
1

Low-Delay 4, 5 and 6-Term Karatsuba

Formulae in F2[x] Using Overlap-free Splitting
Haining Fan

fhn@tsinghua.edu.cn

Abstract

The overlap-free splitting method, i.e., even-odd splitting and its generalization, can reduce the XOR delay of a

Karatsuba multiplier. We use this method to derive Karatsuba formulae with one less XOR delay in each recursive

iteration. These formulae need more multiplication operations, and are trade-offs between space and time.

We also show that “finding common subexpressions” performs better than “the refined identity” in 4-term formula:

we reduce the number of XOR gates given by Cenk, Hasan and Negre in IEEE T. Computers in 2014.

Index Terms

Karatsuba algorithm, polynomial multiplication, even-odd splitting, overlap-free splitting

I. INTRODUCTION

Even-odd splitting of polynomials and its generalization are powerful tools in FFT and Karatsuba algorithms.

For example, in 2002, they are used to achieve the optimal cutoff point of Mulders’s short product algorithm under

the Karatsuba model [1]; in 2007, they are used to reduce XOR gate delays of VLSI Karatsuba multipliers [2].

For Karatsuba multipliers, these splitting methods eliminate overlaps in the reconstruction step, and reduce XOR

gate delays of subquadratic Karatsuba multipliers in F2[x] by about 33% and 25% for n = 2t and n = 3t (t > 1),

respectively. On the other hand, many efforts have been made to reduce the multiplicative complexity M(n) of a

Karatsuba formula, and these improvements reduce space complexities of Karatsuba multipliers.

In this work, we focus on optimising the time complexity, and give 4-term and 5-term Karatsuba formulae with

one less XOR gate delay in each recursive iteration. We first replace the original splitting method by the above

overlap-free splitting method in splitting steps of the two existing low-M(n) formulae, and then reduce XOR delays

by increasing M(n) slightly.

We also give an improvement on the 4-term formula presented by Cenk, Hasan and Negre in [3]. Their formula

combines the overlap-free splitting method and “the refined identity” together to reduce both the XOR space

complexity S⊕(n) and the XOR time complexity D⊕(n). The idea behind “the refined identity” is presented by

Zhou and Michalik [4] (for the case n = 2i) and Bernstein [5]. The space and time complexities of formula in [3]

are as follows:

2

S⊕(n) = 9S⊕(n/4) + 10n− 17 =
47

8
nlog4 9 − 8n+

17

8
and D⊕(n) = 4 log4 nTX = 2 log2 nTX ,

where “TX” is the delay of one 2-input XOR gate.

We optimise S⊕(n) by marking common subexpressions explicitly. While the method “finding common subex-

pressions” performs worse for the case n = 3i, see [3], it wins for n = 4i. The new formula needs 1 less addition

in each recursive iteration, and thus improves the above space complexity bound to:

S⊕(n) = 9S⊕(n/4) + 10n− 18 =
46

8
nlog4 9 − 8n+

18

8
and D⊕(n) = 4 log4 nTX = 2 log2 nTX .

XOR complexities of formulae in this work are listed in the following table.

TABLE I

COMPARISONS OF COMPLEXITIES

n Algorithm #Multiplication #XOR XOR Gate Delay (TX)

[3] 9 47
8
nlog4 9 − 8n+ 17

8
4 log4 n = 2.00 log2 n

4i Eq. (2) 9 46
8
nlog4 9 − 8n+ 18

8
4 log4 n = 2.00 log2 n

Eq. (3) 10 3 log4 n = 1.50 log2 n

Schoolbook 16 1.00 log2 n

5i Eq. (4) 13 5 log5 n ≈ 2.15 log2 n

Eq. (7) 15 4 log5 n ≈ 1.72 log2 n

6i Eq. (8) 17 5 log6 n ≈ 1.93 log2 n

Eq. (9) 21 4 log6 n ≈ 1.55 log2 n

II. IMPROVE S⊕(n) OF THE 4-TERM KARATSUBA FORMULA

Let A = a3x
3 + a2x

2 + a1x + a0, B = b3x
3 + b2x

2 + b1x + b0 and C = AB =
∑6

i=0 cix
i. Cenk, Hasan and

Negre combine the overlap-free splitting method and the refined identity, and present a formula with low XOR

delay [3, Section 3.3]. For the initial step n = 4, the numbers of XOR gates needed in the reconstruction step are

listed in the following table:

3

TABLE II

RECONSTRUCTION STEP FOR n = 4

Computations Degree #XOR

R0 = P0 + xP1 + x2P2 + x3P3 Deg(R0) = 3 0

R1 = (1 + x)R0 Deg(R1) = 4 3

R2 = R1 + xP01 + x3P23 Deg(R2) = 4 2

R3 = P02 + xP13 Deg(R3) = 1 0

R4 = (1 + x)R3 Deg(R4) = 2 1

R5 = R4 + xP0123 Deg(R5) = 2 1

R6 = (1 + x2)R2 Deg(R6) = 6 3

C = R6 + x2R5 x2R5 has 3 bits 3

Total 13

In this table, product terms Pi = aibi, P01 = (a0+a1)(b0+ b1), P02 = (a0+a2)(b0+ b2), P13 = (a1+a3)(b1+

b3), P23 = (a2 + a3)(b2 + b3) and P0123 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3) are elements in F2. There are

2 ∗ 5 = 10 XOR gates in P01, P02, P13, P23 and P0123. So we have S⊕(4) = 10 + 13 = 23.

The total number of XOR gates for n = 4i is given in Table 3 and Eq. (8) of [3]:

S⊕(1) = 0, S⊕(4) = 10 + 13 = 23,

S⊕(n) = 9S⊕(n/4) + 10n− 17 = 47
8 nlog4 9 − 8n+ 17

8 .

We now optimise S⊕(n) by finding common subexpressions. Given a k-term Karatsuba formula using the original

Karatsuba splitting method, it is easy to transform it to a formula using the overlap-free splitting method: combining

coefficients of xi and xi+k together for 0 ≤ i ≤ k − 2. Take k = 4 as an example, we transform the following

9-multiplication formula

C = P0 + x(P01 + P0 + P1) + x2(P0 + P1 + P2 + P02) +

x3(P0123 + P13 + P02 + P23 + P2 + P3 + P01 + P0 + P1) +

x4(P13 + P1 + P2 + P3) + x5(P23 + P2 + P3) + x6P3

to

C = x0[P0 + x4(P13 + P1 + P2 + P3)] + x2[(P0 + P1 + P2 + P02) + x4P3] (1)

x[(P01 + P0 + P1) + x4(P23 + P2 + P3)] + x3(P0123 + P13 + P02 + P23 + P2 + P3 + P01 + P0 + P1).

This is a rewrite of the overlap-free formula in [3, Section 3.3]. Please note that coefficients of x0, x, x2 and x3

are summations of product terms P∗, and they are polynomials in xk = x4.

In order to count the number of XOR gates in this formula, we mark common subexpressions in different colors,

denote the 3 shift-adds ((· · ·) + x4(· · ·)) by ⊕, and label the 12 actual “+”s in subscripts:

C = [P0 ⊕ x4(P13 +1 P1 +2 P2 +3 P3)] + x2[(P0 +4 P1 +5 P2 +6 P02)⊕ x4P3] + (2)

x[(P01 +7 P0 +4 P1)⊕ x4(P23 +11 P2 +3 P3)] +

x3(P0123 +8 P13 +9 P02 +10 P23 +11 P2 +3 P3 +12 P01 +7 P0 +4 P1).

4

There are 2 ∗ 5 ∗ n
4 XORs in products P01, P02, P13, P23 and P0123. These products are polynomials in x4 with

the same degree 2 ∗ (n4 − 1) = n
2 − 2. So the 3 shift-add ⊕ operations need 3 ∗ (n2 − 2) XOR gates, and the 12

actual +i operations 12 ∗ (n2 − 1) XOR gates. Therefore, we have 10 ∗ n
4 +3 ∗ (n2 − 2) + 12 ∗ (n2 − 1) = 10n− 18

and
S⊕(1) = 0, S⊕(4) = 10 + 12 = 22, Note : S⊕(4) = 23 in [3].

