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ABSTRACT Side-Channel Analysis (SCA) allows extracting secret keys manipulated by cryptographic
primitives through leakages of their physical implementations. Supervised attacks, known to be optimal,
can theoretically defeat any countermeasure, including masking, by learning the dependency between the
leakage and the secret through the profiling phase. However, defeating masking is less trivial when it comes
to unsupervised attacks. While classical strategies such as correlation power analysis or linear regression
analysis have been extended to masked implementations, we show that these extensions only hold for
Boolean and arithmetic schemes. Therefore, we propose a new unsupervised strategy, the Joint Moments
Regression (JMR), able to defeat any masking schemes (multiplicative, affine, polynomial, inner product...),
which are gaining popularity in real implementations. The main idea behind JMR is to directly regress
the leakage model of the shares by fitting a system based on higher-order joint moments conditions. We
show that this idea can be seen as part of a more general framework known as the Generalized Method of
Moments (GMM). This offers mathematical foundations on which we rely to derive optimizations of JMR.
Simulations results confirm the interest of JMR over state-of-the-art attacks, even in the case of Boolean
and arithmetic masking. Eventually, we apply this strategy to real traces and provide, to the best of our
knowledge, the first unsupervised attack on the protected AES implementation proposed by the ANSSI for
SCA research, which embeds an affine masking and shuffling counter-measures.

INDEX TERMS Side-Channel, Masking, Joint Moments

I. INTRODUCTION
A. CONTEXT
Side-Channel Analysis (SCA) is defined as the process of
gaining information on a device holding a secret through its
physical leakage such as power consumption [1] or Electro-
magnetic (EM) emanations [2]. The underlying assumption
is that the secret and the side-channel data are statistically
dependent. This allows an adversary to extract sensitive in-
formation such as cryptographic keys by carefully exploiting
these dependencies.

Strategies are mainly divided into two categories: super-
vised and unsupervised SCA and their utilization depends on
the considered threat model. In the first one, the adversary
is supposed to be able to conduct a profiling step of the
target, most likely on a clone device, in which she learns the
leakage model of the intermediate variables and then adopts a
maximum likelihood approach to recover the secret key. This
includes strategies such as Gaussian template attack [3] or
deep learning profiled attacks [4]. If the model is perfectly

learned during the profiling phase, these attacks are known to
be optimal from an information theory point of view.

If the profiling step is not possible, the adversary has
to use an a priori on the leakage model to mount an un-
supervised SCA. As shown in [5] there does not exist a
generic strategy that would work without requiring such an
a priori. Different approaches have been developed allowing
to exploit an amount of information corresponding to the
quality of this a priori. For example, [6] showed that Mutual
Information Attacks (MIA) can exploit a large part of the
information contained in the traces but require an explicit
representation of the leakage model (recent deep learning
based unsupervised SCA [7], [8] also fall into this category).

The main alternatives to MIA are the stochastic attacks,
such as Correlation Power Analysis (CPA) [9] or Linear
regression Analysis (LRA) [10], in which the adversary’s a
priori is reduced to a parameterized statistical model whose
parameters are regressed on the fly. A measure of fitness is
then used as a distinguisher to discriminate key candidates.
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To prevent instantaneous leakage of the sensitive variables,
a classical strategy is to protect implementations using mask-
ing techniques. It consists in splitting the internal state of
the processing into multiple random shares following secret
sharing ideas [11]. SCA against masked implementations
is still possible through the so called higher-order attacks
which combine multiple leakage samples corresponding to
each share. However, these attacks are harder to conduct
since the impact of the noise is amplified exponentially
with the masking order [12]. Among unsupervised attacks,
the multivariate CPA described in [13] has often proved to
be an efficient strategy in practice. However, it relies on a
Hamming weight leakage assumption (of the shares) that
may not be correct especially when it comes to local EM
measurements. Indeed, each bit of the intermediate variable
can have very different leakage behavior and even sign inver-
sions of their coefficients as shown in [14]. To deal with such
situations [15] proposed a generalization of the LRA whose
main strength is to offer flexibility on the a priori without
constraining each bit to have the same impact on the leakage.

This method exploits information hidden in the covariance,
i.e., the second order joint moment of the distribution since
the first order moments (the means) are leakage-free thanks
to masking. However, we argue that this method is not
generic enough because it is based on the assumption that the
covariance per class could be expressed as a low algebraic
function, assumption that only holds for Boolean and low
order arithmetic masking as shown in this paper. Indeed, the
proposed attack fails even in theory (on synthetic traces with
zero noise) when dealing with other masking schemes such
as the multiplicative or affine ones. These masking schemes
along with the polynomial and inner product masking are
getting more and more studied recently and begin to be used
in modern implementations. This trend may continue in the
future since these schemes seem to offer better resistance
against side-channel attacks [16]. Mutual information-based
attacks have also been extended to masked implementations
but have not either proven to be valid strategies for any kind
of masking and their applicability is mainly related to the
open questions, raised in [6], about the choice of the parti-
tioning function. This leads us to the following observation:

To the best of our knowledge, no generic unsupervised
strategy able to defeat any kind of masking outside of the
Hamming weight leakage assumption emerges from the state-
of-the-art.

We propose such a strategy in this paper: the Joint Moment
Regression (JMR). The latter is built on the idea that the
discriminating information, if it exists, is necessarily hidden
in higher-order joint moments since lower-order leakages
are prevented by masking (at least when not considering
glitches from the physical implementation [17]). Intuitively,
joint moments encapsulate information about the correspond-
ing distribution. The idea is to make a leakage assumption

on each share (for example a linear leakage) and try to
directly regress the leakage model of each share, using joint
moments conditions, instead of trying to regress the joint
moment itself as it is done in [15]. This comes at the cost
of the loss of linearity since the joint moment conditions
involve a multiplication between the leakage parameters of
the different shares which gives rise to a non-linear system
of equations. However, we show that numerical optimization
algorithms can be used to find an estimation of the solution
that best fits the conditions. A measure of fitness is used as
a distinguisher between key candidates. The joint moment
conditions depend on the underlying masking scheme which
allows to embed knowledge of the latter into the system and,
therefore, makes the attack generic.

B. CONTRIBUTIONS
• The first contribution of the paper is to present the

state-of-the-art on the stochastic higher-order attacks,
especially focusing on the method proposed in [15] to
understand its strengths and limitations. This analysis
can be found in section II.

• As a second contribution, we introduce a new attack
strategy: the Joint Moment Regression (JMR) in sec-
tion III. It is built to circumvent the issues found in the
state-of-the-art and proposes a method which is agnostic
to the underlying masking scheme.

• We then draw a parallel between the core of JMR and
a more general framework: the Generalized Method of
Moment (GMM) [18] which is a well-studied paradigm
in statistics and economics. This allows to improve our
attack in the case of biased masking schemes such as
the multiplicative and affine ones. This analysis can be
found in section IV.

• Finally, section V-B presents applications of JMR to
real traces and provides at the same time, to the best
of our knowledge, the first unsupervised attack on the
secured AES implementation of the ANSSI, protected
by an affine masking scheme. Attacks that do and do
not exploit the lower-order leakage are both presented.

II. RELATED WORK AND LIMITATIONS
A. NOTATIONS.
Random variables are represented as upper-case letters such
as X . They take their values in the corresponding set X
depicted with a calligraphic letter. Lower case letters such as
x stand for elements of X . Expectation of X is denoted E[X]
and covariance between X1 and X2 is noted cov(X1, X2).
Eventually, |X | stands for the cardinal of X .

B. GENERAL ATTACK FRAMEWORK
In this paper, the attack framework is described considering
that an adversary targets the manipulation of a sensitive
variable Z ∈ Z = Fn

2 , for a given n ∈ N. This variable
is supposed to functionally depends on a public variable
X ∈ X = Fm

2 , for a given m ∈ N, and a secret key
k∗ ∈ K = Fm

2 through the relation: Z = f(X, k∗)
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where f : X × K → Z is a known function depending
on the underlying cryptographic algorithm. The adversary
is supposed to own a set {(ℓi, xi), 1 ≤ i ≤ N} of N
side channel traces labeled with the corresponding public
value of X . Traces correspond to realizations of a leakage
variable L ∈ L coming from a stochastic process S, Z S−→ L
(often separable into a deterministic and a noise part). The
leakage variable L is supposed to contain information about
Z. The general idea of an unsupervised side-channel attack
is to make a series of hypotheses ki on the key, and to use
the dependency between Z and L to build a distinguisher
D : K → R to rank the different key candidates. One of these
distinguishers, the LRA, is described in the next section.

