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Abstract

The overlap-free splitting method, i.e., even-odd splitting and its generalization, can reduce the XOR delay of a

Karatsuba multiplier. We use this method to derive Karatsuba formulae with one less XOR delay in each recursive

iteration. These formulae need more multiplication operations, and are trade-offs between space and time.

We also show that “finding common subexpressions” performs better than “the refined identity” in 4-term formula:

we reduce the number of XOR gates given by Cenk, Hasan and Negre in IEEE T. Computers in 2014.
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I. INTRODUCTION

Even-odd splitting of polynomials and its generalization were first used in Karatsuba algorithms in 2007 [1].

These splitting methods eliminate overlaps in the reconstruction step, and reduce XOR gate delays of subquadratic

Karatsuba multipliers in F2[x] by about 33% and 25% for n = 2t and n = 3t (t > 1), respectively. On the other

hand, many efforts have been made to reduce the multiplicative complexity M(n) of a Karatsuba formula, and

these improvements reduce space complexities of Karatsuba multipliers.

In this work, we focus on optimising the time complexity, and give 4-term and 5-term Karatsuba formulae with

one less XOR gate delay in each recursive iteration. We first replace the original splitting method by the above

overlap-free splitting method in splitting steps of the two existing low-M(n) formulae, and then reduce XOR delays

by increasing M(n) slightly.

We also give an improvement on the 4-term formula presented by Cenk, Hasan and Negre in [2]. Their formula

combines the overlap-free splitting method and “the refined identity” together to reduce both the XOR space

complexity S⊕(n) and the XOR time complexity D⊕(n). The idea behind “the refined identity” is presented by

Zhou and Michalik [3] (for the case n = 2i) and Bernstein [4]. The space and time complexities of formula in [2]

are as follows:
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S⊕(n) = 9S⊕(n/4) + 10n− 17 =
47

8
nlog4 9 − 8n+

17

8
and D⊕(n) = 4 log4 nTX = 2 log2 nTX ,

where “TX” is the delay of one 2-input XOR gate.

We optimise S⊕(n) by marking common subexpressions explicitly. While the method “finding common subex-

pressions” performs worse for the case n = 3i, see [2], it wins for n = 4i. The new formula needs 1 less addition

in each recursive iteration, and thus improves the above space complexity bound to:

S⊕(n) = 9S⊕(n/4) + 10n− 18 =
46

8
nlog4 9 − 8n+

18

8
and D⊕(n) = 4 log4 nTX = 2 log2 nTX .

XOR complexities of formulae in this work are listed in the following table.

TABLE I

COMPARISONS OF COMPLEXITIES

n Algorithm #Multiplication #XOR XOR Gate Delay (TX )

[2] 9 47
8
nlog4 9 − 8n+ 17

8
4 log4 n = 2.00 log2 n

4i Eq. (2) 9 46
8
nlog4 9 − 8n+ 18

8
4 log4 n = 2.00 log2 n

Eq. (3) 10 3 log4 n = 1.50 log2 n

Schoolbook 16 1.00 log2 n

5i Eq. (4) 13 5 log5 n ≈ 2.15 log2 n

Eq. (7) 15 4 log5 n ≈ 1.72 log2 n

6i Eq. (8) 17 5 log6 n ≈ 1.93 log2 n

Eq. (9) 21 4 log6 n ≈ 1.55 log2 n

II. IMPROVE S⊕(n) OF THE 4-TERM KARATSUBA FORMULA

Let A = a3x
3 + a2x

2 + a1x + a0, B = b3x
3 + b2x

2 + b1x + b0 and C = AB =
∑6

i=0 cix
i. Cenk, Hasan and

Negre combine the overlap-free splitting method and the refined identity, and present a formula with low XOR

delay [2, Section 3.3]. For the initial step n = 4, the numbers of XOR gates needed in the reconstruction step are

listed in the following table:
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TABLE II

