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Abstract—Advancements in computer vision and machine learning breakthroughs over the years have paved the way for automated
X-ray inspection (AXI) of printed circuit boards (PCBs). However, there is no standard dataset to verify the capabilities and limitations of
such advancements in practice due to the lack of publicly available datasets for PCB X-ray inspection. Furthermore, there is a lack of
diverse PCB X-ray datasets that encompass images from X-ray Computed Tomography (CT). To address the lack of data, we
developed the first comprehensive publicly available dataset, "FICS PCB X-ray," to aid in the development of robust PCB-AXI
methodologies. The dataset consists of diverse images from the tomographic image domain, along with challenging cases of
unaligned, raw X-ray data of PCBs. Further, the dataset contains projection data and the reconstructed volume which is converted into
a Tiff stack. Annotated X-ray layer images are also available for image processing and machine learning tasks. This paper summarizes
the existing databases and their limitations, and proposes a new dataset, “FICS PCB X-ray”.

Index Terms—AXI dataset, PCB dataset, image processing, computer vision, machine learning, automated X-ray inspection.
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1 INTRODUCTION

Over the past decade, the shift of the electronic supply chain
from vertical to horizontal has enabled adversaries to per-
form various attacks on the security, reliability, and quality
features of the hardware [1]–[4]. PCBs are used in a wide
variety of applications such as aerospace, automotive, mil-
itary, medical, and telecommunication. Adversarial attacks
on PCBs used in various applications can have motives such
as information leakage, system corruption with hardware
Trojans, or denial of service. Such attacks can compromise
the national security of a country. Hence, PCB assurance is
of utmost importance.

Assurance consists of measuring the security, reliability,
and quality metrics of the PCBs. There exists many PCB test-
ing techniques such as in-circuit testing, functional testing,
and bare board testing. However, such techniques cannot
identify defects or malicious modifications outside of their
range of testing. For complete PCB assurance, it is necessary
to evaluate the PCBs both optically and internally. In the
past few years, much work has been done in the automated
visual inspection (AVI) domain [4]–[9]. However, along with
the advantages of identifying and detecting defects on the
PCB layers, optical inspection has limitations (for e.g., Tro-
jans hidden in the internal layers of the PCB would not be
detected by optical imaging). Over the years, the available
surface mount technologies (SMTs) have made it possible
to manufacture densely populated PCBs with smaller and
smaller components and multiple layers. Due to the advent

Dataset will be available in September 2022 for download at
https://www.trust-hub.org/data

of SMTs, new chip packages are used (for e.g. BGA and
QFN), making it impossible to see the solder connections
optically. Moreover, AXI is used by manufacturers for "in-
line" verification of solder and components, whereas X-
ray computed tomography and laminography are primarily
used "off-line" for reverse engineering and failure analysis
[10]. Hence, there is a need for automated X-ray inspection
methods to evaluate the PCBs internal layers.

To address this need, we propose “FICS PCB X-ray," a
comprehensive dataset for automated X-ray inspection of
PCBs. The proposed dataset will be expanded along with
our previous work in the optical domain [11], as part of
an ongoing initiative toward multi-modal PCB assurance.
"FICS PCB X-ray" aims to encourage collaboration between
the hardware and computer vision/machine learning com-
munities. The contributions of this dataset are as follows :

1) An open-source diverse X-ray dataset “FICS PCB X-
ray" of printed circuit boards (PCBs) for inter-layer
inspection.

2) “FICS PCB X-ray" is a collection of projection X-ray
data of PCBs along with the reconstructed volume
converted into a Tiff stack (16-bit Tiff files).

3) The Tiff stack is preprocessed and annotated as
shown in Figure 1. These files can be used for
performing reconstruction into a 3D volume, or
performing 2D analysis and for netlist extraction.

The rest of the paper is organized as follows: Section 2
reviews the existing databases in the optical, medical, and
X-ray domain and lists the challenges for PCB X-ray data
collection. Section 3 emphasizes X-ray data collection re-

https://www.trust-hub.org/data


FUTURE HARDWARE SECURITY RESEARCH SERIES 2

quirements and describes X-ray computed tomography and
reconstruction in detail. Section 4 describes the proposed
“FICS PCB X-ray" data collection process, while Section 5
highlights the newly enabled research directions. Section 6
summarizes the challenges and future work and 7 concludes
the paper.

