
AdHoc (Decentralized) Broadcast, Trace, and Revoke

罗辑 (Ji Luo)

Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, USA

luoji@cs.washington.edu

July 2022

Abstract

Traitor tracing schemes [Chor–Fiat–Naor, Crypto ’94] help content distributors
fight against piracy and are defined with the content distributor as a trusted
authority having access to the secret keys of all users. While the traditional model
caters well to its original motivation, its centralized nature makes it unsuitable for
many scenarios. For usage among mutually untrusted parties, a notion of ad hoc
traitor tracing (naturally with the capability of broadcast and revocation) is proposed
and studied in this work. Such a scheme allows users in the system to generate their
own public/secret key pairs, without trusting any other entity. To encrypt, a list of
public keys is used to identify the set of recipients, and decryption is possible with
a secret key for any of the public keys in the list. In addition, there is a tracing
algorithm that given a list of recipients’ public keys and a pirate decoder capable
of decrypting ciphertexts encrypted to them, identifies at least one recipient whose
secret key must have been used to construct the said decoder.

Two constructions are presented. The first is based on obfuscation and has
constant-size ciphertext, yet its decryption time is linear in the number of recipients.
The second is a generic transformation that reduces decryption time at the cost
of increased ciphertext size. A lower bound on the trade-off between ciphertext
size and decryption time is shown, indicating that the two constructions achieve all
possible optimal trade-offs. The lower bound also applies to general attribute-based
encryption and may be of independent interest.

Keywords. traitor tracing, obfuscation, attribute-based encryption.

This research is open-source. See https://github.com/GeeLaw/ahbtr.

i

https://orcid.org/0000-0003-1225-5310
https://github.com/GeeLaw/ahbtr

Contents

1 Introduction 1
1.1 Overview . 2

2 Preliminaries 5
3 Ad Hoc Broadcast, Trace, and Revoke 10

3.1 Simplified Security Notions . 11
4 Ad Hoc Private Linear Broadcast Encryption 13

4.1 Construction . 14
4.2 Message-Hiding Property . 16
4.3 Index-Hiding Property . 16

5 AH-BTR from AH-PLBE 18
6 Trading Ciphertext Size for Decryption Time in AH-BTR 21
7 Lower Bound on Ciphertext Size and Decryption Time 24
References 28

Appendix
A Table of Non-Descriptive Symbols 34

ii

1 Introduction

Traitor tracing schemes [CFN94] enable content distributors to fight against piracy. A
content distributor such as a media streaming service can generate a public key and
many different secret keys for individual subscribers, all of which can decrypt the
ciphertexts created using the public key. Given a pirate decoder capable of decrypting,
which could have been created from the secret keys of multiple subscribers, the
tracing algorithm can find at least one subscriber (a traitor) whose key was used to
create the said decoder. A long line of subsequent works [BSW06,BW06,BN08,BZ14,
NWZ16,GKW18,GKRW18,CVW+18,GQWW19,GKW19,Zha20a,Zha21] proposed the different
security definitions, extended the functionality, and presented new constructions.

While the traditional model caters well to the needs of content distributors, its
centralized nature makes it unsuitable for many scenarios, e.g., when a group of
individuals want to communicate amongst themselves and trace traitors who provide
decoders to outsiders. (See [Zha21] for a more concrete example.) This motivation
naturally calls for a decentralized notion of traitor tracing, termed ad hoc traitor tracing
in this work.

The first question is thus naturally the following:

What is the right notion of a secure ad hoc traitor tracing scheme?

Having formalized its syntax and security, we study its constructions:

How can such a scheme be constructed,
from what assumptions and with what efficiency?

Efficiency improvement never ends until we reach the optimum, for which it is necessary
to understand where the limit stands:

What bounds are there on the efficiency of such schemes?

Our Contributions. We provide answers to all three questions:

• Conceptually, we pose the question of ad hoc traitor tracing, develop from the ideas
thereof, and eventually reach the definitions for ad hoc broadcast, trace, and revoke
(AH-BTR). We prove the relation among the security notions considered in this
work.

• Construction-wise, we present secure AH-BTR schemes based on functional
encryption for general circuits [BSW11]. With polynomial factors in the security
parameter ignored, they achieve

encryption time 𝑇Enc = O(𝑁),
ciphertext size |ct| = O(𝑁1−𝛾),
decryption time 𝑇Dec = O(𝑁𝛾),

for any constant 0 ≤ 𝛾 ≤ 1.

• Questing for the ultimate efficiency, we prove that for all secure AH-BTR,

|ct| · 𝑇Dec = Ω(𝑁),

1 / 34

so our schemes offer all possible optimal trade-offs between |ct| and 𝑇Dec. Better
yet, the bound holds for (weak) attribute-based encryption (ABE) [SW05,GPSW06]
schemes with a specific simple functionality, thus also shedding new insights into
the efficiency of ABE.

A final addition is that our scheme is compatible with the existing public-key encryption
schemes, i.e., the keys of such a scheme can be those of any secure public-key
encryption, and there is no need to regenerate keys to take advantage of our scheme.

Open Questions. The tracing model in this work is black-box and classical, and recent
works [Zha21,Zha20c] have studied white-box or quantum traitor tracing. Conceptually,
it is interesting to understand the ad hoc versions of those tracing models.

Another question for future investigation is whether (weakened versions of) AH-BTR
can be constructed from more lightweight assumptions such as factoring-related, group-
based, or lattice-based assumptions. Potential weakenings include making the scheme
bounded,1 settling for static security, considering security against bounded collusion,
and only achieving threshold tracing [NP98].

1.1 Overview

Developing Definitions. We start with the first principles of ad hoc traitor tracing.
Syntactically, there should be a key generation algorithm that is run by each user of
the system.2 To encrypt, a list of public keys is used to identify the set of recipients.
Decryption should only require one secret key from the list of public keys. In addition,
the decryptor gets random access to all the recipients’ public keys as well as the
ciphertext. The choice to give random access to these inputs is based on performance
concerns, as the decryptor might not have to read all of the public keys or the ciphertext.

It should be clear that such a scheme would automatically have the functionality of
broadcast encryption [FN94].3 There is no event prior to encryption that “binds” the
system to a specific, fixed set of possible recipients, and the encryptor is free to use
whatever public keys it sees fit. Similarly, the encryptor is free to remove any public key
when it encrypts a second ciphertext, i.e., the scheme automatically enjoys the capability
of revocation. Therefore, the object is named ad hoc broadcast, trace, and revoke (AH-
BTR).

As usual with broadcast encryption, we do not hide the list of recipients. Hiding
the recipients makes ciphertext grow at least linearly with the number of recipients,
diminishing the potential of efficiency. As we shall see, it is possible to construct AH-
BTR with short ciphertexts.

Due to the decentralized nature of such systems, an adversary might indistinguish-
ably generate malformed keys, which could potentially evade tracers that only take well-
formed keys into account. To make it worse, a malformed key could be used to mount a
denial-of-service attack against (other) honest users if it appears in the list of recipients’
public keys during encryption — the encryption algorithm might have been carelessly

1A maximum of number of recipients per ciphertext is set when generating a key pair, and only
“compatible” public keys can be used to form a recipient set.

2We aim for a scheme without any trusted party, so there should be no global set-up.
3Decentralized versions of broadcast encryption were studied in [PPS12,DPP07] with interactive

management of recipient sets. Ad hoc (threshold) broadcast encryption was studied in [DHMR08,WQZD10]
with constructions for bounded schemes requiring global set-up.

2 / 34

designed and the presence of certain malformed keys could make it impossible to de-
crypt for anyone, including the recipients with honestly generated public keys.

In order to protect against such attacks by definition, we require correctness be robust
against malformed keys — however, for performance reasons, namely to be able to index
into any particular public key in constant time, we reject blatantly malformed keys, e.g.,
those of incorrect lengths, in the definition of correctness. This restriction does not
hamper the usefulness of such a scheme.

As for security, when attacking the traceability of the scheme, the adversary is free to
supply an arbitrary list of recipients’ public keys, generated honestly by the challenger
or (adversarially) by the adversary, so that the definition covers the scenario when
(blatantly or not) malformed keys are present in the list of recipients’ public keys. The
tracing algorithm is given oracle access to a stateless4 decoder. It must not accuse an
honest user, defined as one whose public key is generated by the challenger without
its secret key revealed to the adversary. It must find a traitor as long as the decoder
has sufficient advantage (i.e., succeeds in decrypting with sufficient probability), where
traitors are associated with public keys in the recipient list that are either generated by
the challenger with their secret keys revealed to the adversary or crafted by the adversary
in any manner (e.g., skewed distribution, or even without a well-defined secret key).

Once the issues above are identified and conceptually resolved (as done here), it is
straight-forward to define AH-BTR analogously to traditional broadcast, revoke, and trace
schemes [NP01,NNL01,GQWW19].

Simplifying Security Notions. Traditionally [BSW06], traceability has been defined
using one comprehensive interactive experiment,5 which is complicated to work with.
Intuitively, the notion requires that i) a traitor should be found from a decoder with
sufficient advantage and ii) no honest user should be identified as a traitor, regardless of
the decoder advantage.

We thus define two security notions for AH-BTR capturing the requirements
separately. The former is called completeness and the latter is called soundness. Their
conjunction is equivalent to traceability. Since only one requirement is considered in
each notion, both of them can be vastly simplified and the interactions in those notions
are minimal. It can be seen later that the they are also more convenient for reductionist
proofs.

Construction. Our first construction of AH-BTR follows the existing blueprint of traitor
tracing schemes from private linear broadcast encryption (PLBE) schemes introduced
in [BSW06]. We first define an ad hoc version of PLBE:6

• Everyone generates their own public and secret key pair (pk, sk).

• Encryption uses a list {pk𝑗}𝑗∈[𝑁] of 𝑁 public keys of the recipients as well as a
cut-off index 0 ≤ 𝑖⊥ ≤ 𝑁.

• Decryption is possible with sk𝑗 if 𝑗 > 𝑖⊥.
4The general transformation [KY01,BSW06] to deal with stateful decoder applies to our definition of

AH-BTR, mutatis mutandis.
5While some previous works [BF99,GKW18,Zha20a] separate traceability into multiple notions, those

notions still share one single complicated security experiment.
6AH-PLBE can be cast as multi-authority attribute-based encryption [Cha07] for 1-local monotone

functions without global set-up.

3 / 34

There are two security requirements. Message-hiding requires that the plaintext is
hidden if 𝑖⊥ = 𝑁. Index-hiding requires that an adversary without sk𝑗 for an honest pk𝑗
cannot distinguish between cut-off index being (𝑗 − 1) versus 𝑗.

Colloquially, the cut-off index 𝑖⊥ disables sk1, . . . , sk𝑖⊥ , and the only way to detect
whether an index is disabled is to have control over the corresponding key pair (by
knowing sk or generating a malformed pk). When 𝑖⊥ = 𝑁, the plaintext should be hidden
since all keys are disabled.

Given an AH-PLBE scheme, an AH-BTR scheme can be constructed by adapt-
ing [BSW06]. The AH-BTR inherits key generation and decryption algorithms from AH-
PLBE. To perform AH-BTR encryption, simply encrypt using AH-PLBE with 𝑖⊥ = 0, dis-
abling no key so that every recipient can decrypt. Given a pirate decoder with advantage
at least Y, the tracing algorithm computes its advantages with the cut-off index 𝑖⊥ being
0, 1, 2, . . . , 𝑁, and identifies the recipient associated with pk𝑖∗ as a traitor if the advantage
changes by Ω(Y/𝑁) when 𝑖⊥ increases from (𝑖∗ − 1) to 𝑖∗.

The message-hiding property translates to completeness, and index-hiding to
soundness. It now remains to construct an AH-PLBE.

Constructing AH-PLBE. It is folklore that any public-key encryption (PKE) scheme can
be used to construct a naïve PLBE by encrypting individually to each recipient. The
individual ciphertext that corresponds to a disabled key encrypts garbage instead of the
actual plaintext. This scheme is also ad hoc. The downside of it is that the ciphertext is
of size Ω(𝑁).

Our scheme uses obfuscation to compress the naïve PLBE ciphertext. The ciphertext
will contain an obfuscated program, which, when evaluated at 𝑗 ∈ [𝑁], allows us to
recover the PKE ciphertext under pk𝑗. However, the obfuscated program itself cannot
simply compute each PKE ciphertext if we want AH-PLBE ciphertexts of size o(𝑁), as
there is no enough space in the program to encode all the public keys that have been
independently generated.

Laconic oblivious transfer (OT) [CDG+17] comes to rescue. It allows compressing an
arbitrarily long string 𝐷 down to a fixed-length hash ℎ with which one can efficiently
perform oblivious transfer. The sender can encrypt messages 𝐿0, 𝐿1 to a hash ℎ and an
index 𝑚 into 𝐷. The time to encrypt is independent of the length of 𝐷. The receiver will
be able to obtain 𝐿𝐷[𝑚] by decrypting the laconic OT ciphertext.

During AH-PLBE encryption, we use laconic OT to compress the list of public keys.
The obfuscated program in our AH-PLBE ciphertext, when evaluated at 𝑗 ∈ [𝑁], will
output i) a garbled circuit whose input (resp. output) is a PKE public key (resp. ciphertext)
and ii) a bunch of laconic OT ciphertexts that decrypts to the labels so that the garbled
circuit is evaluated at pk𝑗. Decryption proceeds in the obvious manner.

