
Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities
Ertem Nusret Tas

Stanford University and BabylonChain

nusret@stanford.edu

David Tse

Stanford University and BabylonChain

dntse@stanford.edu

Fisher Yu

BabylonChain

fishermanymc@babylonchain.io

Sreeram Kannan

University ofWashington, Seattle

ksreeram@uw.edu

Mohammad Ali Maddah-Ali

Stanford University

maddah.ali.ee@gmail.com

ABSTRACT
Bitcoin is the most secure blockchain in the world, supported by the

immense hash power of its Proof-of-Work miners. Proof-of-Stake

chains are energy-efficient, have fast finality and some accountabil-

ity, but face several security issues: susceptibility to non-slashable

long-range safety attacks, non-accountable transaction censorship

and stalling attacks and difficulty to bootstrap PoS chains from low

token valuation. We show these security issues are inherent in any

PoS chain without an external trusted source, and propose a new

protocol Babylon, where an off-the-shelf PoS protocol uses Bitcoin

as an external source of trust to resolve these issues. An impossibility

result justifies theoptimalityofBabylon.Our results shed light on the

general question of howmuch security a PoS chain can derive from

an external trusted chain by only making succinct commitments to

the trusted chain.

1 INTRODUCTION
1.1 From Proof-of-work to proof-of-stake
Bitcoin, the most valuable and arguably the most secure blockchain

in the world, is supported by a proof-of-work (PoW) protocol that

requires its miners to solve hard math puzzles by computing many

random hashes. Many newer blockchain projects eschew the proof-

of-work paradigm in favor of proof-of-stake (PoS). A prominent

example is Ethereum,which is currentlymigrating fromPoW to PoS,

a process 6 years in the making. Other prominent PoS blockchains

include single chain ecosystems such as Cardano, Algorand, Solana,

Avalanche as well as multi-chain ecosystems such as Polkadot and

Cosmos. The Cosmos ecosystem, for example, consists of many

application-specific zones all built on top of the Tendermint consen-

sus protocol [10, 11]. Other ecosystems such as the Binance Smart

Chain are also evolving into multi-chain ecosystems.

PoS protocols replace computational work with financial stake as

themeans toparticipate in theprotocol. Thus, to execute theprotocol

as validators, nodes acquire coins of the PoS protocol, and bond their
stake as collateral in a contract. This enables the PoS protocol to

hold protocol violators accountable, and slash, i.e., burn their bonded
stake as punishment.

1.2 Proof-of-stake security issues
Security of PoS protocols has traditionally been shown under the

honest majority (or super-majority) assumption, which states that

Contact author: DT.

the honest parties hold the majority of the stake [7, 11, 17, 18]. Intro-

duced by Buterin and Griffith [13], the concept of accountable safety
enhances the notion of security under honest majority with the abil-

ity to identify the validatorswhohave provably violated the protocol

in the event of a safety violation. Thus, accountable safety not only

implies security under an honest majority but also the identification

of protocol violators if a large quorum of the validators are adver-

sarial and cause a safety violation. In lieu of making an unverifiable

honest majority assumption, this approach aims to obtain a cryptoe-
conomic notion of security by holding protocol violators accountable
and slashing their stake, thus enabling an exact quantification of

the penalty for protocol violation. This trust-minimizing notion of
security is central to the design of PoS protocols such as Gasper [14],

the protocol supporting PoS Ethereum, and Tendermint [10, 11],

the protocol supporting the Cosmos ecosystem. However, there are

several fundamental limitations to the security of PoS protocols:

(1) Safety attacks are not slashable:While a PoS protocol with

accountable safety can identify attackers, slashing of their stake

is not always possible, implying a lack of slashable safety. For
example, a posterior corruption attack can be mounted using

old coins after the stake is already withdrawn and therefore

cannot be slashed [7, 12, 18, 19]. These attacks are infeasible in

a PoW protocol like Bitcoin as the attacker needs to counter the

total difficulty of the existing longest chain. In contrast, they

becomeaffordable in aPoSprotocol since theold coinshave little

value and can be bought by the adversary at a small price. Such

posterior corruption attacks is a long-known problem with PoS

protocols, and several approaches have been proposed to deal

with them under the honest majority assumption (Section 2).

Theorem 1 in Section 4.1 says that no PoS protocol can provide

slashable safety without external trust assumptions. A typical

external trust assumption used in practice is off-chain social
consensus checkpointing. As social consensus is a slow process,

this type of checkpointing leads to a long stake lock-up period

e.g., 21 days for Cosmos zones [2], which reduces the liquidity

of the system.Moreover, social consensus cannot be relied upon

in smaller blockchains with an immature community.

(2) Liveness attacks are not accountable or slashable: Unlike
safety attacks where adversary can be identified by its votes

on conflicting blocks, attacks such as inactivity or transaction

censorship are hard to hold accountable in a PoS protocol. For

example, Tendermint and PoS Ethereum attempt to hold inac-

tive validators accountable through a process called inactivity
leak [9]. However, in Section 5.1, we show an attack, where the

1

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

Figure 1: Babylon places hashes of the PoS blocks signed by the PoS validators. Ordering of these hashes enable clients to break ties between
alternative PoS chains, and slash adversarial validators’ stake before they withdraw in the event of a safety violation. The PoS chain in the
view of a client c is shown by the red circle. Dark blue blocks represent the checkpointed chain of PoS blocks in c’s view. The fast finalization
rule outputs the PoS chain, while the slow finalization rule outputs the checkpointed chain, which is always a prefix of the PoS chain.

Figure 2: An adversary that controls a supermajority of active validators finalizes PoS blocks on an attack chain (top). It keeps the attack chain
private, yet posts the hashes of the private blocks and the corresponding signatures on Bitcoin. Once these hashes and signatures are deep in
Bitcoin, adversaryhelps build a conflicting chain (bottom) inpublic, andposts thehashes of its blocks and the corresponding signatures onBitcoin.
At this point, a client that sees the earlier checkpoint for the unavailable blocks, and the later one for the public blocks has two options: (1) It can
stop outputting newblocks, or (2) it can ignore the earlier checkpoint and output the public blocks from the bottom chain.However, the adversary
can later publish the unavailable blocks, and convince a late-coming client to output the blocks from the top, attack chain, causing a safety
violation. Moreover, as the adversarymight have withdrawn its stake by the time the blocks in the top, attack chain are published, it cannot be
slashed.Toavoid this attack, clients choose to stall uponseeingblock𝑏, i.e. emergency-break, if they seea signedcheckpoint forunavailableblocks.

adversary creates a private chain without the honest validators’

votes, thereby causing the honest validators to lose their stake.

Generalizing the attack, Theorem 4 says that no PoS protocol

can guarantee accountable liveness.

(3) The bootstrapping problem: Even if a PoS protocol could

provide slashable security guarantees, the maximum financial

loss an adversary can suffer due to slashing does not exceed the

value of its staked coins. Thus, the cryptoeconomic security of

a PoS protocol is proportional to its token valuation. Many PoS

chains, particularly ones that support one specific application,

e.g., a Cosmos zone, start small with a low token valuation. This

makes it difficult for new blockchains to support high-valued

applications like decentralized finance or NFTs.Moreover, a PoS

chain that experiences a significant drop in token valuation will

suddenly be vulnerable to attacks.

1.3 Leveraging external trust
The main reason behind the security issues described in Section 1.2

is lack of a reliable arrow of time. For instance, posterior corruption
attacks exploit the inability of the late-coming clients to distinguish

between the canonical chain minted by the honest validators and

the adversary’s history-revision chain that is published much later

[18, 19]. Hence, to guarantee a slashable notion of safety, PoS pro-

tocols need an external source of trust that can periodically and

publicly timestamp the canonical chain. Social consensus can be

viewed as one such source of external trust, but because it is achieved

off-chain, the level of security is hard to quantify. In this paper, we

explore a more quantifiable approach, which is to use an existing
secure blockchain as a source of external trust. Given such a trusted
blockchain, we ask: What is the limit to the security enhancement
the trusted chain can provide to a PoS chain and what is the optimal
protocol that achieves this limit?

A natural example of such a trusted blockchain is Bitcoin. The

main result of the paper is the construction of Babylon, where an

off-the-shelf PoS protocol posts succinct information to Bitcoin for

security enhancement. Moreover, we show that Babylon achieves

the optimal security among all protocols that do not post the entire

PoS data to Bitcoin. Indeed, it is trivial to see that if the PoS protocol

is allowed to post its entire data onto the trusted chain, the PoS pro-

tocol can inherit its full security. But in a chain with low throughput

like Bitcoin, posting the entire data is clearly infeasible. Our result

shows exactly what the loss of security is from this limitation.

The ideaofusinga trustedparent chain toprovide security toaPoS

chain has been used in several industry projects and academicworks.

Most of these works focus on mitigating specific attack vectors. For

example, a recently proposed protocol, BMS [32], uses Ethereum to

keep track of the dynamic validator set of a PoS chain to withstand

posterior corruption attacks. (That work was later extended to a

protocol using Bitcoin instead of Ethereum [5].) In our paper, we

broaden the investigation to find out the best security guarantees a

trusted public blockchain such as Bitcoin can provide to a PoS chain,

2

Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities

and construct an optimal protocol, Babylon, that achieves these guar-

antees. A detailed comparison of Babylon and other approaches is

described in Table 1 and Section 2.

1.4 Babylon
APoS protocol, such as Tendermint, is executed by validators, which
lock up their coins to join the validator set. The design of Babylon

specifies the kind of information validators post on Bitcoin and how

this information is used by the clients, observers of the protocol, to

resolve attacks on the PoS chain (cf. Figure 1). Highlights of Babylon
are presented below:

Checkpointing. Honest validators act as Bitcoin clients, and sign
the hash of the last PoS block of each epoch (cf. Figure 1). They sub-
sequently post the hash and the corresponding signatures on Bitcoin

as checkpoints. Ordering imposed on these checkpoints by Bitcoin

enable the clients to resolve safety violations, and identify and slash

adversarial validators engaged in long range posterior corruption

attacks before they can withdraw their stake.

Fast finalization Rule (cf. Figure 1). To output a PoS chain, a client
c first observes the confirmed prefix of the longest Bitcoin chain in

its view. It then uses the sequence of checkpoints onBitcoin to obtain

a checkpointed chain of PoS blocks. While constructing the check-

pointed chain, PoS blocks with earlier checkpoints take precedence

over conflicting blocks with later checkpoints. Once c constructs
the checkpointed chain, it obtains the full PoS chain by attaching

the remaining PoS blocks that extend the checkpointed chain. It

stalls upon observing a fork among the PoS blocks that extend the

checkpointed chain.

SinceBitcoin enables each client to resolve earlier forks andobtain

a unique checkpointed chain, safety can only be violated for later

blocks in c’s view. Hence, adversarial validators cannot violate the
safety of older PoS blocks through a long range posterior corruption

attack afterwithdrawing their stake. On the other hand, if a safety at-

tack isobserved for the recentPoSblocks, theclients candetect thead-

versarial validators and enforce the slashing of their stake as itwould

not have been withdrawn. Protocol thus ensures slashable safety.

Emergency Break. If the adversary controls a supermajority of the

validators, it can sign hashes that do not correspond to blocks avail-

able in clients’ views. In this case, clients stop adding newPoS blocks

to their PoS chains if they observe a signed checkpoint on Bitcoin,

yet the corresponding block is unavailable. This emergency break is

necessary to protect against data unavailability attacks (cf. Figure 2).

Fallback to Bitcoin. If a transaction is observed to be censored,

execution of the PoS protocol is halted, and the hashes of all future

PoS blocks and the corresponding signatures on them are posted on

Bitcoin, which is directly used to order these blocks. This is analo-

gous to operating the PoS protocol as a rollup, where Bitcoin plays
the role of the parent chain and the PoS validators act like sequencers.