S⊕(n) = 9S⊕(n/4) + 10n− 18 = 46
8 nlog4 9 − 8n+ 18

8 .

This improves the bound S⊕(n) = 9S⊕(n/4) + 10n− 17 = 47
8 nlog4 9 − 8n+ 17

8 presented in [3].

The XOR gate delay of coefficient of x3 in (2) is 4TX because we can compute it using

P0123 +8 [P13 +9 P02] +10 [P23 +11 (P2 +3 P3)] +12 [P01 +7 (P0 +4 P1)],

where P0123 and three [· · ·] need 2TX each. Therefore, the XOR gate delay of Eq. (2) is D⊕(n) = 4 log4 nTX .

The other advantage of this new overlap-free formula (2) is that products P01, P02, P13, P23 and P0123 each have

2 ∗ (n4 − 1) + 1 = n
2 − 1 bits because their degrees are all 2 ∗ (n4 − 1) = n

2 − 2. But R0 in [3, Table 3], which also

uses the overlap-free splitting and has the same D⊕(n) = 4 log4 nTX , has 4 ∗ (n2 − 1) = 2n− 4 bits. We need to

manipulate this long polynomial in the following step of R1, R2 and R6.

We note that Find and Peralta adopt the original splitting method, and obtain the bound S⊕(1) = 0 and S⊕(n) =

9S⊕(n/4) + 34
4 n − 12 [6]. This is an improvement to Bernstein’s bound S⊕(n) = 9S⊕(n/4) + 34

4 n − 11 [5, p.

327] or [3, Eq. (5)]. The XOR gate delays of these formulae are D⊕(n) = 5 log4 nTX because of the overlap.

III. 4-TERM KARATSUBA FORMULA WITH 10-MULTIPLICATION AND 3-TX

In order to reduce the XOR delay in (1), we eliminate P0123 using the following identity

P0123 = P01 + P02 + P03 + P12 + P13 + P23.

This identity introduces 2 new multiplications P12 and P03. So we have the following 10-multiplication formula:

C = x0[P0 + x4(P13 + P1 + P2 + P3)] + x2[(P0 + P1 + P2 + P02) + x4P3] (3)

x[(P01 + P0 + P1) + x4(P23 + P2 + P3)] + x3(P12 + P03 + [P2 + P3] + [P0 + P1])

= x0{[(P0 + x4P1) + x4(P2 + P3)] + x4P13}+ x2{[(P0 + P1) + (P2 + x4P3)] + P02}

x{[P01 + (P0 + P1)] + x4[P23 + (P2 + P3)]}+ x3{P12 + P03 + (P2 + P3) + (P0 + P1)}.

The XOR gate delays of coefficients of x0, x, x2 and x3 in “{}” are all 3TX . So the final XOR gate delay is

D⊕(n) = 3 log4 nTX = 1.5 log2 nTX .

There are 2 ∗ 6 ∗ n
4 XORs in products P01, P02, P03, P12, P13 and P23. These products are polynomials in x4

with the same degree 2 ∗ (n4 − 1) = n
2 − 2. So the 3 shift-add operations need 3 ∗ (n2 − 2) XOR gates, and the 11

addition operations 11 ∗ (n2 − 1) XOR gates. Therefore, we have 12 ∗ n
4 + 3 ∗ (n2 − 2) + 11 ∗ (n2 − 1) = 10n− 17

and
S⊕(1) = 0, S⊕(4) = 23,

S⊕(n) = 10S⊕(n/4) + 10n− 17.

5

This formula is the same as that obtained using the method in [9], i.e., for all 0 ≤ i < j ≤ 4, we replace

ai ∗ bj + aj ∗ bi in the schoolbook formula by the identity ai ∗ bj + aj ∗ bi = Pij + Pi + Pj .