C. LINEAR REGRESSION ANALYSIS
The following recalls the steps required to perform an LRA
such as suggested in [19]. Traces are assumed to feature one
sample. In a real-life scenario, the same procedure would be
repeated for each sample and the final distinguisher keeps the
best value along all samples according to a chosen policy (of-
ten being the minimum/maximum value of the distinguisher).

1) Partitioning. Partition the traces into |X | classes: Lx =
{ℓi, xi = x}.

2) Averaging. Compute the average trace for each class
L̄ = (ℓ̄x)x∈X with

ℓ̄x =
1

|Lx|
∑
ℓ∈Lx

ℓ

3) Basis choice. Choose a basis of functions (bi)1≤i≤r

such that bi : Z → R.
4) Making hypotheses. For k ∈ K compute the hypothe-

ses matrix:

Hk =

(
bi ◦ f(x, k)

)
x∈X ,
1≤i≤r

5) Linear regression. For k ∈ K find the parameter vector
θk = (θk,1, . . . , θk,r)

T minimizing the euclidean norm
of the error vector:

θk = argmin
θ
||Hk · θ − L̄||2

6) Ranking. Rank the keys according to their distinguisher
value (from low to high)1:

D(k) = ||Hk · θk − L̄||2

Since step 5 corresponds to a linear regression it has a
closed-form solution:

θk = (Hk
T · Hk)

−1 · Hk
T · L̄

However, to highlight similarities with JMR later in the
paper, we decided to keep the generic formulation of the
optimization problem.

1Sometimes the coefficient of determination R2 is used instead but the
ranking is strictly equivalent except that one ranks from high to low values
of the distinguisher.

The choice of the basis is important since it should be
large enough for the leakage to be representable as a linear
combination with the bi ◦ f functions when k = k∗ but
small enough so that it is not the case for wrong hypotheses.
The adversary uses his a priori on the leakage model, often
related to physical assumptions, to choose the basis.

A common example is to assume that each bit of the
sensitive variable contributes to the leakage independently
from the others. If this assumption holds there exists α =
(α0, . . . , αn) such that ℓi = α0+

∑
αj ·bitj(zi)+ϵ with bitj

denoting the projection on the jth bit and ϵ being sampled
from a noise distribution. In such a case, the basis would be
{1, bit1, . . . , bitn} and θk∗ should be close to α.

Another example is to assume that the leakage is depend-
ing on the Hamming Weight (HW) of the sensitive variable
so that ℓi = α1HW(zi) + α0 + ϵ. The basis is then reduced
to {1,HW} and the attack corresponds to the classical CPA.

D. MASKING
To prevent instantaneous leakages and mitigate the first-
order attacks presented above, one of the most widely used
countermeasures is masking [20]. The idea is to split each
sensitive intermediate value Z, into d shares: (Zi)1≤i≤d. The
d− 1 shares Z2, ..., Zd are randomly chosen and the last one,
Z1 is processed such that:

Z1 = Z ∗ Z2 ∗ · · · ∗ Zd (1)

for a group operation ∗ of Z . This has the effect of com-
plexifying the stochastic process S generating L from Z,
rendering it no longer separable into a deterministic and a
noise part. Assuming the masks are uniformly distributed, the
knowledge of d−1 shares does not tell anything about Z (this
is why such masking is said to be of order d− 1). Therefore,
any sound SCA strategy has to combine leakage samples
from the d shares to perform an attack (which corresponds to
at least d samples if the leakages are disjoint). Such attacks
are called dth order attacks. One of them, the second-order
LRA is presented in the next section.

The uniform assumption is sometimes not strictly realized
in practice depending on the masking scheme being used.
Four of the most common masking schemes that will be
studied in this paper are listed in table 1. The ⊕ and ⊗
respectively stand for the addition and the multiplication
operation in Fn

2 . Since the multiplication by 0 is not invertible
the "multiplicative shares" have to be chosen in Fn

2 \ {0}.
As Z itself can take the value 0, the multiplicative and
affine schemes are then slightly biased, and therefore, do
not guarantee in theory, SCA resilience to all the (d − 1)th

and lower order attacks. Such attacks will be discussed in
section IV.

E. SECOND-ORDER LRA
This section describes the generalization of the LRA intro-
duced in [15] which aims at defeating a first-order masked
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Group operation Masked Variable (Z1) Uniform Reference
Boolean ⊕ Z ⊕ Z2 ⊕ · · · ⊕ Zd Yes [21]

Arithmetic +mod 2n Z + Z2 + · · ·+ Zd [2n] Yes [22]
Multiplicative ⊗ Z ⊗ Z2 ⊗ · · · ⊗ Zd No [22]

Affine ⊕,⊗ Z ⊗ Z2 ⊕ Z3 No [23]

TABLE 1: Masking schemes studied in this paper

implementation (d = 2). Traces are considered to be com-
posed of 2 samples: L = (L1, L2) where L1 and L2 represent
respectively the leakage of the first and second share. In
a real-life scenario, the attack would be repeated with all
the combinations of two samples from the raw traces. To
perform a second-order LRA the adversary is supposed to
own a set of N traces {(ℓi1, ℓi2), 1 ≤ i ≤ N}. The idea
is to replace the estimated mean per class by the estimated
covariance per class in the classical LRA which naturally
combines information from the two samples. Indeed the
covariance Y = cov(L1, L2) involves the product of the
centered variable L1−µ1 and L2−µ2, with (µ1, µ2) = E[L],
which has been shown to be a good combining function for
second-order SCA [13]. The steps to perform a second-order
LRA are depicted hereafter.

1) Partitioning. Partition the traces into |X | classes: Lx =
{(ℓi1, ℓi2), xi = x}.

2) Estimating covariances. Compute the estimated co-
variance for each class Ȳ = (ȳx)x∈X with

ȳx =
1

|Lx|
∑
ℓ∈Lx

(ℓ1 − µ̄1)(ℓ2 − µ̄2)

where (µ̄1, µ̄2) stands for the estimated mean of L.
3) Basis choice. Choose a basis of functions (bi)1≤i≤r

such that bi : Z → R.
4) Making hypotheses. For k ∈ K compute the hypothe-

ses matrix:

Hk =

(
bi ◦ f(x, k)

)
x∈X ,
1≤i≤r

5) Linear regression. For k ∈ K find the parameter vector
θk = (θk,1, . . . , θk,r)

T minimizing the euclidean norm
of the error vector:

θk = argmin
θ
||Hk · θ − Ȳ ||2

6) Ranking. Rank the keys according to their distinguisher
value (from low to high):

D(k) = ||Hk · θk − Ȳ ||2
The attack may seem very similar to a first-order LRA ex-

cept that it is performed on the covariance instead of the mean
(the change happens in step 2). However, the choice of the
basis is much more delicate. The link between the adversary
a priori and a basis leading to a successful attack is not trivial
anymore. Indeed, the hypotheses matrix is constructed using
the unmasked variable Z(k) = f(X, k) while the leakage a
priori concerns the shares. The choice of the basis proposed
in [15] is based on an assumption that is recalled hereafter.

Let us define the set of functions (φk)k∈K : Z = Fn
2 → R

such that:

φk(z) = cov(L1, L2 | Z(k) = z) (2)

Since all the Boolean functions in Fn
2 can be represented by a

multivariate polynomial in R[z1, . . . , zn]/(z21 − z1, . . . , z
2
n−

zn) (i.e. the degree of every zi in every monomial is at most
1) [24], there exists, for any k, a unique set of coefficients
(αk,u)u∈Fn

2
such that:

φk(z) =
∑

u=(u1,...,un)∈Fn
2

αk,u · zu (3)

where each term zu denotes the monomial (function) z →
zu1
1 zu2

2 . . . zun
n with zui

i ∈ F2. Let deg(φk) stands for the
degree of the polynomial representing φk.