Thus, a PoS chain that uses Bitcoin directly to order the blocks is

said to be in the rollup mode.
Once the protocol enters the rollup mode, validators batch the

PoS transactions into bundles and sign the bundles whose data is

available. Once a bundle gathers sufficientlymany signatures, valida-

tors post its hash and the associated signatures to Bitcoin. The rollup

mode thus allows the recovery of liveness, albeit at Bitcoin latency,

which is larger then the fast finalization latency of the PoS protocol.

Bitcoin Safety& Slowfinalization Rule. Clients can achieve Bitcoin
safety for their PoS chains if they adopt a slow finalization rule. In

this case, clients only output the checkpointed chain in their views.

Thus, theywait until a PoS block or its descendants are checkpointed

onBitcoin before outputting the block as part of its PoS ledger. In this

case, the PoS ledgers are always safe (assuming Bitcoin is secure),

however, the finalization latency is now as large as Bitcoin latency.

1.5 Security guarantees
Table 1 summarizes the security guarantees achieved by Babylon,

assuming that Bitcoin is safe and live. Babylon resolves the three

PoS security issues presented in Section 1.2 in the following way:

(1) Safety: Under the fast finalization rule, Babylon achieves slash-
able safety via checkpointing and stalling whenever data is

unavailable. Slashable safety is not possible without an external

source of trust.

(2) Liveness:Without external trust, a PoS protocol which is 𝑛/3-
accountably-safe has no liveness guarantee beyond 𝑛/3 adver-
sarial validators [31, Appendix B]. Babylon improves this live-

ness resilience from 𝑛/3 to 𝑛/2 by using Bitcoin as a fallback.

However, when 𝑓 ≥ 𝑛/2, liveness cannot be guaranteed, and
even worse, liveness violations cannot be held accountable. It

turns out that this is not a fault of Babylon, but is inherent in

any protocol which does not post the entire PoS transaction

data onto Bitcoin (Theorem 4). In this regime, the protocol is

susceptible to data unavailability attacks.

(3) Bootstrapping: Using the slow finalization rule, Babylon is

safe no matter how many adversarial validators there are, as

long as Bitcoin is secure. Thus, Babylon achieves Bitcoin safety.

This is achieved at the expense of Bitcoin confirmation latency

(even for 𝑓 < 𝑛/3), but is useful in a bootstrapping mode or for

important transactions, where slashable safety is not sufficient.

1.6 Outline
The rest of the paper is organized as follows. In Section 2, we review

related work. In Section 3, we present the model and definitions of

various notions of security. In Section 4, we first show that slash-

able safety is not possible in any PoS chain without external trust.

Then we present Babylon 1.0, a Bitcoin-checkpointed protocol that

provides slashable safety. In Section 5, we show that it is impossible

to provide both slashable safety and slashable liveness, even when
there is a data-limited source of external trust. Moreover, we give

a bound on the liveness resilience that can be achieved. We then im-

prove Babylon 1.0 to the full Babylon protocol to provide the optimal

liveness resilience. In Section 6, we describe a modified finalization

rule that provides Bitcoin safety to the PoS chains.

2 RELATEDWORKS
2.1 Posterior corruption attacks
Among all the PoS security issues discussed in Section 1.2, posterior

corruption attacks is the most well-known, [7, 12, 18, 19]. In a pos-

terior corruption attack also known as founders’ attack, long range

attack, history revision attack or costless simulation, adversary ac-

quires the old keys of the validators after they withdraw their stake.

It then re-writes the protocol history by building a conflicting chain

using these old keys. The conflicting chain forks from the canonical

one at a past block, at the time of which the old keys constituted a

3

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

Safety Liveness Withdrawal

𝑓 < 𝑛/3 𝑛/3 ≤ 𝑓 < 𝑛/2 𝑓 ≥ 𝑛/2

KES [17] 𝑛/3-safe PoS Latency No guarantee No guarantee ?

BMS [32] 𝑛/3-safe PoS Latency No guarantee No guarantee Ethereum latency

Babylon: fast finalization 𝑛/3-slashable safe PoS Latency Bitcoin Latency No guarantee Bitcoin latency

Babylon: slow finalization always safe Bitcoin Latency Bitcoin Latency No guarantee Bitcoin latency

Table 1: The security guarantees of Babylon compared to other solutions, assuming the security of Bitcoin in the case of Babylon and the security
of Ethereum in the case of BMS. Here, 𝑓 is the number of adversarial validators and𝑛 is the total number of validators.𝑚-safemeans the protocol
is safe whenever 𝑓 < 𝑚,𝑚-slashable-safe means that whenever safety is violated,𝑚 validators can be slashed (which is a stronger property
than𝑚-safe). Stake withdrawals happen with Bitcoin latency on Babylon as long as liveness is satisfied, whereas it happens with Ethereum
latency on BMS. In theory, Algorand [17] can grant withdrawal requests on the order of seconds as it uses key-evolving signatures (KES) to
recycle keys after every signature, but since KES is highly incentive incompatible, Algorand still uses social consensus checkpointing.

majority of the validator set. On the conflicting chain, the adversary

replaces the old validators with new ones under its control and con-

tinues the attack. Thus, it can cause clients observing the protocol

at different times to output conflicting chains.

Without additional trust assumptions, it is impossible to construct

a securePoSprotocol, even if themajorityof theactivevalidators stay

honest over the protocol execution [18, Theorem 2]. Thus, several

solutions have been proposed: 1) checkpointing via social consensus

(e.g., [6, 8, 12, 18]); 2) use of key-evolving signatures (e.g., [7, 17, 24]);
3) use of verifiable delay functions, i.e., VDFs (e.g., [34]); 4) times-

tamping on an existing PoW chain like Ethereum [32] or Bitcoin [5].

2.1.1 Social consensus. Social consensus refers to a trusted com-

mittee of observers, potentially distinct from the PoS validators,

which periodically checkpoint finalized PoS blocks. It thus attempts

to prevent posterior corruption attacks by making the blocks on the

private attack chain distinguishable from the checkpointed ones on

the canonical chain. For instance, in PoS Ethereum, clients identify

the canonical chain with the help of checkpoints received from their

peers. Since no honest peer provides a checkpoint on a private chain,

posterior corruption attacks cannot confuse new validators [4].

As the trusted peers can be different for different validators, it

is often difficult to quantify the trust assumption placed on social

consensus. For instance, a small set of peers shared by all validators

would imply centralization of trust, making security prone to attacks

by a few entities. Conversely, a large set would face the problem

of reaching consensus on checkpoints in a timely manner, leading

to long withdrawal delays. For instance, Cosmos has a delay of 21

days [2],whereasdelays inEthereumcanbeas largeas13days [27,Ta-

ble 1] (calculated for 130,000 attesterswith averagebalanceof 32ETH

to accurately model the targeted attester numbers of PoS Ethereum).

2.1.2 Key-evolving signatures. Use of key-evolving signatures

requires validators to forget old keys so that a history revision at-

tack cannot be mounted. Security has been shown for various PoS

protocols [7, 17] using key-evolving signatures under the honest

majority assumption. This assumption is necessary to ensure that

the majority of the active validators willingly forget their old keys.

However, this is not necessarily incentive-compatible as theremight

be a strong incentive for the validators to remember the old keys in

case they later become useful. Thus, key-evolving signatures ren-

der the honest majority assumption itself questionable by asking

honest validators for a favor which they may be tempted to ignore

to maximize their future payoffs. This observation is formalized

in Section 4.1, which shows that key-evolving signatures are not

sufficient to provide slashable safety for PoS protocols.

2.1.3 VDFs. VDFs can enable the clients to distinguish the canon-
ical chain that has existed for a long time from an attack chain that

was createdmuch later.Hence, VDFs provide an arrowof time for the

clients, which protects the PoS protocol against posterior corruption

attacks. However, like key-evolving signatures, VDFs are not suffi-

cient to provide slashable safety for PoS protocols (cf. Section 4.1).
Another problem with VDFs is the possibility of finding faster

functions [3], which can then be used to mount posterior corruption

attacks.

2.1.4 Timestamping the validator set. Posterior corruption at-

tacks can be thwarted by timestamping the validator sets of the PoS

protocol on an external public blockchain such as Ethereum [32]

and Bitcoin [5]. For instance, Blockchain/BFTMembership Service

(BMS) [32] uses a smart contract on Ethereum as a reconfiguration
service that records the changes in the validator set.When validators

request to join or leave the current set, the current validators send
transactionscontaining thenewvalidator set to thecontract.Uponre-

ceiving transactionswith the samenewvalidator set fromsufficiently

manyvalidators fromthecurrent set, e.g., fromover1/3of thecurrent
validators, the contract replaces the current set with the new one.

The goal of BMS is to protect the PoS protocol against posterior

corruption attacks, where the adversary corrupts old validators, and

creates an attack chain. On the attack chain, the old validators are

replaced by an alternate set of new validators that are under the

adversary’s control and distinct from those on the canonical chain.

If the honest validators constitute over 2/3 of the current validator
set on the canonical chain, BMS enables the late-coming clients to

identify and reject the attack chain as the validator changes on the

attack chain could not have been recorded by the contract before

the changes on the canonical chain. Hence, the PoS protocol using

BMS satisfies safety and liveness under a dynamic set of validators

if the fraction of adversarial validators, active at any given time, is

bounded by 1/3 (cf.Table 1, third row, safety column and the liveness

4

Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities

column for 𝑓 < 𝑛/3). By preventing posterior corruption attacks,

BMS also helps reduce the withdrawal delay of the PoS protocols

fromweeks [2] to the order of minutes.

BMS requires an honest supermajority assumption on the current,

active set of validators to prevent posterior corruption attacks, and

as such, does not provide slashable safety. If the adversary controls

a supermajority of the current validator set, it can create a private,

hidden attack chain simultaneous with the public, canonical one,

and post the changes in the validator set of the private chain on the

contract before that of the public chain. In this case, late-coming

clients would believe that the canonical chain is an attack chain,

viewing it as a product of posterior corruption, and adopt the ad-

versary’s private chain once it is made public. Hence, late-coming

clients would believe the validators on the canonical chain to be

protocol violators, which implies the absence of slashable safety (cf.
Figure 2 for a similar type of attack). Moreover, BMS cannot ensure

liveness if the fraction of adversarial active validators exceeds 𝑛/3
(cf. Table 1, third row, liveness column for 𝑛/3 ≤ 𝑓 < 𝑛/2).

Unlike Babylon that can provide Bitcoin safety for bootstrapping

chains and important transactions, BMS cannot provide Ethereum

safety to the constituent PoS protocols even by adopting a slow fi-

nalization rule. This is because the state of the BMS consists of the

current set of PoS validators and does not include any information

about the PoS transactions. Thus, even if the clients of the PoS proto-

col wait until the validators that have signed the finalized PoS blocks

are verified by the BMS on Ethereum, if the adversary controls a

supermajority of the current set, it canfinalize conflicting PoS blocks,

and cause a safety violation.

2.2 Hybrid PoW-PoS protocols
APoSprotocol timestampedbyBitcoin is anexampleof ahybridPoW-
PoS protocol, where consensus is maintained by both the PoS valida-

tors and Bitcoin miners. One of the first such protocols is the Casper

FFGfinalitygadgetused inconjunctionwitha longest chainPoWpro-

tocol [13]. The finality gadget is run by PoS validators as an overlay

to checkpoint and finalize blocks in an underlay PoW chain, where

blocks are proposed by the miners. The finality gadget architecture

is also used in many other PoS blockchains, such as PoS Ethereum

[14] and Polkadot [33]. Bitcoing timestamping can be viewed as a

"reverse" finality gadget,where theminers run an overlay PoWchain

to checkpoint the underlay PoS chains run by their validators. Our

design that combines Bitcoin with PoS protocols also leverages off

insights from a recent line of work on secure compositions of proto-

cols [25, 26, 30]. Babylon uses insights from Thunderella [28], which

combines a longest chain protocol with a responsive BFT protocol.

2.3 Timestamping
Timestamping data on Bitcoin has been used for purposes other than

resolving the limitations of PoS protocols. Timestamping on a secure

distributed ledger, e.g., Bitcoin, was proposed as a method to pro-

tect Proof-of-Work (PoW) based ledgers against 51% attacks in [23].