RECONSTRUCTION STEP FOR n = 4

Computations Degree #XOR

R0 = P0 + xP1 + x2P2 + x3P3 Deg(R0) = 3 0

R1 = (1 + x)R0 Deg(R1) = 4 3

R2 = R1 + xP01 + x3P23 Deg(R2) = 4 2

R3 = P02 + xP13 Deg(R3) = 1 0

R4 = (1 + x)R3 Deg(R4) = 2 1

R5 = R4 + xP0123 Deg(R5) = 2 1

R6 = (1 + x2)R2 Deg(R6) = 6 3

C = R6 + x2R5 x2R5 has 3 bits 3

Total 13

In this table, product terms Pi = aibi, P01 = (a0+a1)(b0+ b1), P02 = (a0+a2)(b0+ b2), P13 = (a1+a3)(b1+

b3), P23 = (a2 + a3)(b2 + b3) and P0123 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3) are elements in F2. There are

2 ∗ 5 = 10 XOR gates in P01, P02, P13, P23 and P0123. So we have S⊕(4) = 10 + 13 = 23.

The total number of XOR gates for n = 4i is given in Table 3 and Eq. (8) of [2]:

S⊕(1) = 0, S⊕(4) = 10 + 13 = 23,

S⊕(n) = 9S⊕(n/4) + 10n− 17 = 47
8 nlog4 9 − 8n+ 17

8 .

We now optimise S⊕(n) by finding common subexpressions. Given a k-term Karatsuba formula using the original

Karatsuba splitting method, it is easy to transform it to a formula using the overlap-free splitting method: combining

coefficients of xi and xi+k together for 0 ≤ i ≤ k − 2. Take k = 4 as an example, we transform the following

9-multiplication formula

C = P0 + x(P01 + P0 + P1) + x2(P0 + P1 + P2 + P02) +

x3(P0123 + P13 + P02 + P23 + P2 + P3 + P01 + P0 + P1) +

x4(P13 + P1 + P2 + P3) + x5(P23 + P2 + P3) + x6P3

to

C = x0[P0 + x4(P13 + P1 + P2 + P3)] + x2[(P0 + P1 + P2 + P02) + x4P3] (1)

x[(P01 + P0 + P1) + x4(P23 + P2 + P3)] + x3(P0123 + P13 + P02 + P23 + P2 + P3 + P01 + P0 + P1).

This is a rewrite of the overlap-free formula in [2, Section 3.3]. Please note that coefficients of x0, x, x2 and x3

are summations of product terms P∗, and they are polynomials in xk = x4.

In order to count the number of XOR gates in this formula, we mark common subexpressions in different colors,

denote the 3 shift-adds ((· · · ) + x4(· · · )) by ⊕, and label the 12 actual “+”s in subscripts:

C = [P0 ⊕ x4(P13 +1 P1 +2 P2 +3 P3)] + x2[(P0 +4 P1 +5 P2 +6 P02)⊕ x4P3] + (2)

x[(P01 +7 P0 +4 P1)⊕ x4(P23 +11 P2 +3 P3)] +

x3(P0123 +8 P13 +9 P02 +10 P23 +11 P2 +3 P3 +12 P01 +7 P0 +4 P1).
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There are 2 ∗ 5 ∗ n
4 XORs in products P01, P02, P13, P23 and P0123. These products are polynomials in x4 with

the same degree 2 ∗ (n4 − 1) = n
2 − 2. So the 3 shift-add ⊕ operations need 3 ∗ (n2 − 2) XOR gates, and the 12

actual +i operations 12 ∗ (n2 − 1) XOR gates. Therefore, we have 10 ∗ n
4 +3 ∗ (n2 − 2) + 12 ∗ (n2 − 1) = 10n− 18

and
S⊕(1) = 0, S⊕(4) = 10 + 12 = 22, Note : S⊕(4) = 23 in [2].

S⊕(n) = 9S⊕(n/4) + 10n− 18 = 46
8 nlog4 9 − 8n+ 18

8 .

This improves the bound S⊕(n) = 9S⊕(n/4) + 10n− 17 = 47
8 nlog4 9 − 8n+ 17

8 presented in [2].

The XOR gate delay of coefficient of x3 in (2) is 4TX because we can compute it using

P0123 +8 [P13 +9 P02] +10 [P23 +11 (P2 +3 P3)] +12 [P01 +7 (P0 +4 P1)],

where P0123 and three [· · · ] need 2TX each. Therefore, the XOR gate delay of Eq. (2) is D⊕(n) = 4 log4 nTX .