2 LITERATURE REVIEW

Over the past few years, extensive research has been done
in the field of optical PCB inspection since optical images
are quick and easy to obtain. Hence, automated optical
inspection is a popular approach for PCB assurance [4]–[9].
Although it is easy to obtain optical data using a microscope
or DSLR camera, optical data is limited to a PCB’s surface-
level information. On the other hand, X-ray data may be
difficult and time-consuming to collect [12], but it captures a
PCB’s inter-layer information. Such inter-layer information
is essential for detecting defects or malicious modifications
within a PCB’s layers and for overall PCB assurance (secu-
rity, reliability, and quality).

Automated X-ray inspection is vital for complete PCB
assurance and reverse engineering. In the past, there have
been several AXI methodologies proposed such as [1], [13]–
[15]. Many such proposed methodologies are trained and
tested on private, unpublished datasets that are unavailable
to the public. This makes it difficult to use and evaluate
existing AXI methods and understand their assumptions,
benefits, and limitations. Hence, the lack of available data
delays progress in hardware assurance and reverse engi-
neering.

Though there are many X-ray datasets in the medical
domain (e.g. X-ray CT dataset for Covid-19 detection [16])
and some PCB datasets in the optical domain (e.g. AVI
dataset for PCB component detection [11]), there are very
few PCB datasets in the X-ray domain [17]. Of the few
PCB datasets in the X-ray domain, none of them include
tomographic data of entire PCBs. For example, [17] includes
X-ray data of PCB solder joints as regions of interest, rather
than the entire board.

X-ray data collection is challenging, time-consuming,
and memory intensive. Plus, the X-ray parameters need
to be carefully tuned to accurately represent each PCB
since boards can have various number of layers, population
densities, and materials which absorb X-rays differently.
Hence, the entire process is expensive. To the best of our
knowledge, “FICS PCB X-ray" is the first publicly available
X-ray tomographic dataset of entire PCBs. "FICS PCB X-ray"
will enhance the research in the academic and industrial
domain.

3 X-RAY DATA COLLECTION AND RECONSTRUC-
TION

PCB manufacturing has been developed over the years as
a subtractive process, while recent advances have led to
3D printed electronics using additive manufacturing [19].
When manufacturing a PCB, both subtractive and additive
processes require design verification to ensure reliability
and functionality of the device.

Additive manufacturing enables geometrically complex
designs with novel footprints, which introduces new chal-
lenges during verification. Optical methods have been pri-
marily used for verification of PCB manufacturing. On the
other hand, volumetric tools are increasingly being used
to verify surface mounted components, solder and inter-
nal connections, or for design verification. Non-destructive
inspection, such as X-ray CT, is required to examine the
intricate internal circuitry.

Recently, CT has been demonstrated for effective ge-
ometric analysis and defects detection. Furthermore, it is
been used for successful quantitative comparison as well as
structural quantification. Porosity analysis for 3D printed
steel parts is also demonstrated with CT [20]. However,
developing automated methods for PCB inspection will
require large amounts of collected and curated X-ray data.
In the following section, we highlight the various X-ray CT
specifications which are optimal for the evaluation of PCB
designs and components.

3.1 Tomographic Collection

Tomography is accomplished through the collection of
multiple 2D images from 360 degrees and then through
a reconstruction process creating a 3D volume, slices or
sections that can be created from the volume. For the case
of X-ray tomography, the reconstruction is based upon 2D
projections which represent the density of the sample.

In order to maintain uniformity across the PCB X-ray
dataset, the settings and parameters for each PCB design are
selected based upon the PCB’s overall size, thickness, and
components density. During X-ray setup for tomographic
collection, 2D X-ray images are collected to determine the
appropriate X-ray acceleration voltage (X-ray penetration)
in KeV and the current (X-ray contrast) in micro amps. A
typical PCB X-ray tomographic setup is displayed in Figure
2.