The assumption on which the attack from [15] relies is the
following:

Assumption 1: ∀k ̸= k∗, deg(φk∗) < deg(φk).

The intuition behind this assumption is that since φk =
φk∗ ◦ fk ◦ f−1

k∗ (where fk = f(·, k)), φk is expected to have
a high degree (close to n) if k ̸= k∗, due to cryptographic
properties of f which often embeds highly non-linear S-
boxes to prevent algebraic attacks. Note that this reasoning
only holds if φk∗ itself has a low degree which is implicitly
assumed in [15]. This point will be discussed later.

If Assumption 1 holds, the basis: (bi)i = {zu, u ∈
Fn
2 ,HW(u) ≤ deg(φk∗)} is a valid basis for the second-

order LRA. Indeed, it spans all the functions of degree less
or equal deg(φk∗). Therefore there exists a decomposition
of φk∗ in this basis while it is not the case for other φk,
by hypothesis, which guarantees the success of the attack
(provided that the number of traces allows for a fair approxi-
mation of the covariances per class).

F. LIMITATIONS
The first observation is that even if Assumption 1 holds, the
attack may fail in practice if deg(φk∗) is not low enough.
Indeed, the cardinal of the basis, and therefore the number
of parameters to estimate, increases quickly with deg(φk∗)
offering a big capacity to the statistical model to fit the
data whatever the considered value of k. If the noise is
not negligible, this often means that the wrong hypotheses
can reach similar scores than the correct one which reduces
the distinguishability and therefore the effectiveness of the
attack. For example, with n = 8 and deg(φk∗) ∈ {1, 2, 3}
the cardinal of the basis is respectively equal to 9, 37 and
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93. In practice authors of [15] run their attack with the
following basis: (bi)i = {zu, u ∈ Fn

2 ,HW(u) ≤ dmax}
where dmax ∈ {1, 2, 3}. Choosing dmax = 3 never led to
the best attack even in cases where deg(φk∗) was strictly
greater than 2 (due to the high model capacity and lack of
distinguishability).

Then, one could ask if Assumption 1 holds at all. Since
φk∗(z) = cov(L1, L2|Z(k∗) = z) it is obviously related to
the nature of the leakage L1 and L2. These variables can be
assumed to be separable into a deterministic and a noise part
with respect to the shares:

Li = li(Zi) + ϵi (4)

with li : Z → R representing the leakage of share i and ϵi
being an independent random noise variable. By bilinearity
of the covariance and independence of ϵi:

φk∗(z) = cov
(
l1(Z1), l2(Z2) | Z(k∗) = z

)
= cov

(
l1(z ∗ Z2), l2(Z2)

) (5)

since Z1 = Z(k∗) ∗ Z2. Both l1 and l2 can be assumed
of low degree (through a physical a priori on the leakage).
For example, it is realistic to assume that both shares follow
a linear leakage. But we argue that this is not enough to
guarantee Assumption 1 and that it is still depending on the
underlying masking scheme, especially on the nature of the ∗
operation.

Then, a natural question arises: why does the attack pre-
sented in [15] work? We argue that it is related to the studied
masking schemes in their paper. Indeed, the latter one focuses
on the Boolean and arithmetic masking schemes which are
both exceptions as far as Assumption 1 is concerned. This
claim is justified by the two following propositions.

Proposition 1: (Boolean masking) Let ∗ = ⊕. Let l1 : Z →
R and l2 : Z → R be two leakage functions of degree 1. Let
φBool(z) = cov

(
l1(z ⊕ Z2), l2(Z2)

)
. Then,

deg(φBool) ≤ 1 (6)

Proof can be found in appendix A.

Proposition 2: (Arithmetic masking) Let ∗ = +mod 2n. Let
l1 : Z → R and l2 : Z → R be two leakage functions
of degree 1. Let φArith(z) = cov

(
l1(z + Z2 [2

n]), l2(Z2)
)
.

Then,
deg(φArith) ≤ 2 (7)

Proof can be found in appendix A.

These two propositions explain the success of the attacks
presented in [15]. However, we could not find equivalent
propositions for other masking schemes, suggesting that
Boolean and arithmetic masking are, in fact, exceptions. This
will be empirically confirmed in section III-D where it is
shown that even without noise, the higher-order LRA fails
against multiplicative or affine masking with a linear leakage

of the shares. Therefore, to the best of our knowledge, there is
no strategy in the literature able to defeat a generic masking
scheme in an unsupervised context, with a simple linear leak-
age assumption of the shares. We introduce such a strategy in
the next section.

III. JOINT MOMENTS REGRESSION
We first introduce the concept of Joint Moment (JM) which
generalizes to any masking order the idea of the covariance,
found in the previous section.

A. JOINT MOMENTS
Moments of probability distributions are quantitative mea-
sures related to the shape of the distribution. The moment of
order d, denoted µd, of the variable X is defined as:

µ
(d)
X = E[Xd] (8)

For second and higher orders, the centered moments µ̌d of
order d are often used instead and are defined as:

µ̌
(d)
X = E[(X − µ

(1)
X )d] (9)

Joint moments are the generalization of moments to mul-
tivariate variables. Let X = (X1, . . . , Xn) ∈ Rn be a
multivariate random variable. Let u = (u1, . . . , uk) ∈ Nn

be a vector of positive integers such that
∑

ui = d. The JM
of order d with respect to vector u, denoted jmu, is defined
as:

jm
(u)
X = E

[ n∏
i=1

Xui
i

]
(10)

Centered JM are also defined as:

ˇjm
(u)
X = E

[ n∏
i=1

(Xi − µ
(i)
Xi

)ui

]
(11)

One important property of JM (and of simple moments) is
that, for distributions defined on a compact set of Rn, the
distribution is fully defined by the list (maybe infinite) of all
its JM. This is also true for the centered JM provided that the
first order JM are also given.

The effect of a d-order masking is that no information
related to the sensitive variable can be found in the d− 1 and
lower JM. That is why the second-order LRA performed a
regression on the second-order centered JM with u = (1, 1)
which happens to be the covariance. Indeed it is the lowest
order JM bringing information on the sensitive variable.
Information could also be found in higher-order JM but they
are harder to estimate. Indeed, more terms are involved in
the product and the noise in each one of them is amplified
through the multiplication. One typically wants to take the
JM with the lowest standard error (the standard deviation
of its estimator). This also explains why centered JM are
preferred: as shown in [13], they have a lower standard error
than their uncentered counterpart.
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B. ATTACK DESCRIPTION

Let an adversary own a set of N traces {ℓi, 1 ≤ i ≤ N}
of a d order masked implementation. Traces are considered
to be composed of d samples: ℓi = {(ℓi1, . . . , ℓid). In a real-
life scenario, the attack would be repeated on combinations
of d samples from the raw traces depending on the attacker a
priori on the points of interest. To defeat this implementation
a naive solution would be to extend the attack proposed
in [15] using centered JM instead of covariance but as stated
in section II-F: there is no obvious link between the physical
a priori, which happens to be on the shares, and the basis
that has to be chosen and applied to the unmasked sensitive
variable.

That is why we propose a new strategy where the adversary
chooses d basis, one for each share (in practice they will often
be the same basis), and directly regresses the leakage of each
share using information from the estimated d order centered
JM. The steps of what we call the Joint Moment Regression
(JMR) are depicted hereafter.

JMR Procedure

1) Partitioning. Partition the traces into |X | classes: Lx =
{(ℓi1, . . . , ℓid), xi = x}.

2) Estimating JM. Compute the estimated centered d or-
der joint moments matrix ¯JM . Each row represents the
estimation for one class:

JM =



1

|L0|
∑
ℓ∈L0

d∏
j=1

(ℓj − µ̄j)

...

1

|L2m−1|
∑

ℓ∈L2m−1

d∏
j=1

(ℓj − µ̄j)


where (µ̄1, . . . , µ̄d) stands for the estimated mean of L.