The obfuscated program size, thus the ciphertext size, can be made constant,7
because both the time to garble a PKE encryption circuit and the time of laconic OT
encryptions are constant.

You Can (Not) Optimize. While our basic construction enjoys constant-size ciphertext,
its decryption algorithm runs in time Ω(𝑁). Concretely, the laconic OT hash is a Merkle
tree, and before performing laconic OT decryption, it is necessary to reconstruct the
tree as it is not stored in the ciphertext. In contrast, the decryption time of the scheme

7We ignore fixed polynomial factors in the security parameter. The point is that the size does not grow
with 𝑁 (the number of recipients).

4 / 34

implied by the naïve PLBE is constant in the RAM model, as it only looks at the relevant
piece of the underlying PKE ciphertext.

We can trade ciphertext size for decryption time by using the naïve PLBE on top of
our construction. By grouping the recipients into Θ(𝑁1−𝛾) sets of size Θ(𝑁𝛾) and using
our basic construction over each set, we obtain a scheme with ciphertext size Θ(𝑁1−𝛾)
and decryption time Θ(𝑁𝛾). This transformation was formalized as the user expansion
compiler [Zha20a] in the context of traditional traitor tracing.

All the constructions we now know have |ct| · 𝑇Dec = Ω(𝑁), where |ct| is the
ciphertext length and 𝑇Dec is the decryption time. It turns out that this bound
necessarily holds for all secure AH-BTR, and the blame is on the functionality of
broadcast encryption (not traitor tracing). Indeed, it is possible to make both |ct|
and 𝑇Dec constant in a traditional traitor tracing scheme [BZ14]. In existing broadcast
encryption (or revocation) schemes [BGW05,Del07,GW09,BZ14,AY20,AWY20,BV20] for 𝑁
users, encrypting to arbitrary subsets of size 𝑆 or (𝑁 − 𝑆) makes |ct| · 𝑇Dec = Ω(𝑆). It is
precisely the capability to encrypt to many Θ(𝑁)-subsets among 𝑁 users that is the deal
breaker, as we shall see in the formal proof. Interestingly, the adversary used in the
proof is simply the decryption algorithm, so the bound holds as long as the scheme is
not blatantly insecure.

We explain the ideas of our proof based on a corollary of a result [Unr07] dealing
with random oracles in the presence of non-uniform advice. Let 𝑆,𝑇 ≥ 0 be such that
𝑆𝑇 ≪ 𝑁. The corollary says that for any adversary learning any 𝑆-bit function (advice)
of a random string 𝑅 $← {0, 1}𝑁 and additionally (adaptively) querying at most 𝑇 bits
in 𝑅, it is “indistinguishable” to flip a bit in 𝑅 at a random location after the advice is
computed (using the non-flipped 𝑅) and before queries are answered, even if the index
of the potentially flipped bit is known to the adversary.

Back to AH-BTR. Imagine that there are 2𝑁 users in the system, associated with key
pairs (pk𝑗,𝑏, sk𝑗,𝑏) for 𝑗 ∈ [𝑁] and 𝑏 ∈ {0, 1}. Consider a ciphertext ct encrypting a random
plaintext to {pk𝑗,𝑅[𝑗]}𝑗∈[𝑁] for a random string 𝑅 and regard ct as the advice. Let’s try
decrypting ct using sk𝑗,𝑅[𝑗] for a random 𝑗

$← [𝑁]. Each time the AH-BTR decryption
algorithm queries pk𝑗, we probe 𝑅[𝑗] and respond with pk𝑗,𝑅[𝑗]. By way of contradiction,
suppose |ct| · 𝑇Dec ≪ 𝑁, which would translate to the setting of the corollary as 𝑆 = |ct|,
𝑇 ≤ 𝑇Dec, and 𝑆𝑇 ≪ 𝑁.

By the correctness of AH-BTR, the attempted decryption should successfully recover
the plaintext. From the corollary it follows that flipping 𝑅[𝑗] should also lead to
successful recovery. But if 𝑅[𝑗] is flipped after ct is computed, by the security of AH-
BTR, the attempted decryption should fail to recover the plaintext except for negligible
probability, yielding a contradiction.

2 Preliminaries

We denote by _ ∈ ℕ the security parameter, by poly(·) a polynomial function, and by
negl(_) a negligible function of _. Efficient algorithms are probabilistic random-access
machines 𝑀𝑤(𝑥) of running time poly(|𝑥|, |𝑤|). Efficient adversaries (in interactive
experiments) are probabilistic Turing machines of (total) running time poly(_), with
or without poly(_)-long advices. (All of the proofs in this work are uniform.) The
advantage of A in distinguishing Exp0 and Exp1 is Pr[ExpA0 (1_) = 1] − Pr[ExpA1 (1_) = 1].
We write ≈,≈s,≡ for computational indistinguishability, statistical indistinguishability,

5 / 34

and identity.
Under the standard assumption that a pseudorandom generator (with polynomial

security) exists, we can assume, whenever convenient, that a randomized algorithm uses
a uniformly random _-bit string as its randomness (without losing polynomial security
considered in this work or degrading its efficiency).

For 𝑛, 𝑛′ ∈ ℕ, we write [𝑛..𝑛′] for the set {𝑛, . . . , 𝑛′}, and [𝑛] for [1..𝑛]. For a bit-
string 𝐷, we denote by |𝐷| its bit-length, and given an index 𝑚 ∈ [|𝐷|], we denote
by 𝐷[𝑚] the 𝑚th bit of 𝐷. For two bit-strings 𝐷, 𝐷′, their concatenation is 𝐷∥𝐷′. Given a
circuit 𝐶 : {0, 1}𝑛+𝑀0 → {0, 1}𝑛′ and 𝑤 ∈ {0, 1}𝑛, we define 𝐶[𝑤] to be 𝐶 with 𝑤 hardwired
as its first portion of input, so 𝐶[𝑤] (𝑥) = 𝐶(𝑤∥𝑥). For an event 𝑋 , its indicator random
variable is 1𝑋 . For events 𝑋,𝑌 in the same probability space, “𝑋 implies 𝑌” means
𝑋 ⊆ 𝑌 .

Garbled Circuits. The following version of partially hiding garbling [IW14] suffices for
the purpose of this work.

Definition 1 (garbled circuit [Yao86,LP09,BHR12,IW14]). A circuit garbling scheme consists
of 2 efficient algorithms:

• Garble(1_, 𝐶, 𝑤) takes as input a circuit 𝐶 : {0, 1}𝑛+𝑀0 → {0, 1}𝑛′ and some hardwired
input 𝑤 ∈ {0, 1}𝑛. It outputs a garbled circuit 𝐶 and 𝑀0 pairs of labels 𝐿𝑚0,𝑏 ∈ {0, 1}_
for 𝑚0 ∈ [𝑀0], 𝑏 ∈ {0, 1}.

• Eval(1_, 𝐶, 𝑥, {𝐿𝑚0}𝑚0∈[𝑀0]) takes as input a garbled circuit, a non-hardwired input,
and 𝑀0 labels. It outputs an 𝑛′-bit string.

The scheme must be correct, i.e., for all _ ∈ ℕ, 𝑛, 𝑀0, 𝑛
′ ∈ ℕ, 𝐶 : {0, 1}𝑛+𝑀0 → {0, 1}𝑛′,

𝑤 ∈ {0, 1}𝑛, 𝑥 ∈ {0, 1}𝑀0 ,

Pr

[
(𝐶, {𝐿𝑚0,𝑏}𝑚0∈[𝑀0],𝑏∈{0,1})

$← Garble(1_, 𝐶, 𝑤)
: Eval(1_, 𝐶, 𝑥, {𝐿𝑚0,𝑥 [𝑚0]}𝑚0∈[𝑀0]) = 𝐶[𝑤] (𝑥)

]
= 1.

Definition 2 (garbled circuit security [Yao86,LP09,BHR12,IW14]). Let (Garble, Eval) be a
circuit garbling scheme (Definition 1). A simulator is an efficient algorithm

SimGarble(1_, 𝐶 : {0, 1}𝑛+𝑀0 → {0, 1}𝑛′, 𝑥 ∈ {0, 1}𝑀0 , 𝑦 ∈ {0, 1}𝑛′) → (𝐶, {𝐿𝑚0}𝑚0∈[𝑀0])

taking as input a circuit, a non-hardwired input, and a circuit output, and producing a
simulated garbled circuit and 𝑀0 simulated labels. The scheme is 𝑤-hiding (or secure for
the purpose of this work) if there exists a simulator SimGarble such that Exp0

GC ≈ Exp
1
GC,

where Exp𝑏GC(1
_) with adversary A proceeds as follows:

• Challenge. Launch A(1_) and receive a circuit 𝐶 : {0, 1}𝑛+𝑀0 → {0, 1}𝑛′, a hardwired
input 𝑤 ∈ {0, 1}𝑛, and a non-hardwired input 𝑥 ∈ {0, 1}𝑀0 from it. Run

if 𝑏 = 0, (𝐶, {𝐿𝑚0,𝑏 }𝑚0∈[𝑀0],𝑏∈{0,1})
$← Garble(1_, 𝐶, 𝑤);

if 𝑏 = 1, (𝐶, {𝐿𝑚0,𝑥 [𝑚0]}𝑚0∈[𝑀0]) $← SimGarble(1_, 𝐶, 𝑥, 𝐶[𝑤] (𝑥));

and send (𝐶, {𝐿𝑚0,𝑥 [𝑚0]}𝑚0∈[𝑀0]) to A.

• Guess. A outputs a bit 𝑏′, which is the output of the experiment.

6 / 34

Puncturable Pseudorandom Function. We rely on PPRF [BW13,KPTZ13,BGI14,SW14].

Definition 3 (PPRF [BW13,KPTZ13,BGI14,SW14]). A puncturable pseudorandom function
(PPRF) family (with key space, domain, and codomain {0, 1}_) consists of 2 efficient
algorithms:

• Puncture(1_, 𝑘 ∈ {0, 1}_, 𝑥) takes as input a non-punctured key and a point. It
outputs a punctured key �̊�𝑥.

• Eval(1_, 𝑘, 𝑥 ∈ {0, 1}_) takes as input a (punctured or non-punctured) key and a
point. It is deterministic and outputs a _-bit string.

The scheme must be correct, i.e., for all _ ∈ ℕ, 𝑥, 𝑥′ ∈ {0, 1}_ such that 𝑥 ≠ 𝑥′,

Pr

[
𝑘

$← {0, 1}_

�̊�𝑥
$← Puncture(1_, 𝑘, 𝑥)

: Eval(1_, 𝑘, 𝑥′) = Eval(1_, �̊�𝑥, 𝑥′)
]
= 1.

Definition 4 (PPRF security [BW13,KPTZ13,BGI14,SW14]). A PPRF (Puncture, Eval) per
Definition 3 is pseudorandom at the punctured point (or secure for the purpose of this work)
if Exp0

PPRF ≈ Exp
1
PPRF, where Exp

𝑏
PPRF(1

_) with adversary A proceeds as follows:

• Challenge. Launch A(1_) and receive from it a point 𝑥 ∈ {0, 1}_. Run

𝑘
$← {0, 1}_, �̊�𝑥

$← Puncture(1_, 𝑘, 𝑥), 𝑟0 ← Eval(1_, 𝑘, 𝑥), 𝑟1
$← {0, 1}_,

and send (�̊�𝑥, 𝑟𝑏) to A.

• Guess. A outputs a bit 𝑏′, which is the output of the experiment.

Public-Key Encryption. Our ad hoc broadcast, trace, and revoke scheme can be based
on any public-key encryption scheme.

Definition 5 (PKE). A public-key encryption (PKE) scheme (with message space {0, 1}_ and
public key length 𝑀0(_)) consists of 3 efficient algorithms:

• Gen(1_) outputs a pair (pk, sk) of public and secret keys with |pk| = 𝑀0(_).

• Enc(1_, pk, ` ∈ {0, 1}_) takes as input the public key and a message. It outputs a
ciphertext ct.

• Dec(1_, sk, ct) takes as input the secret key and a ciphertext. It outputs a message.

The scheme must be correct, i.e., for all _ ∈ ℕ, ` ∈ {0, 1}_,

Pr

[
(pk, sk) $← Gen(1_)

ct $← Enc(1_, pk, `)
: Dec(1_, sk, ct) = `

]
= 1.

Definition 6 (PKE security). A PKE scheme (Gen, Enc,Dec) per Definition 5 is semantically
secure for random messages (or secure for the purpose of this work) if

{(`0, `1, pk, ct0)} ≈ {(`0, `1, pk, ct1)},

where (pk, sk) $← Gen(1_) and `𝑏
$← {0, 1}_, ct𝑏 $← Enc(1_, pk, `𝑏) for 𝑏 ∈ {0, 1}.

7 / 34

Laconic Oblivious Transfer. We rely on laconic oblivious transfer [CDG+17].

Definition 7 (laconic OT [CDG+17]). A laconic oblivious transfer (OT) scheme (with message
space {0, 1}_) consists of 4 efficient algorithms:

• Gen(1_, 𝑀 ∈ ℕ) takes the database length as input and outputs a hash key hk.