Larger PCB designs require a larger distance between
the source, sample, and detector in order to maintain the
PCB within the Field of View (FoV). This larger distance
results in less magnification, and a lower spatial resolu-
tion. These large PCBs can be imaged in sections, and the
reconstructed data can be stitched together to enable high
spatial resolution imaging. It is critical to maintain a spatial
resolution smaller than the distance between the PCB layers
(5̃0 microns). This is necessary, otherwise the voxel size will
contain data from more than one layer causing aliasing of
the data, thereby increasing the difficulty for segmentation.
Certain X-ray collection settings can have a large effect upon
time required for a scan. For example, doubling either the
exposure time or the number of projections can double
the collection time. However, doubling both quantities can
quadruple the collection time. Smaller PCB designs (i.e. less
than 3-5 inches in dimension) commonly require 1-2 hour of
scan time, while large PCBs (i.e. 5-12 inches) can require 3-5
hours of collection time.

3.2 Reconstruction

X-ray data is often limited by the data collection parameters,
frequently due to an incomplete quantity of projections.
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Fig. 1: Collection of dataset overview. Here the PCB sample is setup in an X-ray and the collected data is reconstructed.
After reconstruction the slices are stacked together to form a layer and then the layer image is annotated.

Fig. 2: Setup of a PCB inside the X-ray machine (NANO-CT
- GE V|TOME|X M 240) for collecting data with flat panel
detector, sample PCB and source in the image view.

Imaging abnormalities such as beam hardening, ring ar-
tifact, and layer aliasing occur for various reasons such
as when there are less number of projections collected or
when they are non-uniform [21]. Traditional reconstruction
techniques are not able to effectively reconstruct noisy or
dense regions with incomplete data such as artifact-laden
data [22]. Advanced reconstruction techniques are being
developed using artificial intelligence (AI), but this requires
access to a large, curated dataset [23], which is not available
for the PCBs.

The reconstruction techniques used are commercial tech-
niques from the GE Phoenix Datos software and the Bruker
Skyscan reconstruction software. The limitations due to
reconstruction artifacts are mitigated through manual label-
ing and data curation. Commercial reconstruction is able
to provide an accurate volume for subject matter experts
(SMEs) to extract the PCB design as ground truths, but

commercial segmentation tools are not yet able to perform
this task automatically.

There are many different quality metrics for quantifying
the difference between reconstruction algorithms (for exam-
ple, peak signal-to-noise ratio (PSNR), among others). The
focus of this dataset is to be able to extract 100% of the PCB
netlist through computer vision and machine learning tech-
niques given the limitations of commercial reconstruction.

4 OUR DATASET

4.1 Workflow of collecting data
Within the X-ray research community there is a split be-
tween the “creators” that provide iterative improvement of
the X-ray process through hardware and software upgrades,
and that of the “users” who utilize X-ray tools for their
specific application such as agriculture, medicine, and elec-
tronics, etc. The X-ray tool users often utilize commercial
based X-ray tools which have the limitation of proprietary
software and the lack of ability to perform analysis upon X-
ray data in its raw format. For this reason, there is often
a lack of transparent PCB X-ray data for researchers to
quantifiably compare analysis results upon. It is therefore
a critical first step of widespread collection and curation of
experimental data before the research from the lab can be
integrated into a robust industrial application for automated
inspection.

Currently, the lack of PCB X-ray data has limited the
ability to develop these robust applications for automated
inspection. In this dataset we have acquired X-ray images
from various types of PCB designs within a framework
that accounts for developing machine learning techniques.
Each PCB sample must pass the data collection validation
where the data is checked for noise, artifacts, and that the
minimum feature size of the PCB design is greater than the
spatial resolution of the voxel size.

Although there are only 5 PCB samples within the
dataset, each sample contains 3D volumetric data that can
be extracted into 2D slices for analysis. It has been shown
that the training of 2D networks that analyze each 3D slice
one by one is currently the most used technique for 3D
inspection [24].

The development of a curated PCB dataset can be uti-
lized for many applications from optimizing the X-ray data
collection process to require reduced number of projections,
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(a) (b)

Fig. 3: Annotating the internal layers of PCBs; (a) Our annotation software s3a (developed in-house [18]); (b) examples of
annotated internal layers images.

(a) (b) (c) (d)

Fig. 4: Reconstructed volume of one PCB; (a) back with crosshair; (b) front; (c) side one; (d) side two.

to improving the reconstruction process through removal
of artifacts and noise by combining machine learning with
iterative reconstruction techniques, or developing image
processing and deep learning based techniques for semantic
segmentation of PCB design features.