3) Basis choice. For j ∈ [1, d], choose a basis of functions
(b

(j)
i )1≤i≤r such that b(j)i : Z → R. Intuitively, if lj

corresponds to the leakage of share j, the adversary
wants to choose a basis such that lj(zj) =

∑r
i=1 θj,i ·

b
(j)
i (zj) + ϵj for some coefficient θj ∈ Rr, with ϵj

representing an independent random noise variable.
4) Making hypotheses. Let l̃j(zj) stand for the leakage

prediction of share j according to the chosen basis:

l̃j(zj) =

r∑
i=1

θj,i · b(j)i (zj) (12)

For k ∈ K, define the theoretical JM vector JMk(θ)
with respect to θ ∈ Rd×r, that traduces the leakage
assumption of step 3 into |X | = 2m JM per class

expressions:

JMk(θ) =



a0
∑

(z1,...,zd)∈A0

d∏
j=1

(
l̃j(zj)− µθj

)
...

a2m−1

∑
(z1,...,zd)∈A2m−1

d∏
j=1

(
l̃j(zj)− µθj

)


with Ax = {(z1, . . . , zd)|Z = f(x, k)} and ax = 1

|Ax| .
Here, µθj stands for the theoretical mean of the leakage
of share j under the assumption of θj :

µθj = EZj

[ r∑
i=1

θj,i · b(1)i (Zj)

]
5) Non-linear regression. For k ∈ K, find through nu-

merical optimization techniques (see subsection III-C),
the parameter vector θ(k) ∈ Rd × Rr minimizing the
euclidean norm of the error vector:

θ(k) = argmin
θ
||JMk(θ)− JM ||2

6) Ranking. Rank the keys according to their distinguisher
value (from low to high):

D(k) = ||JMk(θ
(k))− JM ||2

C. ATTACK SOUNDNESS
The general attack structure of JMR is very similar to the
LRA and second-order LRA. The main difference with the
latter one is that the assumption is done on the leakage of
the shares and is therefore directly related to the physical
a priori. These assumptions are then combined to build a
parameterized system of unknown θ ∈ Rd×r:

JMk(θ)− JM = 0 (13)

where each line represents a condition on the JM knowing
that X = x. Note that by the independence assumption, the
noise terms ϵj are canceled from the theoretical equations of
the JM per class, listed in the JMk(θ) vectors. The goal is
then to find the solution θ(k) that fits the most the system
and to use a measure of fitness as distinguisher. Note that the
knowledge of the underlying masking scheme is embedded in
the system through the Ax sets which describe the possible
values (z1, . . . , zd) of the shares given the value of Z. This
is what ensures the genericity of JMR regarding the masking
scheme.

When the number of traces N tends towards infinity, the
estimated JM per class JM tends towards the true JM per
class. If the leakage assumptions are correct there exists
θ(k

∗) ∈ Rd×r such that JMk∗(θ(k
∗)) is equal to the true JM

per class. Therefore:

lim
N→∞

D(k∗) = 0 (14)

while it is unlikely to be the case for k ̸= k∗ due to
cryptographic property of f , which assures the soundness of
the attack.
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However, this multi-shares assumption comes at the cost
of linearity. Indeed, even if all the shares are assumed to leak
linearly, the system that JMR regresses is not linear anymore:
it is of degree d. Therefore there is no closed-form solution
and one has to use numerical optimization tools to find
an approximation of the solution. Numerical optimization
is a research field in itself and is out of the scope of this
paper. There exist multiple ready-to-use implementations in
different programming languages, which is enough for our
concern. Note that since the system is of degree d, the
uniqueness of the solution of step 5 is not guaranteed. This
is not a problem for the attack: as long as one solution can
be found and that equation 14 holds only for the correct key
hypothesis, the attack will succeed for a sufficient number of
traces.

D. SIMULATION EXPERIMENTS
This section provides simulation experiments to assess the
feasibility of JMR in practice against the masking schemes
presented in table 1. Its efficiency is compared with state-of-
the-art attacks at second and third order.

Implementation. We implemented the core of the JMR
attack using the least_squares function from the python
scipy.optimize package [25]. It solves a non-linear
least-squares fitting problem using the Levenberg-Marquardt
(LM) algorithm [26], [27] which is itself based on the Gauss-
Newton algorithm and the method of gradient descent. The
attack time or complexity is mostly constant regarding the
number of traces because the latter does not affect the number
of parameters nor equations in the system. The only part that
scales with the number of traces is the estimation of the JM
per class which is just a product and a sum and that can be
handled with numpy [28] array manipulations.

Since the least-squares problems related to the differ-
ent key hypotheses are independent, the implementation is
highly parallelizable. We exploited this using a 48 cores
Xeon Platinium 8168 processor which speeded up the at-
tack by a significant factor since the implementation of
the least_squares function is not parallelized in itself.
Other implementation optimization could be explored such
as using the fast GPU version of the LM algorithm proposed
in [29] but this is not in the scope of this paper. To give an
order of magnitude, with our setup, running the full JMR
procedure as described in subsection III-B for a d−tuple
of time samples, requires around 10 and 15 seconds for
respectively a second and third-order attack (assuming one
trace for each possible values of the shares: 216 and 224

respectively).

Generating Datasets. To assess the JMR method and
to compare it with state-of-the-art attacks, synthetic trace
datasets with linear leakage of the shares have been generated
for first and second-order masking (d ∈ {2, 3}). Boolean,
arithmetic, multiplicative and affine (only with d = 3)

Algorithm 1: Generate Traces
Input: k∗, The correct key byte
Input: a, representing a row in the matrices Ci

Input: d, the masking order
Input: ⋆, a group operation with / the associated

division
Input: σ, the value of the noise
Output: L, a (28∗d, d) array
Output: P , a (28∗d) array
L← empty list
P ← empty list
for (z, z2, . . . , zd) ∈ Zd do

z1 ← z ⋆ · · · ⋆ zd
l← ℓ

(a)
(z1,...,zd)

(Equation 16)

p← Sbox−1[z]⊕ k∗

Append l to L
Append p to P

end
R← Draw a (28∗d, d) array from N (0, σ2)
L← L+R
return L, P

schemes are used to mask the classical sensitive variable of
an AES: Z = Sbox[k∗ ⊕ P ] (k∗ and P are both supposed
to be 8 bits long). To be able to average the results of 100
different attacks, performed with 100 different linear leakage
models, we have generated a matrix of random coefficients
Ci for each share (1 ≤ i ≤ d):

Ci =
(
αa,b

)
0≤a≤99
0≤b≤8

(15)

where all the αa,b are uniformly drawn from [−1, 1]. Each
row represents a different linear leakage model.

To avoid any kind of estimation error (the error coming
from sampling), each dataset contains one trace for each of
the possible values of the shares (z1, . . . , zd) ∈ Zd (for
multiplicative and affine schemes the multiplicative shares
can not be 0 so we take them from J1, 255K instead). The
trace ℓ

(a)
(z1,...,zd)

corresponding to the d-tuple (z1, . . . , zd)
is generated by concatenating the leakage of each shares
(represented by the ath row of the Ci matrices) as follows:

ℓ
(a)
(z1,...,zd)

=

[
l
(a)
1 (z1), · · · , l(a)d (zd)

]
(16)

with

l
(a)
i (zi) = Ci[i, 0] +

8∑
b=1

Ci[a, b] · zi[b] + ϵi(σ) (17)

where zi[b] corresponds to the bth bit of zi and ϵi is drawn
from a normal distribution N (0, σ2). The exact procedure
that generates the traces considering the the ath leakage
model is depicted in algorithm 1.
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FIGURE 1: Guessing entropies versus standard deviation
of the noise for the considered second-order attacks after

the processing of a) 216, b) 216, c) 28 × 255 traces.

Results. Second-order attacks results are presented in Fig-
ure 1. Each point represents the average rank of k∗ over the
100 datasets for a given value of σ. We recall that we are
using exhaustive datasets, therefore, a failed attack for a given
value of σ does not mean that the attack is impossible but
rather that the adversary would need more traces than one
per possible value of the shares. We compare JMR with

• A higher-order CPA, denoted HO-CPA, computed with
a Hamming weight prediction model and using the JM
of order d as combining function which happens to be
the same as the centered product described in [13].