IV. 5-TERM KARATSUBA FORMULA WITH 15-MULTIPLICATION AND 4-TX

Let A = a4x
4 + a3x

3 + a2x
2 + a1x+ a0, B = b4x

4 + b3x
3 + b2x

2 + b1x+ b0 and C = AB =
∑8

i=0 cix
i. We

transform the following 13-multiplication formula presented by Cenk and Özbudak in [7] using the overlap-free

splitting method. This formula is based on the CRT moduli polynomials (x−∞)3, x3, (x+ 1)1, x2 + x+ 1.

C = P0 + x(P0 + P1 + P01) + x2(P0 + P1 + P2 + P02) +

x3(P0 + P4 + P3 + P2 + P24 + P01234 + P023 + P0134) +

x4(P0 + P1 + P01 + P4 + P3 + P34 + P01234 + P023 + P124) +

x5(P0 + P1 + P2 + P02 + P4 + P01234 + P124 + P0134) +

x6(P4 + P3 + P2 + P24) + x7(P4 + P3 + P34) + x8P4.

The resulting low-delay formula is

C = x0[P0 + x5(P0 + P1 + P2 + P02 + P4 + P01234 + P124 + P0134)] +

x1[P0 + P1 + P01 + x5(P4 + P3 + P2 + P24)] +

x2[P0 + P1 + P2 + P02 + x5(P4 + P3 + P34)] +

x3[P0 + P4 + P3 + P2 + P24 + P01234 + P023 + P0134 + x5P4] +

x4[P0 + P1 + P01 + P4 + P3 + P34 + P01234 + P023 + P124]. (4)

The XOR gate delays of coefficients of x0, x3 and x4 are all 5TX . In order to reduce it to 4TX , we use the

identity P01234 = P0134 + P023 + P124 + P03 + P14 + P2 to eliminate P01234 at the cost of introducing two new

products P03 and P14, and obtain the following expression of coefficient of x4

c4 = P0 + P1 + P2 + P3 + P4 + P01 + P34 + P03 + P14 + P0134.

But the XOR delay of this formula is still 5TX . In order to reduce it to 4TX , We use the identity P03 =

P0 + P3 + a0 ∗ b3 + a3 ∗ b0, which introduces two new products a0 ∗ b3 and a3 ∗ b0, and get the following 4TX

formula

c4 = P1 + P2 + P4 + P01 + P34 + a0 ∗ b3 + a3 ∗ b0 + P14 + P0134.

For other coefficients, we have

[P0 + P4 + P3 + P2 + P24 + P01234 + P023 + P0134 + x5P4]

= P0 + P4 + P3 + P24 + P124 + P03 + P14 + x5P4

= P4 + P24 + P124 + a0 ∗ b3 + a3 ∗ b0 + P14 + x5P4

6

and

[P0 + x5(P0 + P1 + P2 + P02 + P4 + P01234 + P124 + P0134)]

= P0 + x5(P0 + P1 + P2 + P02 + P4 + P023 + P03 + P14 + P2)

= P0 + x5(P1 + P3 + P4 + P02 + P023 + a0 ∗ b3 + a3 ∗ b0 + P14).

The final 4TX formula is

C = x0[P0 + x5(P1 + P3 + P4 + P02 + P023 + a0 ∗ b3 + a3 ∗ b0 + P14)] +

x1[P0 + P1 + P01 + x5(P4 + P3 + P2 + P24)] +

x2[P0 + P1 + P2 + P02 + x5(P4 + P3 + P34)] +

x3[P4 + P24 + P124 + a0 ∗ b3 + a3 ∗ b0 + P14 + x5P4] +

x4[P1 + P2 + P4 + P01 + P34 + a0 ∗ b3 + a3 ∗ b0 + P14 + P0134].

We mark common subexpressions in the above formula as follows:

C = x0[P0 + x5(P1 + (P3 + P4) + P02 + P023 + [a0 ∗ b3 + a3 ∗ b0 + P14])] +

x1[{P0 + P1 + x5(P3 + P4)}+ x5(P2 + P24) + P01] + (5)

x2[{P0 + P1 + x5(P3 + P4)}+ x5P34 + P2 + P02] + (6)

x3[P4 + P24 + P124 + [a0 ∗ b3 + a3 ∗ b0 + P14] + x5P4] +

x4[P1 + P2 + P4 + P01 + P34 + [a0 ∗ b3 + a3 ∗ b0 + P14] + P0134].

