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Abstract

The overlap-free splitting method, i.e., even-odd splitting and its generalization, can reduce the XOR delay of a
Karatsuba multiplier. We use this method to derive Karatsuba formulae with one less XOR delay in each recursive
iteration. These formulae need more multiplication operations, and are trade-offs between space and time.

We also show that “finding common subexpressions” performs better than “the refined identity” in 4-term formula:

we reduce the number of XOR gates given by Cenk, Hasan and Negre in IEEE T. Computers in 2014.
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I. INTRODUCTION

Even-odd splitting of polynomials and its generalization were first used in Karatsuba algorithms in 2007 [1].
These splitting methods eliminate overlaps in the reconstruction step, and reduce XOR gate delays of subquadratic
Karatsuba multipliers in F[z] by about 33% and 25% for n = 2! and n = 3" (¢ > 1), respectively. On the other
hand, many efforts have been made to reduce the multiplicative complexity M (n) of a Karatsuba formula, and
these improvements reduce space complexities of Karatsuba multipliers.

In this work, we focus on optimising the time complexity, and give 4-term and 5-term Karatsuba formulae with
one less XOR gate delay in each recursive iteration. We first replace the original splitting method by the above
overlap-free splitting method in splitting steps of the two existing low-M (n) formulae, and then reduce XOR delays
by increasing M (n) slightly.

We also give an improvement on the 4-term formula presented by Cenk, Hasan and Negre in [2]. Their formula
combines the overlap-free splitting method and “the refined identity” together to reduce both the XOR space
complexity S®(n) and the XOR time complexity D¥(n). The idea behind “the refined identity” is presented by
Zhou and Michalik [3] (for the case n = 2¢) and Bernstein [4]. The space and time complexities of formula in [2]

are as follows:



47 17
S%(n) =98%(n/4) + 10n — 17 = gnlog‘*g —8n+ —

where “T'x” is the delay of one 2-input XOR gate.
We optimise S®(n) by marking common subexpressions explicitly. While the method “finding common subex-

pressions” performs worse for the case n = 3¢, see [2], it wins for n = 4°. The new formula needs 1 less addition

8

and D%(n) =4log,nTx = 2logyn Ty,

in each recursive iteration, and thus improves the above space complexity bound to:

4 1
S%(n) =98%(n/4) + 10n — 18 = gnlog‘lg —8n + §8 and D%(n) =4logy,nTx = 2log,nTx.

XOR complexities of formulae in this work are listed in the following table.

TABLE I

COMPARISONS OF COMPLEXITIES

n Algorithm #Multiplication #XOR XOR Gate Delay (T'x)
[2] 9 %nlogél 9 —8n+ % 4logyn = 2.00logy n
4 | Eq. (2) 9 %nlogz& 9 —8n+ %8 4logyn = 2.00logy n
Eq. (3) 10 3logyn = 1.50logy n
Schoolbook 16 1.00logy 1
5¢ | Eq. 4) 13 5logg n & 2.15logy 1
Eq. (7) 15 4logsn ~ 1.72logy n
6" | Eq. (8) 17 5loggn ~ 1.931log, n
Eq. 9) 21 4loggn ~ 1.55logy n

Let A = a3x® + asx? + a1z + ag, B = b3x® + box® + bjax + by and C = AB = Z?:O ¢;z*. Cenk, Hasan and
Negre combine the overlap-free splitting method and the refined identity, and present a formula with low XOR

delay [2, Section 3.3]. For the initial step n = 4, the numbers of XOR gates needed in the reconstruction step are

II. IMPROVE S¥(n) OF THE 4-TERM KARATSUBA FORMULA

listed in the following table:




TABLE II

RECONSTRUCTION STEP FORn = 4

Computations Degree #XOR
Ro=Py+aP; +a?Py+23P3 Deg(Ro) = 0
Ri=(1+2x)Ro Deg(R1) =4 3
Ra = R1 4 2Po1 + 23 P23 Deg(R2) = 4 2
R3 = P2 +xP13 Deg(R3) =1 0
Ry =(142z)R3 Deg(R4) =2 1
R5 = R4 + zPo123 Deg(Rs5) = 2 1
Rs = (1+ 2?)Ro Deg(Rg) =6 3
C = Re + 2?Rs 22 R5 has 3 bits 3
Total 13

In this table, product terms P; = a;b;, Po1 = (ag+a1)(bo+b1), Poa = (ag + az2)(bo +b2), P13 = (a1 +a3) (b1 +
b3), Paz = (a2 + a3)(bs + b3) and Pyia3 = (ag + a1 + as + a3)(bg + b1 + ba + b3) are elements in Fy. There are
2 x5 =10 XOR gates in Py, P2, P13, P23 and Py123. So we have S®(4) = 10 + 13 = 23.

The total number of XOR gates for n = 4° is given in Table 3 and Eq. (8) of [2]:

S®(1) =0, S&%4)=10+13=23,
S8®(n) = 98%(n/4) + 10n — 17 = 4nloes® — 8p + 1T,

We now optimise S®(n) by finding common subexpressions. Given a k-term Karatsuba formula using the original
Karatsuba splitting method, it is easy to transform it to a formula using the overlap-free splitting method: combining
coefficients of 2! and z*t* together for 0 < 7 < k — 2. Take k = 4 as an example, we transform the following

9-multiplication formula
C = Py+x(Pn+Py+P)+a2*(Po+ P+ P+ Po) +
2®(Po12s + P13+ Poa + Pas + Po+ Py + Po1 + Po + Py) +
24 (Py3 + Py + Py + P3) 4 2°(Pas + Py + P3) + 2°P3
to
C = 2°[Py+a*(Pis+ P+ Py + P3)] +22[(Py + PL + P + Pyo) + ' Ps) (1)
z[(Por + Po + P1) + " (Pas + Py + P3)] + 2 (Por2s + Pis + Po2 + Pag + P2 + Ps + Por + Py + P1).

This is a rewrite of the overlap-free formula in [2, Section 3.3]. Please note that coefficients of 29, z, 22 and 23

are summations of product terms P,, and they are polynomials in z* = z%.

In order to count the number of XOR gates in this formula, we mark common subexpressions in different colors,

denote the 3 shift-adds ((---) 4+ x*(---)) by @, and label the 12 actual “+s in subscripts:
C = [Po@a’(Pis+1 P42 P +3 P3)] + 2?[(Po +4 Py +5 Py +6 Po2) ®@a*Ps] + (2)
2[(Po1 47 Po +4 P1) @ a*(Paz +11 P +3 P3)] +

23(Po123 +8 P13 +9 Poz +10 Pag +11 Po +3 Py +12 Po1 +7 Py +4 P1).



There are 2 * 5 % % XORs in products Py1, Pya, P13, Pos and Pyi23. These products are polynomials in z* with
the same degree 2 * (% — 1) = § — 2. So the 3 shift-add @ operations need 3 * (§ — 2) XOR gates, and the 12
actual +; operations 12 % (§ — 1) XOR gates. Therefore, we have 10+ 7 +3* (5 —2) + 12 (5 —1) = 10n — 18

and
S§%(1)=0, 8%M4)=10+12=22, Note : S¥(4) = 23 in [2].

8%(n) = 98%(n/4) + 10n — 18 = onloea? — gp + 18,
This improves the bound S%(n) = 98%(n/4) + 10n — 17 = In'°8+? — 8n 4 I presented in [2].

The XOR gate delay of coefficient of 23 in (2) is 47x because we can compute it using
Po123 +s [P13 +9 Poz] +10 [Pos +11 (P2 +3 P3)] +12 [Po1 +7 (Po +4 P1)],

where Ppios and three [-- -] need 2Ty each. Therefore, the XOR gate delay of Eq. (2) is D% (n) = 4log, nTx.