The other advantage of this new overlap-free formula (2) is that products P01, P02, P13, P23 and P0123 each have

2 ∗ (n4 − 1) + 1 = n
2 − 1 bits because their degrees are all 2 ∗ (n4 − 1) = n

2 − 2. But R0 in [2, Table 3], which also

uses the overlap-free splitting and has the same D⊕(n) = 4 log4 nTX , has 4 ∗ (n2 − 1) = 2n− 4 bits. We need to

manipulate this long polynomial in the following step of R1, R2 and R6.

We note that Find and Peralta adopt the original splitting method, and obtain the bound S⊕(1) = 0 and S⊕(n) =

9S⊕(n/4) + 34
4 n − 12 [5]. This is an improvement to Bernstein’s bound S⊕(n) = 9S⊕(n/4) + 34

4 n − 11 [4, p.

327] or [2, Eq. (5)]. The XOR gate delays of these formulae are D⊕(n) = 5 log4 nTX because of the overlap.

III. 4-TERM KARATSUBA FORMULA WITH 10-MULTIPLICATION AND 3-TX

In order to reduce the XOR delay in (1), we eliminate P0123 using the following identity

P0123 = P01 + P02 + P03 + P12 + P13 + P23.

This identity introduces 2 new multiplications P12 and P03. So we have the following 10-multiplication formula:

C = x0[P0 + x4(P13 + P1 + P2 + P3)] + x2[(P0 + P1 + P2 + P02) + x4P3] (3)

x[(P01 + P0 + P1) + x4(P23 + P2 + P3)] + x3(P12 + P03 + [P2 + P3] + [P0 + P1])

= x0{[(P0 + x4P1) + x4(P2 + P3)] + x4P13}+ x2{[(P0 + P1) + (P2 + x4P3)] + P02}

x{[P01 + (P0 + P1)] + x4[P23 + (P2 + P3)]}+ x3{P12 + P03 + (P2 + P3) + (P0 + P1)}.

The XOR gate delays of coefficients of x0, x, x2 and x3 in “{}” are all 3TX . So the final XOR gate delay is

D⊕(n) = 3 log4 nTX = 1.5 log2 nTX .

There are 2 ∗ 6 ∗ n
4 XORs in products P01, P02, P03, P12, P13 and P23. These products are polynomials in x4

with the same degree 2 ∗ (n4 − 1) = n
2 − 2. So the 3 shift-add operations need 3 ∗ (n2 − 2) XOR gates, and the 11

addition operations 11 ∗ (n2 − 1) XOR gates. Therefore, we have 12 ∗ n
4 + 3 ∗ (n2 − 2) + 11 ∗ (n2 − 1) = 10n− 17

and
S⊕(1) = 0, S⊕(4) = 23,

S⊕(n) = 10S⊕(n/4) + 10n− 17.
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IV. 5-TERM KARATSUBA FORMULA WITH 15-MULTIPLICATION AND 4-TX

Let A = a4x
4 + a3x

3 + a2x
2 + a1x+ a0, B = b4x

4 + b3x
3 + b2x

2 + b1x+ b0 and C = AB =
∑8

i=0 cix
i. We

transform the following 13-multiplication formula in [6] using the overlap-free splitting method. This formula is

based on the CRT moduli polynomials (x−∞)3, x3, (x+ 1)1, x2 + x+ 1.

C = P0 + x(P0 + P1 + P01) + x2(P0 + P1 + P2 + P02) +

x3(P0 + P4 + P3 + P2 + P24 + P01234 + P023 + P0134) +

x4(P0 + P1 + P01 + P4 + P3 + P34 + P01234 + P023 + P124) +

x5(P0 + P1 + P2 + P02 + P4 + P01234 + P124 + P0134) +

x6(P4 + P3 + P2 + P24) + x7(P4 + P3 + P34) + x8P4.

The resulting low-delay formula is

C = x0[P0 + x5(P0 + P1 + P2 + P02 + P4 + P01234 + P124 + P0134)] +

x1[P0 + P1 + P01 + x5(P4 + P3 + P2 + P24)] +

x2[P0 + P1 + P2 + P02 + x5(P4 + P3 + P34)] +

x3[P0 + P4 + P3 + P2 + P24 + P01234 + P023 + P0134 + x5P4] +

x4[P0 + P1 + P01 + P4 + P3 + P34 + P01234 + P023 + P124]. (4)

The XOR gate delays of coefficients of x0, x3 and x4 are all 5TX . In order to reduce it to 4TX , we use the

identity P01234 = P0134 + P023 + P124 + P03 + P14 + P2 to eliminate P01234 at the cost of introducing two new

products P03 and P14, and obtain the following expression of coefficient of x4

c4 = P0 + P1 + P2 + P3 + P4 + P01 + P34 + P03 + P14 + P0134.

