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Abstract. Financial dark pool trading venues are designed to keep pre-trade order information secret
so that it cannot be misused by others. However, dark pools are vulnerable to an operator misusing
the information in their system. Prior work has used MPC to tackle this problem by assuming that
the dark pool is operated by a small set of two or three MPC parties. However, this raises the question
of who plays the role of these operating parties and whether this scenario could be applied in the real
world. In this work, we implement an MPC-based dark pool trading venue with up to 100 parties.
This configuration would allow a real-world implementation where the operating parties are the active
participants that trade in the venue (i.e., a “no operator” model), or where the parties are the main
stakeholders of the venue (e.g., members of a non-profit partnership such as Plato). We use AWS cloud
to empirically test the performance of the system. Results demonstrate that the system can achieve
trading throughput required for some real-world venues, while the cost of hosting the system is negligible
compared with the savings expected from guaranteeing no information leakage.
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1 Introduction

In January 2022, the Securities and Exchange Commission (SEC) ordered tZERO, a US-registered
“dark pool” operator, to cease and desist from violating the Exchange Act and pay a civil money
penalty of US $800,000 [Uni22]. For more than two years, tZERO had failed to inform the SEC, or
its customers, that it was sharing “non-displayed” order information with third parties, including



Blue Ocean Technologies, a Singapore-based broker-dealer, which tZERO acquired during this
period. The raison d’être of a dark pool is to hide the trading intention of market participants
by not displaying unfilled order information, as this information can be used by other traders to
adversely move the price. Therefore, by selling order information to third parties, tZERO actively
worked against its own customers that it was purporting to protect. Disappointingly, this unethical
behaviour is not uncommon, and tZERO merely becomes the latest member to join an infamous
group of dark pool operators that have collectively paid hundreds of millions of dollars in penalty
settlements to the SEC for similar violations over the last decade (for a detailed list of dark pool
violations, see [CST21, p.242, Table 1]).

A dark pool is a financial trading venue where investors can buy and sell financial instruments,
such as equities and derivatives, without revealing their trading intention. When an investor submits
a buy or sell order into the dark pool the order is not disclosed for other market participants to view.
Rather, the order will wait “in the dark” until it is either removed by the owner, or until a matching
counterparty order is discovered, at which point a trade will execute between the buyer and the
seller (the exact mechanism used for matching orders varies between venues). By not displaying
orders, dark pools are designed to stop predatory trading practices such as front-running that use
the trading intention disclosed in an order against the owner of that order (e.g., see [CST19]).
However, if an operator decides to abuse their privileged access to order information, the intended
benefits of the dark pool are lost. Therefore, trust is a widely acknowledged issue for dark pool
operators.

To address the issue of trust in dark pools, one approach is to replace a single dark pool operator
(the case n = 1) by a set of independent parties (i.e., n > 1) who emulate the single operator via a
multi-party computation (MPC) protocol, such that internal algorithm data is processed in secret-
shared form between the n parties. Then, as long as some given ratio of parties remain honest,
the internal data cannot be accessed maliciously. In 2019 [CST19], this secure “multiple operators”
architecture (with n = 2 and n = 3) was shown to be capable of handling trading throughput
(in a single instrument) equivalent to that expected in some real-world financial dark pool venues.
Subsequently, the multiple operators model (with n = 2 and n = 3) has been used to emulate
an approximation of Turquoise Plato, Europe’s largest dark pool trading venue, and shown to
be capable of securely handling real-world trading throughput across thousands of instruments
[CST21].

Together, the previous works leave little doubt that MPC is ready for real-world implementa-
tion of a secure financial dark pool. However, they leave some important questions unresolved. In
particular: who should play the role of the n parties that operate the dark pool? In prior works, it
was suggested that a regulator, a primary exchange, or a rotating collection of stakeholders (such
as members of the Plato Partnership) could act as MPC parties; but none of these solutions fully
address the issue and all have some drawbacks. Here, for the first time, we extend the previous
MPC model to many parties l ≫ 3, such that every stakeholder, for example every investor that
trades in the dark pool, can act as an operating party in the MPC protocol (we switch to use
notation l to indicate that parties can participate in the market, whereas n indicates that parties
are non-participating operators). We examine the situation where the MPC-protocol is executed
by a set of l ≤ 100 stakeholders, which simulates the organisational structures of some real world
dark pools. We describe these next.

Given that the purpose of a dark pool is to prevent information leakage, particularly for large
“block” orders that are most vulnerable to adverse market impact, the majority of dark pool venues
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restrict access to select members. The classic example is Liquidnet, a private dark pool venue for
large institutional investors (buy-side firms, such as pension funds, that have extremely large assets
under management) to anonymously trade large blocks of stocks. By restricting access to “natural
liquidity” only (i.e., investment managers making trading decisions based on long-term fundamental
analysis, rather than “technical” traders using market signals for short-term profits), Liquidnet has
successfully cornered the market in large scale trades.3 While global membership of Liquidnet
has grown to 900 over the last twenty years, initially there were fewer than 100 participating
members. For dark pool venues of this nature, the number of participating stakeholders will always
be relatively small. Other dark pool venues, such as Turquoise Plato, encourage greater liquidity
flow by allowing many smaller investors to trade on the platform. Operated by the London Stock
Exchange Group, Turquoise Plato is overseen by the not-for-profit Plato Partnership, which includes
around 25 major buy-side and sell-side members that work together as key stakeholders to ensure
market fairness.4

By extending the multiple operators MPC-protocol to cover l ≤ 100 parties, in this work we
are able to instantiate a secure emulation of both a Liquidnet-style model, a fully-decentralised “no
operator” model where all l = 100 parties are active trading participants (i.e., the trading venue is
available to members only and all members act as an MPC party), and a Plato-style model, where
the l = 25 operating parties are key stakeholders of the venue (i.e., the MPC parties are the largest
investors on the platform, with legal oversight of the venue).

Contribution: We show that the volume matching algorithm used in some prior work, e.g.,
[CST19], can be realistically deployed for up to l = 100 parties; obtaining not only an acceptable
throughput of orders but also at a sub-dollar cost per auction. These results demonstrate real-world
commercial viability. Our experiments are performed, just as in [CST19], in the case of a universe
containing a single stock; however extension to multiple stocks can be accomplished in a standard
manner using the method in [CST21]. An overview of our results, in comparison to prior work on
secure dark pools, is presented in Table 1.

2 Background

2.1 Related work

Here, we summarise recent related work that is most pertinent to this study. We categorise this
work into blockchain-based frameworks, where solutions are designed to tackle the inherent chal-
lenges of trading securely over a distributed ledger, and work that is designed to secure dark pool
trading systems in more traditional financial settings. In this work, we specifically address the latter
problem. We do not attempt to solve the problem for blockchain-based systems, although future
work could explore extensions in this area. For a more general review of privacy preserving auctions
and the use of MPC, see [CST21].

Blockchain-based “dark pool” architectures Several recent works have introduced decen-
tralised blockchain-based architectures designed to preserve elements of privacy in a variety of trad-
ing settings, including a futures exchange [MNN+18], an over-the-counter (OTC) market [NMKW21],

3 In 2022, Liquidnet report $79bn average daily liquidity and $1.5m average execution size. See: https://www.
liquidnet.com/equities-trading-solutions

4 See: https://platopartnership.com/
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Table 1. Performance comparison of dark pool architectures using volume matching for traditional (i.e. non-
blockchain) markets. Time taken to match 1000 orders: number of operating parties (n) in prior works or participating
parties (l) in this work; tolerance of number of adversarial parties (t); actively secure protocol (a); volume match
protocol secures buy/sell direction (d); volume match includes Minimum Execution Size (MES); protocol (FT: Full
Threshold (SPDZ) or HM: Shamir-Based Honest Majority or FHE: FHE-Based); online runtime in seconds (online);
offline time as a multiple of online time (offline); universe of stocks (U).

MPC Offline
n/l t a d MES Protocol Online Multiple U

DarkSide[CST19] 2 1 ✓ ✗ ✗ FT 0.5 450 1
DarkSide [CST19] 3 1 ✓ ✗ ✗ HM 0.9 4.5 1
Plato [CST21] 2 1 ✓ ✗ ✓ FT ¡ 5 150-350 4500
Plato [CST21] 3 1 ✓ ✗ ✓ HM ¡ 5 3-8 4500
Bucket [dGCP+21] 3 1 ✓ ✓ ✗ HM 0.36 Not reported 1

SecretMatch [BDP20] 1 0 ✗ ✓ ✗ FHE 800 0 1

Our Work 20 19 ✓ ✗ ✗ FT 4.5 550 1
Our Work 20 1 ✓ ✗ ✗ HM 3.0 2 1
Our Work 20 9 ✓ ✗ ✗ HM 8.5 1.3 1
Our Work 100 99 ✓ ✗ ✗ FT 20 ? 1
Our Work 100 1 ✓ ✗ ✗ HM 12 2.3 1
Our Work 100 49 ✓ ✗ ✗ HM 133 1.4 1

a sealed-bid auction [BHSR20], and privacy-preserving decentralised exchanges [BDF21,GVJR21].
We briefly describe these important contributions, however we note that blockchain trading ar-
chitectures introduce challenges that are subtly different to the challenges that must be solved
when securing traditional financial dark pools. In particular, blockchain-based trading architec-
tures must stop third parties from linking trades with traders, and must prevent front-running
strategies that exploit public knowledge of pending transactions on the network and the miners’
ability to determine the final transaction ordering (for systematic treatments of these issues, see
[ByCD+21,HW22]).