• Hash(1_, hk, 𝐷 ∈ {0, 1}𝑀) takes as input a hash key and a database. It is
deterministic, runs in time O(𝑀) poly(_, log𝑀), and outputs a hash ℎ of
length poly(_, log𝑀) and a processed database 𝐷.

• Send(1_, hk, ℎ, 𝑚 ∈ [𝑀], 𝐿0 ∈ {0, 1}_, 𝐿1 ∈ {0, 1}_) takes as input a hash key, a hash,
an index, and two labels (messages). It outputs a ciphertext ct.

• Recv𝐷(1_, hk, ℎ, 𝑚 ∈ [𝑀], ct) is given random access to a processed database, and
takes as input a hash key, a hash, an index, and a ciphertext. It runs in
time poly(_, log𝑀) and outputs a label (message).

The scheme must be correct, i.e., for all _, 𝑀 ∈ ℕ, 𝐷 ∈ {0, 1}𝑀 , 𝑚 ∈ [𝑀], 𝐿0, 𝐿1 ∈ {0, 1}_,

Pr

hk $← Gen(1_, 𝑀)

(ℎ, 𝐷) ← Hash(1_, hk, 𝐷)

ct $← Send(1_, hk, ℎ, 𝑚, 𝐿0, 𝐿1)

: Recv𝐷(1_, hk, ℎ, 𝑚, ct) = 𝐿𝐷[𝑚]

 = 1.

We only need database-selective security [AL18]. The following indistinguishability-
based definition is equivalent to the usual simulation-based formulation.

Definition 8 (laconic OT security [CDG+17,AL18,KNTY19]). A laconic OT scheme
(Gen,Hash, Send, Recv) per Definition 7 is database-selectively sender-private (or secure for
the purpose of this work) if Exp0

LOT ≈ Exp
1
LOT, where Exp

𝑏
LOT(1

_) with adversaryA proceeds
as follows:

• Setup. Launch A(1_) and receive from it some 𝑀 ∈ ℕ and a database 𝐷 ∈ {0, 1}𝑀 .
Run

hk $← Gen(1_, 𝑀), (ℎ, 𝐷) ← Hash(1_, hk, 𝐷),

and send hk to A.

• Challenge. A submits an index 𝑚 ∈ [𝑀] and two labels (messages) 𝐿0, 𝐿1 ∈ {0, 1}_.
Run

ct $←
{
Send(1_, hk, ℎ, 𝑚, 𝐿0 , 𝐿1), if 𝑏 = 0;
Send(1_, hk, ℎ, 𝑚, 𝐿𝐷[𝑚] , 𝐿𝐷[𝑚]), if 𝑏 = 1;

and send ct to A.

• Guess. A outputs a bit 𝑏′, which is the output of the experiment.

8 / 34

Obfuscation. We rely on indistinguishability obfuscator for polynomial-sized domain.

Definition 9 ((circuit) obfuscator [BGI+01]). A (circuit) obfuscator is an efficient algorithm
Obf(1_, 𝐶) taking a circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑛′ as input and producing a circuit
𝐶 : {0, 1}𝑛 → {0, 1}𝑛′ as output. The scheme must be correct, i.e., for all _ ∈ ℕ, 𝑛, 𝑛′ ∈ ℕ,
𝐶 : {0, 1}𝑛 → {0, 1}𝑛′, 𝑥 ∈ {0, 1}𝑛,

Pr
[
Obf(1_, 𝐶) (𝑥) = 𝐶(𝑥)

]
= 1.

Definition 10 (𝑖O [BGI+01] for poly(_)-sized domain). An obfuscator Obf (Definition 9) is
an indistinguishability obfuscator for polynomial-sized domain (𝑖O for poly(_)-sized domain)
if Exp0

𝑖O ≈ Exp
1
𝑖O, where Exp

𝑏
𝑖O (1

_) with adversary A proceeds as follows:

• Challenge. Launch A(1_) and receive from it the domain size 12𝑛 and two circuits
𝐶0, 𝐶1 : {0, 1}𝑛 → {0, 1}𝑛′. Send Obf(1_, 𝐶𝑏) to A.

• Guess. A outputs a bit 𝑏′. The output of the experiment is 𝑏′ if 𝐶0, 𝐶1 have the
same (description) size and 𝐶0(𝑥) = 𝐶1(𝑥) for all 𝑥 ∈ {0, 1}𝑛. Otherwise, the output
is set to 0.

Assumption. All of the primitives defined in this section are implied by the existence
of weakly selectively secure, single key, and sublinearly succinct public-key functional
encryption for general circuits (so-called obfuscation-minimum PKFE), of which we refer
the reader to [KNTY19] for the precise definition.

Lemma 1. Suppose there exists an obfuscation-minimum PKFE with polynomial security,
then there exist

• [Yao86,LP09,BHR12] a secure circuit garbling scheme (Definitions 1 and 2),

• [GGM84,BW13,KPTZ13,BGI14] a secure PPRF (Definitions 3 and 4),

• [folklore] a secure PKE scheme (Definitions 5 and 6),

• [CDG+17,LZ17,AL18,KNTY19] a secure laconic OT scheme (Definitions 7 and 8), and

• [LT17,LZ17] an 𝑖O for poly(_)-sized domain (Definitions 9 and 10),

with polynomial security.

Alternatively, those primitives can be based on the existence of 𝑖O and one-way function.
However, 𝑖O security (for circuits whose domains are not necessarily poly(_)-sized) is
not known to be falsifiable [GW11] and it is hard to conceive [GGSW13] a reduction of 𝑖O
security to complexity assumptions [GK16]. Since all of the security notions defined in this
section are falsifiable, it is unsatisfactory to base them on 𝑖O from a theoretical point of
view.

In contrast, obfuscation-minimum PKFE security is falsifiable and there are
constructions [JLS21b,JLS21a] from well-studied complexity assumptions. The point of
Lemma 1 is to base our constructions solely on one falsifiable assumption, or even
complexity assumptions.

9 / 34

3 Ad Hoc Broadcast, Trace, and Revoke

This section concerns the definitions for ad hoc broadcast, trace, and revoke. After
formally defining the syntax and correctness of AH-BTR, we present an intuitive
definition of its security. While the security definition is comprehensive, it is
not the easiest to work with, so we turn to define two simpler security notions,
whose conjunction is equivalent to the comprehensive definition. The proof of their
equivalence follows the definitions. Later in this paper, we will only work with the
simpler notions.

Definition 11 (AH-BTR). An ad hoc broadcast, trace, and revoke (AH-BTR) scheme (with
message space {0, 1}_ and public key length 𝑀0(_)) consists of 4 efficient algorithms:

• Gen(1_) outputs a pair (pk, sk) of public and secret keys with |pk| = 𝑀0(_).

• Enc(1_, {pk𝑗}𝑗∈[𝑁] , ` ∈ {0, 1}_) takes as input a list of public keys and a message. It
outputs a ciphertext ct.

• Dec{pk𝑗 }𝑗∈[𝑁] ,ct(1_, 𝑁, 𝑖 ∈ [𝑁], sk𝑖) is given random access to a list of public keys and
a ciphertext, and takes as input the length of the list, an index, and a secret key. It
outputs a message.

• TraceD (1_, {pk∗
𝑗
}𝑗∈[𝑁] , 11/Y∗) is given oracle access to a (stateless randomized)

distinguisher D and takes as input a list of public keys and an error bound. It
outputs an index 𝑖∗ ∈ {⊥} ∪ [𝑁].

The scheme must be robustly correct, i.e., for all _ ∈ ℕ, 𝑁 ∈ ℕ, 𝑖 ∈ [𝑁], {pk𝑗}𝑗∈[𝑁]\{𝑖}8
such that |pk𝑗 | = 𝑀0(_) for all 𝑗 ∈ [𝑁] \ {𝑖}, and ` ∈ {0, 1}_,

Pr

[
(pk𝑖, sk𝑖) $← Gen(1_)

ct $← Enc(1_, {pk𝑗}𝑗∈[𝑁] , `)
: Dec{pk𝑗 }𝑗∈[𝑁] ,ct(1_, 𝑁, 𝑖, sk𝑖) = `

]
= 1.

Definition 12 (traceability). An AH-BTR scheme (Gen, Enc,Dec, Trace) per Definition 11
is traceable if all efficient adversary wins Exptrace only with negligible probability, where
Exptrace(1_) with adversary B proceeds as follows:

• Setup. Launch B(1_) and receive 1𝑄 from it. Let 𝑆← [𝑄] and run

(pk𝑞, sk𝑞) $← Gen(1_) for 𝑞 ∈ [𝑄],

and send {pk𝑞}𝑞∈[𝑄] to B.

• Query. Repeat the following for arbitrarily many rounds determined by B. In each
round, B submits 𝑡 ∈ [𝑄] for sk𝑡. Upon the query, let 𝑆← 𝑆 \ {𝑡} and send sk𝑡 to B.

• Challenge. B outputs a (probabilistic) circuit D, a list {pk∗
𝑗
}𝑗∈[𝑁] of public keys, and

an error bound 11/Y∗ . Run

𝑖∗
$← TraceD (1_, {pk∗𝑗 }𝑗∈[𝑁] , 1

1/Y∗).

Let
8These public keys could be out of the support of Gen, i.e., malformed.

10 / 34

– FalsePos be the event that 𝑖∗ ∈ [𝑁] and pk∗
𝑖∗ = pk𝑠 for some 𝑠 ∈ 𝑆,

– GoodDist the event that��������Pr

`0

$← {0, 1}_, `1
$← {0, 1}_

𝛽
$← {0, 1}

ct $← Enc(1_, {pk∗𝑗 }𝑗∈[𝑁] , `𝛽)

: D(`0, `1, ct) = 𝛽

 −
1
2

�������� ≥ Y∗,

– and NotFound the event that 𝑖∗ ∉ [𝑁] (i.e., 𝑖∗ = ⊥).

B wins if and only if FalsePos ∨ (GoodDist ∧ NotFound).

Similar to Remark 3 in [Zha20b], traceability implies KEM security (omitted here).

3.1 Simplified Security Notions

The traceability of AH-BTR guarantees that a traitor must be found (if the decoder is good
enough) and innocent users must not be accused (whether or not the decoder is good
enough). Decomposing the two requirements (plus some apparent weakening) makes
each of them simpler (in particular, non-interactive). The first requirement is called
completeness, and the second soundness.

Definition 13 (completeness). An AH-BTR scheme (Gen, Enc,Dec, Trace) per Definition 11
is complete if all efficient adversary wins Expcomplete only with negligible probability,
where Expcomplete(1_) with adversary C proceeds as follows:

• Challenge. Launch C (1_), which outputs a (probabilistic) circuit D, a list {pk∗
𝑗
}𝑗∈[𝑁]

of public keys, and an error bound 11/Y∗ . Run

𝑖∗
$← TraceD (1_, {pk∗𝑗 }𝑗∈[𝑁] , 1

1/Y∗).

Let

– GoodDist be the event that��������Pr

`0

$← {0, 1}_, `1
$← {0, 1}_

𝛽
$← {0, 1}

ct $← Enc(1_, {pk∗𝑗 }𝑗∈[𝑁] , `𝛽)

: D(`0, `1, ct) = 𝛽

 −
1
2

�������� ≥ Y∗,

– and NotFound the event that 𝑖∗ ∉ [𝑁] (i.e., 𝑖∗ = ⊥).

C wins if and only if GoodDist ∧ NotFound.

Definition 14 (soundness). An AH-BTR scheme (Gen, Enc,Dec, Trace) per Definition 11
is sound if all efficient adversary wins Expsound only with negligible probability, where
Expsound(1_) with adversary C proceeds as follows:

• Challenge. Run (pk, sk) $← Gen(1_), then run C (1_, pk), which outputs a (probabilis-
tic) circuitD, some 𝑁 ∈ ℕ, a challenge index 𝑖∗⊥ ∈ [𝑁], a list {pk∗𝑗 }𝑗∈[𝑁]\{𝑖∗⊥ } of public
keys, and an error bound 11/Y∗ . Let pk∗

𝑖∗⊥
← pk and run

𝑖∗
$← TraceD (1_, {pk∗𝑗 }𝑗∈[𝑁] , 1

1/Y∗).

C wins if and only if 𝑖∗ = 𝑖∗⊥ (the event FalsePos).

11 / 34

Theorem 2 (¶). An AH-BTR scheme is traceable if and only if it is both complete and sound.

Proof (Theorem 2). The reductionist proof of necessity is straight-forward by setting
𝑄 = 0 (resp. 𝑄 = 1) for completeness (resp. soundness).

To show sufficiency, suppose the AH-BTR scheme (Gen, Enc,Dec, Trace) is both
complete and sound and let B be an efficient adversary against its traceability. We
consider two efficient adversaries. C1 is against the completeness of the scheme. It works
by internally simulating the traceability game for B and outputting (in the completeness
experiment) whatever B outputs. Denoting probabilities and events for adversary X in
its security experiment with subscript X ,

GoodDistC1 ⇐⇒ GoodDistB and NotFoundC1 ⇐⇒ NotFoundB .

Therefore,

Pr
B
[GoodDistB ∧ NotFoundB] = Pr

C1
[GoodDistC1 ∧ NotFoundC1].