But the XOR delay of this formula is still 5TX . In order to reduce it to 4TX , We use the identity P03 =

P0 + P3 + a0 ∗ b3 + a3 ∗ b0, which introduces two new products a0 ∗ b3 and a3 ∗ b0, and get the following 4TX

formula

c4 = P1 + P2 + P4 + P01 + P34 + a0 ∗ b3 + a3 ∗ b0 + P14 + P0134.

For other coefficients, we have

[P0 + P4 + P3 + P2 + P24 + P01234 + P023 + P0134 + x5P4]

= P0 + P4 + P3 + P24 + P124 + P03 + P14 + x5P4

= P4 + P24 + P124 + a0 ∗ b3 + a3 ∗ b0 + P14 + x5P4

and

[P0 + x5(P0 + P1 + P2 + P02 + P4 + P01234 + P124 + P0134)]

= P0 + x5(P0 + P1 + P2 + P02 + P4 + P023 + P03 + P14 + P2)

= P0 + x5(P1 + P3 + P4 + P02 + P023 + a0 ∗ b3 + a3 ∗ b0 + P14).
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The final 4TX formula is

C = x0[P0 + x5(P1 + P3 + P4 + P02 + P023 + a0 ∗ b3 + a3 ∗ b0 + P14)] +

x1[P0 + P1 + P01 + x5(P4 + P3 + P2 + P24)] +

x2[P0 + P1 + P2 + P02 + x5(P4 + P3 + P34)] +

x3[P4 + P24 + P124 + a0 ∗ b3 + a3 ∗ b0 + P14 + x5P4] +

x4[P1 + P2 + P4 + P01 + P34 + a0 ∗ b3 + a3 ∗ b0 + P14 + P0134].

We mark common subexpressions in the above formula as follows:

C = x0[P0 + x5(P1 + (P3 + P4) + P02 + P023 + [a0 ∗ b3 + a3 ∗ b0 + P14])] +

x1[{P0 + P1 + x5(P3 + P4)}+ x5(P2 + P24) + P01] + (5)

x2[{P0 + P1 + x5(P3 + P4)}+ x5P34 + P2 + P02] + (6)

x3[P4 + P24 + P124 + [a0 ∗ b3 + a3 ∗ b0 + P14] + x5P4] +

x4[P1 + P2 + P4 + P01 + P34 + [a0 ∗ b3 + a3 ∗ b0 + P14] + P0134].

There are 2∗8∗ n5 XORs in products P01, P02, P14, P24, P34, P023, P124 and P0134. These products are polynomials

in x5 with the same degree 2 ∗ (n5 − 1) = 2n
5 − 2. We compute two “{· · · }”s in Eq. (5) and (6) once, and save 1

shift-add. Shift-adds x5(P2+P24) in Eq. (5) and x5P34 in Eq. (6) now become a normal addition. In summary, the

3 shift-add operations need 3 ∗ ( 2n5 − 2) XOR gates, and the 30− 1− 2− 4 = 23 addition operations 23 ∗ ( 2n5 − 1)

XOR gates. Therefore, we have 16 ∗ n
5 + 3 ∗ ( 2n5 − 2) + 23 ∗ ( 2n5 − 1) = 68n

5 − 29 and

S⊕(1) = 0, S⊕(5) = 16 + 23 = 39,

S⊕(n) = 15S⊕(n/5) + 68n
5 − 29.