In [MN21], Massaci and Ngo detail the design principles necessary to secure blockchain-based
distributed financial exchanges. They highlight the critical importance of anonymity and confiden-
tiality when trading on a public blockchain, as attributes of an actor are recorded on-chain and
can be tracked and used against them for discriminatory practices. In the scenario of a decen-
tralised futures market, the authors describe one such attack scenario, where a trader is identified
as having limited cash reserves and then forced by adversaries to liquidate an otherwise profitable
position at a loss [MNN+17,MN21]. To counter this very problem, in 2018, Ngo et al.[MNN+18] in-
troduced a decentralised futures market, where traders hide behind a Tor network to communicate
anonymously and MPC is used to enable privacy of who is trading. However, as the order book is
displayed, this architecture is not applicable for dark pool trading [Ngo19, p.89].

In 2021, Ngo et al [NMKW21] introduced an over-the-counter (OTC) trading protocol for
counterparties to communicate and negotiate anonymously and privately over a permissionless
blockchain acting as a public bulletin board. Hiding behind a Tor network to protect anonymity,
counterparties broadcast price ranges that they are prepared to trade, but do not reveal their asset
holdings. Bilateral negotiation proceeds as a series of iterative steps where each counterparty pub-
licly commits to information that meets some desired relation (i.e., price range and cash capacity),
until a trade agreement is reached.
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In 2020, Bag et al. introduced a publicly verifiable decentralised protocol for performing a sealed-
bid auction with no auctioneer. Using a public bulletin board (i.e., a permissionless blockchain) and
an anonymous veto protocol, bidders are able to jointly compute the maximum bid while preserving
the privacy of losing bids. The auction winner is able to prove they are the winner and other parties
can check that there is only one winner or if there is a tie. This protocol cleverly solves the problem
for single-sided auctions, where bidders are competing for one item, however it is not obvious how
this protocol could be extended to a double auction, which is a necessary mechanism for a dark
pool trading venue.

In 2021, two independent teams introduced privacy-preserving protocols for a decentralised
exchange [BDF21,GVJR21]. The primary aim of these works is to ensure that exchange transactions
are performed correctly. Both protocols incorporate a number of similar features, including periodic
auctions that match limit orders of unit volume on price only, a small number of MPC parties
performing sorting and/or matching off-chain, and a smart contract to record order commitments
and transactions. The protocol of [BDF21] is designed for exchanging assets over multiple public
ledgers and the authors suggest that the outsourced MPC servers that perform matching will be run
by a small number of public organisations. In comparison, [GVJR21] suggest that a small number
of brokers will act as MPC parties to first sort orders, before a smart contract implemented on
a permissioned ledger (such as Hyperledger Fabric) obliviously performs the matching. However,
these differences between [BDF21] and [GVJR21] are relatively minor compared with the similarity
in architectures.

Dark pool solutions for “traditional” finance Two architectures have been proposed to tackle
the problem of securing dark pools in a traditional financial setting. First, there is the “multiple
operator” model, where internal algorithm data is held in secret-shared form and processed by a
set of n independent servers, such that data cannot be accessed maliciously as long as a given ratio
of servers remain honest. The second approach is the “single operator” model, where orders are
sent in encrypted form and the operator uses properties of homomorphic encryption to match the
encrypted orders obliviously. We consider both of these methods, below:

Multiple operating parties: The seminal work of Bogetoft et al [BDJ+06,BCD+09] intro-
duced the first practically feasible MPC protocol for performing a secure double-auction using mul-
tiple operators. Traders first submit encrypted strategies that specify the quantity they are willing
to buy or sell at each possible price point. The operating parties then securely calculate a single
market clearing price that best balances aggregate supply with aggregate demand. In January 2008,
the protocol was successfully deployed to run the Danish sugar beet auction, where farmers trade
contracts for production on a nationwide-market [BCD+09]. The three operating parties included
Danisco (the only sugar beets processor in Denmark), DKS (the sugar beet growers’ association),
and the research team who designed the protocol. Making the assumption that the operators would
not maliciously deviate from the protocol, Shamir secret sharing with semi-honest (i.e., passive)
security was used. A total of 1229 farmers entered bidding strategies across 4000 potential price
points and the clearing price calculation was performed during one calendar day.

More than a decade after Bogetoft et al’s groundbreaking work Cartlidge et al [CST19] demon-
strated for the first time that MPC, with n = 2 and n = 3 operators, can emulate a secure dark
pool trading venue. Protocols were introduced for three auction mechanisms commonly used in
financial markets: (i) a continuous double auction (CDA), where buyers and sellers can post bids
and offers at any time and a limit order book is used to perform continuous matching; (ii) a periodic
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double auction, where buyers and sellers first submit bids and offers during an open auction period
before a single clearing price is calculated for all matches; and (iii) a periodic volume match, where
orders submitted during the open period contain a value for quantity only (i.e., orders contain no
limit price) and all matches trade at a single price determined by some external reference value
(e.g., the current mid-price on the primary exchange). For trading in a single stock/instrument,
empirical throughput results (number of orders submitted per second) showed that the CDA could
handle 50-150 orders/s for small order books; the period double auction could handle 500 orders/s;
and the periodic volume match could process between 1000 (n = 3 parties) and 2000 (n = 2 par-
ties) orders/s. These throughputs are within the performance range required for many real-world
financial dark pool venues. The volume match protocol is presented in Algorithm 1, which is the
matching algorithm which we will focus on in this paper.

In 2021, Cartlidge et al [CST21] extended the 2-operators and 3-operators model to emulate
a secure approximation of Turquoise Plato, Europe’s largest dark pool by trading volume. Secure
protocols implemented an approximation of Turquoise Plato Uncross, where order submissions
contain a minimum execution size (MES) and a periodic double auction matches orders every 5
seconds. In addition, a gateway allocation protocol was introduced to enable secure trading across
multiple stocks for the first time. Empirical results demonstrated that the system could handle
trading across the full universe of 4,500 stocks/instruments with throughput equivalent to the real
world trading venue.

Recently, in 2022 [dGCP+21], more efficient volume matching protocols were introduced for dark
pools with 2-operators and 3-operators. These extensions included methods to secure the direction
of an order (whether it is an order to buy or sell), the introduction of dummy orders, and an
exploration of fixed-size bucket matching. Empirical results demonstrated a three-fold improvement
in throughput and less information leakage than the original volume matching protocol introduced
in [CST19].

Single operator: Recently, an alternative single-operator architecture that makes use of Fully
Homomorphic Encryption (FHE) has been proposed by a research team at JP Morgan. In this
framework, clients send orders to the operator in encrypted form and the operator uses homo-
morphic properties of the encryption scheme to obliviously discover matches on the encrypted
order data. Matched orders are then decrypted and executed. This architecture was first described
at a high level, without a concrete implementation, in both a 2019 patent filing [ABPV21] and
an extended abstract published in summer 2020 [ABPV20]. Neither of these works describe how
matching can be computed. The first proof-of-concept instantiation of the architecture was pre-
sented at the end of 2020 [BDP20]. Named “SecretMatch”, the protocols in [BDP20] are designed
to tackle the problem of inventory matching, where a sell-side firm, such as a broker or bank, inter-
nally matches the buy and sell order flow of their clients, without sending their respective orders
to a public exchange. The SecretMatch protocols instantiate a periodic volume match algorithm
(similar to that presented in [CST19]) for a single symbol/instrument. Runtimes demonstrate that
the system can process 1024 orders in just over 800 seconds. However, the authors admit that these
results are optimistic as the system omits several features. Importantly, they omit the threshold
key-generation and threshold decryption algorithms and instead use a vanilla FHE scheme with a
single FHE decryption key [BDP20].

Runtime Comparison: Table 1 presents an approximate runtime comparison for processing
1000 orders using some variation of the volume matching algorithm (where orders are matched on
volume only and transaction price is taken from some external reference value). We present not
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Table 2. Summary of critiques of dark pool with multiple operating parties and brief response. Column A indicates
critique is addressed in this work; column B indicates critique applies only to blockchain-based implementations.

