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Abstract. We show that PSPACE is equal to 4th level in the polynomial hierarchy.
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1 Introduction

In computational complexity theory, NP is one of the most fundamental complexity classes. The complex-
ity class NP is associated with computational problems having solutions that, once given, can be efficiently
tested for validity. It is customary to define NP as the class of languages which can be recognized by a
non-deterministic polynomial-time machine.

A decision problem is a member of co-NP if and only if its complement (the complement of a decision
problem is the decision problem resulting from reversing the ”yes” and ”no” answers) is in the complexity
class NP. In simple terms, co-NP is the class of problems for which efficiently verifiable proofs of ”no” instances,
sometimes called counterexamples, exist. Equivalently, co-NP is the set of decision problems where the ”no”
instances can be accepted in polynomial time by a non-deterministic Turing machine.

On the other hand, PSPACE is the set of all decision problems that can be solved by a Turing machine
using a polynomial amount of space.

An oracle machine is an abstract machine used to study decision problems. It can be visualized as a
Turing machine with a black box, called an oracle, which is able to solve certain decision problems in a single
operation. We use notation LO, where O is the oracle.

On the contemporary state-of-the-art, the interested reader is referred to [1] and references therein.
Our result resolves some of unsolved problems in Computer Science.
The essential idea of the proof is to show that for any (fully) quantified Boolean formula φ we can obtain

a formula φ′ which is in the forth level of the polynomial hierarchy, no more than polynomial in the size of a
given φ, such that the truth of φ can be determined from the truth of φ′. The idea is to skolemize, and then use
additional formulas from the second level of the polynomial hierarchy inside the skolemized prefix to enforce
that the skolem variables indeed depend only on the universally quantified variables they are supposed to.
However, some dependence is lost when the quantification is reversed. It is called ”XOR issue” in the paper
because the functional dependence can be expressed by means of an XOR formula. Thus, it is needed to locate
these XORs. The last can be done locally for each leaf/ branch/ iteration (keep in mind the algebraic normal
form (ANF)), i.e. in polynomial time, since all arguments are specified.

The paper is organized as follows. Chapters 2-4 refresh basic definitions. Chapter 5 contains the proof.

2 Quantified Boolean formula

The Boolean Satisfiability Problem (abbreviated as SAT) is the problem of determining if there exists an
interpretation that satisfies a given Boolean formula. In other words, it asks whether the variables of a given
Boolean formula can be consistently replaced by the values true or false in such a way that the formula
evaluates to true.

SAT was the first known NP-complete problem, as proved by Stephen Cook [2] and independently by
Leonid Levin [3] (a problem is L-complete if it belongs to L and all problems in L have polynomial-time
many-one reductions to it [1], L is the set of some decision problems).

One simple example of a co-NP-complete problem is tautology, the problem of determining whether a given
Boolean formula is a tautology; that is, whether every possible assignment of true/false values to variables
yields a true statement.

For a Boolean formula φ(x1, . . . , xn), we can think of its satisfiability as determining the true of the
statement

∃x1 ∈ {0, 1} ∃x2 ∈ {0, 1} . . . ∃xn ∈ {0, 1} φ(x1, . . . , xn).



The SAT problem becomes more difficult if both ”for all” (∀) and ”there exists” (∃) quantifiers are allowed.
It is known as the quantified Boolean formula problem or QSAT. QSAT is the canonical complete problem for
PSPACE [1].

3 The Polynomial Hierarchy

We have seen the classes NP and co-NP, which are defined as follows [1]:
L ∈ NP if there is a deterministic Turing machine M running in time polynomial in its first input, such

that x ∈ L⇔ ∃w M(x;w) = 1, w has length polynomial in x.
L ∈ co-NP if there is a deterministic Turing machine M running in time polynomial in its first input, such

that x ∈ L⇔ ∀w M(x;w) = 1, w has length polynomial in x.
It is natural to generalize the above [1][4].
Let i be a positive integer. L ∈ Σi if there is a deterministic Turing machine M running in time polynomial

in its first input, such that

x ∈ L⇔ ∃w1∀w2 . . . Qiwi︸ ︷︷ ︸
i times

M(x;w1; . . . ;wi) = 1,

where Qi = ∀ if i is even, and Qi = ∃ if i is odd.
Let i be a positive integer. L ∈ Πi if there is a deterministic Turing machine M running in time polynomial

in its first input, such that

x ∈ L⇔ ∀w1∃w2 . . . Qiwi︸ ︷︷ ︸
i times

M(x;w1; . . . ;wi) = 1,

where Qi = ∀ if i is odd, and Qi = ∃ if i is even.
As in the cases of NP, co-NP, we require that wi each have length polynomial in x.
The polynomial hierarchy PH consists of all those languages of the form defined above. Note also the

similarity to QSAT. The crucial difference is that QSAT allows an unbounded number of alternating quantifiers,
whereas Σi, Πi each allow (at most) i quantifiers. From here, PH ⊆ PSPACE.