C2 is against the soundness of the scheme. Let 𝐵 = poly(_) > 1 be an upper bound of 𝑄
that B might ever output (𝐵 exists since B outputs 1𝑄 in polynomial time). C2 does the
following:

• C2(pk) launches B, receives 1𝑄 from it, samples and sets

𝑠∗
$← [𝐵], pk𝑠∗ ← pk,

𝑆← [𝑄], (pk𝑞, sk𝑞) $← Gen() for 𝑞 ∈ [𝑄] \ {𝑠∗},

and sends {pk𝑞}𝑞∈[𝑄] to B.

• C2 answers queries from B and updates 𝑆 as stipulated by the query phase of the
traceability experiment, except that it aborts if B queries for sk𝑠∗ .

• After the query phase, B outputs

D, {pk∗𝑗 }𝑗∈[𝑁] , 11/Y∗ ,

and C2 samples or sets

𝑖∗⊥

{
$← 𝐼∗⊥, if 𝐼∗⊥ ← { 𝑖 ∈ [𝑁] : pk∗

𝑖
= pk } ≠ ∅;

← ⊥ otherwise.

It aborts if 𝑖∗⊥ = ⊥. Otherwise, C2 outputs

D, 𝑁, 𝑖∗⊥, {pk∗𝑗 }𝑗∈[𝑁]\{𝑖∗⊥ }, 11/Y∗ .

Routine calculation yields

Pr
C2
[FalsePosC2] ≥

1
𝐵2 Pr

B
[FalsePosB].

By the union bound,

Pr
B
[FalsePosB ∨ (GoodDistB ∧ NotFoundB)]

≤ Pr
B
[FalsePosB] + Pr

B
[GoodDistB ∧ NotFoundB]

≤ 𝐵2 Pr
C2
[FalsePosC2] + Pr

C1
[GoodDistC1 ∧ NotFoundC1]

= (poly(_))2 negl(_) + negl(_) = negl(_). □

12 / 34

4 Ad Hoc Private Linear Broadcast Encryption

Our construction of AH-BTR follows that of traitor tracing schemes in [BSW06]. We
define ad hoc private broadcast linear encryption (AH-PLBE) by adapting the notion of
PLBE [BSW06] to the ad hoc setting.

Definition 15 (AH-PLBE). An ad hoc private linear broadcast encryption (AH-PLBE) scheme
(with message space {0, 1}_ and public key length 𝑀0(_)) consists of 3 efficient
algorithms:

• Gen(1_) outputs a pair (pk, sk) of public and secret keys with |pk| = 𝑀0(_).

• Enc(1_, {pk𝑗}𝑗∈[𝑁] , 𝑖⊥ ∈ [0..𝑁], ` ∈ {0, 1}_) takes as input a list of public keys, a cut-
off index, and a message. It outputs a ciphertext ct.

• Dec{pk𝑗 }𝑗∈[𝑁] ,ct(1_, 𝑁, 𝑖 ∈ [𝑁], sk𝑖) is given random access to a list of public keys and
a ciphertext, and takes as input the length of the list, an index, and a secret key. It
outputs a message.

The scheme must be robustly correct, i.e., for all _ ∈ ℕ, 𝑁 ∈ ℕ, 𝑖 ∈ [𝑁], {pk𝑗}𝑗∈[𝑁]\{𝑖}9
such that |pk𝑗 | = 𝑀0(_) for all 𝑗 ∈ [𝑁] \ {𝑖}, and ` ∈ {0, 1}_,

Pr

[
(pk𝑖, sk𝑖) $← Gen(1_)

ct $← Enc(1_, {pk𝑗}𝑗∈[𝑁] , 0, `)
: Dec{pk𝑗 }𝑗∈[𝑁] ,ct(1_, 𝑁, 𝑖, sk𝑖) = `

]
= 1.

Security. We define security notions of AH-PLBE analogously to those in [BSW06], except
“mode indistinguishability” (Game 1 in [BSW06]), which is not needed here. The two
security definitions have a one-to-one correspondence to the simplified security notions
of AH-BTR in Section 3.1. Namely, message-hiding translates to completeness, and index-
hiding translates to soundness.

Definition 16 (message-hiding). An AH-PLBE scheme (Gen, Enc,Dec) per Definition 15 is
message-hiding if Exp0

MH ≈ Exp
1
MH, where Exp

𝑏
MH(1

_) with adversary A proceeds as follows:

• Challenge. Launch A(1_) and receive from it a list {pk∗
𝑗
}𝑗∈[𝑁] of public keys. Run

`0
$← {0, 1}_, `1

$← {0, 1}_, ct $← Enc(1_, {pk∗𝑗 }𝑗∈[𝑁] , 𝑁, `𝑏),

and send (`0, `1, ct) to A.

• Guess. A outputs a bit 𝑏′, which is the output of the experiment.

Definition 17 (index-hiding). An AH-PLBE scheme (Gen, Enc,Dec) per Definition 15 is
index-hiding if Exp0

IH ≈ Exp
1
IH, where Exp

𝑏
IH(1

_) with adversary A proceeds as follows:

• Challenge. Run (pk, sk) $← Gen(1_), launch A(1_, pk), and receive from it
some 𝑁 ∈ ℕ, a cut-off index 𝑖∗⊥ ∈ [𝑁], and a list {pk∗𝑗 }𝑗∈[𝑁]\{𝑖∗⊥ } of public keys. Let
pk∗

𝑖∗⊥
← pk, run

`
$← {0, 1}_, ct $← Enc(1_, {pk∗𝑗 }𝑗∈[𝑁] , 𝑖

∗
⊥ − 1 + 𝑏, `),

and send (`, ct) to A.

• Guess. A outputs a bit 𝑏′, which is the output of the experiment.
9These public keys could be out of the support of Gen, i.e., malformed.

13 / 34

4.1 Construction

Ingredients of Construction 1. Let

• GC = (GC.Garble,GC.Eval,GC.SimGarble) be a circuit garbling scheme such that
GC.Garble uses _-bit randomness,

• PPRF = (PPRF.Puncture, PPRF.Eval) a PPRF,

• PKE = (PKE.Gen, PKE.Enc, PKE.Dec) a PKE scheme such that PKE.Enc uses _-bit
randomness and whose public keys are (exactly) of polynomial length 𝑀0,

• LOT = (LOT.Gen, LOT.Hash, LOT.Send, LOT.Recv) a laconic OT scheme,

• Obf an obfuscator.

Construction 1 (AH-PLBE). Our AH-PLBE works as follows:

• Gen is the same as PKE.Gen.

• Enc({pk𝑗}𝑗∈[𝑁] , 𝑖⊥, `) first checks whether |pk𝑗 | = 𝑀0 for all 𝑗 ∈ [𝑁]. If not, it outputs
ct = ⊥ and terminates. Otherwise, the algorithm hashes down the public keys by
running

𝑀 ← 𝑁𝑀0, 𝐷← pk1∥ · · · ∥pk𝑁 ,

hk $← LOT.Gen(𝑀), (ℎ, 𝐷) ← LOT.Hash(hk, 𝐷).

It samples the cut-off message `⊥
$← {0, 1}_ and PPRF keys

𝑘GC
$← {0, 1}_, 𝑘PKE

$← {0, 1}_, 𝑘LOT𝑚0
$← {0, 1}_ for 𝑚0 ∈ [𝑀0],

and obfuscates 𝐶GC (Figure 1) by running

𝐶GC
$← Obf(𝐶GC [𝑁, hk, ℎ, 𝑖⊥, `⊥, `, 𝑘GC, 𝑘PKE, {𝑘LOT𝑚0 }𝑚0∈[𝑀0]]).

The algorithm outputs ct = (hk, 𝐶GC) as the ciphertext.

• Dec{pk𝑗 }𝑗∈[𝑁] ,ct(𝑁, 𝑖, sk𝑖) first parses ct = (hk, 𝐶GC) and recomputes

𝑀 ← 𝑁𝑀0, 𝐷← pk1∥ · · · ∥pk𝑁 , (ℎ, 𝐷) ← LOT.Hash(hk, 𝐷).

The algorithm next runs the obfuscated circuit,

(𝐶ct,𝑖, {LOT.ct𝑖,𝑚0}𝑚0∈[𝑀0]) ← 𝐶GC(𝑖),

to obtain the garbled 𝐶ct (Figure 1) for the decryptor and the laconic OT ciphertexts
sending its labels. It then receives the labels,

𝐿𝑖,𝑚0,pk𝑖 [𝑚0] ← LOT.Recv𝐷(hk, ℎ, (𝑖 − 1)𝑀0 + 𝑚0, LOT.ct𝑖,𝑚0) for 𝑚0 ∈ [𝑀0],

and evaluates the garbled circuit,

PKE.ct𝑖 ← GC.Eval(𝐶ct,𝑖, pk𝑖, {𝐿𝑖,𝑚0,pk𝑖 [𝑚0]}𝑚0∈[𝑀0]),

to obtain the PKE ciphertext under the decryptor’s public key. Lastly, the algorithm
runs and outputs (as the decrypted message)

` ← PKE.Dec(sk𝑖, PKE.ct𝑖).

14 / 34

𝐶GC [𝑁, hk, ℎ, 𝑖⊥, `⊥, `, 𝑘GC, 𝑘PKE, {𝑘LOT𝑚0 }𝑚0∈[𝑀0]] (𝑖)

Hardwired. 𝑁, number of users;
hk, laconic OT hash key;
ℎ, laconic OT hash of 𝐷 = pk1∥ · · · ∥pk𝑁 ;
𝑖⊥, cut-off index;
`⊥, cut-off message;
`, message;
𝑘GC , PPRF key for circuit garbling;
𝑘PKE , PPRF key for public-key encryption;
𝑘LOT𝑚0 , PPRF key for sending the 𝑚th

0 label using laconic OT.
Input. 𝑖 ∈ [𝑁], index of recipient.

Output. Computed as follows.

𝑟GC𝑖 ← PPRF.Eval(𝑘GC, 𝑖)
𝑟PKE𝑖 ← PPRF.Eval(𝑘PKE, 𝑖)
𝑟LOT𝑖,𝑚0

← PPRF.Eval(𝑘LOT𝑚0 , 𝑖) for 𝑚0 ∈ [𝑀0]
(𝐶ct,𝑖, {𝐿𝑖,𝑚0,𝑏}𝑚0∈[𝑀0],𝑏∈{0,1})

←
{
GC.Garble(𝐶ct, (`⊥, 𝑟PKE𝑖

); 𝑟GC
𝑖
), if 𝑖 ≤ 𝑖⊥;

GC.Garble(𝐶ct, (` , 𝑟PKE
𝑖
); 𝑟GC

𝑖
), if 𝑖 > 𝑖⊥;

LOT.ct𝑖,𝑚0 ← LOT.Send(hk, ℎ, (𝑖 − 1)𝑀0 + 𝑚0,

𝐿𝑖,𝑚0,0, 𝐿𝑖,𝑚0,1; 𝑟LOT𝑖,𝑚0
) for 𝑚0 ∈ [𝑀0]

output (𝐶ct,𝑖, {LOT.ct𝑖,𝑚0}𝑚0∈[𝑀0])

𝐶ct [`′𝑖 , 𝑟
PKE
𝑖] (pk𝑖)

Hardwired. `′
𝑖
, message or cut-off message;

𝑟PKE
𝑖

, public-key encryption randomness.
Input. pk𝑖, public key of recipient.

Output. PKE.ct𝑖 ← PKE.Enc(pk𝑖, `′𝑖 ; 𝑟
PKE
𝑖
).

Figure 1. The circuits 𝐶GC and 𝐶ct in Construction 1.

15 / 34

Robustness Correctness. This can be verified by inspection.

Efficiency. By the efficiency of laconic OT, LOT.Gen takes time poly(_, log𝑁), LOT.Hash
takes time O(𝑁) poly(_, log𝑁), and |hk|, |ℎ| = poly(_, log𝑁). As we shall see later, it
suffices to pad 𝐶GC to size poly(_, log𝑁) for the security proofs to go through. Putting
these together,

𝑇Enc = O(𝑁) poly(_, log𝑁), |ct| = poly(_, log𝑁), 𝑇Dec = O(𝑁) poly(_, log𝑁).

In practice and for security reasons, we always assume 𝑁 ≤ 2_ and log𝑁 is absorbed
by _. Therefore, with poly(_) factors ignored, both encryption and decryption take linear
time, and the ciphertext is constant-size.

Compatibility. Since the key generation algorithm of Construction 1 is just the key
generation algorithm of the underlying PKE scheme (which only has to be semantically
secure for random messages), it is compatible with the existing public-key encryption
schemes, i.e., existing users possessing PKE key pairs can utilize our AH-PLBE without
regenerating their keys.

4.2 Message-Hiding Property

Theorem 3 (¶). Suppose in Construction 1, the obfuscator Obf is an 𝑖O for poly(_)-sized
domain, then the resultant AH-PLBE is message-hiding.