Section Critique References Response A B

2.2 No trader anonymity (on
public ledger)

[Ngo19, p.89], [MN21, p.62],
[NMKW21, p.583]

Only applies to blockchain
implementations

✗ ✓

2.2 Security with abort: cannot
just “walk away”

[MN21, p.62], [BDF21,
p.168]

Traditional markets can ab-
sorb a “halt” in trading

✗ ✓

2.2 Regulator cannot act as an
operator

[Ngo19, p.89], [ABPV20,
p.1748], [BDP20, p.3],
[MN21, p.60]

In our work, parties can in-
clude any major stakeholder

✓ ✗

2.2 Operating parties may col-
lude

[ABPV20, p.1748],
[BHSR20, p.2051]

Stakeholders are incen-
tivised to not collude

✓ ✗

2.2 Can it scale to many par-
ties?

[Ngo19, p.89], [MN21, p.69] We demonstrate scaling to
100 stakeholders

✓ ✗

2.2 Economic burden on operat-
ing parties

[NMKW21, Appendix p.21] We show the cost of partici-
pating in MPC is very low

✓ ✗

2.2 Heavy pre-processing re-
quired

[BDP20, p.3] Parallelised and just-in-time
pre-processing is possible

✗ ✗

2.2 Leaks buy/sell direction [ABPV20, p.1748], [BDP20,
p.3]

A simple solution to se-
cure direction is presented in
[dGCP+21]

✗ ✗

only the run-times from prior works, but also, for comparison, the results we obtain. It can be
seen that the single operator architecture of [BDP20] is three orders of magnitude slower than the
multiple operators architecture, despite [BDP20] using a trivial security threshold that significantly
reduces computation time. Unlike the single operator architecture, which has negligible offline
processing times, the multiple operators architecture [CST19,CST21,dGCP+21] requires significant
offline processing that can be hundreds of times longer than online processing times. However, offline
processing can be trivially parallelised, so these times are not a limiting factor on runtimes, but do
incur additional server costs.

2.2 Critique of multiple operating parties

There have been multiple critiques of the MPC dark pool model with multiple operating parties.5

A summary these critiques are presented in Table 2. We examine these criticisms below, but,
in summary, one sees that the problems highlighted are either specifically related to the case of
blockchain based dark pools, or are exactly related to the problem we address in this paper. We
summarize the issues in Table 2.

Trader anonymity A recurring critique of the MPC dark pool is that the protocols do not pre-
serve trader anonymity [Ngo19,MN21,NMKW21]. The authors of these works consider the related
problem of dark pool trading over the public blockchain, where trading activity and trader informa-
tion is publicly exposed. In particular, they detail an example attack in a blockchain futures market
[MNN+17,MN21]. However, this attack relies on knowing a trader’s exposure, which is possible in
the blockchain space, but is easily avoided in a traditional financial market. In the MPC dark

5 In March 2022, we performed an exhaustive search of all Google Scholar citations of [CST19,CST21,dGCP+21].
The majority of citations, and all critiques, are for the earliest work [CST19].
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pool model, traders each have an account id that is encrypted in secret shared form and so is not
exposed to the operator. Traders are also able, and likely, to simultaneously trade across multiple
venues. Therefore, even if the operator is able to track an individual trader’s executions, it is not
possible to deduce a trader’s full position. In addition, traders can operate through a broker, which
obscures the communication origin. Therefore, while the authors are correct to raise anonymity as
a concern for blockchain-based dark pool implementations, it is not relevant to our “traditional”
financial application domain.

Security with abort The MPC dark pool protocols are in the active-with-abort security model,
i.e., the protocols will abort if any party deviates from the protocol, as long as a threshold t
of parties remain honest. It has been raised that it is not possible to simply “walk away” when
malicious activity is detected [BDF21,MN21]. In particular a single dishonest party can ensure that
the auction does not complete, i.e. the protocols are not robust. In the context of blockchain-based
markets, e.g., see [ByCD+21,HW22], this is indeed a problem. However, in traditional financial
markets, it is possible (and not uncommon) to halt an exchange on detection of abnormal behaviour.
Many markets now include “circuit breaker” functionality that halt trading in an asset during times
of high volatility (e.g., when the asset price has moved more than 10% during one day). When the
protocol aborts, the market will halt. In addition there is a form of self-interest in the stake-holders
in a traditional market, of the stake-holders not wanting the market to be closed to themselves
going forward.

Who acts as operator(s)? In [CST19], it was suggested that one of the operating parties could
be played by the regulator. This comment has received criticism from both the blockchain domain
[Ngo19,MN21] and the domain of traditional finance [ABPV20,BDP20]. In particular, it has been
raised that regulators: i) are not allowed to actively participate in financial transactions; ii) do not
have the computing capacity to act as an operator; and iii) the cost of a regulator performing this
role will necessitate higher taxes. Although, to counter these one could state that i) a regulator’s role
can change over time; ii) an operator can make use of virtual cloud-hosted compute infrastructure
which requires only a credit card to access; or iii) one would expect the cost to the regulator to be
covered by the other commercial operators, which can be recovered through increased trading fees.
However, we feel that this is indeed a major issue in prior works in the space of MPC-based dark
pools. Thus, in our work, we extend the number of MPC operating parties by to up to 100. As we
explained earlier, this matches to real world scenarios such as Liquidnet, where there is a natural
number of less than 100 stake-holders members, or Turquoise Plato, where the number is in the
range 15-20.

Operators may collude It has been noted that operating parties can collude to trivially access the
secure information [ABPV20,BHSR20]. However, to achieve this, parties will need to openly plan
to deceive their customers. Historically, a single operator can trivially cheat and remain undetected.
If parties are chosen as key stakeholders, perhaps on a rotating basis, then there is incentive to
not cheat as discovery of malicious activity will disallow future participation. In this paper, we
demonstrate that the model scales to include key stakeholders, including traders, as participating
parties.
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Can it scale? Related to the prior point is the question as to whether the MPC-based methods
can scale, which is raised in [MN21,Ngo19]. In this paper, we explore how the models scale to many
more than l = 3 participating parties. We consider computation, communication and economic
costs.

Economic burden on operators The provision of trading venues is a commercial activity that
generates profit, therefore we expect operating parties to profit from trading fees. In [NMKW21]
it is argued that running the MPC dark pool could be prohibitive. In this paper, we explore the
economic costs of running an MPC dark pool for each participating party. We show that the costs
are negligible, totalling less than one dollar per auction. Given each auction in a traditional market
may trade millions of dollars worth of orders, the cost of one dollar to execute the auction is minimal
in comparison and can easily be absorbed in fees; without leading to a significant loss in revenue
for the market operator(s).

Heavy pre-processing Related to the economic costs is the fact that the prior MPC-protocols
work in the pre-processing model of MPC. This is done in order to ensure that the final (online)
trading can be executed as quickly as possible. However, the draw-back is that the underlying MPC
protocols rely on heavy offline pre-processing that might make it infeasible at scale. In addition,
the pre-processing requires one to know ahead of time the maximum market throughput [BDP20].
We note that, if necessary, pre-processing can be easily parallelised using scale-out across hundreds
of elastic compute instances. Also, pre-processing can be performed close to just-in-time, as we
demonstrate for the Shamir-based solutions in this paper. Using a combination of pre-processing
performed at night, along with some just-in-time pre-processing, we see that if markets start to
experience much higher throughput than the anticipated peak, additional processing can be per-
formed.

Buy/sell direction is leaked The protocols in [CST19,CST21] make use of separate buy and
sell order types. Therefore, the buy/sell direction of an order can leak. However, this can trivially
be solved by having a single order type, where direction is a single bit parameter that is secret-
shared. An example of this approach is introduced in [dGCP+21]. Also, it is possible for a trader
to simultaneously submit pairs of orders (one buy and one sell), where one order has zero volume.
This leads to inefficiencies of additional order flow of dummy orders, but prevents leakage.

2.3 Dark pool with no operator

In this paper, we propose the “no operator” dark pool as an extension of the multiple operating
parties model. Rather than have a small number of operators that provide the secure dark pool
venue, the no operator model distributes the MPC dark pool computation between (some subset
of) the market participants, i.e., by potentially including the traders and other stakeholders as
MPC parties. This is in comparison to other works which simply consider “splitting” the dark
pool operator into different entities. Figure 1 presents a schematic example. Similar to the multiple
operating (split) parties model, in our model multiple MPC engines provide the secure functionality
of the dark pool venue. However, these engines are owned by market participants who can trade
in the venue on their own behalf. This model addresses the criticisms of who acts as the operator?
(Section 2.2) and the charge of being susceptible to operator collusion (Section 2.2), as MPC parties
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Fig. 1. Darkpool with no operator. The MPC engines that perform secure matching are owned by market participants.

are now active stakeholders in the market and therefore have strong incentive to not be excluded
from the venue.

In the following sections, we empirically evaluate a concrete example of the model using AWS
instances to instantiate each MPC engine. This enables us to accurately evaluate the economic costs
of each participating party and we will show that costs are relatively small, therefore addressing
the criticism of economic burden (Section 2.2). We also address the charge of scaling (Section 2.2)
by showing that the system can scale to 100 MPC parties and still have much quicker throughput
than the single operator model (see Table 1), while also offering active security with much greater
tolerance to adversarial parties.