4 Alternating Turing machine

An alternating Turing machine (ATM) is a non-deterministic Turing machine (NTM) with a rule for accepting
computations that generalizes the rules used in the definition of the complexity classes NP and co-NP. The
concept of an ATM was set forth by Ashok Chandra, Larry Stockmeyer and Dexter Kozen [5].

The definition of NP uses the existential mode of computation: if any choice leads to an accepting state,
then the whole computation accepts. The definition of co-NP uses the universal mode of computation: only
if all choices lead to an accepting state, then the whole computation accepts. An alternating Turing machine
(or to be more precise, the definition of acceptance for such a machine) alternates between these modes.

An alternating Turing machine with k alternations is an alternating Turing machine which switches from
an existential to a universal state or vice versa no more than k− 1 times. The complexity class PH is a special
case of hierarchy of bounded alternating Turing machine [5].

AP = PSPACE, where AP is the class of problems alternating machines can solve in polynomial time [5].

5 Main result

Next theorem shows that QBF is indeed generalisation of the Boolean Satisfiability Problem, where determin-
ing of interpretation that satisfies a given Boolean formula is replaced by existence of Boolean functions that
makes a given QBF to be tautology. Such functions are called the Skolem functions.

Theorem 1. The quantified Boolean formula

Ω1x1 ∈ {0, 1} Ω2x2 ∈ {0, 1} . . . Ωnxn ∈ {0, 1} φ(x1, . . . , xn),

where φ(x1, . . . , xn) is a Boolean formula, Ωs, s = i1, . . . , ij , is the quantifier ∃ and Ωt, t 6= i1, . . . , ij , is the
quantifier ∀, j is the number of variables with the quantifier ∃, is a true quantified Boolean formula if and only
if there are Boolean functions yq, where yq depends only on variables with the quantifier ∀ and indexes less iq,
q = 1, . . . , j, that after substituting xiq := yq the given quantified Boolean formula becomes tautology.



Proof. It follows from simple recursive algorithm for determining whether a QBF is true. We take off the first
quantifier and check both possible values for the first variable:

A = Ω2x2 ∈ {0, 1} . . . Ωnxn ∈ {0, 1} φ(0, . . . , xn),

B = Ω2x2 ∈ {0, 1} . . . Ωnxn ∈ {0, 1} φ(1, . . . , xn).

If Ω1 = ∃, then return A disjunction B (that’s it, A or B is true; to avoid unambiguous, if A and B is true,
take A for determining the function, so the value depends only on values of previous variables). If Ω1 = ∀,
then return A conjunction B (A and B is true).

Notice that a Boolean function determines the truth table (one-to-one correspondence).

Example 1. Let only the quantifier for xk, k ≥ 1, be existential, then y1 is some function of variables
x1, . . . , xk−1, as QBF means in that case that for any possible values of x1, . . . , xk−1 there exists value of
xk that for all possible values of xi>k the given formula is true. It is indeed the truth table, where values of
x1, . . . , xk−1 determine the value xk.

Example 2. ∀x1∃z1∀x2∃z2∀x3∃z3 φ(x1, z1, x2, z2, x3, z3) is a true QBF if and only if there exist such Boolean
functions y1 : {0, 1} → {0, 1}, y2 : {0, 1}2 → {0, 1}, y3 : {0, 1}3 → {0, 1} that

φ(x1, y1(x1), x2, y2(x1, x2), x3, y3(x1, x2, x3)) is tautology.

Theorem 2. ∏
4

= (co-NP)NP
(co-NP)NP

= PSPACE

Proof. From [1][6] we know that without loss of generality we can assume a quantified Boolean formula to be in
form (prenex normal form), where existential and universal quantifiers alternate. We assume it, for simplicity.