The other advantage of this new overlap-free formula (2) is that products Py, Py2, P13, Pe3 and FPy123 each have
2% (4 — 1)+ 1= % — 1 bits because their degrees are all 2+ (4 —1) = & — 2. But Ry in [2, Table 3], which also
uses the overlap-free splitting and has the same D¥(n) = 4logyn T, has 4« (% — 1) = 2n — 4 bits. We need to
manipulate this long polynomial in the following step of R;, Re and Rg.

We note that Find and Peralta adopt the original splitting method, and obtain the bound S®(1) = 0 and S®(n) =
98%(n/4) + 3tn — 12 [5]. This is an improvement to Bernstein’s bound S%(n) = 98%(n/4) + 3tn — 11 [4, p.
327] or [2, Eq. (5)]. The XOR gate delays of these formulae are D®(n) = 5log, n Tx because of the overlap.

III. 4-TERM KARATSUBA FORMULA WITH 10-MULTIPLICATION AND 3-T'x

In order to reduce the XOR delay in (1), we eliminate Fy;23 using the following identity
Po123 = Po1 + Poz2 + Poz + P12 + Pi3 + Pas.
This identity introduces 2 new multiplications P> and Fy3. So we have the following 10-multiplication formula:
C = 2[Py+a*(Pis+ P+ P+ P3)| +22[(Py + PL + Py + Ppp) + 2 P) (3)
z[(Po1 + Py + P1) + 2*(Pas + Py + Ps)| 4+ 23(Pya + Po3 + [Py + P3] + [Py + P1))
= 2{[(Po+ 2" P1) + 2 (P + P3)] + 2" Pig} + 2*{[(Po + P1) + (P2 + 2" P3)] + Poz}
2{[Por + (Py + P))] + 2*[Pag + (P2 + P3)]} + 23{Pia + Po3 + (Po + P3) + (P + P1)}.

The XOR gate delays of coefficients of 2%, x, 2% and 23 in “{}” are all 3Tx. So the final XOR gate delay is
DP(n) = 3logynTx = 1.5logynTx.

There are 2 % 6 % % XORs in products Py1, Pyo, Pos, P12, P13 and Ps3. These products are polynomials in x?

with the same degree 2 * (§ — 1) = § — 2. So the 3 shift-add operations need 3 * (§ — 2) XOR gates, and the 11
addition operations 11 % (3 — 1) XOR gates. Therefore, we have 12 § + 3 (5 —2) + 11 % (5 — 1) = 10n — 17

and

S®(1)=0, S8%4)=23,
§9(n) =108%(n/4) + 10n — 17.



IV. 5-TERM KARATSUBA FORMULA WITH 15-MULTIPLICATION AND 4-T'x

Let A = asz* + as3z® + asx® + a1 + ag, B = byx* + b3z + byz? + byx + by and C = AB = Zf:o cizt. We
transform the following 13-multiplication formula in [6] using the overlap-free splitting method. This formula is

based on the CRT moduli polynomials (z — 00)3, 23, (v + 1)1, 2% + x + 1.
C = Po+a(Py+P+Pn)+a*(Po+ P+ P+ Pp)+
2®(Py+ Py + P3 + Py + Poy + Porasa + Poos + Poisa) +
2 (Po+ Pi + Po1 + Py + Py + Psy + Poioga + Poas + Proa) +
2%(Py + P14 Py + Pos + Py + Pyiasa + Praa + Poisa) +
25(Py + P34+ Py + Poy) + 2" (Py + P + P3y) + 25P,.
The resulting low-delay formula is
C = 2°Py+2°(Py+ P+ Pa+ Py + Py + Poi2sa + Proa + Posa)] +
'[Py 4+ Py 4 Po1 +2°(Py + Ps + Py + Pog)] +
22[Py+ Py 4 Py + Poy + 25(Py + Ps + Psg)] +
23[Py + Py + Py + Py + Pay + Po1aza + Poos + Porza + 3° Py +
@' [Py + P14 Por + Py + P + Py + Poi2sa + Pozs + Piadl. 4)