However, [23] requires the Bitcoin network to contain ‘observing’

miners, which publish timestamps of blocks from the ledger to be

secured only if the block data is available. This implies changing the

Bitcoin protocol to incorporate data-availability checks, whereas in

ourwork, we analyze the limitations of security that can be achieved

by using Bitcoin as is.

Two projects that use Bitcoin to secure PoS and PoW child chains

are Veriblock [29] and Komodo [1]. Both projects suggest check-

pointing child chains on Bitcoin to help resolve forks. However, they

lack proper security proofs, and do not analyze how attacks on PoS

chains can be made slashable.

Another usecase of timestamping, analyzed by [22], is posting

commitments of digital content to Bitcoin to ensure integrity of the

data. In this context, [21] implements a web-based service to help

content creators prove their possession of a certain information in

the past by posting timestamps of the data on Bitcoin.

3 MODEL
3.1 Validators and clients
In the client-server setting of state machine replication (SMR), there

are two sets of nodes: validators and clients. Validators receive trans-

actions as input, and execute a SMR protocol. Their goal is to ensure

that the clients obtain the same sequence of transactions, thus, the

same end state. We assume that the transactions are batched into

blocks, and the clients output a totally-ordered sequence, i.e., chain,
of blocks, denoted byL. Hence, we will hereafter refer to the SMR

protocols as blockchain protocols.
To output a chain at a given time, clients query the validators,

which reply with a set of consensus messages. Purpose of these mes-

sages is to ensure that the clients obtain and output the same, or

consistent chains. Upon collecting messages from a subset 𝑆 of the

validators, each client outputs a chain. Clients can query the valida-

tors at arbitrary times, and cannot be assumed to have observed the

protocol execution inbetweenqueries.Honest validators are simulta-

neously clients of the blockchain protocol, and output a chain. How-

ever, the set of clients is not restricted to the honest validators, and

can contain external nodes that observe the protocol infrequently.

The blockchain protocol has external validity: A transaction in

a given chain is valid with respect to its prefix if it satisfies external

validity conditions. A block or chain is valid if it only contains valid

transaction. Clients output valid chains and ignore invalid blocks.

In a permissioned protocol, the set of validators that execute the

protocol stay the same over the protocol execution. This is in con-

tract to PoS protocols that allow changes in the validator set. To

distinguish the validators that are currently executing the protocol

at a given time from the old validators, we will refer to the current

validators as active and the older validators as passive.

3.2 Blocks and chains
Each block consists of two parts: a block header and transaction data.

Transactions are typically organized in vector commitments, e.g.
Merkle trees. The total order across the blocks in a chain together

with the ordering of the transactions in each block gives a total order

across all transactions included in the chain. Block headers contain

• a pointer to its parent block, e.g., hash of the parent block,
• a vector commitment to the transactions, e.g., a Merkle root,

• protocol related messages.

For a block 𝐵, we say that 𝐵 ∈ L if 𝐵 is part of the chainL. Sim-

ilarly, tx ∈ L states that the transaction tx is included in a block that
is inL. A block 𝐵 is said to extend 𝐵′, if 𝐵′ can be reached from 𝐵 by

following the parent pointers. Conversely, the blocks 𝐵 and 𝐵′ are
said to conflict with each other if 𝐵′ cannot be reached from 𝐵 and

5

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

vice versa. The notationL1 ≺ L2 denotes thatL1 is a strict prefix

ofL2, whereasL1 ⪯ L2 denotes thatL1 is either a prefix ofL2, or

is the same as L2. The chains L1 and L2 are said to conflict with

each other if they contain conflicting blocks.

3.3 Environment and adversary
Transactions are input to the validators by the environmentZ. Ad-

versaryA is a probabilistic polynomial time algorithm. Validators

corrupted by the adversary are called adversarial. These validators
surrender their internal states to the adversary and can deviate from

the protocol arbitrarily (Byzantine faults) under the adversary’s

control. The remaining validators are called honest and follow the

blockchain protocol as specified. Time is slotted, and the validators

are assumed to have synchronized clocks
1
.

3.4 Networking
Validators can send messages to each other and the clients, which

then send each received message to every other client, i.e., broadcast
the messages. Messages are delivered by the adversary, which can

observe a message sent by an honest validator before it is received.

Network is synchronous, i.e., the adversary is required to deliver all
messages sent by the honest validators to other honest validators

or clients within Δ slots. Here, Δ is a known parameter.

If a client observes the hash or header of a block before slot 𝑟 − Δ,
yet has not seen the whole block by slot 𝑟 , then that block is deemed

to be unavailable in the client’s view at slot 𝑟 . Otherwise, the block

is said to be available. Clients only output available blocks as part
of their chainsL.

3.5 Security
LetLc

𝑟 denote the chain outputted by a client c at slot 𝑟 . Let𝑇fin be
a polynomial function of _, security parameter of the blockchain

protocol. We say that the protocol is 𝑇
fin
-secure if the following

properties are satisfied:

• Safety: For any slots 𝑟, 𝑟 ′ and clients c, c′, eitherLc
𝑟 is a prefix

ofLc′
𝑟 ′ or vice versa. For any client c,L

c
𝑟 is a prefix ofLc

𝑟 ′ for all

slots 𝑟 and 𝑟 ′ such that 𝑟 ′ ≥ 𝑟 .

• T
fin
-Liveness: IfZ inputs a transaction tx to an honest valida-

tor at some slot 𝑟 , then, tx ∈ Lc
𝑟 ′ for any slot 𝑟

′ ≥ 𝑟 +𝑇
fin

and

for any client c.

We will alternatively refer toLc
𝑟 as the PoS chain when we talk

about PoS protocols.

3.6 Accountable security
We adopt the model in [31] to formalize accountable safety. During

the protocol execution, validators exchange messages, e.g., blocks or
votes, and each validator records its view of the protocol, e.g., all of
the protocol-specificmessages it received, in an execution transcript.

If a client observes a safetyviolation e.g., conflicting chains, it invokes
a forensic protocol. The forensic protocol takes transcripts of (some

of) the validators as input, and except with probability negligible in
the security parameter, outputs a proof that a subset of the validators
with size at least 𝑓 have irrefutably violated the protocol rules. This

proof is sufficient evidence to convince any client, including those

that observe the system at a later slot, that the validators identified

by the forensic protocol are protocol violators.With overwhelming

1
Bounded clock offset can be captured as part of the network delay

probability, forensic protocol does not identify any honest validator
as a protocol violator.

To invoke the forensic protocol, the client sends at least two con-

flicting blocks within the output chains to the validators. If honest

validators have information needed to create the proof, they send

their transcripts to the client. The client then invokes the forensic

protocol with these transcripts and constructs the proof, which is

subsequently sent to all other clients.

Definition 1. Accountable safety resilience of a protocol is the
minimum number 𝑓 of validators identified by the forensic protocol
as protocol violators when safety is violated. Such a protocol provides
𝑓 -accountable-safety.

Accountable safety resilience of 𝑓 implies that, with overwhelm-

ing probability, the forensic protocol identifies 𝑓 ormore adversarial

validators and does not identify any honest validator, as a protocol

violator, in the event of a safety violation.

We next extend the notion of accountability to liveness violations

using the same formalism. If a client observes that𝑇
fin
-liveness is

violated, i.e., a transaction input to an honest validator at slot 𝑟 byZ
is not in the client’s output chain by slot 𝑡 +𝑇

fin
, it again invokes the

forensic protocol with the transcripts received from the validators
2
.

The forensic protocol then outputs a proof that irrefutably identi-

fies a subset of the adversarial validators as protocol violators with

overwhelming probability.

Definition 2. 𝑇
fin
-accountable liveness resilience of a protocol is

the minimum number 𝑓 of adversarial validators identified by the
forensic protocol as protocol violators when 𝑇

fin
-liveness is violated.

Such a protocol provides 𝑓 -𝑇
fin
-accountable-liveness.

Accountable liveness resilience of 𝑓 implies that,with overwhelm-

ing probability, the forensic protocol identifies 𝑓 ormore adversarial

validators and does not identify any honest validator, as a protocol

violator, in the event of a liveness violation.

If there exists an adversary A such that the forensic protocol

cannot irrefutably identify any adversarial validator as a protocol

violatorwithoverwhelmingprobability in theeventofa safetyor live-

ness violation, or identifies an honest validatorwith a non-negligible

probability, then the protocol is said to provide 0-accountable safety

or liveness resilience.

3.7 Proof-of-Stake protocols
In a Proof-of-Stake (PoS) protocol, nodes stake coins to become val-

idators and participate in the protocol. Staked coins are locked in a

contract executed on the chain. In our model, one locked coin cor-

responds to a single active validator that is equipped with a unique

cryptographic identity.

Protocol execution starts with an initial committee of𝑛 validators

with𝑛 coins staked in the contract3. At all slots, there is a non-empty

queue of nodes waiting to stake their coins. However, the contract

allows at most 𝑛 coins to be staked at any given slot, implying that

there are exactly 𝑛 active validators at any slot.

2
Honest validators can ensure that the clients detect a liveness violation by sharing

the transactions input to them by the environment, thus informing the client when

a transaction was input to an honest validator.

3
For simplicity, we assume𝑛 is 1modulo 3, and𝑛/3 is an integer smaller than𝑛 divided

by 3.

6

Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities

The PoS protocol proceeds in epochs measured by the clients in

the number of blocks on their chains. For instance, if each epoch is

scheduled to last for𝑚 blocks and a client observes a chain of 5𝑚 + 3
PoS blocks (excluding the genesis block), then the first𝑚 blocks

belong to the first epoch, the second𝑚 blocks to the second one, and

so on, until the last 3 blocks, which are part of the on-going epoch 6.

During an epoch, the active validator set is fixed and the execu-

tion of the PoS protocol mimicks that of a permissioned blockchain
protocol, where the validators are the 𝑛 active validators of that

epoch. However, the PoS protocol supports changes in the active

validator set through withdrawals. An active validator can send a

withdrawal transaction to the protocol to leave the active set and

retrieve its staked coin. At the end of each epoch, clients inspect their

chains and identify the validators whose withdrawal transactions

have been included in the portion of the chain corresponding to the

epoch. Then, starting with the next epoch, these validators are no

longer in the active set, replaced with new ones from the staking

queue. Let 𝑟 denote the first slot such that an epoch boundary is

reached and an active validator v has left the active set according to
Lc
𝑟 in some client c’s view. Then, we say that v has become passive

in c’s view at slot 𝑟 . From slot 𝑟 on, v is no longer eligible to execute
the blockchain protocol in c’s view.

When a validator becomes passive according to some chainL, its
coin is not necessarily released by the contract immediately. Differ-

ent PoS protocols can have differentwithdrawal delays. For example,

Cosmos blockchains have a withdrawal delay of 21 days [2]. With-

drawal delay mechanism is central to security, and will be analyzed

in subsequent sections.

If the withdrawing validator’s coin is first released in the view of

a client c at slot 𝑟 , the validator is said to havewithdrawn its stake in
c’s view at slot 𝑟 . In a live PoS protocol, if an honest validator sends

a withdrawal transaction at slot 𝑟 , it should be able to withdraw its

stake in the view of all clients by slot 𝑟 + 𝑇 with high probability,

where𝑇 is a finite number.

Before the protocol execution starts, adversary can corrupt a cer-

tain number of coins. When a validator with a corrupt coin becomes

active, it is called an adversarial active validator. We assume that

once a validator becomes passive, it immediately becomes adversar-

ial if it has not been corrupted before. Let 𝑓 denote the upper bound

on the number of adversarial active validators over the execution

of the protocol. A PoS protocol provides 𝑓s-safety if it satisfies safety
whenever 𝑓 ≤ 𝑓s. Similarly, a PoS protocol provides 𝑓

l
-𝑇
fin
-liveness

if it satisfies𝑇
fin
-liveness whenever 𝑓 ≤ 𝑓

l
.