To enable comparison with previous work, we implement periodic volume matching (see Al-
gorithm 1) using the original protocol presented in [CST19]. As shown in Table 1, this protocol
is not the most efficient volume match implementation, so runtimes can trivially be improved by
swapping to the more efficient volume match protocol presented in [dGCP+21].
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Algorithm 1 Volume Match. First presented in [CST19].
This describes the algorithm to secure match N buy orders against M sell orders, in the time priority of the order
number. Each buy (resp. sell) order is presented as the volume that is wished to be traded. The notation ⟨x⟩
denotes that the value x is stored within the MPC-engine in secret shared form, i.e. the value being operated on
can be considered as “secret”. That the operations, such as ⟨f⟩ ← ⟨S⟩ > ⟨B⟩, can be efficiently carried securely
follows from standard work in the MPC literature.

Require: Number of sell orders N and number of buy orders M are known.
Input: Sell orders ⟨s1⟩, . . . , ⟨sN ⟩ and buy orders ⟨b1⟩, . . . , ⟨bM ⟩.
Output: The opened buy and sell orders, giving how much of each order was completed, with zero indicating none

of order was executed.

1: ⟨S⟩ ←
∑N

i=1⟨si⟩ ▷ ⟨S⟩ holds total sell volume

2: ⟨B⟩ ←
∑M

j=1⟨bj⟩ ▷ ⟨B⟩ holds total buy volume
3: ⟨f⟩ ← ⟨S⟩ > ⟨B⟩ ▷ ⟨f⟩ = 1 if sell volume ¿ buy volume, else ⟨f⟩ = 0
4: ⟨T ⟩ ← ⟨f⟩ · (⟨B⟩ − ⟨S⟩) + ⟨S⟩ ▷ ⟨T ⟩ holds total transaction volume
5: ⟨L⟩ ← ⟨T ⟩ ▷ ⟨L⟩ holds total volume left to transact
6: for i← 1 to N do ▷ Calculate volume to transact for each sell order
7: ⟨z1⟩ ← ⟨L⟩ ≤ 0 ▷ ⟨z1⟩ = 1 if no more volume to transact, else 0
8: ⟨z2⟩ ← ⟨L⟩ < ⟨si⟩ ▷ ⟨z2⟩ = 1 if i will not fully transact, else 0
9: ⟨si⟩ ← ((⟨L⟩ − ⟨si⟩) · ⟨z2⟩+ ⟨si⟩) · (1− ⟨z1⟩) ▷ Volume of sell order i that will transact
10: ⟨L⟩ ← ⟨L⟩ − ⟨si⟩ ▷ Reduce volume left to transact
11: end for
12: ⟨L⟩ ← ⟨T ⟩ ▷ Reset total volume left to transact
13: for j ← 1 to M do ▷ Calculate volume to transact for each buy order
14: ⟨z1⟩ ← ⟨L⟩ ≤ 0
15: ⟨z2⟩ ← ⟨L⟩ < ⟨bj⟩
16: ⟨bj⟩ ← ((⟨L⟩ − ⟨bj⟩) · ⟨z2⟩+ ⟨bj⟩) · (1− ⟨z1⟩) ▷ Volume of buy order j that will transact
17: ⟨L⟩ ← ⟨L⟩ − ⟨bj⟩
18: end for
19: Open ⟨si⟩ and ⟨bj⟩ for all i and j ▷ Open volume that each order transacts

3 MPC Background

We provide here the necessary background for MPC and the protocols we used. For more details
we refer to the extensive MPC literature related to the protocols we use. In particular, the reader
should refer to [Cd10,DPSZ12,DKL+13,CDI05,SW19,KRSW18].

3.1 MPC

MPC allows a set of distrustful parties to calculate a function f on their respective inputs, without
having to reveal them. The parties in theory need to express the function f in the form of a circuit
composed of additions and multiplications over some given arithmetic domain; however in practice
there are various sub-protocols which deviate from this circuit representation in order to obtain
improved performance for specific operations; for example the protocols in [Cd10] for performing
basic arithmetic operations, such as comparisons, on integers. For simplicity we will focus more on
a circuit model of computation in this overview, but the reader should be aware that in practice
this is not strictly true.

In an MPC protocol, one needs to specify the capabilities of the adversary, that is, whether the
adversary is willing to stick to the specification of the protocol, and only try to infer information
about the secrets, from their view of the protocol, in which case we talk about a passive adversary,
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or that the adversary is willing to deviate from the protocol, in which case it is called an active
adversary. One also needs to specify which security guarantees the protocol satisfies. For instance,
whether it provides robustness, in which case it is guaranteed that the honest parties will obtain at
the end of the protocol the output, or the adversary can prevent the honest parties from obtaining
it.

In this work we shall focus on protocols which guarantee active-with-abort security. That is,
either the protocol succeeds and all the parties receive the output, or the protocol aborts and the
honest parties will learn this (i.e. that one of the parties deviated from the protocol). The base
MPC functionality that realizes the protocols we are using is given in Figure 2.

MPC functionality F [MPC]

The functionality runs with P = {P1, . . . ,Pl} and an ideal adversary A, that statically corrupts a set of parties
A. Given a set I of valid identifiers, all values are stored in the form (varid , x), where varid ∈ I.

Initialize: On input (init , p) from all parties, where p is a prime number, the functionality stores (domain, p),
Input: On input (input ,Pi, varid , x) from party Pi and (input ,Pi, varid , ?) from all other parties, with varid a

fresh identifier and x ∈ Fp, the functionality stores (varid , x) in memory.
Add: On input (add , varid1, varid2, varid3) from all parties, where varid1, varid2 are present in memory and

varid3 is not, the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y) in memory.
Multiply: On input (multiply , varid1, varid2, varid3) from all parties, where varid1, varid2 are present in mem-

ory and varid3 is not, the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y) in memory.
Output: On input (output , varid , i) from all honest parties, where varid is present in memory, the functionality

retrieves (varid , y) and outputs it to the environment. The functionality waits for an input from the envi-
ronment. If this input is Deliver then y is output to all parties if i = 0, or y is output to party i if i ̸= 0. If
the adversarial input is not equal to Deliver then ∅ is output to all parties.

Figure 2. MPC functionality F [MPC]

3.2 Access structures

In order to choose a specific MPC protocol one needs to define what access (resp. adversary) struc-
ture that one is willing to support, i.e. from what set of players will the honest (resp. adversarial)
parties be chosen. To fix notation we let P = {P1, . . . ,Pl} be a set of l players and 2P be the
corresponding power set. For Γ,Σ ∈ 2P , the tuple (Γ,Σ) is called an access structure if Γ ∩Σ = ∅,
and the set Γ is monotonic (i.e. A ∈ Γ implies all supersets of A are also in Γ , and A ∈ Σ implies
all subsets of A are also in Σ). The sets in Γ are called qualified sets and the sets in Σ are called
unqualified sets. When Γ = 2P \Σ, the access structure is called complete.

A typical example of a complete monotone access structure is a threshold access structure,
where Σ = {S ⊆ 2P such that |S| ≤ t} and Γ = {S ⊆ 2P such that |S| > t} for some threshold t.
An access structure is called Q2 if no combination of two sets from Σ can cover P. For instance, a
threshold access structure with threshold t < l/2 is Q2

A set S in Σ is called maximally unqualified if there is no set S′ in Σ such that S ⊂ S′. We will
denote byM the set of maximally unqualified sets, and by ∆ the set that contains the complements
of maximally unqualified sets, i.e., ∆ = {P \ S such that S ∈M}.
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3.3 Linear Secret Sharing Schemes

A Secret Sharing Scheme is defined over a given algebraic domain, for example in our case we take
a finite field Fp. This means that the values being shared will be elements s ∈ Fp, and the data
(the share) which is given to each party Pi will be a vector si of elements in Fp. A Secret Sharing
Scheme is a cryptographic mechanism that realises a specific access structure (Γ,Σ). That is, it
allows one to secret share values such that any qualified set should be able to reconstruct them,
and unqualified sets should not be able to do so. We write ⟨s⟩ to denote that the value s is shared
under the given secret sharing scheme. A Secret Sharing Scheme is called Linear (LSSS for short)
if, informally speaking, the parties can perform locally linear operations. That is, adding secrets
and multiplying them by scalars. The two examples of LSSS which we will use in this paper are:

Shamir secret sharing which can realise a threshold access structure. In Shamir secret sharing,
a secret s ∈ Fp is encoded as the constant term of a polynomial fs ∈ Fp[X] of degree t with
coefficients in a prime field Fp. The share of player i consists of the evaluation of the polynomial
fs at the point i ∈ Fp, i.e. si = fs(i). Reconstructing the secret s requires t + 1 shares, thus
only qualified sets recover s as they are the only sets with sizes bigger than t. Parties can
calculate the sum of two secrets s and s′ by just adding up locally their shares of s and s′, as
fs(0) + fs′(0) = fs+s′(0).

Additive secret sharing which consists of additively secret sharing a secret s ∈ Fp, by giving
every player a share si ∈ Fp subject to s = s1 + . . .+ sl. This LSSS realises a threshold access
structure with threshold t = l − 1. That is, we need the l shares to recover the secret, each of
which is held by only one player. Parties can calculate the sum of two secrets s and s′, by just
locally adding up their shares of s and s′, as s+ s′ =

∑i=l
i=1(si + s′i).