Proof (Theorem 3). For Construction 1, the only difference between Exp0
MH and Exp1

MH is
whether 𝐶GC used to create ct = (hk, 𝐶GC) has `0 or `1 hardwired as `. In 𝐶GC (Figure 1),
` is used only in the branch 𝑖 > 𝑖⊥, which is never taken in Exp0

MH or Exp1
MH because 𝑖⊥

is hardwired to be 𝑁 and the domain of 𝑖 is [𝑁]. Therefore, the two 𝐶GC’s in Exp0
MH and

Exp1
MH being obfuscated are functionally equivalent and have the same size. Moreover,

their domain size is 𝑁 (polynomially large). Therefore, Exp0
MH ≈ Exp

1
MH reduces to the 𝑖O

security for poly(_)-sized domain of Obf. □

4.3 Index-Hiding Property

Theorem 4 (¶). Suppose in Construction 1, all of the ingredients are secure, then the resultant
AH-PLBE is index-hiding.

Proof (Theorem 4). The only difference between Exp0
IH and Exp1

IH is whether the 𝐶GC
being obfuscated hardwires ` (in Exp0

IH) or `⊥ (in Exp1
IH) into 𝐶ct,𝑖∗⊥ , which only affects

the output of 𝐶GC at 𝑖 = 𝑖∗⊥. We consider the following hybrids, each (except the first)
described by the changes from the previous one:

• H𝑏0 (for 𝑏 ∈ {0, 1}) is Exp𝑏IH, where

hk $← LOT.Gen(𝑁𝑀0), (ℎ, 𝐷) $← LOT.Hash(hk, pk∗1 ∥ · · · ∥pk∗𝑁),

𝑘GC
$← {0, 1}_, 𝑘PKE

$← {0, 1}_, 𝑘LOT𝑚0
$← {0, 1}_ for 𝑚0 ∈ [𝑀0],

𝐶GC
$← Obf(𝐶GC [𝑁, hk, ℎ, 𝑖∗⊥ − 1 + 𝑏, `⊥, `, 𝑘GC, 𝑘PKE, {𝑘LOT𝑚0 }𝑚0∈[𝑀0]]),

ct = (hk, 𝐶GC).

16 / 34

𝐶′GC [𝑁, hk, ℎ, `⊥, `, 𝑖
∗
⊥, �̊�

GC
𝑖∗⊥
, �̊�PKE
𝑖∗⊥
, {�̊�LOT

𝑚0,𝑖∗⊥
}𝑚0∈[𝑀0] , 𝐶ct,𝑖∗⊥ , {LOT.ct𝑖∗⊥,𝑚0}𝑚0∈[𝑀0]] (𝑖)

Hardwired. 𝑁, hk, ℎ, `⊥, `, see Figure 1;
𝑖∗⊥, challenge cut-off index;
�̊�· · ·· · · ,𝑖∗⊥

, PPRF keys punctured at 𝑖∗⊥;
𝐶ct,𝑖∗⊥

, LOT.ct𝑖∗⊥,· · ·, hardwired output of 𝐶′GC at 𝑖 = 𝑖
∗
⊥;

Input. 𝑖 ∈ [𝑁], index of recipient.
Output. Computed as follows.

if 𝑖 = 𝑖∗⊥ :
output (𝐶ct,𝑖∗⊥ , {LOT.ct𝑖∗⊥,𝑚0}𝑚0∈[𝑀0]) as hardwired

else:
𝑟GC𝑖 ← PPRF.Eval(�̊�GC

𝑖∗⊥
, 𝑖)

𝑟PKE𝑖 ← PPRF.Eval(�̊�PKE
𝑖∗⊥
, 𝑖)

𝑟LOT𝑖,𝑚0
← PPRF.Eval(�̊�LOT

𝑚0,𝑖∗⊥
, 𝑖) for 𝑚0 ∈ [𝑀0]

(𝐶ct,𝑖, {𝐿𝑖,𝑚0,𝑏}𝑚0∈[𝑀0],𝑏∈{0,1})

←
{
GC.Garble(𝐶ct, (`⊥, 𝑟PKE𝑖

); 𝑟GC
𝑖
), if 𝑖 < 𝑖∗⊥ ;

GC.Garble(𝐶ct, (` , 𝑟PKE
𝑖
); 𝑟GC

𝑖
), if 𝑖 > 𝑖∗⊥ ;

LOT.ct𝑖,𝑚0 ← LOT.Send(hk, ℎ, (𝑖 − 1)𝑀0 + 𝑚0,

𝐿𝑖,𝑚0,0, 𝐿𝑖,𝑚0,1; 𝑟LOT𝑖,𝑚0
) for 𝑚0 ∈ [𝑀0]

output (𝐶ct,𝑖, {LOT.ct𝑖,𝑚0}𝑚0∈[𝑀0])

Figure 2. The circuit 𝐶′GC in the proof of Theorem 4.

• H𝑏1 alters the obfuscation into

𝐶GC
$← Obf(𝐶′GC [𝑁, hk, ℎ, `⊥, `,

𝑖∗⊥, �̊�
GC
𝑖∗⊥
, �̊�PKE
𝑖∗⊥
, {�̊�LOT

𝑚0,𝑖∗⊥
}𝑚0∈[𝑀0] , 𝐶ct,𝑖∗⊥ , {LOT.ct𝑖∗⊥,𝑚0}𝑚0∈[𝑀0]]),

where

– 𝐶′GC is defined in Figure 2,
– the PPRF keys are punctured at 𝑖∗⊥ by running

�̊�GC
𝑖∗⊥

$← PPRF.Puncture(𝑘GC, 𝑖∗⊥),

�̊�PKE
𝑖∗⊥

$← PPRF.Puncture(𝑘PKE, 𝑖∗⊥),

�̊�LOT
𝑚0,𝑖∗⊥

$← PPRF.Puncture(𝑘LOT𝑚0 , 𝑖
∗
⊥) for 𝑚0 ∈ [𝑀0],

– and the output (𝐶ct,𝑖∗⊥ , {LOT.ct𝑖∗⊥,𝑚0}𝑚0∈[𝑀0]) of 𝐶′GC at 𝑖 = 𝑖
∗
⊥ is computed as

𝑟GC ← PPRF.Eval(𝑘GC, 𝑖∗⊥), 𝑟PKE ← PPRF.Eval(𝑘PKE, 𝑖∗⊥),
𝑟LOT
𝑖∗⊥,𝑚0

← PPRF.Eval(𝑘LOT𝑚0 , 𝑖
∗
⊥) for 𝑚0 ∈ [𝑀0],

17 / 34

(𝐶ct,𝑖∗⊥ , {𝐿𝑖⊥,𝑚0,𝑏}𝑚0∈[𝑀0],𝑏∈{0,1})

←
{
GC.Garble(𝐶ct, (` , 𝑟PKE

𝑖∗⊥
); 𝑟GC

𝑖∗⊥
), if 𝑏 = 0;

GC.Garble(𝐶ct, (`⊥, 𝑟PKE𝑖∗⊥
); 𝑟GC

𝑖∗⊥
), if 𝑏 = 1;

LOT.ct𝑖∗⊥,𝑚0 ← LOT.Send(hk, ℎ, (𝑖∗⊥ − 1)𝑀0 + 𝑚0,

𝐿𝑖∗⊥,𝑚0,0, 𝐿𝑖∗⊥,𝑚0,1; 𝑟LOT
𝑖∗⊥,𝑚0
) for 𝑚0 ∈ [𝑀0].

• H𝑏2 changes 𝑟
GC
𝑖∗⊥
, 𝑟PKE

𝑖∗⊥
, and 𝑟LOT

𝑖∗⊥,𝑚0
’s into true randomness, i.e.,

𝑟GC
$← {0, 1}_, 𝑟PKE

$← {0, 1}_, 𝑟LOT
𝑖∗⊥,𝑚0

$← {0, 1}_ for 𝑚0 ∈ [𝑀0].

• H𝑏3 removes the unused labels from LOT.ct𝑖∗⊥,𝑚0 ’s by setting

LOT.ct𝑖∗⊥,𝑚0 ← LOT.Send(hk, ℎ, (𝑖∗⊥ − 1)𝑀0 + 𝑚0,

𝐿𝑖∗⊥,𝑚0,pk∗𝑖∗⊥
[𝑚0] , 𝐿𝑖∗⊥,𝑚0,pk∗𝑖∗⊥

[𝑚0]; 𝑟
LOT
𝑖∗⊥,𝑚0
) for 𝑚0 ∈ [𝑀0].

• H𝑏4 changes 𝐶ct,𝑖∗⊥ into simulation, i.e.,

PKE.ct𝑖∗⊥ ←
{
PKE.Enc(pk∗

𝑖∗⊥
, ` ; 𝑟PKE), if 𝑏 = 0;

PKE.Enc(pk∗
𝑖∗⊥
, `⊥; 𝑟PKE), if 𝑏 = 1;

(𝐶ct,𝑖∗⊥ , {𝐿𝑖⊥,𝑚0,pk∗𝑖∗⊥
[𝑚0]}𝑚0∈[𝑀0])

$← GC.SimGarble(𝐶ct, pk∗𝑖∗⊥ , PKE.ct𝑖∗⊥),

where pk∗
𝑖∗⊥
= pk is sampled by the experiment (not adversarially controlled).

The following claims hold, all of which are immediate by inspection:

Claim 5. H𝑏0 ≈ H
𝑏
1 for 𝑏 ∈ {0, 1} if Obf is an 𝑖O for poly(_)-sized domain.

Claim 6. H𝑏1 ≈ H
𝑏
2 for 𝑏 ∈ {0, 1} if PPRF is pseudorandom at the punctured point.

Claim 7. H𝑏2 ≈ H
𝑏
3 for 𝑏 ∈ {0, 1} if LOT is database-selectively sender-private.

Claim 8. H𝑏3 ≈ H
𝑏
4 for 𝑏 ∈ {0, 1} if GC is 𝑤-hiding.

Claim 9. H0
4 ≈ H

1
4 if PKE is semantically secure for random messages.

Exp0
IH ≈ Exp

1
IH follows from a hybrid argument. □

5 AH-BTR from AH-PLBE

Ingredient of Construction 2. Let ahPLBE = (ahPLBE.Gen, ahPLBE.Enc, ahPLBE.Dec) be an
AH-PLBE scheme.

Construction 2 (adapted from Section 2.2 in [BSW06]). Our AH-BTR works as follows:

• Gen is the same as ahPLBE.Gen.

• Enc({pk𝑗}𝑗∈[𝑁] , `) runs and outputs ct $← ahPLBE.Enc({pk𝑗}𝑗∈[𝑁] , 0, `).

18 / 34

• Dec is the same as ahPLBE.Dec.

• TraceD ({pk∗
𝑗
}𝑗∈[𝑁] , 11/Y∗) defines for 𝑖 ∈ [0..𝑁],

Y𝑖 = Pr

[
`0

$← {0, 1}_, `1
$← {0, 1}_, 𝛽

$← {0, 1}

ct $← ahPLBE.Enc(1_, {pk∗𝑗 }𝑗∈[𝑁] , 𝑖, `𝛽)
: D(`0, `1, ct) = 𝛽︸ ︷︷ ︸

experiment E𝑖 (sampling and testing) and event 𝐸𝑖 (correct guessing)

]
− 1

2
.

Setting 𝛿 ← Y∗

10𝑁 and [←
⌈
_+log(2𝑁+2)

2𝛿2

⌉
, for each 𝑖 ∈ [0..𝑁], the algorithm runs E𝑖

for [times independently, counts the absolute frequency b𝑖 ∈ [0..[] of 𝐸𝑖, and
computes Ŷ𝑖 = b𝑖

[−
1
2 . It outputs

𝑖∗ =

{
min𝑇, if 𝑇 ← { 𝑖 ∈ [𝑁] : |Ŷ𝑖 − Ŷ𝑖−1 | ≥ 3𝛿 } ≠ ∅;
⊥, if 𝑇 = ∅.

Robustness Correctness, Efficiency, Compatibility. These are inherited from the
underlying AH-PLBE. When based on Construction 1, the resultant AH-BTR has

𝑇Enc = O(𝑁) poly(_), |ct| = poly(_), 𝑇Dec = O(𝑁) poly(_),

and is compatible with the existing public-key encryption schemes.

Theorem 10 (¶). Suppose in Construction 2, the AH-PLBE scheme ahPLBE is message-hiding,
then the resultant AH-BTR is complete.

Theorem 11 (¶). Suppose in Construction 2, the AH-PLBE scheme ahPLBE is index-hiding,
then the resultant AH-BTR is sound.

Proof (Theorem 10). Consider any efficient adversary C against the completeness of
Construction 2. Let GoodEst be the event that |Ŷ𝑖 − Y𝑖 | ≤ 𝛿 for all 𝑖 ∈ [0..𝑁]. By the
Chernoff bound, the union bound, and the law of total probability,

Pr[¬GoodEst] = 𝔼
[
Pr[¬GoodEst | Y∗, 𝑁]

]
≤ 𝔼[2(𝑁 + 1) exp(−2𝛿2[)] ≤ 2−_ .

Let BadEnd be the event that |Y𝑁 | > Y∗

2 , then GoodDist ∧ ¬BadEnd implies

max
𝑖∈[𝑁]

|Y𝑖−1 − Y𝑖 | ≥
1
𝑁

𝑁∑︁
𝑖=1
|Y𝑖−1 − Y𝑖 | ≥

1
𝑁

����� 𝑁∑︁
𝑖=1
(Y𝑖−1 − Y𝑖)

����� = 1
𝑁
|Y0 − Y𝑁 |

≥ 1
𝑁
(|Y0 |
↑

GoodDist

− |Y𝑁 |
↑

¬BadEnd

) ≥ 1
𝑁

(
Y∗ − Y∗

2

)
=

Y∗

2𝑁
= 5𝛿.