4.2 Uncertainty in the X-ray Data
The primary environmental limitations are due to temper-
ature, humidity, and vibrations during the X-ray data col-
lection, which are mitigated through the use of vibrational
dampening stage and a climate controlled environment.

The dominant factors for uncertainty in an X-ray scan of
a PCB, is the sample composition itself. PCB designs range
in complexity from the amount of copper layers, minimum
feature size such as vias and micro vias, and the number
and placement density of surface mount devices can cause
severe noise and artifacts for reconstruction.

For each PCB scan, the detector is calibrated to determine
the real intensity value of the X-ray source during relative
scan parameters (KeV and current values), while reduc-
ing the geometrical uncertainty in the source to detector
distance for reconstruction.The offset and gain calibrations
are used to calculate the detector readings when the X-ray
source is switched off (Dark-field) and when the X-rays are
turned on (Bright-field) [25]. The calibrated average reading
from the detector was used to normalize the collected pro-
jection as a baseline. In addition to the importance of setting
the X-ray scan parameters appropriately to prevent detector
saturation and or potential damage to the sample with high
energy in relation to spot size.

4.3 Results
The process of X-ray data collection, reconstruction, align-
ing, and annotation is briefly shown in Figure 1. Whereas
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(a) (b) (c)

Fig. 5: Annotations of the internal layers of a additively manufactured PCB (a) traces annotated; (b) ROI of a particular
portion of the annotated traces; (c) annotations of the vias.

Figure 2 shows the PCB X-ray data collection setup and
Figure 3 highlights our in-house developed annotation soft-
ware named "s3a" [18] which is used for annotating the
X-ray data. Figure 4 depicts the reconstructed volume of
one sample PCB from front, back, side one and side two
and Figure 5a and Figure 5b depicts the annotated traces
on a sample PCB and Figure 5c depicts annotated vias on
another sample PCB. The annotations for the layer’s images
for each of the PCBs are available in the ".CSV" file format.
These annotations can be used for training machine learning
and/or deep learning based algorithms for traces, vias and
pads detection and/or classification. The available Tiff stack
images in the dataset can also be used for semantic deep
learning training tasks or for algorithms such as active
contours and adaptive region based segmentation. Table 1
summarizes the FICS PCB X-ray database which consists of
5 PCB samples, each with different dimensions. The table
summarizes the number of layers in each PCB along with
their resolution, the approximate number of components,
number of Tiff stack images, size of the collected data,
number of annotated vias, traces and pads respectively. The
features annotated are vias, connections, and pads, with
each one consisting of a single connected component. The
labeled data for each feature is contained within a .CSV file
with its vertices and number count. When there is over-
lap between features the label will be a connection which
can contain vias and/or pads within them. Vias and pads
are individually labeled and do not contain other features
within them. This enables the use of subtraction between the
overlap of connections and vias or pads to determine feature
connectivity in the Z direction of the PCB design. The
labeling of vias can be either a ring shaped polygon or filled
sphere based upon the spatial resolution of the collected
data or the manufacturing of the PCB and segmentation
of the copper circuitry. For example in Figure 1 the spatial
resolution is high enough to enable segmentation of vias as
ring shaped polygons, while in Figure 5c, the manufacturing
of the PCB combined with the spatial resolution results in
sphere shaped segmentation of the vias. Our dataset is the
first step in bridging the gap between hardware and com-

puter vision/machine learning communities. With a curated
X-ray CT dataset for PCB designs, the ground truth data will
enable improvements for PCB specific X-ray reconstruction,
segmentation, and automated netlist conversion.

5 NEWLY ENABLED RESEARCH

The proposed dataset will enable multiple research direc-
tions in the field of hardware security and machine learning.

5.1 AXI PCB Assurance

The proposed X-ray dataset can be used to facilitate research
in the field of automated PCB X-ray inspection by enabling
other researchers to evaluate and compare existing AXI
algorithms. By evaluating and comparing AXI algorihtms,
researchers are able to gain a better understanding of the
algorithms’ assumptions, benefits, and limitations. Such an
understanding is necessary for researchers to develop their
own, improved AXI algorithms. As AXI algorithms are
improved over time, the PCB assurance field will become
more robust to inter-layer trojans and defects.