An LSSS is called multiplicative if the parties can obtain an additive sharing of the product of
two secrets s and s′ by just performing local computation. This is the case for Shamir secret sharing
when t < l/2 as the product of two shares is a share of the product of the two secrets, but with a
polynomial of degree 2 · t < l. Thus the sum of these new shares, each of which multiplied with a
corresponding Lagrange coefficient, results in s ·s′. The additive secret sharing is not multiplicative,
as the terms of the cross product cannot be calculated locally.

There is another form of secret sharing scheme which will be implicitly used, and which will
explain some of our experimental results, namely the replicated secret sharing scheme:

Replicated secret sharing where a secret s ∈ Fp is shared among the parties by assigning a
share to every set in ∆ of the corresponding access structure. That is, the parties of every set
D in ∆ obtain a share sD, subject to s =

∑
D∈∆ sD. Clearly, no unqualified set can reconstruct

s, as it is missing the share that was assigned to its complement set. Qualified sets are also able
to reconstruct the secret, as every set in ∆ should contain at least one of its members. That is,
if there exists a set in ∆ where this is not true, then all those members belong to an unqualified
set which contradicts the fact that these belong to a qualified set. It is straightforward why this
secret sharing is linear, as we have that for another secret s′, s+ s′ =

∑
D∈∆(sD + s′D).

3.4 MPC-Protocols

As remarked above we shall utilize MPC protocols which are based on arithmetic in a finite field
Fp, and which provide active-with-abort security. We work in a pre-processing model, so that the
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online times are as efficient as possible. In the case of Shamir-based protocols we use a variant
of the Smart–Wood protocol [SW19,KRSW18], which was shown in [JSL21] to provide the most
efficient online phase in this situation. If one is interested in reducing the time for both online and
offline phases the protocol of [CGH+18] is to be preferred; see [JSL21] for a complete comparison.
In the case of full threshold based protocols we make use of the SPDZ protocol [DPSZ12,DKL+13].

All protocols offer active-with-abort security with a given cheating probability. The probability
that a party cheats without being caught is one over the size p of the field. Thus taking p big
enough (e.g. log2(p) = 128) as we did for the experiments ensures that this probability is negligi-
ble. Note that this is a weaker security guarantee than robustness, however this security level is
sufficient in many real world applications, and it allows to have efficient protocols so as to satisfy
real world requirements. As we argued earlier, we believe active-with-abort security to be the ap-
propriate security notion in our application to dark pools in traditional financial markets; but not
for blockchain based dark pools.

In both protocols addition is a local computation, while multiplication requires communication
between the parties. As we are in the pre-processing model, the offline stage is used to produce
correlated randomness in order to facilitate the efficient execution of the online phase. This pre-
processed data is independent from the input of players, and, to some extent, the function being
computed. There are two types of pre-processed data that we will be interested in; multiplication
triples and shared random bits.

- Multiplication triples are tuples of the form (⟨a⟩, ⟨b⟩, ⟨c⟩), such that c = a · b. These triples are
used in the online phase so as to perform multiplication in only one round of communication.
That is, to multiply ⟨x⟩ with ⟨y⟩, parties calculate locally ⟨ϵ⟩ ← ⟨x⟩−⟨a⟩ and ⟨γ⟩ ← ⟨y⟩−⟨b⟩ then
open ϵ and γ. Then the product ⟨x⟩ · ⟨y⟩ can be obtained by calculating ⟨c⟩+ ϵ · ⟨b⟩+γ · ⟨a⟩+ ϵ ·γ
which is a local computation.

- A random bit is a value ⟨r⟩ such that r is in {0, 1}, which is unknown to all the parties. These
random bits are used in many protocols, such as the protocol to do comparisons on secret shared
values. See for example the protocols given in [Cd10].

As our underlying platform we used the SCALE platform [ACK+21]. This platform supports
multi-threading, that is the online phase can be run in multiple threads. Each thread of the online
phase is associated with multiple threads generating offline data. Each offline thread is dedicated
to generate one type of offline data (triples, bits, etc.). To coordinate these threads a minor extra
load is placed on one of the extra MPC parties; which we denote by P0. This use of threading
enables a greater throughput, and to some extent, just in time delivery of the pre-processed data.
To understand some of our experimental results, one needs to dig a little deeper into the underlying
protocols used and how these are implemented in SCALE. In particular, for some protocol P0 plays
more than a role of coordinating the threads. We now discuss each protocol type in turn.

Shamir Secret Sharing based MPC We assume an honest majority (i.e. t < l/2), this has two
effects: The underlying secret sharing scheme then acts like an error detecting code, enabling one
to detect malicious behaviour. This forms the basis of the protocol in [SW19]: When opening a
value, the parties commit first to their views of the shares by adding them to a running hashing
value. At the end of the protocol the hash values are compared; if equal then all values have been
opened correctly, if different then there has been an error introduced by one of the parties.

The second effect of using honest majority, is that the offline phase (producing the multiplication
triples) can be generated by a variant of Maurer’s multiplication protocol of [Mau03]. Namely given
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a random ⟨a⟩ and a random ⟨b⟩, one can obtain the sharing of ⟨c⟩ with c = a · b, by resharing the
local products. The generation of shared random bits can be performed in a similar manner using
standard methodologies.

The question then arises; how to generate a random ⟨a⟩. There are two approaches, one which
requires interaction and is the naive protocol, and a second one which does not require interaction.
The naive protocol we denote by S2, whilst the one requiring interaction we denote by S1. The
protocol S1 is based the method Pseudo-Random Secret Sharing (PRSS) from [CDI05]. This PRSS
method utilizes pre-shared symmetric keys, which are distributed according to the replicated secret
sharing of the underlying access structure. Then to generate a random value each party needs to
execute as many PRF calls as one has shares in the underlying replicated secret sharing. Thus the
complexity depends on the size of the set ∆ in the access structure. For threshold schemes, ∆ is of
size

(
l
t

)
, and thus can become exponentially big. Thus SCALE switches between method S1 and S2

as soon as
(
l
t

)
reaches a certain threshold, which is hard wired to

(
l
t

)
≥ 50. This helps explain the

different behaviour of the algorithms when
(
l
t

)
is small, compared to large, which we will see later.

Full Threshold In this situation we utilize the SPDZ protocol [DPSZ12,DKL+13], which uses
Somewhat Homomorphic Encryption in order to produce the data needed in the offline phase. The
share values now need a different method of being authenticated, and SPDZ does this using a secret
shared MAC key α ∈ Fp; i.e. each party holds αi ∈ Fp such that α = α1 + . . .+ αl. A value x ∈ Fp

is shared both in an additive manner, i.e. x = x1 + . . . + xl, but in addition via a sharing of the
MAC value α · x = γ1 + . . .+ γl. Thus party Pi holds both xi and γi. A MAC-Check protocol, see
[DKL+13], is used to check that all opened values are consistent with the MACs; and this is done
in a manner which reveals neither the MAC values or the MAC key α.

To execute the offline phase, triples (and bits) are generated using Somewhat Homomor-
phic Encryption. Roughly speaking, while generating a triple, each party Pi generates random
values ai and bi, then encrypts using a fully homomorphic scheme and sends the encryption
to every other party. Thanks to the homomorphic property, every party can calculate locally
Enc(c) = (

∑
i Enc(ai)) · (

∑
i Enc(bi)). The parties then generate random values fi and send over

the corresponding encryptions, so as to mask Enc(c) with
∑

i Enc(fi). The parties perform then
a distributed decryption over Enc(c + f), and then the parties locally set their shares of c using
c + f and fi. The MAC values on a, b and c are produced using roughly the same manner, using
an encryption of Enc(αi).

At this point, malicious parties can introduce an additive error to c. To check that this did not
happen, the parties “sacrifice” half of the triples, so as to check the correctness of the other half that
will be used in the online phase. The sacrifice consists of calculating a random linear combination
on the third components of two triples and opening it, then calculating the same combination but
now using the first two components of the two triples and opening it. These should be equal if no
party cheated. The generation of shared random bits happens in a similar manner.

The distributed decryption of the encrypted values Enc(c + f) etc is performed in a non-
symmetric manner. The partial decryptions are sent to a designated player P0, who does the
combination and then broadcasts the result to the other players. This introduces no security issues,
as the correctness is checked via the sacrifice and MAC-Check operations, however, it does mean
that this designated player P0 will receive far more data than it sends. Indeed the amount of data
will be a factor l times larger, for the distributed decryption, than the other players. To address
this asymmetry, the role of P0 would rotate between parties after every auction period.
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4 Experiments

Our goal is to investigate the performance of a dark market created using an MPC protocol in which
the number of participating stake-holders l, i.e. MPC-parties, scales from less than a handful to
around one hundred. To do this we simulated a periodic market, where matching occurs at regular
intervals with auction time period tp = to+tm, for a universe consisting of a single stock; extensions
to more than one stock are immediate and can be accomplished using the methods described in,
say, [CST21].