We wish that an quantified Boolean formula

∀x1 ∈ {0, 1} ∃y1 ∈ {0, 1} ∀x2 ∈ {0, 1} ∃y2 ∈ {0, 1} . . . ∀xn ∈ {0, 1} ∃yn ∈ {0, 1}

φ(x1, y1, . . . , xn, yn)

would be equivalent to
∀(x1, x2, . . . , xn) ∃(y1, . . . , yn){

φ(x1, y1, x2, y2, . . . , xn, yn) ∧

∧ ∀(x̂n) ∃(zn) φ(x1, y1, x2, y2, . . . , xn−1, yn−1, x̂n, zn) ∧

∧ ∀(x̂n−1, x̂n) ∃(zn−1, zn) φ(x1, y1, x2, y2, . . . , xn−2, yn−2, x̂n−1, zn−1, x̂n, zn) ∧ . . .

. . . ∧ ∀(x̂2, . . . , x̂n) ∃(z2, . . . , zn) φ(x1, y1, x̂2, z2, . . . , x̂n−2, zn−2, x̂n−1, zn−1, x̂n, zn)

}

Namely, iterations of ∀x∃y reduce to conjunctions of separated ∀x̂∃z, as in the beginning we fix values of
{yq, q = 1, . . . , n} and conjunctions jointly check that for predetermined {yl, l < q} suitable continuation
{yl, l ≥ q} can be found. In each conjunction we consider {yl, l < q} as functions dependent on all {xi, i < q}
and {zl, l ≥ q} as functions dependent on every {xi, i = 1, . . . , n} (if ∀x1 F (x1, 0) = F (x1, 1), then variable x2
is dummy variable for Boolean formula F (x1, x2)). From here, if it is a true quantified Boolean formula, the
above confirms it. However, another implication is not always true. Let’s exam when two parts are different,
allowing φ to have also odd number of variables with preserving alternations for quantifiers for foregoing
induction.

m = 1: for a Boolean formula of one variable the equivalence obviously holds.
m = 2: inconsistency can possibly happen only with ∃y ∀x φ(y, x); we have 16 different Boolean formulas

of two variables and the equivalence is violated only for XOR : (y ⊕ x),¬(y ⊕ x).

Example 3. ∃y ∀x x · y is FALSE as well as ∀x ∃y x · y

Example 4. ∃y ∀x x+ y is TRUE as well as ∀x ∃y x+ y

Example 5. ∃y ∀x x⊕ y is FALSE, but ∀x ∃y x⊕ y is TRUE



m ≥ 3: taking off the first quantifier and checking both possible values for the first variable in way we did
in Theorem 1, we come to the m - 1 case. Indeed, for example, considering m = 3, we have

∀z ∃y ∀x φ(z, y, x) ≡ ∃y ∀x φ(0, y, x) AND ∃y ∀x φ(1, y, x),

∃t ∀x ∃y φ(t, x, y) ≡ ∀x ∃y φ(0, x, y) OR ∀x ∃y φ(1, x, y),

where the second expression can be viewed as negation of the first expression. Consequently, it is enough to
inspect only first expression due to double negation.

If ∃y ∀x φ(0, y, x) ≡ ∀x ∃y φ(0, y, x) and ∃y ∀x φ(1, y, x) ≡ ∀x ∃y φ(1, y, x), then ∀z ∃y ∀x φ(z, y, x) ≡
∀z ∀x ∃y φ(z, y, x) ≡ ∀z ∃ξ ∀x ∃y φ(z, y, x). Otherwise, the equivalence is false due to XOR issue from
m = 2. Then ∃y ∀x φ(0, y, x) or ∃y ∀x φ(1, y, x) is false. Therefore, ∀z ∃y ∀x φ(z, y, x) is false.

Thus, using mathematical induction we have shown that XOR issue from m = 2 appears whenever the
equivalence we want doesn’t work and the emergence means that the real value is false, but the displayed
formula says that it is true. So, for each
∀(x1, x2, . . . , xn) ∃(y1, . . . , yn) ∀(x̂i, . . . , x̂n) ∃(zi, . . . , zn)

φ(x1, y1, x2, y2, . . . , x̂i, zi, . . . , x̂n−1, zn−1, x̂n, zn)

we additionally need to verify that φ(x1, y1, x2, y2, . . . , x̂i, zi, . . . , x̂n−1, zn−1, x̂n, zn) as formula of two variables
(x ∈ {x1, . . . , xi−1, x̂i, . . . , x̂n}, y ∈ {y1, . . . , yi−1, zi, . . . , zn}) (all arguments are specified in each leaf/ branch/
iteration; there are n2 such formulas) is not equivalent to ∃y ∀x (x ⊕ y) or ∃y ∀x ¬(x ⊕ y). Otherwise, we
consider the value φ with precise x1, y1, x2, y2, . . . , x̂i, zi, . . . , x̂n−1, zn−1, x̂n, zn as false, even if it is true. This
extra condition can be checked in polynomial time. The algebraic normal form (ANF, Zhegalkin normal form)
is used here, i.e. the fact that any Boolean formula can be rewritten using only conjunctions and XORs.