• Higher order LRA, denoted HO-LRA-dmax where
dmax is the assumed degree of φk∗ as defined in Equa-
tion 5. Therefore the basis used in HO-LRA-dmax is
(bi)i = {zu, u ∈ Fn

2 ,HW(u) ≤ dmax}. The combining
function is also the JM of order d which for d = 3 is
a straightforward extension of the second order attack
described in [15].

• Mutual Information Analysis, denoted MIA-f , where
the distinguisher used is MI(f(Zk), L). MIA requires
the use of a non-injective function f to create distin-
guishability for the correct hypothesis. Since the leak-
age model is unknown we used very generic models:
f = MSB and f = 7B, where MSB stands for the
most significant bit of Zk and 7B stands for the 7 most
significant bits of Zk. The MI has been estimated using
the histogram method described in [30].

(a) For the Boolean case, JMR and HO-LRA-1 performs
approximately the same which is not surprising since,
by Proposition 1, Assumption 1 holds for HO-LRA1.
It also holds for HO-LRA-2/3 but HO-LRA-1 perfectly
explains the data with fewer parameters, and thus, per-
forms better. One can notice that even without noise the
HO-CPA is not converging towards 0 which confirms
that it relies on the Hamming weight leakage assump-

tion. Also, MIA strategies do not perform well which
is not surprising since the underlying leakage model is
unknown and it is, therefore, hard to select a good non-
injective function.

(b) For the arithmetic scheme, JMR outperforms all the
other attacks even, HO-LRA-2 in which Assumption 1
holds by Proposition 2. Again this is explained by the
fact that JMR only needs (9 × 2) parameters to predict
the data while HO-LRA-2 needs 37 parameters. Even
without noise, the data can not be perfectly explained in
an HO-CPA or HO-LRA-1 model since their curves do
not converge towards 0.

(c) For the multiplicative scheme, as predicted, none of the
state-of-the-art attacks perform better than random even
without noise which confirms that Assumption 1 does
not hold at all for such masking scheme. JMR is the only
sound attack in this case.

Results for third-order attacks are presented in Figure 2.
In this case, HO-LRA-dmax represents the generalization
of the second-order LRA replacing the covariance by the
third-order joint moment. Conclusions are the same than
for the second-order attacks. Among the considered attack
strategies, one can observe that, as for the multiplicative case,
JMR is the only sound option to attack affine masking under
a linear leakage of the shares.

About the biased schemes. Both multiplicative and affine
schemes are slightly biased which can induce lower-order
leakage. We argue that such leakage has not been exploited in
this section since the estimated JM were computed with the
leakage of all the shares (thus, the variance of the estimation
result from d multiplications of noisy leakages). To confirm
this statement, we repeated the previous experiments for the
biased schemes removing Z = 0 from the possible values,
thus, simulating non-biased schemes. The results being es-
sentially the same than those presented in Figures 1c, 2c and
2d so we do not plot them. Since the multiplicative and affine
masking do not seem to have special algebraic properties like
the Boolean and arithmetic scheme as shown in propositions
1 and 2, we argue that these results could be extended to any
other masking scheme. Indeed, the real added value of JMR
is its ability to encode the scheme knowledge in the system’s
equation making it generic and able to work even for non-
biased schemes with a high algebraic degree2 where other
attacks would not.

However, in the specific case of biased schemes, lower-
order leakage could be exploited with simpler attacks such as
a classical CPA with a zero-valued based power model. One
could also perform more advanced attacks taking advantage
of leakages at multiple orders at the same time. All these
attacks are discussed in the next section where we introduce
the generalized method of moment paradigm.

2Formally, we refer to the degree of the function f representing the joint
moments per class f(z) = JM(l1(Z1), . . . , ld(Zd) | Z = z according to
the degree of the leakage function li.
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FIGURE 2: Guessing entropies versus standard deviation
of the noise for the considered third-order attacks after the

processing of a) 224, b) 224, c) 28 × 2552, d) 216 × 255
traces.

IV. GENERALIZED METHOD OF MOMENTS PARADIGM
Looking from a broader perspective, it appears that the core
of the JMR attack can be seen as part of a more general
framework known as the Generalized Method of Moments
(GMM) [18]. This method comes from the field of statistics
and economy and its main purpose is to estimate parameters
in a statistical model. Embracing this paradigm requires to
gain a level of abstraction but it allows to use the powerful
mathematical foundations behind it. In particular, it will tell
us how to optimally combine information from different
orders, which is useful when the masking scheme is biased.

A. BACKGROUND ON GMM
Let suppose that the available data consists of N observations
(Li)1≤i≤N of a random variable L ∈ Rn. This data is
assumed to come from a stochastic process defined up to an
unknown parameter vector θ ∈ Rp. The goal is to find the
true value θ0 of this parameter or at least a reasonably close
estimate.

In order to apply GMM the data must come from a weakly
stationary ergodic stochastic process (independent and iden-
tically distributed (iid) variables are a special case of these
conditions). Then one needs to have c “moment conditions”
defined as a function g(ℓ, θ) : Rn × Rp → Rc such that:

E[g(L, θ0)] = 0 (18)

The idea is then to replace the theoretical expectation with its
empirical analog:

m(θ) =
1

N

N∑
i=1

g(ℓi, θ) (19)

and to minimize the norm of m(θ) with respect to θ. The
properties of the GMM estimator depend on the chosen
norm and therefore the theory considers the entire family

of norms defined up to a positive-definite weighting matrix
W ∈Mc(R):

||m(θ)||W =
√
m(θ)TWm(θ) (20)

The GMM estimator is then defined as:

θ̂ = argmin
θ
||m(θ)||W (21)

The way of solving this optimization problem is not specified
in the GMM theory. It is left to the numerical optimization
field.

The purpose of W is to weigh the different conditions.
Choosing W = Idc leads to consider the classical euclidean
norm and is equivalent to considering that all conditions
should weigh the same. The intuition behind the fact that one
may prefer another norm is that some conditions may be less
informative, redundant, or more volatile in their empirical es-
timation. One typically wants to use the norm minimizing the
asymptotic variance of the resulting estimator. This problem
has a closed-form solution with the following theorem:
Theorem 1: (Hansen 1982) Let θ̂N be the random vari-
able representing the output of the GMM estimator with
N data observations. Let also define Ω as the covariance
matrix of the conditions function g evaluated at θ0: Ω =
cov-mat

(
g(L, θ0)

)
. Then,

argmin
W

lim
N→∞

var(θ̂N ) = Ω−1 (22)

In the particular case where conditions are independent the
matrix Ω−1 is diagonal and choosing W = Ω−1 simply
means that the moments’ condition should be weighted in-
versely proportionally to their underlying variance. This is in
line with the intuition that conditions with high variance are
less informative.

B. PARALLEL WITH THE JMR ATTACK
This section exhibits the similarities between the GMM and
JMR. The core of the JMR attack relies on an estimation
of the true parameters θ0 ∈ Θ = Rd × Rr of a chosen
statistical model (encoded in the choice of the basis) in order
to explain the leakage of each share. Let L = (L1, . . . , Ld)
represents the observed leakage variable and Lθ the predicted
leakage variable under the assumption of θ so that, under the
assumption that the chosen model is correct, L = Lθ0 .

Since the moment conditions in JMR depend on the value
of another public variable X , let define, for each key hypoth-
esis k, a condition function gk : Rd ×X ×Θ→ R|X | as:

gk(ℓ, x, θ) = ex ·
(

ˇjm
(1d)
Lθ|Z=f(x,k) −

d∏
i=1

(ℓi − µ̄i)

)
(23)

where ex = (0, . . . , 1, . . . , 0) ∈ R|X | stands for a vector of 0
with one 1 at position3 x, 1d stands for a vector of d ones :
1d = (1, . . . , 1) and ˇjm

(u)
L is defined as in Equation 11. This

3Here x ∈ X = Fm
2 is seen as an element of Z/2mZ.
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definition of gk may seem very artificial but it is designed
so that Equation 18 holds for the correct hypothesis k = k∗

(under the assumption that L = Lθ0 ):

E[gk∗(L,X, θ0)] =
1

|X |

(
ˇjm

(1d)
Lθ0

|Z=f(x,k∗) − ˇjm
(1d)
L|X=x

)
x∈X

= 0
(24)

Therefore applying GMM with gk∗ as condition function is
sound while it is not for wrong key hypotheses. In fact this
property is the one exploited by JMR since step 1 to 5 of JMR
are equivalent to apply |K| GMM estimations, one for each
of the gk condition functions, with W = Id|X |.