To output a chain at some slot 𝑟 , clients query the validators active

in their view at slot 𝑟 . Upon receiving responses from sufficiently

many validators, clients output a chain. For instance, if the PoS

protocol provides 𝑓
l
-𝑇
fin
-liveness, the clients wait until they hear

from 𝑛 − 𝑓
l
active validators since it is possible that the adversarial

ones do not reply. Clients can query the validators at arbitrary times

and might be offline in between queries. When we talk about events

that happenon thePoSprotocol, e.g. a safety violation,we refer to the
clients that query the protocol after the event as late-coming clients.

3.8 Slashable security
Auseful feature of the PoS protocols is the ability to impose financial

punishments for protocol violators through the slashing, i.e., burning

of their locked coins. In this context, slashable security extends the

notion of accountability to PoS protocols.

A validator v is said to be slashable in the view of a client c if,

(1) chas received or generated a proof through the forensic protocol
at slot 𝑟 such that v is irrefutably identified as a protocol violator,

(2) v has not withdrawn its stake in c’s view by slot 𝑟 .

If v is observed to be slashable by one client, no transaction that
spends the coin staked by vwill be viewed as valid by that client. In
practice, once the contract that locks v’s coin receives a proof for v’s
protocol violation, it will attempt to slash v’s coin if its is still locked.
However, once security is violated, the chain could stop executing

new transactions, which would prevent the contract from slashing

v’s stake. Indeed, bootstrapping a new, secure chain after a security
violation is a tricky problem, and often requires intervention from

outside the protocol. Consequently, in our definition, we opted to

use theword ‘slashable’ to indicate the conditional nature of slashing
on the resumption of chain activity after the security violation.

Definition 3. Slashable safety resilience of a PoS protocol is the
minimum number 𝑓 of validators that become slashable in the view of
all clients when safety is violated. Such a protocol provides 𝑓 -slashable-
safety.

Definition 4. 𝑇
fin
-slashable liveness resilience of a PoS protocol is

theminimumnumber 𝑓 of validators that become slashable in the view
of all clients when𝑇

fin
-liveness is violated. Such a protocol provides

𝑓 -𝑇
fin
-slashable-liveness.

A slashable safety or liveness resilience of 𝑓 implies that, with

overwhelming probability, in the event of a safety or liveness viola-

tion, all clients identify 𝑓 or more adversarial validators as protocol

violators before the validators withdraw their staked coins, and no

client identifies any honest validator as a protocol violator.

PoS protocol that provides 𝑓 -slashable-safety or 𝑓 -𝑇
fin
-slashable-

liveness satisfies safety or𝑇
fin
-liveness if the number of adversarial

active validators stay below 𝑓 throughout the protocol execution.

Since a slashable validator has to be irrefutably identified as a pro-

tocol violator, 𝑓 -slashable safety or liveness implies 𝑓 ′-accountable
safety or liveness for some 𝑓 ′ ≥ 𝑓 .

3.9 Model for Bitcoin
Wemodel Bitcoin using the formalism of [20] and treat it as a black-

box blockchain protocol, which accepts transactions and outputs a

totally ordered sequence of Bitcoin blocks containing these trans-

actions. To obtain the Bitcoin chain confirmed with parameter 𝑘

at slot 𝑟 , a client c takes the longest chain of Bitcoin blocks in its

view, removes the last 𝑘 blocks, and adopts the 𝑘 deep prefix as its

Bitcoin chain at slot 𝑟 . To differentiate the confirmed Bitcoin chain

outputted by a client c at slot 𝑟 from its PoS chain, we denote it by Cc𝑟 .
If a Bitcoin block 𝑏 or transaction tx first appears in the confirmed

Bitcoin chain, hereafter called the Bitcoin chain, of a client c at slot 𝑟 ,
we say that tx or𝑏 has become confirmed in c’s view at slot 𝑟 . We say

that Bitcoin satisfies security with parameter 𝑘 if the clients’ Bitcoin

chains confirmed with parameter 𝑘 satisfy safety and𝑇
fin
-liveness.

Here, we require𝑇
fin

to satisfy the following proposition:

Proposition 1. Suppose Bitcoin is secure with parameter 𝑘 with
overwhelming probability. Then, for any client c, if a transaction tx

7

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

is sent to Bitcoin at slot 𝑟 such that |Cc
𝑟−2Δ | = ℓ , tx ∈ Cc

𝑟 ′ for any
𝑟 ′ ≥ 𝑟 +𝑇

fin
, and |Cc

𝑟 ′ | ≤ ℓ + 𝑘 with overwhelming probability.

If the adversarial fraction of the mining power is less than 1/2− 𝜖
for some 𝜖 > 0, then there exists a parameter 𝑘 polynomial in the

security parameter _ such that Bitcoin is secure with parameter 𝑘

and satisfies the above proposition [20]. Hence, in the rest of the

paper, we assume that the value of 𝑘 is polynomial in _.

We assume that the PoS validators can send arbitrary data to

Bitcoin by using theOP_RETURN opcode, which allows 80 bytes of

arbitrary data to be recorded in an unspendable transaction. Due to

the limitations on the amount of data allowed in each Bitcoin trans-

action, we will aim to reduce the Bitcoin footprint of the protocols

in the subsequent sections.

3.10 Notation
Given apositive integer𝑚, we denote the set {1, 2, . . . ,𝑚} by [𝑚].We

denote PoS blocks by capital 𝐵 and the Bitcoin blocks by lowecase𝑏.

4 OPTIMAL SAFETY
In this section, we present and analyze a simplified version of Baby-

lon, Babylon 1.0, which achieves optimal safety guarantees but sub-

optimal in livenessguarantees.Livenessguaranteeswill beoptimized

in the full Babylon in Section 5.

4.1 Safety is not slashable without external trust
Without additional trust assumptions, no PoS protocol can provide

slashable safety. Suppose there is a long range attack and a late-

coming client observes two conflicting chains. As the client could

not have witnessed the attack in progress, it cannot distinguish the

attack chain from the canonical one. Hence, it cannot irrefutably

identify any validator that is active on either chain as a protocol

violator. Although the client might see that the passive validators

that have initiated the long range attack violated the protocol rules,

e.g., by voting for conflicting blocks, these validators are not slash-
able as they have alreadywithdrawn their stake. Hence, no validator

becomes slashable in the client’s view. This fact is formalized by the

following theorem:

Theorem 1. Assuming common knowledge of the initial set of ac-
tive validators, without additional trust assumptions, no PoS protocol
provides both 𝑓s-slashable-safety and 𝑓l-𝑇fin-liveness for any 𝑓s, 𝑓l > 0

and𝑇
fin

< ∞.

Proof is given in Appendix A.

Key-evolvingSignaturesandVDFs.Althoughkey-evolvingsigna-
tures and VDFs prevent long range attacks, as Theorem 1 indicates,

they are not sufficient to provide slashable safety. To emphasize

this point, we present the following attack. Suppose the adversary

controls a supermajority of the active validators. In the case of key-

evolving signatures, the adversarial active validators can record their

old keys, and use them to stage a long range attack after withdraw-

ing their stake. Adversary can thus cause a safety violation, yet, the

adversarial validators cannot be slashed as their stake is withdrawn.

Similarly, in the case of VDFs, adversarial active validators can con-

struct a private attack chain while they work on the canonical one,

and run multiple VDF instances simultaneously for both chains. Af-

ter withdrawing their stake, they can publish the attack chain with

the correct VDF proofs. Thus, the adversary can again cause a safety

violation without any slashing of its stake. These examples indicate

that slashable safety cannot be achieved by cryptographic primitives

that can be used by the adversary within its private execution.

4.2 Babylon 1.0 protocol with fast finalization

Algorithm 1 The function used by the client c to find the canonical
PoS chain. It takes the blocktree T , the confirmed Bitcoin chain C,
the sequence of checkpointed block hashes h in c’s view as input,

and outputsLc
𝑟 . The functionGetActiveVals takes a blocktree T ,

a block 𝐵 and an epoch number ep, and outputs the active validators

for the given epoch as determined by the prefix of the given block.

The function IsSigned checks if there are signatures on the given

hash valueℎ from over 𝑛/3 of the given set of active validators. The
functionGetBlocks returns the blocks within the given blocktree

that correspond to the preimage of the given hash and its prefix. It

returns⊥ if one of these blocks is unavailable. The function IsLast

returns true iff the givenPoS block is the last block of the given epoch.

The function IsFinal returns true iff the given sequence of blocks is

finalized by the active validators (that have not violated the protocol

rules)ofepochsupuntil thegivenepoch.The functionGetChildren

returns the children of the given block within the blocktree.

1: functionOutputPosChain(T , h, C)
2: ℎ1, . . . , ℎ𝑚 ← h
3: ckpt← B0

4: ep← 1

5: active_val← GetActiveVals(T, B0, ep)
6: for 𝑖 = 1 to𝑚 ⊲ Obtaining the checkpointed chain
7: if IsSigned(C, ℎ𝑖 , active_val)
8: 𝐵𝑖 ← GetBlocks(T, ℎ𝑖)
9: if 𝐵𝑖 ≠ ⊥ ∧ ckpt[−1] ⪯ 𝐵𝑖 ∧ IsFinal(T, 𝐵𝑖 , ep)
10: ⊲ Adding blocks for epoch ep to ckpt
11: ckpt← Bi ⊲ Chain ending at 𝐵𝑖
12: if IsLast(T, 𝐵𝑖 , ep)
13: ep← ep + 1
14: active_val← GetActiveVals(T, Bi, ep)
15: end if
16: else if 𝐵𝑖 = ⊥ ∨ ¬IsFinal(T, 𝐵𝑖 , ep)
17: ⊲ Send a checkpoint for the current PoS chain L to Bitcoin.
18: return ckpt ⊲ Emergency Break: Data Unavailable
19: end if
20: end if
21: end for
22: ch← GetChildren(T, ckpt[−1])
23: L ← ckpt

24: while |ch | = 1

25: L ← L ∥ ch
26: ch← GetChildren(T, ch)
27: endwhile
28: return L
29: end function

To provide slashable safety to PoS protocols, Bitcoin can be used

as the additional source of trust. Babylon 1.0 is a Bitcoin checkpoint-

ing protocol which can be applied on any PoS blockchain protocol

with accountable safety to upgrade the accountability guarantee

to slashable safety. Examples of such protocols include PBFT [15],

Tendermint [11], HotStuff [35], and Streamlet [16]. For concreteness,

we focus on Tendermint which provides 𝑛/3-accountable safety.
8

Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities

Figure 3: There is an epoch 𝑒 block containing a withdrawal request and the hash of the last epoch 𝑒 block and the signatures from the
corresponding active validator set appear in a confirmed Bitcoin block in a client’s view. The validator is granted permission to withdraw its
stake once the Bitcoin block with the checkpoint becomes 𝑘 deep in the confirmed Bitcoin chain.

Algorithm 2 The function used by the client c to verify stake with-
drawal requests. It takes the requesting validator, the checkpointed

chain and the confirmed Bitcoin chain in c’s view, and returns true
iff the withdrawal request for the specified validator is to be granted

in the view of the client running the function. It sends a message

to the on-chain contract if there is a fraud proof. The function

ReturnReqBlock returns the block within the given checkpointed

chain that includes the withdrawal request of the given validator.

The function ReturnChkptBlock returns the Bitcoin block that

contains the checkpoint transaction for the given PoS block or one

of its descendants. The function IsClean returns true iff there are

no fraud proofs or checkpoints for conflicting PoS blocks accusing

the given validator in the Bitcoin chain.

1: functionGrantWithdrawal(v, ckpt, C)
2: 𝐵 ← ReturnReqBlock(v, ckpt)
3: 𝑏 ← ReturnChkptBlock(C, 𝐵)
4: if 𝑏 ∈ C[: − 𝑘] ∧ IsClean(v, C)
5: return True ⊲Withdrawal is granted in c’s view.
6: else if ¬IsClean(v, C)
7: return False ⊲ c requests the on-chain contract to slash v.
8: end if
9: return False

10: end function

Let c denote a client, potentially a late-coming client or an honest

validator, whose goal is to output the canonical PoS chain L that

is consistent with the chains of all other clients. We assume that c
downloads the PoS block headers and the corresponding transac-

tion data upon observing the protocol. It also downloads the Bitcoin

blocks and outputs a Bitcoin chain C, confirmed with parameter 𝑘 .