Therefore, GoodDist ∧ ¬BadEnd ∧ GoodEst implies

max
𝑖∈[𝑁]

|Ŷ𝑖−1 − Ŷ𝑖 | ≥x
GoodEst

max
𝑖∈[𝑁]

(|Y𝑖−1 − Y𝑖 | − 2𝛿) ≥x
GoodDist∧¬BadEnd

5𝛿 − 2𝛿 = 3𝛿,

which in turn implies 𝑇 ≠ ∅ hence 𝑖∗ ∈ [𝑁], i.e., ¬NotFound. By contraposition,

GoodDist ∧ NotFound ∧ GoodEst =⇒ BadEnd.

19 / 34

By the union bound,

Pr[C wins] ≤ Pr[¬GoodEst] + Pr[(C wins) ∧ GoodEst]
= Pr[¬GoodEst] + Pr[GoodDist ∧ NotFound ∧ GoodEst]
≤ 2−_ + Pr[BadEnd],

so it remains to show Pr[BadEnd] = negl(_).
Consider the following efficient adversary A against the message-hiding property

of ahPLBE:

• A runs C to obtain

D, {pk∗𝑗 }𝑗∈[𝑁] , 11/Y∗ .

• A runs E𝑁 once and notes down 𝛼 ∈ {0, 1} indicating whether 𝐸𝑁 happened, i.e.,
𝛼 = 1 if and only if D guessed correctly in the trial.

• A submits {pk∗
𝑗
}𝑗∈[𝑁] to the message-hiding experiment, receives (`0, `1, ct) back,

and runs and outputs 𝑏′ $← D(`0, `1, ct) ⊕ 𝛼.

Routine calculation shows that the advantage of A is 𝔼[4Y2
𝑁
], which must be negligible

by the message-hiding property of ahPLBE. Let 𝐵 = poly(_) be an upper bound of 1/Y∗
(𝐵 exists since C outputs 11/Y∗ in polynomial time). By Markov’s inequality,

Pr[BadEnd] = Pr[4Y2
𝑁 > (Y∗)2] ≤ Pr[4Y2

𝑁 > 𝐵−2]
≤ 𝐵2 𝔼[4Y2

𝑁] = (poly(_))2 negl(_) = negl(_). □

Proof (Theorem 11). Consider any efficient adversary C against the soundness of
Construction 2. Similarly to the proof of Theorem 10, define GoodEst and recall that
Pr[¬GoodEst] ≤ 2−_. We have

Pr[C wins] ≤ Pr[¬GoodEst] + Pr[(C wins) ∧ GoodEst]
= Pr[¬GoodEst] + Pr[FalsePos ∧ GoodEst]
≤ 2−_ + Pr[FalsePos ∧ GoodEst],

and it suffices to prove Pr[FalsePos ∧ GoodEst] = negl(_).
Let 𝛼 be a random element in an execution of Trace with

𝛼 =

0, if 𝑖∗ ∈ [𝑁] and Ŷ𝑖∗−1 − Ŷ𝑖∗ ≥ 3𝛿;
1, if 𝑖∗ ∈ [𝑁] and Ŷ𝑖∗−1 − Ŷ𝑖∗ ≤ −3𝛿;
⊥, if 𝑖∗ = ⊥.

Consider the following efficient adversaryA against the index-hiding property of ahPLBE:

• A(pk) runs C (pk) to obtain

D, 𝑁, 𝑖∗⊥, {pk∗𝑗 }𝑗∈[𝑁]\{𝑖∗⊥ }, 11/Y∗ ,

and sets pk∗
𝑖∗⊥
← pk.

20 / 34

• A runs

𝑖∗
$← TraceD ({pk∗𝑗 }𝑗∈[𝑁] , 1

1/Y∗),

and aborts if 𝑖∗ ≠ 𝑖∗⊥.

• A notes down 𝛼 ∈ {0, 1} from the above execution of Trace, submits

𝑁, 𝑖∗⊥, {pk∗𝑗 }𝑗∈[𝑁]\{𝑖∗⊥ }
to the index-hiding experiment, gets (`, ct) back, samples and sets

𝛽
$← {0, 1}, `𝛽 ← `, `¬𝛽

$← {0, 1}_,

and runs and outputs 𝑏′ $← D(`0, `1, ct) ⊕ ¬𝛽 ⊕ 𝛼.
Routine calculation shows that the advantage of A is

𝔼[1FalsePos · (−1)𝛼 (Y𝑖∗−1 − Y𝑖∗)],

which must be negligible by the index-hiding property of ahPLBE.
Let 𝐵 = poly(_) be an upper bound of 10𝑁/Y∗ (𝐵 exists since C outputs 1𝑁 and 11/Y∗

in polynomial time). The event FalsePos ∧ GoodEst implies

| (Y𝑖∗−1 − Y𝑖∗) − (Ŷ𝑖∗−1 − Ŷ𝑖∗) | ≤ 2𝛿 < 3𝛿 ≤ |Ŷ𝑖∗−1 − Ŷ𝑖∗ |

=⇒ (−1)𝛼 (Y𝑖∗−1 − Y𝑖∗) = |Y𝑖∗−1 − Y𝑖∗ | ≥ 3𝛿 − 2𝛿 =
Y∗

10𝑁
≥ 𝐵−1.

Moreover, (−1)𝛼 (Y𝑖∗−1 − Y𝑖∗) ≥ −1 always holds. These together show that

Pr[FalsePos ∧ GoodEst]
= 𝐵𝔼[1FalsePos · 1GoodEst · 𝐵−1]
≤ 𝐵𝔼[1FalsePos · 1GoodEst · (−1)𝛼 (Y𝑖∗−1 − Y𝑖∗)]

≤ 𝐵
(
𝔼[1FalsePos · 1GoodEst · (−1)𝛼 (Y𝑖∗−1 − Y𝑖∗)]

+ 𝔼[1FalsePos · 1¬GoodEst · (−1)𝛼 (Y𝑖∗−1 − Y𝑖∗)] + 𝔼[1FalsePos · 1¬GoodEst]
)

= 𝐵

(
𝔼[1FalsePos · (−1)𝛼 (Y𝑖∗−1 − Y𝑖∗)] + Pr[FalsePos ∧ ¬GoodEst]

)
≤ 𝐵

(
𝔼[1FalsePos · (−1)𝛼 (Y𝑖∗−1 − Y𝑖∗)] + 2−_

)
= poly(_)

(
negl(_) + 2−_

)
= negl(_). □

6 Trading Ciphertext Size for Decryption Time in AH-BTR

While Construction 2 achieves constant ciphertext size, it takes time Ω(𝑁) to decrypt.
In contrast, the naïve scheme that encrypts to each user separately has Ω(𝑁)-size
ciphertext, yet decryption only takes constant time. By grouping the recipients and
encrypting to each group separately, we can trade ciphertext size for decryption time.10
Previous work [Zha20a] already systemizes the idea of grouping in the context of
traditional traitor tracing.
10Alternatively, one can reformulate Construction 2 as a compiler that trades decryption time for

ciphertext size, by grouping the recipients and compressing the groups. We refrained from such a
formulation because the “transformation” uses a quite strong additional assumption, namely functional
encryption for general circuits.

21 / 34

Ingredients of Construction 3. Let old = (old.Gen, old.Enc, old.Dec, old.Trace) be an AH-
BTR scheme and 𝛾 some11 constant (0 < 𝛾 < 1).

Construction 3 (adapted from Theorem 1 in [Zha20a]). Our new AH-BTR works as
follows:

• Gen is the same as old.Gen.

• Enc({pk𝑗}𝑗∈[𝑁] , `) sets 𝑁1 = ⌈𝑁𝛾⌉ and 𝑁2 = ⌈𝑁/𝑁1⌉. It runs

old.ct𝑗1
$← old.Enc({pk𝑗} (𝑗1−1)𝑁2< 𝑗≤ 𝑗1𝑁2 , `) for 𝑗1 ∈ [𝑁1].

The algorithm outputs ct = {old.ct𝑗1}𝑗1∈[𝑁1].

• Dec{pk𝑗 }𝑗∈[𝑁] ,ct(𝑁, 𝑖, sk𝑖) sets 𝑁1 = ⌈𝑁𝛾⌉, 𝑁2 = ⌈𝑁/𝑁1⌉. It parses ct as {old.ct𝑗1}𝑗1∈[𝑁1],
finds 𝑖1 ∈ [𝑁1] such that (𝑖1 − 1)𝑁2 < 𝑖 ≤ 𝑖1𝑁2, and sets 𝑁 ′2 = min {𝑁2, 𝑁 − (𝑖1 − 1)𝑁2}.
The algorithm runs and outputs

old.Dec{pk𝑗 } (𝑖1−1)𝑁2< 𝑗≤𝑖1𝑁2 ,old.ct𝑖1 (𝑁 ′2, 𝑖 − (𝑖1 − 1)𝑁2, sk𝑖).

• TraceD ({pk∗
𝑗
}𝑗∈[𝑁] , 11/Y∗) sets 𝑁1 = ⌈𝑁𝛾⌉ and 𝑁2 = ⌈𝑁/𝑁1⌉. It runs

𝑖∗𝑗1
$← old.TraceD𝑗1 ({pk∗𝑗 } (𝑗1−1)𝑁2< 𝑗≤ 𝑗1𝑁2 , 1

𝑁1/Y∗) for 𝑗1 ∈ [𝑁1],

where D𝑗1 (`0, `1, old.ct∗) runs and outputs D(`0, `1, {old.ct𝑗′1}𝑗′1∈[𝑁1]) with

old.ct𝑗′1

$← old.Enc({pk∗

𝑗
} (𝑗′1−1)𝑁2< 𝑗≤ 𝑗′1𝑁2 , `0), if 𝑗 ′1 < 𝑗1;

← old.ct∗, if 𝑗 ′1 = 𝑗1;
$← old.Enc({pk∗

𝑗
} (𝑗′1−1)𝑁2< 𝑗≤ 𝑗′1𝑁2 , `1), if 𝑗 ′1 > 𝑗1.

The algorithm outputs
(𝑗1 − 1)𝑁2 + 𝑖∗𝑗1 , if 𝑖∗

𝑗′1
= ⊥ for all 𝑗 ′1 < 𝑗1 and 𝑖∗𝑗1 ≠ ⊥;

⊥, if 𝑖∗
𝑗′1
= ⊥ for all 𝑗 ′1 ∈ [𝑁1].

Robustness Correctness and Compatibility. These are inherited from the underlying
AH-BTR. When based on Construction 2, the resultant AH-BTR is compatible with the
existing public-key encryption schemes.

Efficiency. Let 𝛾1,𝛾2,𝛾3 be constants such that the AH-BTR efficiency is

𝑇Enc = O(𝑁𝛾1) poly(_), |ct| = O(𝑁𝛾2) poly(_), 𝑇Dec = O(𝑁𝛾3) poly(_),

then the underlying efficiency is mapped to the resultant efficiency12 by

(𝛾1,𝛾2,𝛾3) ↦→ (1 − 𝛾 + 𝛾𝛾1, 1 − 𝛾 + 𝛾𝛾2,𝛾𝛾3).

When based on Construction 2, the resultant AH-BTR enjoys

𝑇Enc = O(𝑁) poly(_), |ct| = O(𝑁1−𝛾) poly(_), 𝑇Dec = O(𝑁𝛾) poly(_).
11We require that 𝑁 ↦→ ⌈𝑁𝛾⌉ can be computed in (deterministic) time poly(log𝑁).
12We assume that old.ct’s are of deterministic length so Dec knows the location of each particular old.ct.

Alternatively, Enc can store a look-up table of their locations in ct.

22 / 34

Theorem 12 (¶). Suppose in Construction 3, the underlying AH-BTR scheme old is complete,
then so is the resultant AH-BTR.

Theorem 13 (¶). Suppose in Construction 3, the underlying AH-BTR scheme old is sound,
then so is the resultant AH-BTR.

Proof (Theorem 12). Let C be an efficient adversary against the completeness of
the resultant scheme. Consider the following efficient adversary Cold against the
completeness of old:

• Cold launches C to obtain

D, {pk∗𝑗 }𝑗∈[𝑁] , 11/Y∗ .

It computes 𝑁1, 𝑁2 as specified by the resultant scheme.

• Cold samples 𝑗∗1
$← [𝑁1], prepares D𝑗∗1

(using D, as specified by the resultant
scheme), and outputs

D𝑗∗1
, {pk∗𝑗 } (𝑗∗1−1)𝑁2< 𝑗≤ 𝑗∗1𝑁2 , 1𝑁1/Y∗ .

Let 𝐵 = poly(_) be an upper bound of 𝑁1. Routine calculation shows

Pr[Cold wins] ≥
1
𝐵

Pr[C wins],

hence by the completeness of old,

Pr[C wins] ≤ 𝐵Pr[Cold wins] = poly(_) negl(_) = negl(_). □

Proof (Theorem 13). Let C be an efficient adversary against the soundness of the resultant
scheme. Consider the following efficient adversary Cold against the soundness of old:

• Cold(pk) launches C (pk) to obtain

D, 𝑁, 𝑖∗⊥, {pk∗𝑗 }𝑗∈[𝑁]\{𝑖∗⊥ }, 11/Y∗ .