4.1 Methodology

Orders are submitted into the venue during an open period to, then matching occurs during period
tm. We vary the number of buy orders N and the number of sell orders M that are submitted
during the open period to. Buy and sell orders are generated with uniformly random volumes in
the range [1, 100]. The aim is to understand the effect that liquidity (the number of orders in the
system N,M) and number of MPC parties has on time tp to conduct a single auction. This will
allow us to determine the practical limitations on the system.

We implemented the volume match algorithm (see Algorithm 1) using the Scale-Mamba frame-
work between l parties. The MPC volume match algorithm has been analysed previously [CST19,
Table 8] for a 2-party and 3-party system, where l = 2 and l = 3, respectively. It was shown that
online and offline runtimes increase with N (the number of sell orders) and M (the number of buy
orders), and communication rounds are an increasing function of min(N,M). Here, we simplify the
analysis by fixing N = M and comparing two liquidity levels: low liquidity, where N = M = 100;
and high liquidity, where N = M = 500. Note that we use the terms low and high in a relative sense,
as 100 orders per side per auction period for a single stock approximates a very liquid market.

We consider MPC settings with three levels of security threshold:

Shamir min-threshold where t = 1, i.e., security is guaranteed only when at most one party is
corrupt;

Shamir max-threshold where t = ⌊ l−1
2 ⌋, i.e., security is guaranteed unless more than half of all

parties are corrupt;
SPDZ full-threshold where t = l− 1, i.e., security is guaranteed unless all l parties are corrupt.

Shamir min-threshold and Shamir max-threshold form lower and upper bounds, respectively, for
runtimes using the Shamir protocol. Threshold t is a configurable parameter that can take any value
within these bounds. In practice, we would not expect a dark pool to use a security threshold with
t = 1, however we performed this experiment to determine a baseline for the maximum possible
speed that the Shamir-based auction protocol can be computed.

We vary l, the number of parties, across the range l = [2, 100] to understand how the dark
pool scales and to determine the practical upper bounds of l for each protocol. To simulate a real-
world implementation, we used AWS to run the experiments, where each party was assigned to an
instance of type C5.4xlarge, containing 16 vCPU and 32 GB in RAM. All l instances were located
in the same region (us-west-2). By implementing this cloud-hosted configuration, we are able to
better determine real-world runtimes and costs. In practice one could imagine using multiple cloud
providers, or have each stakeholder run its own instance locally, so as to avoid potential attacks
by a single cloud service provider. This, however, would result in increased latency due to the
geographic spread between the different stake-holders. A way-around this problem would be to
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host the different stake-holder machines in a single data center, with each stakeholder owning and
controlling their own machine, but the set of machines hosted in a single location. This is a similar
configuration to how high-frequency trading computers are provisioned in some markets.

We measure the online and offline runtimes for a single auction period tp in markets with high
and low liquidity. We also measure communication costs (in MB of data) and the economic costs (i.e.
dollar costs) of running a single auction, using current AWS prices. For the online runtimes, each
experimental configuration with up to 10 players was run 10 times, and the remaining configurations
were run 3 times. Note that variation in runtimes are negligible, so additional repeated trials were
not necessary. Offline runtimes were calculated by measuring the time required to generate around
four million bits and triples and then scaling the obtained runtimes according to the amount of
data needed for each experimental configuration.

We obtained empirical results from a series of experiments that simulate one auction period of
the fully distributed MPC dark pool hosted on AWS. We consider online runtimes to conduct the
auction (Section 4.2), offline runtimes required to generate necessary data (Section 4.3), the amount
of data exchanged between each party during the offline and online phase (Section 4.4), and the
per party total economic costs (online and offline) of running one auction on AWS (Section 4.5).

4.2 Online phase - runtimes

Fig. 3. Online phase runtimes, showing: (left) all protocols; (right) without Shamir N = M = 500, t = ⌊ l−1
2
⌋.

Figure 3 presents runtimes corresponding to the online phase of the auction. This represents
the minimum time necessary to perform one auction period tp, which includes the time to accept
incoming orders to and the time to match tm. The graph on the left of Figure 3 presents runtimes
for all three protocols in both high liquidity (N = M = 500) and low liquidity (N = M = 100)
markets. We immediately see that as the number of parties is increased, online runtime for Shamir
max-threshold increases at a much faster rate than the other protocols. The graph on the right
of Figure 3 presents the same information, but with Shamir max-threshold removed for the high
liquidity market. Again, we see Shamir max-threshold increase at a faster rate than the other
protocols, even in low liquidity markets. With l = 100 parties, Shamir max-threshold has runtimes
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Fig. 4. Offline phase runtimes, showing: (left) all protocols; (right) only Shamir-based protocols.

approximately 11 times greater than Shamir min-threshold. This exponential growth suggests that
Shamir secret sharing will not scale to very large numbers of parties, unless the security threshold
t is lowered.

In contrast, SPDZ full-threshold displays runtimes that increase almost linearly across the range
of parties shown, and in high liquidity markets with l = 100 parties SPDZ takes only 20 seconds
to perform the online phase, compared with nearly 140 seconds for Shamir max-threshold. This
demonstrates that SPDZ full-threshold has a much more efficient online phase than Shamir max-
threshold. However, online runtimes for Shamir min-threshold are always lower than runtimes for
SPDZ full-threshold. Therefore, by sacrificing some security by lowering t, Shamir secret sharing is
able to scale well and can perform more efficiently than SPDZ.

While the experimental configuration is simplistic, these runtimes present promising evidence
that the protocols have practical real-world application. For a single stock, SPDZ is able to conduct
an auction every 20 seconds, matching N +M = 1000 orders with guaranteed security unless all
l = 100 parties are corrupt. Given that private venues designed for large volume investors tend
to have low throughput, often on the order of one trade per stock per day on average (e.g., see
statistics presented in [CST21]), this throughput of 3000 trades per minute is more than adequate
for a commercial venue.

4.3 Offline phase - runtimes

The offline phase is the time taken to generate the data needed to perform the online phase. This
phase can be performed at any time in advance of the online phase, and can be parallelised across
multiple machines. Here, we consider the case where there is no parallelisation. This gives us an
upper bound on the worst case scenario. Once the offline times become much larger than the online
times, then unless parallelisation is used, the protocols become impractical as the necessary data
needed to run the online phase cannot be produced in time.

During the offline phase, triples are generated for performing online multiplications and com-
parisons, and random bits are also generated as they are needed as well for online comparisons. For
the case where N = M = 100, the offline phase requires the generation of 48,521 triples and 42,105
bits. For the case where N = M = 500, the offline phase requires the generation of 242,121 triples
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Table 3. Shamir total data sent/received by each player

Protocol l N,M

t = 1 t = ⌊ l−1
2
⌋

Offline
Online

Offline
Online

Bits Triples Bits Triples

S1

3
100 9 9 2 9 9 2

500 47 43 12 47 43 12

5
100 16 13 2 19 17 5

500 78 66 12 94 85 24

S2

10
100 32 26 2 69 80 9

500 158 128 12 345 397 47

20
100 64 51 2 148 170 21

500 320 255 12 737 849 106

50
100 313 362 3 383 442 57

500 1561 1804 13 1910 2204 283

100
100 630 726 3 775 894 116

500 3141 3625 15 3868 4462 578

and 210,105 bits. Note that while the absolute number of required triples and bits are fixed for a
market configuration, the effort required to generate each triple and bit increases with the number
of parties involved.

Figure 4 presents the offline runtimes taken to generate the required number of triples and
bits for one auction. The graph on the left shows runtimes for all three protocols in high and
low liquidity markets. The graph on the right presents the same information, but with SPDZ full
threshold protocol removed. In the left graph, we can clearly see that SPDZ full threshold requires
much more time than the Shamir case. This is due to the underlying protocols for SPDZ, where
Fully Homomorphic Encryption and zero knowledge proofs are used during the generation of the
offline data. For l = 20 parties, SPDZ full threshold requires nearly 2500 seconds (approximately 40
minutes) to generate data needed to run one auction in a high liquidity market. In comparison, the
online phase for this case takes less than 5 seconds (i.e., 500 times quicker). These runtimes could
be aligned by parallelising the offline phase across hundreds of machines, but there are practical
issues of scalability to consider here. Also, as the number of parties increases beyond l > 20 the
experiments for this configuration become unmanageable as the AWS instances we used contained
only 32GB RAM. We estimate at least 128GB RAM is required to explore the full range of parties.

In contrast, the graph on the right hand side of Figure 4 shows that the Shamir offline phase
is much shorter and scales well, with offline times only slightly larger than online times (e.g., when
N = M = 500 and l = 100, offline time for max-threshold is 180 seconds, online time for the
same configuration is around 135 seconds). This affords the opportunity to run the offline phase
overnight, before the market opens, or on a parallel machine that generates the triples and bits
just-in-time before they are required for the next auction. One should also note that, as described
in Section 3.4, for Shamir secret sharing we switch from protocol S1 to protocol S2 when

(
l
t

)
≥ 50.