C. IMPROVING JMR USING GMM THEORY
This section describes two ways of improving JMR using the
GMM theory. The first one is generic and the second one
focuses on the unbalanced masking schemes.

Using the Optimal Weighting Matrix. Since the GMM
theory recommends to use Ω−1 as weighting matrix, one
could ask if using the identity matrix was optimal. Indeed,
the adversary typically wants to minimize the variance of
the GMM estimator for the correct key k = k∗. Therefore
it would be natural to replace the identity matrix with Ω−1

where Ω = cov-mat
(
gk∗(L,X, θ0)

)
. The problem is that

Ω is hard to estimate with data since θ0 is unknown. The
solution to this problem is usually to apply the so-called two-
step estimator where an estimation of θ0 is first computed
with JMR with a sub-optimal weighting matrix (for exam-
ple the identity) which allows estimating Ω and eventually
apply GMM with the latter estimation as weighting matrix.
However, in our case, Ω does not depend on θ0 which makes
the process easier. Indeed, the variance of the components of
gk∗ (and therefore the covariance matrix) only comes from
the right term of Equation 23 which does not depend on θ.
Therefore the equation of Ω can be re-written as:

Ω = cov-mat
[
eX

( d∏
i=1

(Li − µ̄i)

)]
(25)

In addition, since for a fixed x, only one component of
gk∗(ℓ, x, θ) is non-zero, Ω is diagonal. Then, one can esti-
mate the diagonal terms of Ω using the observed data and
then apply GMM. We denote by JMR++ the JMR attack with
W = Ω−1 where Ω is an estimation of the optimal weighting
matrix.

To confirm the soundness of this approach, we performed
the same experiments as those described in subsection III-D
to compare JMR and JMR++. Figures 3a and 3b show the
results for the second-order Boolean and arithmetic masking
and, according to the theory, JMR++ performs a little better
than JMR. It can be noticed that in the case of Boolean
masking JMR++ also outperforms HO-LRA-1, which has
approximately the same performance as JMR, despite having
more parameters to estimate.

The Case of Biased Schemes. Some masking schemes,
such as the multiplicative or the affine one, violate the
assumption of shares uniformity. Therefore the resilience
to (d − 1)th-order attack is not guaranteed anymore. For
example, Z = 0 implies Z1 = 0 in a multiplicative
scheme inducing a first-order leakage. As well, when Z = 0,
the affine scheme becomes a Boolean scheme of order 2
inducing second-order leakages. Since lower order JM are
informative in these cases, a first idea to exploit this weakness
is to apply JMR but at a lower-order. This means that the
considered conditions concern only the first-order moments
for a multiplicative scheme and the second-order JM for an
affine scheme. Such an attack is denoted JMRLower. Since
this would only exploit the difference between the class
Z = 0 and Z ̸= 0 this attack would be very close to a
CPA computed with a zero-valued model considering only
two classes: Z = 0 and Z ̸= 0, denoted CPA-0 (or HOCPA-
0 in the affine case) afterward.

Figures 3c and 3d confirm this intuition by showing that
both CPA-0 and JMRLower behave very similarly and have
better results than JMR for high noise values but worse
results for low noise values. Indeed, since the main advantage
of masking is to amplify the impact of the noise exponentially
with the order of the mask [12] or more accurately, with the
order of the attack required to defeat it. For low values of σ
the JM conditions used in JMRLower are less informative than
the one used by JMR (they only exploit a difference between
the class Z = 0 and the other classes) but the impact of the
noise is amplified by a lower order which explains the better
results of JMRLower for high σ.

A natural challenge is to design an attack benefiting from
the best of both worlds: JMR and JMRLower. To this aim, we
propose to use the flexibility of the GMM paradigm to de-
velop an attack with conditions from both informative orders
at the same time. This corresponds to building a system with
512 conditions instead of 256 when attacking a key byte. In
this case, the weighting matrix is very important since each
half of the system concerns conditions with very different
variances (estimating joint moments is exponentially hard
with the order). To highlight this fact we denote by JMRFull
and JMR++Full the version of JMR with both order conditions
respectively with W = Id512 and W = Ω−1.

Results are presented in figures 3c and 3d. As expected,
JMRFull outperforms JMR but is impacted by the variance
of the d-order conditions and therefore performs worse than
JMRLower for high values of σ. However, JMR++Full benefits
from the advantage of exploiting the d-order conditions for
low values of σ but still converges towards JMRLower for
high noise values thanks to the well-chosen weighting of
these conditions. Indeed, it is proven in [18] that adding more
moments conditions can only improve the performance of the
GMM estimator (by lowering its variance) when using the
optimal weighting matrix Ω−1.
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FIGURE 3: Guessing entropies for the improved JMR
attacks, using the GMM theory, and for (HO)CPA-0 after
the processing of a) 216, b) 216, c) 28 × 255, d) 216 × 255

traces.

We highlight the fact that for the multiplicative scheme,
there is an interest in using JMR++Full over CPA-0 since for
example it would give a successful attack at σ = 1 where
CPA-0 would rank the correct key at the 20th position which
is not enumerable considering the full 16 bytes key. However,
for the affine case, the curves look very similar and we argue
that the overhead in time complexity of using JMR++Full (or
JMRLower) over CPA-0 is not worth it.

V. EXPERIMENTS ON REAL TRACES
To assess the performance of JMR on real traces, we decided
to attack two open source protected AES implementations.
The first one is protected by a first-order Boolean masking
scheme (ASCAD) [31]. The second one embeds an affine
scheme and a shuffling countermeasure (ASCADv2) [32]).

A. ATTACK ON A FIRST-ORDER BOOLEAN MASKED
AES (ASCAD)
As a first experiment, we performed the different stochastic
attacks discussed in this paper on the public dataset of AS-
CAD. It is a common set of side-channel traces, introduced
for research purposes on deep learning-based side-channel
attacks. The targeted implementation is a software AES,
protected with a first-order Boolean masking, running on an
8-bit ATMega8515 board.

We performed guessing entropies for the different attacks,
using the training dataset containing 50k traces. We extracted
from the dataset, the two Point-of-Interests (PoI) correspond-
ing to the highest signal-to-noise ratio, one for each share.
This step requires the knowledge of the shares and would not
be feasible by a non-profiled adversary. In a real scenario,
a visual analysis of the trace combined with knowledge on
the implementation can be used to perform a PoI selection
to reduce the number of sample combinations to be tested.
Our goal here is to assess the security supposing that the
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FIGURE 4: Comparison of different attacks’ guessing
entropies on ASCAD

adversary is able to apply the methodology on the best
sample combination.

1) Results

Results are depicted in Figure 4. We observe similar out-
comes than in the first-order Boolean simulations. As ex-
pected the results of JMR++ and HO-LRA-1 are very close
since it is a Boolean masking (and thus, Assumption 1 holds).
Similarly to Figure 3a, the slight advantage of JMR++ may
be explained by the use of the optimal weighting matrix. One
may notice that the HO-CPA performs better than in the sim-
ulations. It outperforms all the other attacks for low numbers
of traces even though attacks with an average correct key rank
higher than 25 does not allow for a successful enumeration in
a reasonable time. The better performance of HO-CPA can be
explained by the fact that the leakage model of the ASCAD
traces is much closer to a Hamming weight leakage model
than those used in the simulated experiments. In such cases,
regression-based attacks benefits less from their genericity.
As the execution time has a low dependency to the number
of traces, running JMR++ took approximately 10 seconds
as in the simulations.