There are 2∗8∗ n5 XORs in products P01, P02, P14, P24, P34, P023, P124 and P0134. These products are polynomials

in x5 with the same degree 2 ∗ (n5 − 1) = 2n
5 − 2. We compute two “{· · · }”s in Eq. (5) and (6) once, and save 1

shift-add. Shift-adds x5(P2+P24) in Eq. (5) and x5P34 in Eq. (6) now become a normal addition. In summary, the

3 shift-add operations need 3 ∗ (2n5 − 2) XOR gates, and the 30− 1− 2− 4 = 23 addition operations 23 ∗ (2n5 − 1)

XOR gates. Therefore, we have 16 ∗ n
5 + 3 ∗ (2n5 − 2) + 23 ∗ (2n5 − 1) = 68n

5 − 29 and

S⊕(1) = 0, S⊕(5) = 16 + 23 = 39,

S⊕(n) = 15S⊕(n/5) + 68n
5 − 29.

Another method to find a formula with 4TX was presented in [9], i.e., for all 0 ≤ i < j ≤ 4, we replace

ai ∗ bj +aj ∗ bi in the schoolbook formula by the identity ai ∗ bj +aj ∗ bi = Pij +Pi+Pj . And obtain the following

15-multiplication 4TX formula:

7

C = x0 ∗ [P0 + x5 ∗ (P14 + P23 + P1 + P2 + P3 + P4)]

+ x1 ∗ [{P0 + P1 + x5 ∗ (P3 + P4)}+ P01 + x5 ∗ (P24 + P2)]

+ x2 ∗ [{P0 + P1 + x5 ∗ (P3 + P4)}+ P02 + P2 + x5 ∗ P34]

+ x3 ∗ [(P03 + P12 + P0 + P1 + P2 + P3) + x5 ∗ P4]

+ x4 ∗ (P04 + P13 + P0 + P1 + P2 + P3 + P4). (7)

There are 2 ∗ 10 ∗ n
5 XORs in products P01, P02, P03, P04, P12, P13, P14, P23, P24 and P34. These products are

polynomials in x5 with the same degree 2∗(n5 −1) = 2n
5 −2. We compute two “{· · · }”s once, and save 1 shift-add.

In summary, the 3 shift-add operations need 3 ∗ (2n5 − 2) XOR gates, and the 26− 3− 3 = 20 addition operations

20 ∗ (2n5 − 1) XOR gates. Therefore, we have 20 ∗ n
5 + 3 ∗ (2n5 − 2) + 20 ∗ (2n5 − 1) = 66n

5 − 26 and

S⊕(1) = 0, S⊕(5) = 20 + 20 = 40,

S⊕(n) = 15S⊕(n/5) + 66n
5 − 26.

The number of XOR gates in this formula is less than that in Eq. (5) for n > 5.

V. 6-TERM KARATSUBA FORMULAE

We transform the following 17-multiplication formula presented by Montgomery in [8]

C = P0 + x ∗ (P01 + P0 + P1) + x2 ∗ (P012 + P12 + P01)

+ x3 ∗ (P0235 + P025 + P345 + P23 + P12 + P34 + P45 + P1 + P4)

+ x4 ∗ (P0235 + P025 + P345 + P23 + P14 + P0134 + P01 + P45 + P1)

+ x5 ∗ (P0235 + P025 + P035 + P14 + P1 + P4 + P5 + P0)

+ x6 ∗ (P0235 + P035 + P012 + P23 + P14 + P1245 + P01 + P45 + P4)

+ x7 ∗ (P0235 + P035 + P012 + P23 + P12 + P34 + P01 + P1 + P4)