The XOR gate delays of coefficients of 2V, 23 and x* are all 5Tx. In order to reduce it to 4Ty, we use the
identity Pyi234 = Po134 + Poos + Piog + Pos + P14 + P» to eliminate Pyi034 at the cost of introducing two new

products Pyz and P4, and obtain the following expression of coefficient of x*
ca=Py+ Py + P+ P3+ Py + Po1 + P3g + Po3 + Py + Poisa.

But the XOR delay of this formula is still 57x. In order to reduce it to 47x, We use the identity Pys =
Py + P; 4 ag * bs + a3 * by, which introduces two new products ag * bs and ag * by, and get the following 47Tx
formula

c4 = P+ Py + Py + Pyy + P3g + ag b3 + az * by + Pry + Pyi3s.
For other coefficients, we have

[Py + Py + P3 + Pa + Py + Poi2sa + Poos + Poiza + 2° P4

= Py+Py+ P+ Pay+ Piog + Pos + Py +2°Py

= P+ Pag+ Piag+ag *bs + az x by + Py + 2° Py

and

[Py + 2°(Py + Py + Py + Pog + Py + Py123s + Piog + Po13a)]
= Py+a°(Po+ P+ Pa+ Poz + Py + Poas + Pos + Py + P»)

= Py+a°(Py + P3+ Py + Pog + Poaz + ag * by + ag * by + Puy).



The final 47y formula is
C = 2[Py+a°(Py+ P3s+ Py + Py + Poaz + ag * b3 + az by + Pyy)] +
2 [Py + Py + Poy + 2°(Py + Ps + Py + Poy)] +
2%[Py+ Py + Py + Poa + 2°(Py + Py + P3,)] +
2°[Py+ Pag + Prag + ag * by + az * bg + Pra + 2°Py] +
2 [Py + Py + Py + Poy + Psq + ag = by + az * by + Pis + Po1sa].

We mark common subexpressions in the above formula as follows:

C = 2°Py+2°(Py+ (Ps+ Py) + Poa + Poog + [ag * by + az * by + Pia])] +
' [{Py+ Pr+2°(Ps + Py)} + 2°(Py + Pas) + Po] + 5)
22[{Py + Py +2°(Py+ Py)} + 2°Pag + Po + Poo] + (6)

$3[P4+P24+P124+ [(lo*bg-f—a;j*bo-f—Pld +$L‘5P4]+
504[P1+P2+P4+P01+P34+[(lo*b3+<l:3*bo+P14} + Po134]-

There are 2*8*% XORs in products Py1, Po2, Pi4, Payg, P34, Poos, P124 and Py134. These products are polynomials
in 2° with the same degree 2 * (3 -1)= %" — 2. We compute two “{---}”s in Eq. (5) and (6) once, and save 1
shift-add. Shift-adds a° (P2 + Ps4) in Eq. (5) and 2° P34 in Eq. (6) now become a normal addition. In summary, the
3 shift-add operations need 3 * (%" —2) XOR gates, and the 30 — 1 —2 — 4 = 23 addition operations 23 (%" -1)
XOR gates. Therefore, we have 16 % 2 + 3% (2 — 2) 423 % (22 — 1) = %2 — 29 and

S®(1) =0, 89(5)=16+23 =39,
_ 68n
S§%(n) = 158%(n/5) + % — 29.
Another method to find a formula with 47x was presented in [8], i.e., for all 0 < ¢ < 7 < 4, we replace
a; *bj +a; xb; in the schoolbook formula by the identity a; * b; 4+ a; *b; = P;; + P; + P;. And obtain the following

15-multiplication 4T’x formula:

C = 2"« [Po+a°+(Puu+ Pas+ PL+ Py + P + Py)]
2l [{Py+ P+ a° % (Ps + Py)} + Poy + 2°  (Pag + Py)]
a® % [{Py+ Py 4 a° % (P3 + Py)} + Py + P> + 2 % Pyy]

2% % [(Pog + Pia + Py + Py + Py + P3) + 2° % Py

+ o+ o+ +

x* % (Pog+ P13+ Py + Py + Py + Py + Py). @)

There are 2 * 10 * % XORs in products Py1, Py2, Pos, Poa, P12, P13, P14, Po3, P4 and Ps4. These products are

polynomials in 2° with the same degree 2 * (3-1)= 2?" —2. We compute two “{-- - }”s once, and save 1 shift-add.



In summary, the 3 shift-add operations need 3 * (%” —2) XOR gates, and the 26 — 3 — 3 = 20 addition operations
20 * (%% — 1) XOR gates. Therefore, we have 20 * 2 + 3% (2 — 2) + 20 % (2% — 1) = %2 — 26 and

SP(1)=0, S%(5) =20+ 20 = 40,
8%(n) = 158%(n/5) 4 %2 — 26.

The number of XOR gates in this formula is less than that in Eq. (5) for n > 5.

V. 6-TERM KARATSUBA FORMULAE

We transform the following 17-multiplication formula presented by Montgomery in [7]

C

Py+a* (P + Py + Py) + 2% % (Py12 + Pra + Poy)

2® % (Po2ss + Pozs + Paas + Pog + Pio + Psy + Pis + PL + Py)
o« (Pozss + Pozs + Psas + Pag + Py + Poisa + Po1 + Pis + Py)
2°  (Pozss + Pozs + Poss + Pia + PL+ Py + Ps + By)

2% % (Po2ss + Poss + Pot2 + Pag + Pra + Pioas + Po1 + Pus + Py)

27 % (Poass + Poss + Po1a + Pag + Pio + Psy + Poy + Py + Py)

+ o+ o+ o+ o+ o+

2% % (Psas + Psa + Py5) + 2° # (Py5 + Py + Ps) + 20 % Ps,
and obtain the following 57’y formula

C

2% % [Py + 2% % (Poass + Poas + Poi2 + Pa3 + Pry + Piogs + Poy + Pus + Py)]

2 % [(Por + Po + P1) + 2% % (Pogas + Poss + Poi2 + Pas + Pia + Pas + Po1 + P1 + Py)]
2% % [(Po12 + P2 + Por) + 2% % (Paas + Psg + Pys)]

2% % [(Po2ss + Poas + Paas + Pag + Pia + Py + Pys + Py + Py) + 2°  (Pas + Py + P5)]

z* % [(Pozss + Poas + Psas + Paz + Pig + Poiza + Po1 + Pys + P1) + 25 * Ps]

+ o+ o+ o+ A

x5 % (Poass + Poas + Pogs + Piu+ Py + Py + Ps + Ry). ®)

In order to find a formula with 47Ty, we consider the method in [8], i.e., for all 0 < ¢ < j < 5, we replace
a; *b; +a; *b; in the schoolbook formula by the identity a; *b; +a; *b; = P;; + F; + P;. And obtain the following

21-multiplication 47x formula:
C = 2« [Py+ 2%+ (Pis+ Pou+ P+ Po+ Py + Py + Ps)]
a2t * [(Por + Po + P1) + 2% % (Pos + Py + Po + Py + Py + P5)]
22 % [(Pyg + Py + Py + Py) + 25 % (P35 + Ps + Py + Ps)]
@® % [(Pos + P + Po+ P1 + Py + Ps) + 2°  (Pys + Py + Ps)|

I4*[(P04+P13+P0+P1+P2+P3+P4)+I6*P5]

+ o+ o+ o+ o+

25 % [(Pos + Pia + Poz + Py+ P1 + Py + Ps + Py + Ps)]. ©)
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