In the description below, finalized blocks refer to the PoS blocks
outputted by the PoS protocol. A finalization by the PoS protocol

does not necessarily imply that the finalized block is included in

the PoS chain outputted by any client. In fact, when the adversary

controls a large fraction of the active validators, or engages in a

posterior corruption attack, there might be conflicting finalized PoS

blocks, and the clients could be forced to choose a subset of these

finalized blocks. Algorithm 1 describes how clients use Bitcoin to

output (potentially a subset of) these finalized blocks as part of their

PoS chains (cf.Algorithm 1).

Checkpointing the PoS Chain. At the end of each epoch, the honest
active validators sign the hash of the last finalized PoS block of the

epoch. Then, an honest active validator v sends a Bitcoin transac-

tion called the checkpoint transaction. The checkpoint transaction
contains the hash and a quorum of signatures on the hash from over

𝑛/3 active validators of the epoch. These signatures are distinct from
those that have finalized the block at the end of the epoch.

Suppose v observes multiple finalized and conflicting PoS blocks.

As Tendermint provides 𝑛/3-accountable safety, it can generate a

proof which irrefutably identifies 𝑛/3 adversarial PoS validators as
protocol violators. In this case, v sends a transaction called the fraud
proof, which contains this proof, to Bitcoin.

Fork-choice Rule. (Algorithm 1) To output the PoS chain Lc
𝑟 at

some slot 𝑟 , c first downloads all the PoS block headers and transac-
tionspreviously seenbyall other clients.Using this data, it constructs

a PoS blocktree.

Let ℎ 𝑗 , 𝑗 ∈ [𝑚], denote the sequence of block hashes, i.e. check-
points, within the checkpoint transactions, listed from the genesis

Bitcoin block to the tip of Cc𝑟 , the confirmed Bitcoin chain in c’s view
at slot 𝑟 . Define 𝐵0 as the genesis PoS block. Then, starting at 𝐵0, c
constructs a checkpointed chain ckpt of PoS blocks by sequentially
going through the checkpoint transactions. Let𝐵𝑖 denote the block at

thepreimageofℎ𝑖 if theblock is available in c’s view. Suppose𝐵𝑖 from
epoch 𝑒𝑖 is the last PoS block appended to the checkpointed chain

and c has gone through the sequence of checkpoints untilℎ 𝑗 , 𝑗 ≥ 𝑖 .

Let𝑒 = 𝑒𝑖 +1 if𝐵𝑖 was the last block of its epoch; and𝑒 = 𝑒𝑖 otherwise.

(1) (cf. Algorithm 1, Line 9) If (i) the block 𝐵 𝑗+1 is from epoch 𝑒 ,

(ii) 𝐵 𝑗+1 and every block in its prefix are available and finalized
in c’s view by the active validators of their respective epochs,

(iii) 𝐵 𝑗+1 extends 𝐵𝑖 , and (iv)ℎ 𝑗+1 was signed by more than 𝑛/3
active validators of the epoch 𝑒 , then, c sets 𝐵 𝑗+1 and its prefix
as the checkpointed chain.

(2) EmergencyBreak: (Figure 2, cf.Algorithm1, Line 16) If (i)𝐵 𝑗+1
or a block in its prefix is either unavailable or not finalized by

its respective validators in c’s view, and (ii)ℎ 𝑗+1 was signed by
more than𝑛/3 validators of epoch 𝑒 , then, c stops going through
the sequence ℎ 𝑗 , 𝑗 ∈ [𝑚], and outputs 𝐵𝑖 and its prefix as the
checkpointed chain

4
. This premature stalling of the fork-choice

rule is necessary to prevent the data availability attack described

by Figure 2.

(3) If both of the cases above fail, c skips ℎ 𝑗+1 and moves to ℎ 𝑗+2
and its pre-image block as the next candidate.

Unless case (2) happens, c sifts through all the checkpointsℎ 𝑗 , 𝑗 ∈
[𝑚], and subsequently outputs the checkpointed chain ckptc𝑟 . If case
(2) happens, then c outputs 𝐵𝑖 and its prefix as ckptc𝑟 , and sends a
checkpoint transaction for the block at the tip of its PoS chain Lc

𝑟

along with the associated signatures. However, if c had previously
outputted finalized blocks extending 𝐵𝑖 as part of its PoS chain, it

does not roll-back these blocks. Instead, it freezes and sets its old

4
The client c always knows the active validator set for all epochs 𝑒 ≤ 𝑒 . This is because,

by definition, the last block 𝐵𝑖 in its checkpointed chain and every block in 𝐵𝑖 ’s prefix

are available in c’s view. If𝐵𝑖 is the last block of epoch 𝑒𝑖 , c can infer the active validator
set of epoch 𝑒𝑖 + 1 from 𝐵𝑖 and the blocks in its prefix.

9

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

PoS chain to beLc
𝑟 , and sends a checkpoint transaction for the block

at the tip of the frozen chain with a subset of signatures that have

finalized the block.

Finally, suppose c outputs a checkpointed chain with the block
𝐵 at its tip. Then, starting at 𝐵, c traverses a path to the leaves of the
blocktree (cf.Algorithm 1, Line 23 onward). If there is a single chain

from 𝐵 to a leaf, c outputs the leaf and its prefix as the PoS chainLc
𝑟 .

Otherwise, c identifies the last PoS block 𝐵′ (potentially the same as

𝐵) in the subtree of 𝐵, which has no conflicting siblings within the

subtree, and outputs 𝐵′ and its prefix asLc
𝑟 .

Since c attaches the latest finalized PoS blocks to the tip of its

output chainLc
𝑟 , as long as there are no forks among finalized PoS

blocks, the time for transactions to enterLc
𝑟 matches the latency of

the PoS protocol, hence the name fast finalization.

Stake Withdrawals. (Figure 3, Algorithm 2) To withdraw its stake,

a validator vfirst sends a PoS transaction called thewithdrawal trans-
action. It is granted permission to withdraw its stake in the client c’s
view at slot 𝑟 if

(1) The withdrawal transaction appears in a PoS block 𝐵 in ckptc𝑟 .
(2) Hash, i.e., checkpoint of 𝐵 or one of its descendants appears in

a checkpoint transactions within a Bitcoin block that is at least

𝑘 deep in Cc𝑟 .
(3) The clienthasnotobservedany fraudproof inCc𝑟 that irrefutably

identifies v as a protocol violator. Similarly, the client has not ob-

served any checkpoint, i.e., hash, inCc𝑟 for finalized andavailable
PoS blocks that conflict with 𝐵. (Signatures by v on conflicting
PoS blocks constitute a fraud proof.)

Once the above conditions are satisfied in the validator v’s view,
it sends awithdrawal transaction to the PoS chain. An honest active
validator includes the withdrawal transaction by v in its PoS block
proposal if the above conditions are satisfied in its view.Uponobserv-

ing a PoS proposal containing a withdrawal transaction, the honest

active validators wait for Δ slots before they decide to sign the block.

At this point, they sign for the proposal if the above conditions are

also satisfied in their views. By synchrony, if they are satisfied in an

honest proposer’s viewat the timeof proposal, then they are satisfied

in the view of all honest active validators at the time of signing. Thus,

the Δ delay for proposals carrying withdrawal transactions ensure

that v’s transaction is finalized by the PoS chain despite potential,
short-lived split views among the honest active validators. Once the

transaction is finalized, the on-chain contract releases v’s locked coin.

Slashing and Slashable Validators. Suppose a validator v has prov-
ably violated the protocol rules. Then, the contract on the PoS chain

can slash v’s locked coins upon receiving a fraud proof incriminating

v if the PoS chain is live and v has not received its coins back.
If the client c observes a fraud proof incriminating v in its con-

firmedBitcoin chainCc𝑟 at slot 𝑟 , c does not consider v’s signatures on
future checkpoints as valid. It also does not consider v’s signatures as
valid when verifying the finality of the PoS blocks ‘checkpointed’ in

Bitcoin for the first time after the fraud proof. For instance, suppose

c observes a checkpoint ℎ 𝑗 for a PoS block 𝐵 𝑗 in its Bitcoin chain.

While verifying whether 𝐵 𝑗 and the blocks in its prefix (that have

not yet been checkpointed) are finalized, c considers signatures only
by the active validators that have not been identified as protocol

violators by a fraud proof appearing in the prefix ofℎ 𝑗+1.

Figure 4: Parameters 𝑟1, 𝑟2, 𝑟 ′
1
, 𝑟 ′

2
, 𝑟 ∗

1
and 𝑟 ∗

2
defined for the proof of

Theorem 2 and shown relative to each other.

4.3 Security analysis
Proposition 2. Suppose Bitcoin is safe with parameter𝑘 with over-

whelming probability. Then, the checkpointed chains held by the clients
satisfy safety with overwhelming probability.

Proof uses the fact that the safety of Bitcoin implies consensus on

the sequence of checkpointed blocks, and is provided in Appendix C.

Theorem 2. Suppose Bitcoin is secure with parameter 𝑘 with over-
whelming probability, and there is one honest active validator at all
times. Then, the Babylon 1.0 protocol (Section 4.2) with fast finalization
satisfies 𝑛/3-slashable safety with overwhelming probability.

Proof. Suppose there are two clients c1, c2, and slots 𝑟1, 𝑟2 ≥ 𝑟1
such thatLc1

𝑟1 conflicts withL
c2
𝑟2 . Let 𝐵1 and 𝐵2 denote the earliest

conflicting blocks inLc1
𝑟1 andL

c2
𝑟2 respectively. As 𝐵1 and 𝐵2 share

a common parent, they also share the same active validator set.

Define ckpt
1
= ckptc1𝑟1 and ckpt

2
= ckptc2𝑟2 . By Proposition 2,

either ckpt
1
⪯ ckpt

2
or ckpt

2
⪯ ckpt

1
. Since ckpt

1
⪯ Lc1

𝑟1 and

ckpt
2
⪯ Lc2

𝑟2 , 𝐵2 ∉ ckpt
1
and 𝐵1 ∉ ckpt

2
. By Proposition 2, for

all clients c and slots 𝑟 ′
1
≤ 𝑟1 − Δ and 𝑟 ′

2
≤ 𝑟2 − Δ, it holds that

𝐵2 ∉ ckptc
𝑟 ′
1

and 𝐵1 ∉ ckptc
𝑟 ′
2

(cf. Figure 4).

Let𝑟∗
2
> 𝑟1−Δ denote thefirst slot𝐵2 appears in the checkpointed

chain held by a client c∗
1
(If there is no such slot, 𝑟∗

2
= ∞.). Similarly,

let 𝑟∗
1
> 𝑟2 − Δ denote the first slot 𝐵1 appears in the checkpointed

chain held by a client c∗
2
(cf. Figure 4. If there is no such slot, 𝑟∗

1
= ∞.).