+ x8 ∗ (P345 + P34 + P45) + x9 ∗ (P45 + P4 + P5) + x10 ∗ P5,

and obtain the following 5TX formula

C = x0 ∗ [P0 + x6 ∗ (P0235 + P035 + P012 + P23 + P14 + P1245 + P01 + P45 + P4)]

+ x1 ∗ [(P01 + P0 + P1) + x6 ∗ (P0235 + P035 + P012 + P23 + P12 + P34 + P01 + P1 + P4)]

+ x2 ∗ [(P012 + P12 + P01) + x6 ∗ (P345 + P34 + P45)]

+ x3 ∗ [(P0235 + P025 + P345 + P23 + P12 + P34 + P45 + P1 + P4) + x6 ∗ (P45 + P4 + P5)]

+ x4 ∗ [(P0235 + P025 + P345 + P23 + P14 + P0134 + P01 + P45 + P1) + x6 ∗ P5]

+ x5 ∗ (P0235 + P025 + P035 + P14 + P1 + P4 + P5 + P0). (8)

8

In order to find a formula with 4TX , we consider the method in [9], i.e., for all 0 ≤ i < j ≤ 5, we replace

ai ∗ bj +aj ∗ bi in the schoolbook formula by the identity ai ∗ bj +aj ∗ bi = Pij +Pi+Pj . And obtain the following

21-multiplication 4TX formula:

C = x0 ∗ [P0 + x6 ∗ (P15 + P24 + P1 + P2 + P3 + P4 + P5)]

+ x1 ∗ [(P01 + P0 + P1) + x6 ∗ (P25 + P34 + P2 + P3 + P4 + P5)]

+ x2 ∗ [(P02 + P0 + P1 + P2) + x6 ∗ (P35 + P3 + P4 + P5)]

+ x3 ∗ [(P03 + P12 + P0 + P1 + P2 + P3) + x6 ∗ (P45 + P4 + P5)]

+ x4 ∗ [(P04 + P13 + P0 + P1 + P2 + P3 + P4) + x6 ∗ P5]

+ x5 ∗ [(P05 + P14 + P23 + P0 + P1 + P2 + P3 + P4 + P5)]. (9)

REFERENCES

[1] G. Hanrot and P. Zimmermann, “A Long Note on Mulders’ Short Product,” Journal of Symbolic Computation vol.37 , pp.391-401, 2004.

[Research Report] RR-4654, INRIA. 2002. https://hal.inria.fr/inria-00071931.

[2] H. Fan and J. Sun and M. Gu and K. Lam, “Overlap-free Karatsuba-Ofman Polynomial Multiplication Algorithms,” IET Information

Security, vol. 4, no. 1, pp. 8-14, 2010. https://eprint.iacr.org/2007/393.

[3] M. Cenk, M. A. Hasan, and C. Negre, “Efficient subquadratic space complexity binary polynomial multipliers based on block

recombination,” IEEE Transactions on Computers, vol. 63, no. 9, pp. 2273-2287, Sep. 2014.

[4] G. Zhou and H. Michalik, “Comments on ‘A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on

Composite Field’,” IEEE Transactions on Computers, vol. 59, no. 7, pp. 1007-1008, 2010.

[5] D. J. Bernstein, “Batch Binary Edwards,” CRYPTO 2009, LNCS 5677 pp. 317-336, 2009.

[6] M. G. Find and R. Peralta, “Better circuits for binary polynomial multiplication,” IEEE Transactions on Computers, vol. 68, no. 4, pp.

624-630, 2019.

[7] M. Cenk and F. Özbudak, “Improved polynomial multiplication formulas over F2 using Chinese Remainder Theorem,” IEEE Transactions

on Computers, vol. 58, no. 4, pp. 572-576, 2009.

[8] P. L. Montgomery, “Five, Six, and Seven-Term Karatsuba-Like Formulae,” IEEE Transactions on Computers, vol. 54, no. 3, pp. 362-369,

Mar. 2005.

[9] A. Weimerskirch and C. Paar, “Generalizations of the Karatsuba algorithm for efficient implementations”, https://eprint.iacr.org/2006/224.