To conclude, definition of alternating Turing machine shows that (co-NP)NP
(co-NP)NP

is enough and this way
we solve complete problem for PSPACE.

Remark 1. PSPACE = PNP? PSPACE = NPNP? PSPACE = NPNPNP
?

BQP (bounded-error quantum polynomial time) is the class of decision problems solvable by a quantum
computer in polynomial time, with an error probability of at most 1/3 for all instances, see [1][6].

Corollary 1. The polynomial hierarchy collapses and BQP ⊆ PH.

Proof. See Chapter 3 and Theorem 2. It is known that BQP ⊆ PSPACE.

Remark 2. The relationship between BQP and PH has been an open problem since the earliest days of quantum
computing [7].

Remark 3. In May 2018, Ran Raz and Avishay Tal published a paper [8] which showed that, relative to an
oracle, BQP was not contained in PH. However, note that an oracle separation of BQP and PH does not
necessarily imply the ordinary separation. There is no contradiction.

The proof of Theorem 2 relies strongly on Boolean algebra and that defeats the relativization. Moreover,
one useful reformulation is that PH = PSPACE if and only if second-order logic over finite structures gains no
additional power from the addition of a transitive closure operator.

BPP (bounded-error probabilistic polynomial time) is the class of decision problems solvable by a proba-
bilistic Turing machine in polynomial time with an error probability bounded away from 1/3 for all instances,
see [1]. If the access to randomness is removed from the definition of BPP, we get the complexity class P.

Corollary 2. If P = NP, then P = PSPACE. If BPP = NP, then BPP = PSPACE.

Proof. If P = NP, then NP = co-NP, since P = co-P. Moreover, a P machine with the power to solve P problems
instantly (a P oracle machine) is not any more powerful than the machine without this extra power. Thus, we
obtain that P = PH.

BPP can be treated in the same manner, as it is known that BPP is closed under complement and low for
itself, meaning that BPPBPP = BPP.

Remark 4. The displayed formula in Theorem 2 and size and depth complexity of Boolean Circuits (data
compression) as well as the inequality P 6= EXP (the time hierarchy theorems) give a potential way to P 6= NP.



Corollary 3. If NP = co-NP, then NP = PSPACE.

Proof. It is known that if NP = co-NP, then NP = PH.

Remark 5. Maximal Satisfying Assignmentodd, the problem of indicating, that the lexicographical maximum
x1, . . . , xn ∈ {0, 1}n, that satisfies a given Boolean formula, is odd (is x1 odd?), is complete for PNP.

PP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an
error probability of less than 1/2 for all instances, see [1][9]. PP has natural complete problems, for example,
MAJSAT. It is a decision problem, in which one is given a Boolean formula φ. The answer must be ”yes” if
more than half of all assignments make φ true and ”no” otherwise.

Corollary 4. PPP = PSPACE.

Proof. By Toda’s theorem PH ⊆ PPP [1][10]. Further, PPP ⊆ PPSPACE = PPH = PH.

Remark 6. By adding postselection to BQP (BQP ⊆ PP), a larger class is obtained [11]. It is known that it is
equal to PP [11]. Is it true that BQP 6= PP?

Corollary 5. If NP ⊆ BQP, then BQP = PSPACE.

Proof. BQP is low for itself, which means BQPBQP = BQP [12]; BQP ⊆ PSPACE.

Remark 7. Dependency quantified Boolean formulas (DQBFs) are a generalization of ordinary quantified
Boolean formulas [13]. While the latter is restricted to linear dependencies of existential variables in the
quantifier prefix, DQBFs allow arbitrary dependencies, which are explicitly specified in the formula. This
makes decision problem with a DQBF to be NEXP-complete [14].

Theorem 2 is not applicable to the case of DQBFs directly as the looping is possible (the linear order is
used in Theorem 2). Is it within reach to generalise Theorem 2 for it? Notice that NEXP ⊆ EXPNP.

Remark 8. Theorem 2 opens the road for comprehensive pursuing of all exponential complexity classes and
their relationships with probabilistic Turing machines and the polynomial hierarchy. The beginning of such
kind of research can be found in [15][16][17][18][19].

Multiset {P, NP, NPNP, NPNPNP
, NPNPNPNP

} shows that there is always a key.
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