Another method to find a formula with 4TX was presented in [8], i.e., for all 0 ≤ i < j ≤ 4, we replace

ai ∗ bj +aj ∗ bi in the schoolbook formula by the identity ai ∗ bj +aj ∗ bi = Pij +Pi+Pj . And obtain the following

15-multiplication 4TX formula:

C = x0 ∗ [P0 + x5 ∗ (P14 + P23 + P1 + P2 + P3 + P4)]

+ x1 ∗ [{P0 + P1 + x5 ∗ (P3 + P4)}+ P01 + x5 ∗ (P24 + P2)]

+ x2 ∗ [{P0 + P1 + x5 ∗ (P3 + P4)}+ P02 + P2 + x5 ∗ P34]

+ x3 ∗ [(P03 + P12 + P0 + P1 + P2 + P3) + x5 ∗ P4]

+ x4 ∗ (P04 + P13 + P0 + P1 + P2 + P3 + P4). (7)

There are 2 ∗ 10 ∗ n
5 XORs in products P01, P02, P03, P04, P12, P13, P14, P23, P24 and P34. These products are

polynomials in x5 with the same degree 2∗(n5 −1) = 2n
5 −2. We compute two “{· · · }”s once, and save 1 shift-add.
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In summary, the 3 shift-add operations need 3 ∗ ( 2n5 − 2) XOR gates, and the 26− 3− 3 = 20 addition operations

20 ∗ ( 2n5 − 1) XOR gates. Therefore, we have 20 ∗ n
5 + 3 ∗ ( 2n5 − 2) + 20 ∗ ( 2n5 − 1) = 66n

5 − 26 and

S⊕(1) = 0, S⊕(5) = 20 + 20 = 40,

S⊕(n) = 15S⊕(n/5) + 66n
5 − 26.

The number of XOR gates in this formula is less than that in Eq. (5) for n > 5.

V. 6-TERM KARATSUBA FORMULAE

We transform the following 17-multiplication formula presented by Montgomery in [7]

C = P0 + x ∗ (P01 + P0 + P1) + x2 ∗ (P012 + P12 + P01)

+ x3 ∗ (P0235 + P025 + P345 + P23 + P12 + P34 + P45 + P1 + P4)

+ x4 ∗ (P0235 + P025 + P345 + P23 + P14 + P0134 + P01 + P45 + P1)

+ x5 ∗ (P0235 + P025 + P035 + P14 + P1 + P4 + P5 + P0)

+ x6 ∗ (P0235 + P035 + P012 + P23 + P14 + P1245 + P01 + P45 + P4)

+ x7 ∗ (P0235 + P035 + P012 + P23 + P12 + P34 + P01 + P1 + P4)

+ x8 ∗ (P345 + P34 + P45) + x9 ∗ (P45 + P4 + P5) + x10 ∗ P5,

and obtain the following 5TX formula

C = x0 ∗ [P0 + x6 ∗ (P0235 + P035 + P012 + P23 + P14 + P1245 + P01 + P45 + P4)]

+ x1 ∗ [(P01 + P0 + P1) + x6 ∗ (P0235 + P035 + P012 + P23 + P12 + P34 + P01 + P1 + P4)]

+ x2 ∗ [(P012 + P12 + P01) + x6 ∗ (P345 + P34 + P45)]

+ x3 ∗ [(P0235 + P025 + P345 + P23 + P12 + P34 + P45 + P1 + P4) + x6 ∗ (P45 + P4 + P5)]

+ x4 ∗ [(P0235 + P025 + P345 + P23 + P14 + P0134 + P01 + P45 + P1) + x6 ∗ P5]

+ x5 ∗ (P0235 + P025 + P035 + P14 + P1 + P4 + P5 + P0). (8)

In order to find a formula with 4TX , we consider the method in [8], i.e., for all 0 ≤ i < j ≤ 5, we replace

ai ∗ bj +aj ∗ bi in the schoolbook formula by the identity ai ∗ bj +aj ∗ bi = Pij +Pi+Pj . And obtain the following

21-multiplication 4TX formula:

C = x0 ∗ [P0 + x6 ∗ (P15 + P24 + P1 + P2 + P3 + P4 + P5)]

+ x1 ∗ [(P01 + P0 + P1) + x6 ∗ (P25 + P34 + P2 + P3 + P4 + P5)]

+ x2 ∗ [(P02 + P0 + P1 + P2) + x6 ∗ (P35 + P3 + P4 + P5)]

+ x3 ∗ [(P03 + P12 + P0 + P1 + P2 + P3) + x6 ∗ (P45 + P4 + P5)]

+ x4 ∗ [(P04 + P13 + P0 + P1 + P2 + P3 + P4) + x6 ∗ P5]

+ x5 ∗ [(P05 + P14 + P23 + P0 + P1 + P2 + P3 + P4 + P5)]. (9)
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