If𝑟∗
1
< ∞or𝑟∗

2
< ∞, define𝑏1 and𝑏2 as theBitcoin blocks containing

the hashes of the first checkpoints that are either equal to 𝐵1 and

𝐵2 or extend 𝐵1 and 𝐵2 in the checkpointed chains observed by the

clients c∗
2
and c∗

1
at slots 𝑟∗

1
and 𝑟∗

2
respectively. Then, for any client c,

if 𝑟∗
1
< ∞, 𝑏1 ∈ Cc𝑟 ∗

1
+Δ; if 𝑟

∗
2
< ∞, 𝑏2 ∈ Cc𝑟 ∗

2
+Δ. In this case, 𝑏1 and 𝑏2

are again the first confirmed Bitcoin blocks containing the hashes of

the checkpoints that are either equal to 𝐵1 and 𝐵2 or extend 𝐵1 and

𝐵2 in the checkpointed chains observed by c respectively.
As the clients broadcast their consensus messages, by slot 𝑟0 =

min(max(𝑟1, 𝑟2),max(𝑟∗
1
, 𝑟∗
2
),max(𝑟1, 𝑟∗

2
),max(𝑟∗

1
, 𝑟2)) +Δ, both 𝐵1

and 𝐵2 are observed by all clients. Since 𝐵1 and 𝐵2 are finalized and

conflicting blocks, an honest validator must have sent a fraud proof

that incriminates at least 𝑛/3 of the validators in the common active

validator set of 𝐵1 and 𝐵2, by slot 𝑟0. Here, 𝑟0 ≤ max(𝑟1, 𝑟2) + Δ ≤
𝑟2 + Δ ≤ 𝑟∗

1
+ 2Δ, and 𝑟0 ≤ max(𝑟1, 𝑟∗

2
) + Δ ≤ 𝑟∗

2
+ 2Δ.

By Proposition 1, for any client c, the fraud proof is in Cc
𝑟 ′
0

, where

𝑟 ′
0
satisfies |Cc

𝑟 ′
0

| = |Cc
𝑟0−2Δ | + 𝑘 . As 𝑟0 ≤ 𝑟∗

1
+ 2Δ, 𝑟∗

2
+ 2Δ, if 𝑟∗

1
< ∞

and the checkpoint in 𝑏1 has always been available, the earliest slot

𝑏1 can appear in c’s Bitcoin chain is 𝑟0 − 2Δ. Similarly, in this case, if

𝑟∗
2
< ∞ and the checkpoint in𝑏2 has always been available, the earli-

est slot𝑏2 can appear in c’s Bitcoin chain is 𝑟0 − 2Δ. This implies that

if 𝑏1 (or 𝑏2) appears in c’s Bitcoin chain at all and contain available
10

Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities

checkpoints, the fraud proof will be included in either the 𝑘-th block

extending𝑏1 (or𝑏2), or in its prefix. Since the active validators for the

blocks𝐵1 and𝐵2 cannotwithdraw their stake in c’s view before𝑏1 or

𝑏2 become 𝑘 deep in c’s Bitcoin chain, and as 𝑛/3 of these validators
will be irrefutably identified as protocol violators by c by slot 𝑟 ′

0
, at

least 𝑛/3 validators become slashable in c’s view.
Without loss of generality, we next consider the case the check-

point in 𝑏1 is not available in the view of a client c when c first
observes 𝑏1 in its Bitcoin chain. Since the slashability of 1/3 of val-
idators is implied by the proof above in the case 𝑏2 ⪯ 𝑏1, we assume

𝑏1 ⪯ 𝑏2 in the arguments below. Upon observing 𝑏1, c stalls its PoS
chain, and sends a checkpoint for the block at the tip of its PoS chain.

Recall that𝑏1 and𝑏2 are thefirst confirmedBitcoin blocks containing

the hashes of the checkpoints that are either equal to 𝐵1 and 𝐵2 or

extend 𝐵1 and 𝐵2 in the checkpointed chains observed by the clients

respectively. Let 𝑟2 ≤ 𝑟2 < ∞ be the first time 𝐵2 appears in the pos

chain of any client c. Since 𝑏1 ⪯ 𝑏2 and 𝐵1 and 𝐵2 conflict, c could
not have observed either the block 𝑏1 or the checkpoint for 𝐵1 as

available before slot 𝑟2. Suppose c first observes 𝑏1 at slot 𝑟1 > 𝑟2. If

the checkpoint in 𝑏1 is unavailable in c’s view, c sends a checkpoint
transaction for 𝐵2 or a block extending it by slot 𝑟1, which appears

within 𝑘 Bitcoin blocks of 𝑏1 in every client’s confirmed Bitcoin

chain. Hence, as soon as a client outputs 𝐵1 as part of its PoS chain,

e.g., by some slot 𝑟 ′
0
, and ensures its visibility by all clients,𝑛/3 of the

active validators for the blocks𝐵1 and𝐵2 are irrefutably identified as

protocol violators by all clients by slotmax(𝑟 ′
0
, 𝑟1) + Δ, and at least

𝑛/3 validators become slashable in all views. On the other hand, if

the checkpoint in 𝑏1 is available in c’s view at slot 𝑟1, then, a fraud

proof is generated and sent to Bitcoin by slot 𝑟 ′
0
= 𝑟1 + Δ. Again,

𝑛/3 of the active validators for the blocks 𝐵1 and 𝐵2 are irrefutably
identified as protocol violators by all clients by slot 𝑟 ′

0
, and at least

𝑛/3 validators become slashable in all views. □

Theorem 3. Suppose Bitcoin is secure with parameter 𝑘 with over-
whelming probability, and the number of adversarial active validators
is less than𝑛/3 at all times. Then, the Babylon 1.0 protocol (Section 4.2)
with fast finalization satisfies𝑇

fin
-liveness with overwhelming prob-

ability, where𝑇
fin

= Θ(_).

Proof. By Theorem 2, the Bitcoin checkpointing protocol satis-

fies 𝑛/3-slashable safety. Hence, if the number of active adversarial

validators is less than 𝑛/3 at all slots, it satisfies safety. Suppose a
transaction tx is first input to an honest validator at some slot 𝑟 byZ.

Then, from slot 𝑟 and on, each honest validator vwill include tx in its
proposal until v observes a PoS block containing tx become finalized.

Let c′ be the client that holds the longest PoS chain among all clients

at slot 𝑟 . As the number of active adversarial validators is less than

𝑛/3, clients never observe an unavailable or non-finalized PoS block
become checkpointed, thus never stop outputting new PoS blocks as

part of their checkpointed, and PoS chains (cf. clause (2) in the fork-
choice rule of Section 4.2). Hence, by network synchrony and the

safety of the PoS protocol, for every client c,Lc′
𝑟 ⪯ Lc

𝑟+Δ ⪯ L
c′
𝑟+2Δ.

Then, for every client c, eitherLc′
𝑟 = Lc

𝑟+Δ orLc′
𝑟 ≺ Lc′

𝑟+2Δ.
In the former case, every client agrees on the validator set at slot

𝑟 + Δ. By [11, Lemma 7], there exists a finite𝑇tm that is polynomial

in the security parameter _ such that if every client agrees on the

validator set, a new block that extendsLc′
𝑟 is finalized and becomes

part of the PoS chain in the clients’ views by slot 𝑟 +𝑇tm except with

probability negl(_). In the latter case, a new block that extends the

longest PoS chain, thus all PoS chains held by the clients at slot 𝑟 ,

is finalized in the view of c′ by slot 𝑟 + 2Δ, and becomes part of the

PoS chains in all clients’ views by slot 𝑟 + 3Δ by synchrony.

Finally,when the number of adversarial validators is less than𝑛/3,
withprobabilityat least2/3, eachblockfinalizedafter slot𝑟musthave

been proposed by an honest validator. Then, for any given integer

𝑚 > 1, by slot 𝑟 + (𝑚+1)max(𝑇tm, 3Δ), the transaction txwill appear
in each client’s PoS chain exceptwithprobability𝑚 negl(_)+ (1/3)𝑚 .

Setting𝑚 = Θ(_), it holds that𝑚 negl(_) + (1/3)𝑚 = negl(_). Con-
sequently, for𝑚 = Θ(_), liveness is satisfied with parameter 𝑇

fin

that is linear in _, except with probability negl(_). □

5 OPTIMAL LIVENESS
Babylon 1.0 enables Tendermint to provide slashable safety by check-

pointing. However, the protocol guarantees liveness only when a

supermajority of the active validators is honest. Moreover, it does

not provide any accountable liveness guarantees. In this section,

we explore how Babylon 1.0 can be improved to achieve optimal

liveness guarantees.

5.1 No accountable liveness
Our first result is that accountable liveness is not possible even with

the help of Bitcoin, or for that matter any timestamping service, if

the entire PoS data is not uploaded to the service. In particular, the

adversary can execute unaccountable liveness attacks whenever it

controls more than half the validators.

Timestamping Service. Timestamping service is a consensus pro-

tocol that accepts messages from the validators and provides a total

order across these messages. All messages sent by the validators at

any slot 𝑟 are outputted (in some order determined by the service)

and observed by all validators and clients at slot 𝑟 + 1. If a client
queries the service at slot 𝑟 , it receives the sequence of messages out-

putted by the timestamping service until slot 𝑟 . The service imposes

limitations on the total size of the messages that can be sent during

the protocol execution.

Theorem 4. Consider a PoS or permissioned protocol with 𝑛 val-
idators that provides 𝑓s-accountable-safety for some 𝑓s > 0 and has
access to a timestamping service. Suppose each validator is given an
externally valid input of𝑚 bits byZ but the number of bits written
to the timestamping service is less than𝑚⌊𝑛/2⌋ − 1 bits. Then under
a Δ-synchronous network, the protocol:
(1) cannot provide 𝑓a-𝑇fin-accountable-liveness for any 𝑓a > 0 and

𝑇
fin

< ∞;
(2) cannot provide 𝑓

l
-𝑇
fin
-liveness for any 𝑓

l
≥ 𝑛/2 and𝑇

fin
< ∞.

To provide some intuition to this theorem, we analyze inactivity
leak [9], used in Cosmos zones and also proposed for PoS Ethereum

to slash adversarial validators to recover from liveness attacks. We

show that when the adversarial fraction of validators is more than

1/2, inactivity leak can result in a gradual slashing of the honest val-
idators’ stake in the view of late-coming clients with non-negligible
probability. Consider an accountably safe consensus protocol with

the setup on Figure 5. Half of the validators are adversarial, and

build an attack chain that is initially kept private. They do not com-

municate with the honest validators or vote for the blocks on the

11

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

Figure 5: Inactivity leak attack.At the top is adversary’s private attack
chain. At the bottom is the public canonical chain built by the honest
validators. Due to inactivity leak, honest and adversarial validators
lose their stakeon the attack and canonical chains respectively.A late-
coming client cannot differentiate the canonical and attack chains.

public, canonical chain. As the honest validators are not privy to

the adversary’s actions, they also cannot vote for the blocks on the

attack chain. Since only half of the validators are voting for the pub-

lic blocks, liveness is temporarily violated for the public canonical

chain. At this point, inactivity leak kicks in, and gradually slashes

the stake of the adversarial validators on the public canonical chain

to recover liveness. Similarly, the honest validators lose their stake

on the private attack chain due to inactivity leak.

Finally, the adversary publishes the attack chain, which is subse-

quently seen by a late-coming client. As there are two conflicting

chains in the client’s view, there is a safety violation, and the client

identifies at least one validator as a protocol violator as the protocol

is accountably safe. Since the client could not have observed the

attack in progress, it cannot distinguish the attack chain from the

canonical one. Thus, with non-negligible probability, it identifies an

honest validator on the canonical chain as protocol violator, which

is a contradiction.

In the attack above, the data-limited timestamping service cannot

help the late-coming client distinguish between the canonical and at-

tack chains. This is because the honest validators cannot timestamp

the entirety of public blocks early on as the timestamping service

is data-limited. Thus, they cannot prove to a late-coming client that

their canonical chain was public at the beginning. This enables the

adversary to plausibly claim that the public, canonical chain was

initially private, and its private attack chain was the public one.

The proof of Theorem 4 is given in Appendix B, and generalizes

the attack on inactivity leak to any PoS, or permissioned protocol. As

in the attack above, the proof exploits the indistinguishability, by a

client, of twoworlds with different honest and adversarial validators

when the adversary can control over half of the validators, and the

timestamping service is data-limited.