This can be observed in the graph on the right, where we see that Shamir max-threshold has slower
offline phase for case l = 7 than for cases l ∈ {8, 9, 10}.
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Table 4. SPDZ total data sent/received by each player

l N,M

Offline

Online
Player P0 Other Players

Bits Triples Bits Triples

Sent Rec.d Sent Rec.d Sent Rec.d Sent Rec.d

3
100 11 23 14 42 17 11 28 14 3

500 54 115 70 211 85 54 141 70 16

5
100 22 46 28 85 28 22 42 28 6

500 108 231 141 422 139 108 211 141 31

10
100 49 105 64 191 55 49 78 64 14

500 245 522 317 955 276 245 388 317 71

20
100 104 221 135 405 110 104 149 135 30

500 519 1105 671 2022 550 519 742 671 149

Fig. 5. Total offline data exchanged per party per auction: (left) for all markets; (right) for low liquidity markets
only.

4.4 Offline/Online phase - size of data exchanged

Table 3 and Table 4 record the amount of data (nearest MB) each party sends and receives for the
triples thread and the bits thread during the offline phase, as well as the data exchanged per party
during the online phase, for Shamir-based MPC and for the SPDZ protocol, respectively. The total
data exchanged between all parties during the offline phase is presented in Figure 5. Notice that
in both protocols, P0 sends and receives a different amount of data than the other players. In the
offline phase, for the Shamir case the difference is negligible. The difference between the amount of
data each player sends and receives is also negligible, so in Table 3 we present only one column for
data sent/received by P0/other players. However, for the SPDZ full threshold case, the difference
is significant, so all four cases are shown in Table 4. While the data sent by P0 is slightly less than
the data sent by the other players, the data received by P0 is noticeably greater than the data
received by the other players. In a practical dark pool implementation, the party playing the role
of P0 would rotate between parties so that the exchanged data is evenly distributed among the
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Fig. 6. Total economic cost in USD per party per auction: (left) costs for time; (right) costs for communication.

players. This is the situation considered in Figure 5, where all players in the full threshold protocol
exchange the same amount of data.

For the offline phase, in the Shamir case, we distinguish between two cases: (1) when l < 10,
the S1 protocol is used; and (2) when l ≥ 10, the S2 protocol is used. When S1 is used for the
Shamir case, the overall exchanged data per player (data sent plus received per player) is smaller
than the SPDZ full threshold case. When S2 is used for the Shamir case, the player P0 still sends
more data in the full threshold case than in the Shamir case, however the other players send less
data than the Shamir case.

In the online phase, for both the Shamir and the full threshold cases, the difference between
data sent/received by P0/other players is negligible. Thus we represent them in only one column.
We also notice that the data exchanged in the online phase, is far less than that exchanged in the
offline phase. That is, compared to the offline phase, this data represents between 0.2 and 14 % for
the case of Shamir min-threshold, 6 and 14 % for the case of Shamir max-threshold, and 7 and 12
% for the case of SPDZ full-threshold.

4.5 AWS costs per auction

We consider current AWS costs of the region we considered, which are 0.68 USD per instance
per hour and 0.01 USD per GB of data sent or received. This communication cost corresponds
to the case where players hold their instances in different regions or different availability zones
since communication within the same availability zone is not charged. If there is a large number of
players, we will not have as many availability zones as players, and therefore the values presented
here represent an upper bound for the cost of communication.

The time cost and the communication cost per party for one auction are represented in Figure 6.
We notice that in the Shamir case, the communication cost is higher than the time cost in the offline
phase, while the time cost is higher than the communication cost in online phase, wheras in the
full threshold case, the time cost is higher than the communication cost in the offline phase, while
the communication cost is higher than the time cost in online phase. The key take-away is that
the cost per auction, per stock, is under one dollar when using Shamir based protocols. Given the
size of the trades on commercial dark-market platforms, where each trade can be many millions
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of dollars, the cost of running the market in the dark becomes negligible in this case even for 100
parties. If one restricted to 20 stakeholders, then the cost for using full threshold protocols is also
sub one dollar, and thus acceptable.

5 Discussion

In the popular consciousness, financial trading venues invoke images of vast quantities of fleeting
order flow driven by high frequency trading (HFT) algorithms. However, while this is true for
many venues (e.g., see [DC18]), it is not the case for all. For example, LiquidMetrix reported that
Liquidnet executed 7298 trades across more than 1000 instruments during February 2017; i.e., fewer
than one trade per instrument per trading day. We have shown that l = 100 participating parties
can handle 1000 orders in 140 seconds (using the slowest configuration of Shamir honesty majority)
at a cost to each party of around 24 cents; and fewer orders reduces computation time and economic
costs. These results suggest that the “no operator” Liquidnet-style architecture is economically and
computationally viable. If the dark pool runs a periodic volume match every, say, 5 minutes, the
platform will be able to easily handle expected order flow and dollar costs per participant will be
a vanishing fraction of the total value traded. To enable trading across many stocks, the secure
gateway allocation method introduced in [CST21, Section 4.1] can be used.

If the MPC dark pool architecture that we have studied in this paper were to be instantiated on
a public blockchain, there remain potential issues of trader anonymity and the use of security-with-
abort (see Table 2). We have not attempted to address these challenges as traditional financial
trading venues are not implemented on a blockchain. However, they offer interesting avenues of
investigation for future work.
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Table 5. Online phase in seconds with Shamir based MPC

l N M Online time t = 1 Online time t = ⌊ l−1
2
⌋

3 100 100 0.29 0.29

500 500 1.52 1.52

4 100 100 0.30 0.30

500 500 1.65 1.65

5 100 100 0.33 0.39

500 500 1.65 2.14

6 100 100 0.34 0.43

500 500 1.81 2.26

7 100 100 0.37 0.53

500 500 1.81 2.64

8 100 100 0.37 0.57

500 500 1.89 2.75

9 100 100 0.41 0.71

500 500 2.00 3.22

10 100 100 0.41 0.72

500 500 2.16 3.51

20 100 100 0.60 1.74

500 500 3.07 8.46

50 100 100 1.11 7.63

500 500 5.57 38.32

100 100 100 2.36 27.29

500 500 11.94 133.6
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Table 6. Online phase in seconds with full threshold

l N M Online time

3 100 100 0.3

500 500 1.68

4 100 100 0.33

500 500 1.81

5 100 100 0.37

500 500 2.02

6 100 100 0.42

500 500 2.23

7 100 100 0.43

500 500 2.27

8 100 100 0.49

500 500 2.46

9 100 100 0.52

500 500 2.55

10 100 100 0.54

500 500 2.86

20 100 100 0.96

500 500 4.51

50 100 100 1.94

500 500 10.03

100 100 100 4.09

500 500 20.29
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Table 7. Offline phase in seconds with Shamir based MPC

l N M Offline time t = 1 Offline time t = ⌊ l−1
2
⌋

3 100 100 0.21 0.21

500 500 1.06 1.06

4 100 100 0.24 0.24

500 500 1.18 1.18

5 100 100 0.26 0.33

500 500 1.31 1.66

6 100 100 0.30 0.45

500 500 1.49 2.26

7 100 100 0.35 0.77

500 500 1.72 3.73

8 100 100 0.42 0.63

500 500 2.08 3.14

9 100 100 0.46 0.68

500 500 2.30 3.39

10 100 100 0.47 0.73

500 500 2.83 3.63

20 100 100 1.14 2.27

500 500 5.70 11.35

50 100 100 2.36 9.97

500 500 11.76 49.73

100 100 100 5.68 36.87

500 500 28.33 183.99
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Table 8. Offline phase in seconds with full threshold. Note for more than 50 parties the offline time became too-
prohibitive to compute.

l N M Offline time

3 100 100 45

500 500 224

4 100 100 68

500 500 337

5 100 100 87

500 500 433

6 100 100 109

500 500 543

7 100 100 134

500 500 667

8 100 100 160

500 500 798

9 100 100 172

500 500 859

10 100 100 188

500 500 938

20 100 100 492

500 500 2457

50 100 100 -

500 500 -

100 100 100 -

500 500 -
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Table 9. Offline and online Data Sent/Received in MB by each player with Shamir based MPC

l N M

t = 1 t = ⌊ l−1
2
⌋

Offline Online Offline Online

Bits Triples Bits Triples

3 100 100 9.46 8.53 2.36 9.46 8.53 2.36

500 500 47.19 42.56 11.79 47.19 42.56 11.79

4 100 100 12.75 10.9 2.37 12.75 10.9 2.37

500 500 63.61 54.38 11.82 63.61 54.38 11.82

5 100 100 15.62 13.27 2.38 18.91 17.06 4.73

500 500 77.97 66.20 11.85 94.38 85.12 23.59

6 100 100 18.91 15.64 2.38 22.2 19.43 4.73

500 500 94.38 78.03 11.88 110.8 96.94 23.62

7 100 100 22.20 18.48 2.39 28.37 25.59 7.09

500 500 110.80 92.21 11.91 141.57 127.68 35.38

8 100 100 25.49 20.85 2.40 53.45 61.6 7.10

500 500 127.21 104.04 11.94 266.73 307.38 35.41

9 100 100 28.37 23.22 2.40 62.91 72.5 9.46

500 500 141.57 115.86 11.97 313.93 361.76 47.18

10 100 100 31.66 25.59 2.41 69.08 79.6 9.46

500 500 157.99 127.68 12.00 344.7 397.23 47.21

20 100 100 64.14 51.17 2.47 147.61 170.11 21.28

500 500 320.08 255.36 12.30 736.6 848.84 106.18

50 100 100 312.91 361.54 2.66 382.81 441.62 56.74

500 500 1561.42 1804.09 13.21 1910.23 2203.68 283.09

100 100 100 629.52 726.39 2.97 775.08 894.13 115.84

500 500 3141.32 3624.72 14.71 3867.66 4461.74 577.93
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Table 10. Offline and online Data Sent and Received in MB by each player for full Threshold