It computes 𝑁1, 𝑁2 as specified by the resultant scheme.

• Cold computes 𝑗∗1 = ⌈𝑖∗⊥/𝑁2⌉ and outputs

D𝑗∗1
, min {𝑁2, 𝑁 − (𝑗∗1 − 1)𝑁2}, 𝑖∗⊥ − (𝑗∗1 − 1)𝑁2, {pk∗𝑗 } (𝑗∗1−1)𝑁2< 𝑗≤ 𝑗∗1𝑁2, 𝑗≠𝑖∗⊥ , 1𝑁1/Y∗ .

Routine calculation and the soundness of old yield

Pr[C wins] ≤ Pr[Cold wins] = negl(_). □

23 / 34

7 Lower Bound on Ciphertext Size and Decryption Time

In this section, we prove that for all secure AH-BTR,

|ct| · 𝑇Dec = Ω(𝑁),

and therefore, we have constructed all the optimal (ignoring poly(_) factors) AH-BTR
schemes in this work. In fact, we will show a related bound against a restricted kind of
broadcast encryption,13 which can be implemented using AH-BTR in a straight-forward
manner.

The scheme is restricted in the sense that the users are paired and encryption only
broadcasts to those sets for which there is precisely one recipient from each pair. The
required security notion is also weaker — it does not consider collusion among multiple
non-recipients nor adaptive attacks.

Definition 18 (restricted broadcast encryption and its security). A restricted broadcast
encryption (BE) scheme (for the purpose of this work) consists of 3 efficient algorithms:

• Gen(1_, 1𝑁) takes a length parameter as input. It outputs a master public key mpk
and a list {sk𝑗,𝑏}𝑗∈[𝑁],𝑏∈{0,1} of secret keys.

• Enc(1_,mpk, 𝑅, `) takes as input the master public key mpk, an 𝑁-bit string
𝑅 ∈ {0, 1}𝑁 , and a message ` ∈ {0, 1}_. It outputs a ciphertext ct𝑅.

• Decmpk, 𝑗,𝑏,sk𝑗,𝑏,𝑅,ct𝑅 (1_) is given random access to the master public key mpk, a secret
key with its description (𝑗, 𝑏, sk𝑗,𝑏), a ciphertext with its attribute (𝑅, ct𝑅). It is
supposed to recover ` if and only if 𝑅[𝑗] = 𝑏.

The scheme must be correct, i.e., for all _, 𝑁 ∈ ℕ, 𝑅 ∈ {0, 1}𝑁 , 𝑗 ∈ [𝑁], ` ∈ {0, 1}_,

Pr

(mpk, {sk𝑗,𝑏}𝑗∈[𝑁],𝑏∈{0,1}) $← Gen(1_, 1𝑁)

ct𝑅
$← Enc(1_,mpk, 𝑅, `)

: Decmpk, 𝑗,𝑅 [𝑗],sk𝑗,𝑅[𝑗] ,𝑅,ct𝑅 (1_) = `

 = 1.

The scheme is 1-key secure for random challenge against uniform adversaries (or secure for
the purpose of this work) if{

(1_,mpk, 𝑅, 𝑖∗, `0, sk𝑖∗,¬𝑅 [𝑖∗] , ct0)
}
≈

{
(· · ·, ct1)

}
, where

𝑅
$← {0, 1}𝑁 , 𝑖∗

$← [𝑁],

(mpk, {sk𝑗,𝑏}𝑗∈[𝑁],𝑏∈{0,1}) $← Gen(1_, 1𝑁),

`𝑏
$← {0, 1}_, ct𝑏

$← Enc(1_,mpk, 𝑅, `𝑏) for 𝑏 ∈ {0, 1},

for all polynomially bounded 𝑁 = 𝑁 (_), where the computational indistinguishability
only has to hold against uniform adversaries.14

13This result is thus also a lower bound for general attribute-based encryption.
14𝑁 need not be a computable function of _. This does not make the security definition “non-uniformy”,

as a standard guessing argument (with advantage sign correction) applies to an interactive formulation in
which the uniform and efficient A chooses 𝑁.

24 / 34

Theorem 14 (¶). For all secure restricted BE,

max |ct| ·max𝑇Dec ≥
𝑁

1000

for all polynomially bounded 𝑁 = 𝑁 (_) and sufficiently large _, where ct runs through all
possible ciphertexts and 𝑇Dec the time to probe 𝑅 and produce output by Dec, both for 𝑅 of
length 𝑁.

We remark that while the statement and the proof here apply to perfectly correct
schemes with polynomial security, it is straight-forward to adapt them for schemes with
sufficient (say, constant) gap between correctness and security.

To prove Theorem 14, we need the following lemma:

Lemma 15 (adapted from Theorem 2 in [Unr07]). For all 𝑁, 𝑃 ∈ ℕ subject to 1 ≤ 𝑃 ≤ 𝑁,
distribution 𝐷 supported over 𝑍, function 𝐹 : 𝑍 × {0, 1}𝑁 → {0, 1}𝑆, there exists a function
𝐺 : 𝑍 × {0, 1}𝑁 → {0, 1,⊥}𝑁 such that

|{ 𝑗 ∈ [𝑁] : 𝐺(𝑧, 𝑗) ≠ ⊥}| ≤ 𝑃 for all 𝑧 ∈ 𝑍

and for all (non-efficient) oracle (randomized) algorithm B𝑌 making at most 𝑇 queries to 𝑌 ,��Pr
[
B𝑅 (𝑧, 𝐹 (𝑧, 𝑅)) → 1

]
− Pr

[
B𝐻 (𝑧, 𝐹 (𝑧, 𝑅)) → 1

] �� ≤ √︂
𝑆𝑇

2𝑃
,

where

𝑅
$← {0, 1}𝑁 , 𝑧

$← 𝐷, 𝐻 [𝑗]
{
= 𝐺(𝑧, 𝑅) [𝑗], if 𝐺(𝑧, 𝑅) [𝑗] ≠ ⊥;

$← {0, 1}, if 𝐺(𝑧, 𝑅) [𝑗] = ⊥.

Proof (Theorem 14). Define

𝑆 = 1 +max |ct|, 𝑇 = 1 +max {number of bits in 𝑅 probed by Dec}.

For _, 𝑁 ≥ 1, it is necessary that |ct| ≥ 1 because ct can encode any string ` of length _,
and that max𝑇Dec ≥ 𝑇 because Dec performs all the probes and, in addition, produces at
least 1 bit of output. Therefore,

max |ct| ·max𝑇Dec ≥
max |ct| + 1

2
·max𝑇Dec ≥

𝑆𝑇

2
.

It remains to prove 𝑆𝑇 ≥ 2𝑁
1000 for sufficiently large _. It suffices to consider the case

when 𝑁 ≥ 2 and 𝑆𝑇 ≤ 2𝑁.
We prepare for Lemma 15. Let 𝑃 be determined later, and

𝑧 =

(
`, 𝑧Enc,mpk,
{sk𝑗,𝑏}𝑗∈[𝑁],𝑏∈{0,1}

)
∼ 𝐷 =

`

$← {0, 1}_, 𝑖∗
$← [𝑁]

𝑧Enc : randomness for Enc

(mpk, {sk𝑗,𝑏}𝑗∈[𝑁],𝑏∈{0,1}) $← Gen(1𝑁)

 ,
𝐹 (𝑧, 𝑅) = 0𝑆−|ct |−1∥1∥ct, where ct← Enc(mpk, 𝑅, `; 𝑧Enc).

Let 𝐺 be the function guaranteed by Lemma 15 and make B𝑌 (𝑧, 𝑓) do the following:

25 / 34

• Sample 𝑖∗ $← [𝑁] and query 𝑏∗ ← 𝑌 [𝑖∗].

• Read `,mpk, sk𝑖∗,𝑏∗ , ct from 𝑧, 𝑓 .

• Run `′
$← Decmpk,𝑖

∗,𝑏∗,sk𝑖∗ ,𝑏∗ ,𝑌,ct().

• Output 1 if and only if ` = `′.

Note that B indeed makes at most 𝑇 queries to 𝑌 , the first to obtain 𝑏∗ and the rest to
run Dec.

For 𝑤 ∈ {1, 2, 3, 4, 5}, write 𝑝𝑤 for Pr[B𝑌𝑤 (𝑧, 𝑓 ; 𝑖∗) → 1], where

𝑖∗
$← [𝑁], 𝑌1 = 𝑅,

𝑌2 [𝑗]
{
= 𝐺(𝑧, 𝐹 (𝑧, 𝑅)) [𝑗], if 𝐺(𝑧, 𝐹 (𝑧, 𝑅)) [𝑗] ≠ ⊥;

$← {0, 1}, if 𝐺(𝑧, 𝐹 (𝑧, 𝑅)) [𝑗] = ⊥;

𝑌3 [𝑗]

= 𝐺(𝑧, 𝐹 (𝑧, 𝑅)) [𝑗], if 𝑗 ≠ 𝑖∗ and 𝐺(𝑧, 𝐹 (𝑧, 𝑅)) [𝑗] ≠ ⊥;

$← {0, 1}, if 𝑗 ≠ 𝑖∗ and 𝐺(𝑧, 𝐹 (𝑧, 𝑅)) [𝑗] = ⊥;
$← {0, 1}, if 𝑗 = 𝑖∗;

𝑌4 [𝑗]
{
= 𝑅[𝑗], if 𝑗 ≠ 𝑖∗;

$← {0, 1}, if 𝑗 = 𝑖∗;
𝑌5 [𝑗]

{
= 𝑅[𝑗], if 𝑗 ≠ 𝑖∗;
= ¬𝑅[𝑖∗], if 𝑗 = 𝑖∗.

By the correctness of the restricted BE scheme, 𝑝1 = 1.
From Lemma 15,

|𝑝1 − 𝑝2 | ≤
√︂
𝑆𝑇

2𝑃
, |𝑝4 − 𝑝3 | ≤

√︂
𝑆𝑇

2𝑃
.

Here, the second inequality is obtained by applying the lemma to

C𝑌 (𝑧, 𝑓) = B𝑌 ′ (𝑧, 𝑓 ; 𝑖∗), where 𝑖∗ $← [𝑁], 𝑌 ′[𝑗]
{
= 𝑌 [𝑗], if 𝑗 ≠ 𝑖∗;

$← {0, 1}, if 𝑗 = 𝑖∗.

Clearly, |𝑝2 − 𝑝3 | ≤ 𝑃
𝑁
. Setting 𝑃 =

⌈
3
√︃
𝑆𝑇𝑁2

2

⌉
, we have

|𝑝1 − 𝑝4 | ≤ |𝑝1 − 𝑝2 | + |𝑝2 − 𝑝3 | + |𝑝3 − 𝑝4 |

≤
√︂
𝑆𝑇

2𝑃
+ 𝑃
𝑁
+

√︂
𝑆𝑇

2𝑃
≤ 3 3

√︂
𝑆𝑇

2𝑁
+ 1
𝑁

< 4 3

√︂
𝑆𝑇

2𝑁
,

where the last inequality follows from 𝑁 ≥ 2. By how 𝑌 [𝑖∗] is set,

𝑝4 =
𝑝1 + 𝑝5

2
=⇒ 𝑝5 = 𝑝1 − 2(𝑝1 − 𝑝4) ≥ 𝑝1 − 2|𝑝1 − 𝑝4 | > 1 − 8 3

√︂
𝑆𝑇

2𝑁
.

Consider the following adversary A(mpk, 𝑅, 𝑖∗, `0, sk𝑖∗,¬𝑅 [𝑖∗] , ct) against the security of the
restricted BE scheme:

• Construct 𝑌5 from 𝑅 and let 𝑏∗ ← 𝑌5 [𝑖∗] = ¬𝑅[𝑖∗].

26 / 34

• Run `′
$← Decmpk,𝑖

∗,𝑏∗,sk𝑖∗ ,𝑏∗ ,𝑌5,ct(), i.e., pretend 𝑅[𝑖∗] were ¬𝑅[𝑖∗] and try decrypting
using the key given to A.

• Output 1 if and only if `′ = `.

If ct = ct1 is an encryption of `1, then `0 is uniformly random and independent of
everything else, hence

Pr[A(· · ·) → 1 with ct = ct1] ≤ 2−_ .

Note that A is a uniform adversary. By the security of the restricted BE scheme,

𝑝5 = Pr[B𝑌5 (𝑧, 𝑓 ; 𝑖∗) → 1] = Pr[A(· · ·) → 1 with ct = ct0] ≤ 2−_ + negl(_) < 1
5

for sufficiently large _, which gives

1 − 8 3

√︂
𝑆𝑇

2𝑁
< 𝑝5 <

1
5

=⇒ 𝑆𝑇 >
2𝑁

1000
. □

Corollary 16 (¶). For all secure AH-BTR,

max |ct| ·max𝑇Dec ≥
𝑁

1000

for all polynomially bounded 𝑁 = 𝑁 (_) and sufficiently large _, where 𝑇Dec only counts the
time to probe pk𝑗’s and produce output. Ignoring poly(_) factors, Construction 3 achieves all
possible optimal trade-offs in terms of the exponents over 𝑁 in the dependency of ciphertext size
and (actual) decryption time.