5.2 Optimal liveness resilience:
full Babylon protocol with fast finalization

Theorem 4 states that no PoS protocol with accountable safety pro-

vides a positive accountable liveness resilienceunless the transaction

data within PoS blocks are posted on Bitcoin. As accountable live-

ness is impossible in this setting, we next focus on whether Bitcoin,

despite its data limitation, can help increase the liveness resilience

of Babylon 1.0

Babylon 1.0, presented in Section 4.2, provides 𝑛/3-slashable-
safety and 𝑛/3-liveness. On the other hand, Theorem 4 only says

that the liveness resilence of an accountably safe protocol cannot

exceed 𝑛/2. We now show how to improve Babylon 1.0 to achieve

Algorithm 3 The function used by the client c to find the canonical
PoS chain at a given time slot. It takes the blocktree, the confirmed

Bitcoin chain, the sequence of checkpointed block hashes, bundle

hashes and liveness transactions in c’s view as input, and outputs

Lc
𝑟 . Here, 𝑡𝑖 denotes the type of the transaction on Bitcoin, which

can either be a checkpoint transaction, liveness transaction or a

bundle. If 𝑡𝑖 is a checkpoint transaction or bundle, ℎ𝑖 denotes the

block or bundle hash, whereas if 𝑡𝑖 is a liveness transaction, ℎ𝑖
denotes the censored transaction itself. The functions are defined

in the caption of Algorithm 1 except forGetHeight, which returns

the height of the Bitcoin block containing the given block or bundle.

1: functionOutputPosChain(T , h, C)
2: (𝑡1, ℎ1), . . . , (𝑡𝑚, ℎ𝑚) ← h
3: ckpt, ep, active_val← B0, 1,GetActiveVals(T, B0, ep)
4: bmode, censored, censoredtx, ht← False, False,⊥,−1
5: for 𝑖 = 1 to𝑚

6: if censored ∧ GetHeight(ℎ𝑖) ≥ ht + 2𝑘 ⊲ Enter BTCmode
7: bmode, censored, censoredtx← True, False,⊥
8: else if bmode ∧ GetHeight(ℎ𝑖) ≥ ht + 2𝑘 +𝑇

btc
⊲ Exit

9: bmode, ht← False,−1
10: end if
11: ⊲ Obtaining the checkpointed chain
12: if 𝑡𝑖 = checkpoint ∧ ¬bmode ∧ IsSigned(C, ℎ𝑖 , active_val)
13: 𝐵𝑖 ← GetBlocks(T, ℎ𝑖)
14: if 𝐵𝑖 ≠ ⊥ ∧ ckpt[−1] ⪯ 𝐵𝑖 ∧ IsFinal(T, 𝐵𝑖 , ep)
15: ckpt← Bi .L ⊲ Chain ending at 𝐵𝑖
16: if IsLast(T, 𝐵𝑖 , ep)
17: ep, active_val← ep + 1,GetActiveVals(T, Bi, ep)
18: end if
19: if censored ∧ censoredtx ⊆ ckpt

20: censored, censoredtx, ht← False,⊥,−1
21: end if
22: else if 𝐵𝑖 = ⊥ ∨ ¬IsFinal(T, 𝐵𝑖 , ep)
23: return ckpt ⊲ Emergency Break: Data Unavailable
24: end if
25: else if 𝑡𝑖 = liveness ∧ ¬bmode ⊲ Liveness block detected
26: tx, ht← ℎ𝑖 ,GetHeight(ℎ𝑖)
27: if tx ⊈ ckpt ∧ ¬censored
28: censored, censoredtx← True, {tx}
29: else if tx ⊈ ckpt ∧ censored
30: censoredtx← censoredtx ∪ {tx}
31: end if
32: ⊲ Bundle detected
33: else if 𝑡𝑖 = bundle ∧ bmode ∧ IsSigned(C, ℎ𝑖 , active_val)
34: 𝐵𝑖 ← GetBlocks(T, ℎ𝑖)
35: if 𝐵𝑖 ≠ ⊥
36: ckpt← ckpt ∥ 𝐵𝑖
37: else if 𝐵𝑖 = ⊥
38: return ckpt ⊲ Emergency Break: Data Unavailable
39: end if
40: end if
41: end for
42: L, ch← ckpt,GetChildren(T, ckpt[−1])
43: while |ch | = 1

44: if bmode ∨ (¬censored ∧ |C | ≥ ht + 𝑘 ∧ IsLast(T, ch, ep))
45: Break
46: end if
47: L, ch← L ∥ ch,GetChildren(T, ch)
48: endwhile
49: return L
50: end function

12

Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities

Figure 6: If tx1 is observed to be censored by an honest validator v, it sends a liveness transaction to Bitcoin. Once liveness transaction becomes
2𝑘 deep in v’s and the clients’ views, they enter the rollupmode. In the rollupmode, validators group transactions into bundles and post signed
hashes of these bundles on Bitcoin.

the optimal liveness resilience of 𝑛/2. Note that by [31, Appendix
B], the liveness resilience 𝑓

l
of a PoS protocol that provides 𝑛/3-

accountable-safety cannot exceed𝑛/3 in the absence of external trust,
so the improvement of resilience from 𝑛/3 to 𝑛/2 depends crucially
on the use of the data-limited timestamping service. Indeed, if the ad-

versary controls 𝑓 ∈ [𝑛/3, 𝑛/2) of the active validators and violates
liveness, the improved protocol uses Bitcoin as a fallbackmechanism

to guarantee eventual liveness.

The full Babylon protocol proceeds in two modes: the normal

mode and the rollup mode, where Bitcoin plays a more direct role in

the ordering of the PoS blocks. Execution starts and continues in the

normal mode as long as no PoS transaction is censored. If a trans-

action is observed to be censored, clients can force the execution to

switch to the rollup mode. During the normal mode, checkpointing

of the PoS chain, fork-choice rule, stake withdrawals and slashing

work in the same way as described in Section 4.2, except for one

difference: The minimum number of signatures required by a check-

point transaction on the hash of the PoS blocks is set to be over 𝑛/2,
instead of 𝑛/3.

We next focus on how censorship is detected and communicated

by the clients, and the protocol execution afterwards. Algorithm 3

provides the full algorithm for the fork-choice rule.

Checkpointing. If a transaction tx input to an honest validator by
Z at slot 𝑟 has not appeared inLv

𝑟+𝑇tm in an honest validator v’s view,
v sends a liveness transaction to Bitcoin. The liveness transaction

contains the censored tx, and signals a liveness violation in v’s view.
Here,𝑇tm represents the finalization latency of the Tendermint PoS

protocol.

Suppose there is a block 𝑏 within its Bitcoin chain that contains

a liveness transaction for some tx. Upon observing 𝑏 become 𝑘 deep,

v sends a checkpoint transaction for the block at the tip of its PoS

chain, even if the block is not the last block of its epochs. If tx is
not in its checkpointed chain, v also stops executing Tendermint.

When 𝑏 becomes 2𝑘 deep in its Bitcoin chain, if tx is still not in v’s
checkpointed chain, v enters the rollup mode.

Once in the rollup mode, v collects and orders transactions into
bundles that are broadcast to all other validators. Upon observing a
bundle of externally valid transactions, it signs thehashof the bundle.

If it observes a bundlewhosehashhas been signed byover𝑛/2valida-
tors, it sends thehashof thebundleaswell as the signatures toBitcoin.

Fork-choice Rule (Figure 6, Algorithm 3). Consider a client c that
observes the protocol at some slot 𝑟 ′ ≥ 𝑟 +𝑇tm. Suppose there is a
block 𝑏 within Cc

𝑟 ′ that contains a liveness transaction for some tx.
Once 𝑏 becomes 𝑘 deep in c’s Bitcoin chain, if tx is still not in c’s
checkpointed chain, c freezes its PoS chain. At this point, c also sends

a checkpoint transaction for the block at the tip of its PoS chain, even

if the block is not the last block of its epoch. Afterwards, c outputs
new PoS blocks as part of its PoS chain, only if these new blocks are

also part of its checkpointed chain (cf.Algorithm 3 Line 43. At this

point in the algorithm, if cwas previously awake and has already
outputted blocks outside its checkpointed chain when the chain was

frozen, it does not roll back its older blocks). If c observes txwithin
its checkpointed chain by the time 𝑏 becomes 2𝑘 deep, it resumes

outputting the new blocks that are not part of its checkpointed chain.

Otherwise, once 𝑏 becomes 2𝑘 deep in c’s Bitcoin chain, if tx is not
yet in c’s checkpointed chain, c enters the rollup mode (cf. Figure 6,
Algorithm 3, Line 6).

Once in the rollupmode, c first constructs the checkpointed chain
by observing the prefix of its Bitcoin chain that ends at the 2𝑘-th

block extending 𝑏. Suppose 𝐵𝑖 from epoch 𝑒𝑖 is the last PoS block

appended to the checkpointed chain and it is followed by a sequence

ℎ 𝑗 , 𝑗 ∈ [𝑚], of signed hash values corresponding to bundles in c’s
Bitcoin chain. Let 𝑒 = 𝑒𝑖 + 1 if 𝐵𝑖 is the last block of epoch 𝑒𝑖 , and
𝑒 = 𝑒𝑖 otherwise. Then, c sifts through these values iteratively, and
for each 𝑗 ∈ [𝑚], acts as follows:
(1) (cf.Algorithm 3, Line 35) Ifℎ 𝑗 is signed by over 𝑛/2 active val-

idators of epoch 𝑒 , and its pre-image bundle is available in c’s
view, then c attaches the bundle to its PoS chain.

(2) (cf.Algorithm 3, Line 37) Ifℎ 𝑗 is signed by over 𝑛/2 active val-
idators of epoch 𝑒 , and its pre-image bundle is not available in

c’s view, then c stops going through the sequence ℎ 𝑗 , 𝑗 ∈ [𝑚],
and outputs its current PoS chain.

(3) If neither of the conditions above are satisfied, c skips ℎ 𝑗 and
moves toℎ 𝑗+1 and its pre-image bundle as the next candidate.

Eachclient c leaves the rollupmodewhen it sees the𝑇
btc

-thBitcoin

block extending 𝑏 (cf.Alg. 3 Line 8). Here,𝑇
btc

is a pre-determined

parameter of the protocol that sets the duration of the rollup mode.

After exiting the rollup mode, validators treat the hash of the last

bundle as the parent hash for the new PoS blocks, and subsequently

execute the protocol in the normal mode
5
.

Stake withdrawals and slashing for safety attacks work as de-

scribed by Algorithm 2 and Section 4.2.

5.3 Safety Analysis
Theorem 5. Suppose Bitcoin is secure with parameter 𝑘 with over-

whelming probability and there is one honest active validator at all

5
Although not explicitly mentioned, it is possible to support stake withdrawals during

the rollup mode once the bundles containing withdrawal transactions and signed by

over half of the active validators of epoch 𝑒 become𝑘 deep in Bitcoin.

13

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

times. Then, the Babylon protocol (Section 5.2) with fast finalization
satisfies 𝑛/3-slashable safety.

Theorem 5 follows from Theorem 2 and the safety of the check-

points ordered by Bitcoin. It is presented in Appendix C.

5.4 Slashing and Liveness after Safety Violation
Theorem 5 states that as long as Bitcoin is secure, at least 𝑛/3 ad-
versarial validators become slashable in the view of all clients when

there is a safety violation. However, the theorem does not specify

whether the validators that have become slashable can be slashed

at all. Indeed, slashing can only be done if the PoS chain is live, a

condition that might not be true after a safety violation.

When blocks on two or more conflicting chains are finalized by

Tendermint, the chain with the earlier checkpoint in Bitcoin is cho-

sen as the canonical one. However, it might not be possible for the

honest active validators to unlock from the conflicting chains they

have previously signed, and start extending the canonical chain;

as that would require them to sign conflicting blocks. Thus, due to

the absence of signatures from these stuck validators, the PoS chain

might stall after a safety violation. In this case, even though the

adversarial validators that have caused the safety violation become

slashable, the on-chain contractmight not be able to slash them since

the chain itself is not live.