l N M Offline Online

P0 Other Players

Bits Triples Bits Triples

Sent Received Sent Received Sent Received Sent Received

3 100 100 10.87 23.12 14.07 42.32 17.0 10.87 28.19 14.07 3.15

500 500 54.24 115.35 70.19 211.18 84.83 54.24 140.69 70.19 15.73

4 100 100 16.31 34.68 21.12 63.46 22.42 16.31 35.24 21.12 4.73

500 500 81.37 173.06 105.37 316.69 111.89 81.37 175.86 105.37 23.59

5 100 100 21.74 46.23 28.16 84.64 27.86 21.73 42.26 28.16 6.31

500 500 108.49 230.7 140.54 422.35 139.01 108.43 210.88 140.54 31.45

6 100 100 27.28 58.07 35.3 106.29 33.43 27.28 49.52 35.3 7.88

500 500 136.12 289.75 176.15 530.38 166.84 136.12 247.09 176.15 39.32

7 100 100 32.73 69.67 42.38 127.52 38.88 32.73 56.56 42.38 9.46

500 500 163.31 347.65 211.47 636.34 194.02 163.31 282.26 211.47 47.18

8 100 100 38.19 81.29 49.46 148.79 44.34 38.19 63.64 49.43 11.04

500 500 190.56 405.62 246.79 742.44 221.27 190.56 317.58 246.64 55.05

9 100 100 43.64 92.9 56.51 170.05 49.79 43.64 70.69 56.51 12.61

500 500 217.75 463.58 281.96 848.55 248.46 217.75 352.75 281.96 62.91

10 100 100 49.1 104.52 63.58 191.28 55.25 49.1 77.77 63.55 14.19

500 500 245.0 521.54 317.28 954.5 275.71 245.0 388.07 317.13 70.77

20 100 100 103.94 221.38 134.54 405.22 110.12 103.94 148.79 134.54 29.95

500 500 518.66 1104.71 671.36 2022.06 549.5 518.66 742.44 671.36 149.41

50 100 100 - - - - - - - - 77.25

500 500 - - - - - - - - 385.32

100 100 100 - - - - - - - - 156.07

500 500 - - - - - - - - 778.51
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Table 11. Cost in USD for Time and Communication for one player to run the offline phase in the Shamir setting.

l
N M t = 1 t = ⌊ l−1

2
⌋

Time Communication Time Communication

3 100 100 3.97e-05 3.51e-04 3.97e-05 3.51e-04

500 500 2.00e-04 1.75e-03 2.00e-04 1.75e-03

4 100 100 4.53e-05 4.62e-04 4.53e-05 4.62e-04

500 500 2.23e-04 2.30e-03 2.23e-04 2.30e-03

5 100 100 4.91e-05 5.64e-04 6.23e-05 7.03e-04

500 500 2.47e-04 2.82e-03 3.14e-04 3.51e-03

6 100 100 5.67e-05 6.75e-04 8.50e-05 8.13e-04

500 500 2.81e-04 3.37e-03 4.27e-04 4.06e-03

7 100 100 6.61e-05 7.95e-04 1.45e-04 1.05e-03

500 500 3.25e-04 3.97e-03 7.05e-04 5.26e-03

8 100 100 7.93e-05 9.05e-04 1.19e-04 2.25e-03

500 500 3.93e-04 4.52e-03 5.93e-04 1.12e-02

9 100 100 8.69e-05 1.01e-03 1.28e-04 2.64e-03

500 500 4.34e-04 5.03e-03 6.40e-04 1.32e-02

10 100 100 8.88e-05 1.12e-03 1.38e-04 2.90e-03

500 500 5.35e-04 5.58e-03 6.86e-04 1.45e-02

20 100 100 2.15e-04 2.25e-03 4.29e-04 6.21e-03

500 500 1.08e-03 1.12e-02 2.13e-03 3.10e-02

50 100 100 4.46e-04 1.32e-02 1.88e-03 1.61e-02

500 500 2.22e-03 6.57e-02 9.39e-03 8.03e-02

100 100 100 1.07e-03 2.65e-02 6.96e-03 3.26e-02

500 500 5.35e-03 1.32e-01 3.48e-02 1.63e-01
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Table 12. Cost in USD for Time and Communication for one player to run the online phase in the Shamir setting.

l
N M t = 1 t = ⌊ l−1

2
⌋

Time Communication Time Communication

3 100 100 5.48e-05 4.61e-05 5.48e-05 4.61e-05

500 500 2.87e-04 2.30e-04 2.87e-04 2.30e-04

4 100 100 5.67e-05 4.63e-05 5.67e-05 4.63e-05

500 500 3.12e-04 2.31e-04 3.12e-04 2.31e-04

5 100 100 6.23e-05 4.65e-05 7.37e-05 9.24e-05

500 500 3.12e-04 2.31e-04 4.04e-04 4.61e-04

6 100 100 6.42e-05 4.65e-05 8.12e-05 9.24e-05

500 500 3.42e-04 2.31e-04 4.27e-04 4.61e-04

7 100 100 6.99e-05 4.67e-05 1.00e-04 1.38e-04

500 500 3.42e-04 2.33e-04 4.99e-04 6.91e-04

8 100 100 6.99e-05 4.69e-05 1.08e-04 1.39e-04

500 500 3.57e-04 2.33e-04 5.19e-04 6.92e-04

9 100 100 7.74e-05 4.69e-05 1.34e-04 1.85e-04

500 500 3.78e-04 2.34e-04 6.08e-04 9.21e-04

10 100 100 7.74e-05 4.71e-05 1.36e-04 1.85e-04

500 500 4.08e-04 2.34e-04 6.63e-04 9.22e-04

20 100 100 1.13e-04 4.82e-05 3.29e-04 4.16e-04

500 500 5.80e-04 2.40e-04 1.60e-03 2.07e-03

50 100 100 2.10e-04 5.20e-05 1.44e-03 1.11e-03

500 500 1.05e-03 2.58e-04 7.24e-03 5.53e-03

100 100 100 4.46e-04 5.80e-05 5.15e-03 2.26e-03

500 500 2.26e-03 2.87e-04 2.52e-02 1.13e-02
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Table 13. Cost in USD for Time and Communication for one player to run the offline phase in the full threshold
setting.

l N M Time Communication

3 100 100 8.50e-03 7.51e-04

500 500 4.23e-02 3.75e-03

4 100 100 1.28e-02 1.03e-03

500 500 6.37e-02 5.13e-03

5 100 100 1.64e-02 1.29e-03

500 500 8.18e-02 6.44e-03

6 100 100 2.06e-02 1.55e-03

500 500 1.03e-01 7.75e-03

7 100 100 2.53e-02 1.81e-03

500 500 1.26e-01 9.02e-03

8 100 100 3.02e-02 2.06e-03

500 500 1.51e-01 1.03e-02

9 100 100 3.25e-02 2.31e-03

500 500 1.62e-01 1.15e-02

10 100 100 3.55e-02 2.56e-03

500 500 1.77e-01 1.28e-02

20 100 100 9.29e-02 5.04e-03

500 500 4.64e-01 2.45e-02
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Table 14. Cost in USD for Time and Communication for one player to run the online phase in the full threshold
setting

l N M Time Communication

3 100 100 5.67e-05 6.15e-05

500 500 3.17e-04 3.07e-04

4 100 100 6.23e-05 9.24e-05

500 500 3.42e-04 4.61e-04

5 100 100 6.99e-05 1.23e-04

500 500 3.82e-04 6.14e-04

6 100 100 7.93e-05 1.54e-04

500 500 4.21e-04 7.68e-04

7 100 100 8.12e-05 1.85e-04

500 500 4.29e-04 9.21e-04

8 100 100 9.26e-05 2.16e-04

500 500 4.65e-04 1.08e-03

9 100 100 9.82e-05 2.46e-04

500 500 4.82e-04 1.23e-03

10 100 100 1.02e-04 2.77e-04

500 500 5.40e-04 1.38e-03

20 100 100 1.81e-04 5.85e-04

500 500 8.52e-04 2.92e-03

50 100 100 3.66e-04 1.51e-03

500 500 1.89e-03 7.53e-03

100 100 100 7.73e-04 3.05e-03

500 500 3.83e-03 1.52e-02
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