5.2 Multimodal PCB Assurance

In addition, the proposed X-ray dataset can be used in
tandem with existing optical datasets (e.g. FPIC [6]) for more
complete and practical PCB assurance. Though valuable
inter-layer information is revealed in the X-ray spectrum,
it can take a long time to collect X-ray data. On the other
hand, optical data is much faster to collect, but the optical
spectrum only reveals surface-level information. The trade-
offs of AXI and AOI can be optimized by combining X-ray
and optical data to achieve multimodal PCB assurance. For
example, optical data could be collected first and then used
to help locate regions of interest, while X-ray can be used
after to gather more information from the identified areas of
interest.
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TABLE 1: Details of the FICS PCB X-ray database

Database PCBs
Dimensions

[in.]
Resolution

[µM ]
Size
[GB]

# of
Layers

Approx
# of

SMDs

# of Images
(Tiff

Stack)

# of
Annotated

Vias/Traces/Pads

FICS PCB
X-ray

PCB 1 0.87 X 0.87 13.59 29.1 6 22 1430 164/55/29
PCB 2 0.55 X 0.55 9.87 12.5 4 30 486 37/14/17
PCB 3 0.60 X 0.60 11.30 8.5 4 22 1920 623/81/0
PCB 4 1.21 X 1.37 23.04 25.7 5 4 564 325/196/0
PCB 5 1.22 X 2.55 32.76 32.4 4 55 1101 206/43/100

5.3 Reverse Engineering
X-ray data is able to capture inter-layer information such
as traces, vias, pads, and hidden components. This infor-
mation is valuable for inferring the PCB’s circuitry and
extracting the netlist. The netlist can then be used for re-
verse engineering of foreign and competitor technologies or
legacy devices. PCB reverse engineering helps researchers
and practitioners maintain and repair legacy systems and
identify defects and Trojans.

6 OPEN CHALLENGES AND FUTURE WORK

The open challenges that should be considered while work-
ing with PCB X-ray data are listed below.

1) Advancement in the newly-enabled research as
mentioned above can impose new challenges. For
example, for multimodal PCB assurance it will be a
challenging task to maintain the tradeoffs between
AXI and AOI data and algorithms.

2) Data management for a large volumetric database
such as PCB X-ray data can be difficult to scale
and maintain. It is important to determine the op-
timal training dataset of PCB designs which will
result in a representative assessment of PCB designs
currently and in the future. Due to the ongoing
technological advancements in the hardware com-
munity for PCB designs, packaging, PCB materials,
and the supply chain, it will be an open challenge to
maintain an up-to-date dataset.

3) Due to the current need to tune the X-ray pa-
rameters for each PCB design, there is a need for
an automated system for optimizing these settings.
This will require domain knowledge from the PCB
design, accurate X-ray simulation tools, and algo-
rithms to iteratively improve the quality of PCB
scans given a design’s parameters.

4) Computed laminography has an advantage com-
pared with tomographic collection where the sam-
ple is not a cylindrical sample, but instead has a
complex geometry. This complex geometry such as
a flat plane similar to a PCB, can cause CT tech-
niques to have large amounts of missing informa-
tion due to the absorption of X-rays. The inflection
point for PCB designs is when the minimum axis
size in X or Y is greater than 8-10 inches, above
this size, the X-ray penetration for typical 100-200
KeV X-ray sources is not enough to pass through
the entire sample. Laminography sacrifices layer
depth discernibly for increased spatial resolution

with smaller source, sample, detector distances. PCB
X-ray collection is achievable with CT for small
samples that fit within the FOV, or through stitching
multiple scans for large samples. However, lamino-
graphic collection is applicable to small, medium,
and large sized PCB designs [21].

7 CONCLUSION

In this paper, we proposed "FICS PCB X-ray," a computed
tomographic dataset. To the best of our knowledge, "FICS
PCB X-ray" is the first X-ray dataset of entire printed cir-
cuit boards. The dataset provides Tiff stack images and
annotated layer images for computer vision and machine
learning based tasks.

Future work will involve expanding the tomographic
dataset along with including a laminographic dataset. The
goal is to keep the dataset up-to-date with the evolving PCB
technology. The current version of the dataset can be used
as a benchmark to test and perform analysis on various
AXI algorithms for PCB assurance. "FICS PCB X-ray" is an
immense resource for researchers and practitioners in the
PCB assurance domain in industry and academia.
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