B. ATTACK OF AN OPEN SOURCE HARDENED AES
IMPLEMENTATION (ASCADV2)

As a second experiment, we decided to attack the sec-
ond protected AES implementation proposed by the Agence
Nationale de la Sécurité des Systèmes d’Information
(ANSSI) [32]. They published a library implementing an
AES-128 on an ARM Cortex-M4 architecture using state-of-
the-art counter-measures. Indeed, this implementation uses
an affine masking as well as random shuffling of independent
operations [33]. It is accompanied by a publicly available
dataset called ASCADv2 providing 800,000 traces acquired
on an STM32F303 microcontroller running this protected
AES. A detailed leakage analysis of this dataset has been
published in [34]. Following their terminology we tried to
attack the unmasked variable Z = Sbox[k∗ ⊕ P ] using the
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leakage of the three shares:

Z1 = Z ⊗ rmul ⊕ rout

Z2 = rmul

Z3 = rout

(26)

Unfortunately, the number of traces turned out to be too low
to analyze the unsupervised attacks discussed in this paper.
Thus, we reproduced a similar experimental setup, described
in the next section, in order to collect significantly more
traces.

1) Acquisition Setup
Our setup has the following features:

• The acquisitions have been performed on a NUCLEO-
F303RE board, which embeds the same STM32F303
micro-controller as used in ASCADv2.

• The device is clocked at 8MHz, while ASCADv2 device
is clocked a 4 MHz. This allows faster acquisitions with-
out altering the execution behavior (e.g., introducing
FLASH wait cycles). Being in an evaluation setup, we
had the labels of the shares and validated that it did
not affect the signal-to-noise ratio of these intermediate
variables.

• We measured the magnetic field produced by the circuit
with a Langer H-field probe (RF-U 5-2). This differs
from ASCADv2 setup, which measures the current of
the device through a ChipWhisperer [35]. However, we
observed better signal to noise ratios on the EM field.
The probe covers a large portion of the CPU and no
specific tuning of the probe placement was performed.

• The scope was configured at 3.125 GS/s and acquired a
window of 8µs, which represents 25,000 time samples.

• The masked AES implementation was taken “as-is”
from the SecAESSTM32 repository [32]. We only made
the following changes to the assembly code:
– a GPIO is raised in the Load_random function,

which manipulates rmul and rout.
– a GPIO is raised in the first round of the AES, just

after the Xor_Word operation.
To further speed up the acquisitions, we do not transfer the

plaintext and masking inputs through the serial port. Indeed,
this represents 54 bytes (16 + 19× 2) per encryption, which
quickly becomes a bottleneck for acquisitions. Instead, the
device runs a PCG32 Pseudo-Random Number Generator
(PRNG) [36] to generate those data on the fly. This PRNG
is re-seeded randomly (by sending 8 bytes on the serial port)
every 250 acquisitions. This allows to regenerate (from the
stored seeds) the plaintexts and random masks offline, to
label the dataset.

For each encryption, the scope triggers twice and acquires
50,000 samples. The final dataset contains 100M traces and
took 14 days to acquire. In summary, we used the same AES
implementation and micro-controller as in the ASCADv2
setup. We only made some changes in the instrumentation

and measurement chain to reduce the number of traces
needed and improve the speed of acquisition.

2) Simulating an Unshuffled Version
The implementation uses random permutation of the 16
Sboxes applications. However, using the same idea as de-
veloped in technical analysis of the ANSSI repository [32],
one can simulate (through the knowledge of the key and
the permutation Sh being used) an attack on an unshuffled
version even if the acquired traces are shuffled. Instead of
targeting the first byte Z = Sbox[k∗[0] ⊕ P [0]] one may
target:

Z = Sbox[k∗[Sh−1(0)]⊕ P [Sh−1(0)]] (27)

where Sh−1(0) denotes the index of the byte that is com-
puted first through the permutation Sh. Then such an attack
would uses Z(k̄) = Sbox[k̄⊕k∗[Sh−1(0)]⊕P [Sh−1(0)]] as
hypothesis intermediate variable, the attack being successful
if the best hypothesis is 0.

3) Results
In a similar way to the first experiment from subsection V-A,
we extracted from the dataset described in subsubsec-
tion V-B1, the three Point-of-Interests (PoI) corresponding
to the highest signal-to-noise ratio, one for each share. We
performed the attacks on both the shuffled and unshuffled
versions. The attacks on the shuffled version only use the
leakage of the first Sbox computation. Shuffling adds a lot of
noise since even for the correct key hypothesis the predicted
value of Z is only correct once out of 16 in average.

Results are presented in Figure 5. Each point represents
the mean ranking of the correct key over 100 attacks per-
formed with the corresponding number of traces. For each
attack, traces are randomly drawn among the 100M dataset.
Both JMR++Full and JMR++ converge towards a guessing
entropy of 0 which provides by the same token, the first
unsupervised attack on the secured ANSSI’s AES implemen-
tation.

Using the scheme bias. Not surprisingly, JMR++Full and
HOCPA-0, which exploits the bias in the masking scheme,
gives the best results. These attacks require 30k4 and 15M
traces to converge towards 0 for the unshuffled and shuffled
version respectively. This confirms that for high noise value,
a lower-order leakage induces attacks with at least one order
of magnitude smaller data complexity. Thus, it confirms that
even though d shares are used to mask the sensitive value, a
biased d-order masking should not be considered of order d
as far as security is concerned.

Not using the scheme bias. When this lower-order leak-
age is not considered in the attack, JMR++ outperforms the

4It should be noted that even if some of the presented attacks require less
than 800k traces, they have not been successful on the original ASCADv2
dataset. We have confirmed that our traces have a better SNR on the leakage
of each of the shares which could explain this difference.
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FIGURE 5: Comparison of different attacks’ guessing en-
tropies on the secured ANSSI’s AES

other state-of-the-art attacks and is the only attack able to
converge toward a guessing entropy of 0 with the considered
number of traces. As in the simulations, the amount of time
required to run this attack is approximately 15 seconds.

For biased masking schemes, there is no interest to per-
form this attack over CPA-0. However, we argue that this
result is interesting since it shows how JMR would perform
on a generic (with a high algebraic degree) unbiased second-
order masking schemes.

C. DISCUSSION
Results obtained on the real traces collected on AES imple-
mentations (proposed by the ANSSI) protected with boolean
and affine masking are in line with the simulation results.
It confirms that JMR gives a sound methodology, able
to work with flexible leakage model assumptions (linear,
quadratic...), which is applicable to any masking scheme,
even newly invented ones. Such strategy widens the state-
of-the-art5.

VI. CONCLUSION
This paper introduced a new unsupervised strategy, JMR,
which embeds the masking structure within it, allowing it to
defeat arbitrary masking schemes. It is based on a non-linear
system regression which allows to derive the leakage model
of each share by carefully exploiting higher-order joint mo-
ments conditions. JMR outperforms state-of-the-art attacks
which are limited to Boolean and arithmetic masking, espe-
cially when the Hamming weight leakage assumption does
not hold. We reduced the core of JMR into a more general
framework: the generalized method of moments and derived
optimizations of JMR from it. Experiments performed on
synthetic data confirmed the effectiveness of the proposed
attack, especially against multiplicative and affine masking
schemes. Eventually, this new strategy has been confirmed
on real traces, allowing a fully unsupervised attack of the
ANSSI’s protected AES implementation which embeds an
affine masking and shuffling counter-measures.