Proof (Corollary 16). Let ahBTR = (ahBTR.Gen, ahBTR.Enc, ahBTR.Dec, ahBTR.Trace) be a
secure AH-BTR and construct the following restricted BE scheme:

• Gen(1𝑁) runs

(pk𝑗,𝑏, sk𝑗,𝑏) $← ahBTR.Gen() for 𝑗 ∈ [𝑁], 𝑏 ∈ {0, 1}

and outputs mpk = {pk𝑗,𝑏}𝑗∈[𝑁],𝑏∈{0,1} with {sk𝑗,𝑏}𝑗∈[𝑁],𝑏∈{0,1}.

• Enc(mpk, 𝑅, `) runs and outputs

ct $← ahBTR.Enc({pk𝑗,𝑅[𝑗]}𝑗∈[𝑁] , `).

• Decmpk, 𝑗,𝑏,sk𝑗,𝑏,𝑅,ct() runs ahBTR.Dec𝐾,ct(𝑁, 𝑗, sk𝑗,𝑏), where 𝐾 is an oracle imple-
mented by Dec for ahBTR.Dec to probe pk𝑗 ’s. Whenever ahBTR.Dec probes pk𝑗 [𝑚0],
we make Dec probe 𝑅[𝑗] and answer pk𝑗,𝑅[𝑗] [𝑚0].

It is straight-forward to verify that the constructed scheme is secure. Since a restricted
BE ciphertext is precisely an AH-BTR ciphertext, each probe to pk𝑗 ’s by ahBTR.Dec
translates to exactly one probe to 𝑅[𝑗] by Dec with no more additional probes by Dec
on its own, and Dec outputs whatever ahBTR.Dec outputs, the corollary follows from
Theorem 14. □

27 / 34

Acknowledgement. The author was supported by NSF grants CNS-1936825 (CAREER),
CNS-2026774, a J.P. Morgan AI Research Award, and a Simons Collaboration on the
Theory of Algorithmic Fairness. The views expressed in this work are those of the
author and do not reflect the official policy or position of any of the supporters. The
author thanks Huijia Lin for her encouragement and support for him to pursue an
independent research project (culminating this paper). He thanks Hoeteck Wee for
helpful suggestions on writing from another context. He started researching this topic
after rereading a post [sil21] on V2EX.

References

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from
functional encryption through a local simulation paradigm. In Amos Beimel
and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS,
pages 455–472. Springer, Heidelberg, November 2018.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast
encryption from LWE and pairings in the standard model. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages
149–178. Springer, Heidelberg, November 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pair-
ings and LWE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 13–43. Springer, Heidelberg, May 2020.

[BF99] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing
scheme. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
338–353. Springer, Heidelberg, August 1999.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
1–18. Springer, Heidelberg, August 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383
of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast
encryption with short ciphertexts and private keys. In Victor Shoup, editor,
CRYPTO 2005, volume 3621 of LNCS, pages 258–275. Springer, Heidelberg,
August 2005.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
2012, pages 784–796. ACM Press, October 2012.

[BN08] Dan Boneh and Moni Naor. Traitor tracing with constant size ciphertext. In
Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages
501–510. ACM Press, October 2008.

28 / 34

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant
traitor tracing with short ciphertexts and private keys. In Serge Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 573–592. Springer,
Heidelberg, May / June 2006.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In Yuval Ishai, editor, TCC 2011, volume 6597
of LNCS, pages 253–273. Springer, Heidelberg, March 2011.

[BV20] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast
encryption and succinct ciphertext-policy ABE. Cryptology ePrint Archive,
Report 2020/191, 2020. https://eprint.iacr.org/2020/191.

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace,
and revoke system. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 211–220. ACM Press,
October / November 2006.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and
their applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013,
Part II, volume 8270 of LNCS, pages 280–300. Springer, Heidelberg, December
2013.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 480–499. Springer, Heidelberg, August 2014.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 33–65. Springer, Heidelberg, August 2017.

[CFN94] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt,
editor, CRYPTO’94, volume 839 of LNCS, pages 257–270. Springer, Heidelberg,
August 1994.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In Salil P. Vadhan,
editor, TCC 2007, volume 4392 of LNCS, pages 515–534. Springer, Heidelberg,
February 2007.

[CVW+18] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel
Wichs. Traitor-tracing from LWE made simple and attribute-based. In Amos
Beimel and Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of
LNCS, pages 341–369. Springer, Heidelberg, November 2018.

[Del07] Cécile Delerablée. Identity-based broadcast encryption with constant size
ciphertexts and private keys. In Kaoru Kurosawa, editor, ASIACRYPT 2007,
volume 4833 of LNCS, pages 200–215. Springer, Heidelberg, December 2007.

[DHMR08] Vanesa Daza, Javier Herranz, Paz Morillo, and Carla Ràfols. Ad-hoc threshold
broadcast encryption with shorter ciphertexts. Electronic Notes in Theoretical

29 / 34

https://eprint.iacr.org/2020/191

Computer Science, 192(2):3–15, 2008. Proceedings of the Third Workshop on
Cryptography for Ad-hoc Networks (WCAN 2007).

[DPP07] Cécile Delerablée, Pascal Paillier, and David Pointcheval. Fully collusion
secure dynamic broadcast encryption with constant-size ciphertexts or
decryption keys. In Tsuyoshi Takagi, Tatsuaki Okamoto, Eiji Okamoto, and
Takeshi Okamoto, editors, PAIRING 2007, volume 4575 of LNCS, pages 39–59.
Springer, Heidelberg, July 2007.

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 480–491. Springer, Heidelberg,
August 1994.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions (extended abstract). In 25th FOCS, pages 464–479. IEEE
Computer Society Press, October 1984.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness
encryption and its applications. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, 45th ACM STOC, pages 467–476. ACM Press, June 2013.

[GK16] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions: A
position paper. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 505–522. Springer, Heidelberg, January 2016.

[GKRW18] Rishab Goyal, Venkata Koppula, Andrew Russell, and Brent Waters. Risky
traitor tracing and new differential privacy negative results. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 467–497. Springer, Heidelberg, August 2018.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor
tracing from learning with errors. In Ilias Diakonikolas, David Kempe, and
Monika Henzinger, editors, 50th ACM STOC, pages 660–670. ACM Press, June
2018.

[GKW19] Rishab Goyal, Venkata Koppula, and Brent Waters. New approaches to traitor
tracing with embedded identities. In Dennis Hofheinz and Alon Rosen,
editors, TCC 2019, Part II, volume 11892 of LNCS, pages 149–179. Springer,
Heidelberg, December 2019.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM
CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as
Cryptology ePrint Archive Report 2006/309.

[GQWW19] Rishab Goyal, Willy Quach, Brent Waters, and Daniel Wichs. Broadcast and
trace with 𝑁Y ciphertext size from standard assumptions. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 826–855. Springer, Heidelberg, August 2019.

30 / 34

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption
systems (with short ciphertexts). In Antoine Joux, editor, EUROCRYPT 2009,
volume 5479 of LNCS, pages 171–188. Springer, Heidelberg, April 2009.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive
arguments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applica-
tions. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Kout-
soupias, editors, ICALP 2014, Part I, volume 8572 of LNCS, pages 650–662.
Springer, Heidelberg, July 2014.

[JLS21a] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from LPN over 𝔽𝑝, DLIN, and PRGs in NC0. Cryptology ePrint Archive, Report
2021/1334, 2021. https://eprint.iacr.org/2021/1334.

[JLS21b] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability Obfuscation
from Well-Founded Assumptions, pages 60–73. Association for Computing
Machinery, New York, NY, USA, 2021.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa.
Adaptively secure and succinct functional encryption: Improving security
and efficiency, simultaneously. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 521–
551. Springer, Heidelberg, August 2019.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013,
pages 669–684. ACM Press, November 2013.

[KY01] Aggelos Kiayias and Moti Yung. On crafty pirates and foxy tracers. In ACM
Workshop on Security and Privacy in Digital Rights Management, DRM ’01, pages
22–39, Berlin, Heidelberg, 2001. Springer-Verlag.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, April 2009.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from
trilinear maps and block-wise local PRGs. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660.
Springer, Heidelberg, August 2017.

[LZ17] Qipeng Liu and Mark Zhandry. Decomposable obfuscation: A framework
for building applications of obfuscation from polynomial hardness. In Yael
Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 138–169. Springer, Heidelberg, November 2017.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing
schemes for stateless receivers. In Joe Kilian, editor, CRYPTO 2001, volume
2139 of LNCS, pages 41–62. Springer, Heidelberg, August 2001.

31 / 34

https://eprint.iacr.org/2021/1334

[NP98] Moni Naor and Benny Pinkas. Threshold traitor tracing. In Hugo Krawczyk,
editor, CRYPTO’98, volume 1462 of LNCS, pages 502–517. Springer, Heidelberg,
August 1998.

[NP01] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In
Yair Frankel, editor, FC 2000, volume 1962 of LNCS, pages 1–20. Springer,
Heidelberg, February 2001.

[NWZ16] Ryo Nishimaki, Daniel Wichs, and Mark Zhandry. Anonymous traitor tracing:
How to embed arbitrary information in a key. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS,
pages 388–419. Springer, Heidelberg, May 2016.

[PPS12] Duong Hieu Phan, David Pointcheval, and Mario Strefler. Decentralized
dynamic broadcast encryption. In Ivan Visconti and Roberto De Prisco,
editors, SCN 12, volume 7485 of LNCS, pages 166–183. Springer, Heidelberg,
September 2012.

[sil21] sillydaddy. gpg 加密文件：一份加密文件，可以被不同的密码解密 (GPG
file encryption: One encrypted file can be decrypted by many keys).
https://v2ex.com/t/759538, March 2021. Retrieved on 20 May
2022, archived at https://web.archive.org/web/20220520040245/https:
//v2ex.com/t/759538.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473.
Springer, Heidelberg, May 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM STOC,
pages 475–484. ACM Press, May / June 2014.

[Unr07] Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 205–223. Springer,
Heidelberg, August 2007.

[WQZD10] Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. Ad hoc
broadcast encryption (poster presentation). In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010, pages 741–743. ACM
Press, October 2010.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press, October
1986.

[Zha20a] Mark Zhandry. New techniques for traitor tracing: Size 𝑁1/3 and more
from pairings. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 652–682. Springer,
Heidelberg, August 2020.

[Zha20b] Mark Zhandry. New techniques for traitor tracing: Size 𝑁1/3 and more
from pairings. Cryptology ePrint Archive, Report 2020/954, 2020. https:
//eprint.iacr.org/2020/954.

32 / 34

https://v2ex.com/t/759538
https://web.archive.org/web/20220520040245/https://v2ex.com/t/759538
https://web.archive.org/web/20220520040245/https://v2ex.com/t/759538
https://eprint.iacr.org/2020/954
https://eprint.iacr.org/2020/954

[Zha20c] Mark Zhandry. Schrödinger’s pirate: How to trace a quantum decoder. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552
of LNCS, pages 61–91. Springer, Heidelberg, November 2020.

[Zha21] Mark Zhandry. White box traitor tracing. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 303–333, Virtual
Event, August 2021. Springer, Heidelberg.

33 / 34

A Table of Non-Descriptive Symbols

Table 1 lists non-descriptive symbols used in this work.

Table 1. Non-descriptive symbols.

Symbol Meaning

_ security parameter
𝑏,𝛽,𝛼 bit for distinguishing, for guessing, for sign correction

A,B, C,D adversary, adversary, adversary, distinguisher
` message

𝑁, 𝑖, 𝑗 number of recipients, index, dummy index
𝑖⊥, 𝑖∗ cut-off index, traitor index
𝑄, 𝑡 number of key pairs, traitor index
𝑆,𝑇 set of non-traitors, set of traitors
Y, Ŷ guessing advantage, empirical
E , 𝐸 distinguisher experiment, event of correct guessing

[, b, 𝛿 number of trials, absolute frequency of events, estimation error
𝐶,𝐶,𝐶 circuit, garbled, obfuscated
𝑀0, 𝑚0 length of non-hardwired input (pk), index

𝐿 label of garbled circuit
𝐷, 𝐷 database (pk’s), processed
𝑀,𝑚 length of database (𝑁𝑀0), index
𝑘, �̊�𝑥 PPRF key, punctured at 𝑥
𝑅, 𝐴 random oracle (bitset of recipients), oracle algorithm
𝑌, 𝐾 oracle placeholder, oracle implemented during reduction

𝐹,𝐺, 𝐻 advice function, presampling function, presampled oracle

34 / 34

	Introduction
	Overview

	Preliminaries
	Ad Hoc Broadcast, Trace, and Revoke
	Simplified Security Notions

	Ad Hoc Private Linear Broadcast Encryption
	Construction
	Message-Hiding Property
	Index-Hiding Property

	AH-BTR from AH-PLBE
	Trading Ciphertext Size for Decryption Time in AH-BTR
	Lower Bound on Ciphertext Size and Decryption Time
	References
	Table of Non-Descriptive Symbols

