P_{5}
\end{aligned}
$$

and obtain the following $5 T_{X}$ formula

$$
\begin{align*}
C & =x^{0} *\left[P_{0}+x^{6} *\left(P_{0235}+P_{035}+P_{012}+P_{23}+P_{14}+P_{1245}+P_{01}+P_{45}+P_{4}\right)\right] \\
& +x^{1} *\left[\left(P_{01}+P_{0}+P_{1}\right)+x^{6} *\left(P_{0235}+P_{035}+P_{012}+P_{23}+P_{12}+P_{34}+P_{01}+P_{1}+P_{4}\right)\right] \\
& +x^{2} *\left[\left(P_{012}+P_{12}+P_{01}\right)+x^{6} *\left(P_{345}+P_{34}+P_{45}\right)\right] \\
& +x^{3} *\left[\left(P_{0235}+P_{025}+P_{345}+P_{23}+P_{12}+P_{34}+P_{45}+P_{1}+P_{4}\right)+x^{6} *\left(P_{45}+P_{4}+P_{5}\right)\right] \\
& +x^{4} *\left[\left(P_{0235}+P_{025}+P_{345}+P_{23}+P_{14}+P_{0134}+P_{01}+P_{45}+P_{1}\right)+x^{6} * P_{5}\right] \\
& +x^{5} *\left(P_{0235}+P_{025}+P_{035}+P_{14}+P_{1}+P_{4}+P_{5}+P_{0}\right) . \tag{8}
\end{align*}
$$

In order to find a formula with $4 T_{X}$, we may consider the method in [8], i.e., for all $0 \leq i<j \leq 5$, we replace $a_{i} * b_{j}+a_{j} * b_{i}$ in the schoolbook formula by the identity $a_{i} * b_{j}+a_{j} * b_{i}=P_{i j}+P_{i}+P_{j}$. And obtain the following $4 T_{X}$ formula:

$$
\begin{align*}
C & =x^{0} *\left[P_{0}+x^{6} *\left(P_{15}+P_{24}+P_{1}+P_{2}+P_{3}+P_{4}+P_{5}\right)\right] \\
& +x^{1} *\left[\left(P_{01}+P_{0}+P_{1}\right)+x^{6} *\left(P_{25}+P_{34}+P_{2}+P_{3}+P_{4}+P_{5}\right)\right] \\
& +x^{2} *\left[\left(P_{02}+P_{0}+P_{1}+P_{2}\right)+x^{6} *\left(P_{35}+P_{3}+P_{4}+P_{5}\right)\right] \\
& +x^{3} *\left[\left(P_{03}+P_{12}+P_{0}+P_{1}+P_{2}+P_{3}\right)+x^{6} *\left(P_{45}+P_{4}+P_{5}\right)\right] \\
& +x^{4} *\left[\left(P_{04}+P_{13}+P_{0}+P_{1}+P_{2}+P_{3}+P_{4}\right)+x^{6} * P_{5}\right] \\
& +x^{5} *\left[\left(P_{05}+P_{14}+P_{23}+P_{0}+P_{1}+P_{2}+P_{3}+P_{4}+P_{5}\right)\right] \tag{9}
\end{align*}
$$

## REFERENCES

[1] H. Fan and J. Sun and M. Gu and K. Lam, "Overlap-free Karatsuba-Ofman Polynomial Multiplication Algorithms," IET Information Security, vol. 4, no. 1, pp. 8-14, 2010. https://eprint.iacr.org/2007/393.
[2] M. Cenk, M. A. Hasan, and C. Negre, "Efficient subquadratic space complexity binary polynomial multipliers based on block recombination," IEEE Transactions on Computers, vol. 63, no. 9, pp. 2273-2287, Sep. 2014.
[3] G. Zhou and H. Michalik, "Comments on 'A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Field'," IEEE Transactions on Computers, vol. 59, no. 7, pp. 1007-1008, 2010.
[4] D. J. Bernstein, "Batch Binary Edwards," CRYPTO 2009, LNCS 5677 pp. 317-336, 2009.
[5] M. G. Find and R. Peralta, "Better circuits for binary polynomial multiplication," IEEE Transactions on Computers, vol. 68, no. 4, pp. 624-630, 2019.
[6] M. Cenk and F. Özbudak, "Improved polynomial multiplication formulas over $\mathbb{F}_{2}$ using Chinese Remainder Theorem," IEEE Transactions on Computers, vol. 58, no. 4, pp. 572-576, 2009.
[7] P. L. Montgomery, "Five, Six, and Seven-Term Karatsuba-Like Formulae," IEEE Transactions on Computers, vol. 54, no. 3, pp. 362-369, Mar. 2005.
[8] A. Weimerskirch and C. Paar, "Generalizations of the Karatsuba algorithm for efficient implementations", https://eprint.iacr.org/2006/224.