The JMR method is not highly multi-dimensional in the
sense that it only exploits d times sample when applied on a
dth-order masking. It is well known that sensitive variables

5One may notice that the other attacks perform better than in the simulated
experiments. We explain this by the fact that in this case, the leakage model
is fixed and may be closer to a Hamming weight model.

can leak several times in a single trace. Strategies able to
extend JMR approach to use more informative time samples
simultaneously (i.e. exploit more of the available informa-
tion) would be of great interest for further research.
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APPENDIX A PROOFS

Proposition 1: (Boolean masking) Let ∗ = ⊕. Let l1 : Z → R and l2 : Z → R be two leakage functions of degree 1. Let
φBool(z) = cov

(
l1(z ⊕ Z2), l2(Z2)

)
. Then,

deg(φBool) ≤ 1 (28)

Proof 1: Since both l1 and l2 are of degree 1, there exist two unique sets of coefficients (α(1)
i )0≤i≤n ∈ R and (α

(2)
i )1≤i≤n ∈ R

such that:

lj(z) = α
(j)
0 +

n∑
i=1

α
(j)
i · z[i] (29)

where z[i] stands for the ith bit of z. Since the covariance involves a centered product, one can suppose without loss of generality
that α(j)

0 = 0 (we removed α
(j)
0 for readability reasons but it does not change anything to the proof). Injecting Equation 29 into

the expression of φBool:

φBool(z) =
1

|Z|
∑
z2∈Z

( n∑
i=1

α
(1)
i · (z ⊕ z2)[i]− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1

|Z|
∑
z2∈Z

( n∑
i=1

α
(1)
i · (z[i]⊕ z2[i])− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

) (30)

Using the identity : z[i]⊕ z2[i] = z[i] + z2[i]− 2 · (z[i] ∧ z2[i]) where ∧ stands for the Boolean AND:

φBool(z) =
1

|Z|
∑
z2∈Z

( n∑
i=1

α
(1)
i · (z[i] + z2[i]− 2(z[i] ∧ z2[i]))− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1

|Z|
∑
z2∈Z

n∑
i=1

(
α
(1)
i · (z[i] + z2[i]− 2(z[i] ∧ z2[i]))− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1

|Z|

n∑
i=1

∑
z2∈Z

(
α
(1)
i · (z[i] + z2[i]− 2(z[i] ∧ z2[i]))− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
=

1

|Z|

n∑
i=1

∑
z2∈Z
z2[i]=0

(
α
(1)
i · (z[i] + z2[i])− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
+

n∑
i=1

∑
z2∈Z
z2[i]=1

(
α
(1)
i · (−z[i] + z2[i])− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)

=
1

|Z|

n∑
i=1

z[i] ·
[ ∑

z2∈Z
z2[i]=1

(
α
(1)
i · z2[i]− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
−

n∑
i=1

∑
z2∈Z
z2[i]=1

(
α
(1)
i · z2[i]− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)]

(31)

which is of degree at most 1 since the z[i] terms are not mixed.
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Proposition 2: (Arithmetic masking) Let ∗ = +mod 2n. Let l1 : Z → R and l2 : Z → R be two leakage functions of degree
1. Let φArith(z) = cov

(
l1(z + Z2 [2

n]), l2(Z2)
)
. Then,

deg(φArith) ≤ 2 (32)

Proof 2:
We give a proof by induction. Let define the property Pn:

Pn : For any l1 and l2 of degree 1, deg(φn) ≤ 2, where for z ∈ Z = Fn
2 :

φn(z) = cov
(
l1(z + Z2 [2

n]), l2(Z2)
)

Initialisation. The case n = 1 is trivial since deg(φArith) is at most 1 in this case.

Induction. Let suppose that Pn holds. We are going to prove that Pn+1 also holds. Since both l1 and l2 are of degree 1, there
exists two unique sets of coefficients (α(1)

i )0≤i≤n+1 ∈ R and (α
(2)
i )0≤i≤n+1 ∈ R such that:

lj(z) = α
(j)
0 +

n+1∑
i=1

α
(j)
i · z[i] (33)

where z[i] stands for the ith bit of z. Since the covariance involves a centered product, one can suppose without loss of generality
that α(j)

0 = 0 (we removed α
(j)
0 for readability reasons but it does not change anything to the proof). Injecting this into the

expression of φn+1 one has:

φn+1(z) =

2n+1−1∑
z2=0

( n+1∑
i=1

α
(1)
i · (z + z2 [2n+1])[i]− µ1

)
·
( n+1∑

i=1

α
(2)
i · z2[i]− µ2

)
(34)

for i ∈ J1, n + 1K, the following identity holds: (z + z2 [2n+1])[i] = (z + z2)[i]. Indeed, the modulo corresponds to either
doing nothing or subtracting 2n+1 when z + z2 ≥ 2n+1. Then:

φn+1(z) =

2n+1−1∑
z2=0

( n+1∑
i=1

α
(1)
i · (z + z2)[i]− µ1

)
·
( n+1∑

i=1

α
(2)
i · z2[i]− µ2

)
=

2n−1∑
z2=0

( n+1∑
i=1

α
(1)
i · (z + z2)[i]− µ1

)
·
( n+1∑

i=1

α
(2)
i · z2[i]− µ2

)
+

2n+1−1∑
z2=2n

( n+1∑
i=1

α
(1)
i · (z + z2)[i]− µ1

)
·
( n+1∑

i=1

α
(2)
i · z2[i]− µ2

)
=

2n−1∑
z2=0

( n∑
i=1

α
(1)
i · (z + z2)[i] + α

(1)
n+1 · (z + z2)[n+ 1]− µ1

)
·

( n∑
i=1

α
(2)
i · z2[i] + α

(2)
n+1 · z2[n+ 1]− µ2

)
+

2n+1−1∑
z2=2n

( n∑
i=1

α
(1)
i · (z + z2)[i] + α

(1)
n+1 · (z + z2)[n+ 1]− µ1

)
·

( n∑
i=1

α
(2)
i · z2[i] + α

(2)
n+1 · z2[n+ 1]− µ2

)

(35)

Again, one can add a [2n] in the (z + z2)[i] terms since it does not change anything for i ∈ J1, nK. Then:

φn+1(z) =

2n−1∑
z2=0

( n∑
i=1

α
(1)
i · (z + z2 [2n])[i]− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i] − µ2

)
+

2n+1−1∑
z2=2n

( n∑
i=1

α
(1)
i · (z + z2 [2n])[i]− µ1

)
·
( n∑
i=1

α
(2)
i · z2[i]− µ2

)
+

2n+1−1∑
z2=0

(
α
(1)
n+1 · (z + z2)[n+ 1]

)
·
(
α
(2)
n+1 · z2[n+ 1]

)
(36)
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The second line of Equation 36 can be re-indexed summing from 0 to 2n− 1. Then, by Pn, the first two line of Equation 36 are
of degree at most 2. So let us focus on the last term denoted A and prove that it is also of degree at most 2:

A =

2n+1−1∑
z2=0

(
α
(1)
n+1 · (z + z2)[n+ 1]

)
·
(
α
(2)
n+1 · z2[n+ 1]

)
= α

(1)
n+1 · α

(2)
n+1 ·

2n+1−1∑
z2=2n

(z + z2)[n+ 1]

(37)

since z2[n+ 1] = 0 implies that all the term in the sum are equal to 0.
One can notice that the latter sum has two expression depending on the (n+ 1)th bit of z:

2n+1−1∑
z2=2n

(z + z2)[n+ 1] =

{
2n − z if z[n+ 1] = 0

z − 2n if z[n+ 1] = 1
(38)

Therefore:

A = α
(1)
n+1 · α

(2)
n+1 · (z − 2n) · (2 · z[n+ 1]− 1)

= α
(1)
n+1 · α

(2)
n+1 · (

n+1∑
k=1

2k−1 · z[k]− 2n) · (2 · z[n+ 1]− 1)
(39)

which is of degree at most 2 since developing the latter sum involves product of at most 2 bits of z together.

Injecting this into Equation 36 show that deg(φn+1) ≤ 2 and therefore that Pn+1 holds. This concludes the induction and
therefore the proof of Proposition 2.

For the interested reader, we give as a bonus the coefficients of φArith in terms of α(j)
i :

φArith = α0 +

n∑
i=1

αi · z[i] +
n∑

i=1

n∑
j=i+1

αi,j · z[i]z[j] (40)

With:

α0 =
1

4
·

n∑
k=1

α
(1)
k α

(2)
k

αi = −
i∑

k=1

α
(1)
k α

(2)
k

2i−k
, for 1 ≤ i ≤ n

αi,j =
α
(1)
i α

(2)
i

2j−i
, for 1 ≤ i < j ≤ n

(41)
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