This issue of liveness recovery after a safety violation is present

in many BFT protocols which strive to support accountability. For

example, Cosmos chains enter into a panic state when safety is vi-

olated and need a manual reboot based on social consensus with the

slashing done off chain. With Bitcoin, however, this problem can be

solved to an extent. As in the case of stalling or censorship attacks,

after which the protocol switches to the rollup mode, the honest

validators can use Bitcoin to unstuck from their respective forks,

bootstrap the PoS chain, and slash the adversarial validators if the

honest validators constitute over half of the active PoS validators.
For this purpose, they use the same process described in Section 5.2

for entering the rollup mode: Once the PoS chain loses liveness, an

honest validator sends a liveness transaction for the censored PoS

transactions, to Bitcoin. Soon afterwards, the honest PoS validators

enter the rollupmode. This is because new checkpoints appearing on

Bitcoin and signed by the slashable validators will not be considered

as valid by the honest validators (cf. paragraph on slashing and slash-
able validators in Section 4.2), and cannot prevent the protocol from

switching to the rollupmode. Once in the rollupmode,with theirma-

jority, the honest PoS validators can sign for newbundles and put the

bundle hashes along with the signatures to Bitcoin. Through these

new bundles, they can finalize the censored transactions, and slash

the adversarial validators that have previously become slashable,

using the on-chain contract.

After𝑛/3 adversarial active validators are slashed, the𝑛/2 honest
active validators would constitute a supermajority of the remaining

active validators. Hence, by treating the last bundle of the rollup

mode as the new genesis PoS block, they can switch back to the

normal mode and continue finalizing new PoS blocks through Ten-

dermint (cf. Section 5.2, Line 8 of Alg. 3). This way, the PoS chain can
bootstrap liveness and eventually return to the normal mode with

fast finalization after safety violations.

5.5 Liveness Analysis
With the ability to bootstrap liveness after a safety violation, we can

state the following theorem:

Theorem 6. Suppose Bitcoin is secure with parameter 𝑘 and the
number of adversarial active validators is less than 𝑛/2 at all times.
Then, the Babylon protocol (Section 5.2) with fast finalization satisfies
𝑇
fin
-liveness with overwhelming probability, where𝑇

fin
is a polynomial

in the security parameter _.

If thenumberofadversarial activevalidators 𝑓 is less than𝑛/3atall
times, liveness follows fromTheorem3.Otherwise, if𝑛/3 ≤ 𝑓 < 𝑛/2,
Bitcoin ensures the liveness of PoS transactions through the final-

ization of signed bundle hashes. Proof is presented in Appendix C.

6 BABYLONWITH
SLOWFINALIZATION: BITCOIN SAFETY

So far in the paper, we have focused on the scenariowhere the clients

of the PoS chain use the native fast finalization rule, where blocks
are considered finalized immediately after voted upon by the val-

idators of the PoS chains. Since Bitcoin confirmation operates at

a slower time-scale, Bitcoin cannot protect the PoS chain against

safety attacks under the fast finalization rule. What Bitcoin does

is to make these attacks slashable by not allowing the attackers to
withdraw funds after they double-signed, To achieve Bitcoin safety
for some transactions, a client can choose to use a slow finalization
rule where a PoS block is considered confirmed if in addition to

being finalized on the PoS chain, its checkpoint is also confirmed in

Bitcoin. More specifically, a client c using the slow finalization rule

sets its PoS chain to be the same as its checkpointed chain at any

time slot: Lc
𝑟 = ckptc𝑟 . The major drawback of this scheme is that

c now waits until the PoS blocks are checkpointed on Bitcoin, i.e.,
until their hashes and the corresponding signatures are 𝑘 deep in

Bitcoin, before it can output them as part of its PoS chain.

Corollary 1. Suppose Bitcoin is secure with parameter 𝑘 with
overwhelming probability, and there is an honest active validator at
all times. Then, the Babylon protocol with slow finalization satisfies
safety with overwhelming probability.

Proof follows from Proposition 2. Corollary 1 holds for any num-

ber of adversarial active validators less than 𝑛.

Corollary 2. Suppose Bitcoin is secure with parameter 𝑘 with
overwhelming probability and the number of active adversarial val-
idators is less than 𝑛/2 at all times. Then, the Babylon protocol with
slow finalization satisfies𝑇

fin
-liveness with overwhelming probability,

where𝑇
fin

is a polynomial in the security parameter _.

Proof is given in Appendix C.

7 CONCLUSION
PoS protocols pioneered a stronger, accountable notion of safety that

goes beyond the honest majority assumption, but were observed to

be susceptible to non-slashable long-range attacks, non-accountable

transaction censorship and stalling attacks and difficulties in boot-

strapping PoS chains from low token valuation. To overcome these

limitations, we have constructed and analyzed a protocol, Babylon,

where an accountable PoS chain, e.g. a Tendermint chain, uses Bit-

coin as a timestamping service, and operates in two nodes: In the fast
14

Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities

finality mode called the normal mode, clients of the PoS chain use

the native fast finalization rule of the chain, and the role of Bitcoin

is to provide slashable safety. In the second mode, clients use a slow

finalization rule, and rely on Bitcoin as the consensus layer, thus

giving thismode its name, the rollupmode. Clients can choosewhich

mode they want to operate at. When there is censorship or stalling,

the PoS chain can also switch to the rollup mode and rely on Bitcoin

to regain liveness.

We have also proven Babylon’s security and shown its optimal-

ity by characterizing the limitations of Bitcoin as a timestamping

service for PoS protocols. Just as Babylon accommodates a general

set of accountable PoS protocols, the advantages and limitations

provided for these protocols by Bitcoin are not specific to Bitcoin,

but can be offered by any trusted public blockchain. Hence, we can

replace Bitcoin with any other trusted public blockchain that allows

checkpointing PoS data, and all of the claimed improvements in the

consensus security of PoS protocols would carry over with minor

changes to the Babylon protocol.

ACKNOWLEDGEMENTS
We thank Joachim Neu, Lei Yang and Dionysis Zindros for several

insightful discussions on this project.

REFERENCES
[1] Komodo. Advanced blockchain technology, focused on freedom.

https://docs.komodoplatform.com/whitepaper/introduction.html#intoduction-

to-komodo, 2018. Accessed: 2022-07-10.

[2] Launch communications — june community update. https://blog.cosmos.

network/launch-communications-june-community-update-e1b29d66338, 2018.

Accessed: 2022-04-17.

[3] VDF Alliance. VDF Alliance FPGA Competition. https://supranational.atlassian.

net/wiki/spaces/VA/pages/36569208/FPGA+Competition, 2019.

[4] Aditya Asgaonkar. Weak Subjectivity in Eth2.0. https://notes.ethereum.

org/\spacefactor\@m{}adiasg/weak-subjectvity-eth2#Distributing-Weak-

Subjectivity-Checkpoint-States, 2019.

[5] Sarah Azouvi. Securing membership and state checkpoints of

bft and pos blockchains by anchoring onto the bitcoin blockchain.

https://www.youtube.com/watch?v=k4SacbLrypc, 2021. ConsensusDays 21.

[6] Sarah Azouvi, George Danezis, and Valeria Nikolaenko. Winkle: Foiling

long-range attacks in proof-of-stake systems. In AFT, pages 189–201. ACM, 2020.

[7] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and

Vassilis Zikas. Ouroboros Genesis: Composable proof-of-stake blockchains with

dynamic availability. In CCS, pages 913–930. ACM, 2018.

[8] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better - how

to make bitcoin a better currency. In Financial Cryptography, volume 7397 of

Lecture Notes in Computer Science, pages 399–414. Springer, 2012.
[9] Carl Beekhuizen. Validated, staking on eth2: #1 - incentives. https:

//blog.ethereum.org/2020/01/13/validated-staking-on-eth2-1-incentives/,

2020. Accessed: 2021-11-3.

[10] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains,

2016.

[11] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT

consensus. arXiv:1807.04938, 2018.
[12] VitalikButerin. Proofof stake:Howi learned to loveweaksubjectivity. https://blog.

ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/, 2014.

[13] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.

arXiv:1710.09437, 2019.
[14] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,

Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X Zhang. Combining GHOST

and Casper. arXiv:2003.03052, 2020.
[15] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. InOSDI,

pages 173–186. USENIX Association, 1999.

[16] Benjamin Y. Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains.

InAFT, pages 1–11. ACM, 2020.

[17] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.

Theor. Comput. Sci., 777:155–183, 2019.
[18] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable

consensus and applications to provably secure proof of stake. In Financial
Cryptography, volume 11598 of Lecture Notes in Computer Science, pages 23–41.
Springer, 2019.

[19] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos

Patsakis. A survey on long-range attacks for proof of stake protocols. IEEE Access,
7:28712–28725, 2019.

[20] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone

protocol: Analysis and applications. In EUROCRYPT (2), volume 9057 of Lecture
Notes in Computer Science, pages 281–310. Springer, 2015.

[21] Bela Gipp, Norman Meuschke, and Andre Gernandt. Decentralized trusted

timestamping using the crypto currency bitcoin. In Proceedings of the iConference
2015, 2015.

[22] Thomas Hepp, PatrickWortner, Alexander Schönhals, and Bela Gipp. Securing

physical assets on the blockchain: Linking a novel object identification concept

with distributed ledgers. In CRYBLOCK@MobiSys, pages 60–65. ACM, 2018.

[23] Dimitris Karakostas and Aggelos Kiayias. Securing proof-of-work ledgers via

checkpointing. In IEEE ICBC, pages 1–5. IEEE, 2021.
[24] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In CRYPTO (1),
volume 10401 of Lecture Notes in Computer Science, pages 357–388. Springer, 2017.

[25] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A

resolution of the availability-finality dilemma. In IEEE Symposium on Security
and Privacy, pages 446–465. IEEE, 2021.

[26] Joachim Neu, Ertem Nusret Tas, and David Tse. The availability-accountability

dilemma and its resolution via accountability gadgets. In Financial Cryptography
and Data Security, FC ’22, 2022.

[27] Daejun Park and Aditya Asgaonkar. Analysis on weak subjectivity in ethereum

2.0, 2021.

[28] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant

confirmation. In EUROCRYPT (2), volume 10821 of Lecture Notes in Computer
Science, pages 3–33. Springer, 2018.

[29] Maxwell Sanchez and Justin Fisher. Proof-of-proof: A decentralized, trust-

less, transparent, and scalable means of inheriting proof-of-work security.

https://veriblock.org/wp-content/uploads/2018/03/PoP-White-Paper.pdf, 2018.

[30] Suryanarayana Sankagiri, Xuechao Wang, Sreeram Kannan, and Pramod

Viswanath. Blockchain CAP theorem allows user-dependent adaptivity and

finality. In Financial Cryptography (2), volume 12675 of Lecture Notes in Computer
Science, pages 84–103. Springer, 2021.

[31] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod

Viswanath. BFT protocol forensics. In CCS, pages 1722–1743. ACM, 2021.

[32] Selma Steinhoff, Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolic.

BMS: Secure Decentralized Reconfiguration for Blockchain and BFT Systems.

arXiv:2109.03913, 2021.
[33] Alistair Stewart and Eleftherios Kokoris-Kogia. GRANDPA: A Byzantine finality

gadget. arXiv:2007.01560, 2020.
[34] Anatoly Yakovenko. Solana: A new architecture for a high performance

blockchain v0.8.13. https://solana.com/solana-whitepaper.pdf, 2019.

[35] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai

Abraham. Hotstuff: BFT consensus with linearity and responsiveness. In PODC,
pages 347–356. ACM, 2019.

A PROOFOF THEOREM 1
Proof. Towards contradiction, suppose there exists a PoS proto-

col Π that provides 𝑓
l
-𝑇
fin
-liveness and 𝑓a-slashable-safety for some

integers 𝑓
l
, 𝑓a > 0 and𝑇

fin
< ∞.

Let𝑛 be the number of active validators at any given slot. Let𝑃 ,𝑄 ′

and𝑄 ′′ denote disjoint sets of distinct validators:𝑃 = {v𝑖 , 𝑖 = 1, .., 𝑛},
𝑄 ′ = {v′

𝑖
, 𝑖 = 1, .., 𝑛} and𝑄 ′′ = {v′′

𝑖
, 𝑖 = 1, .., 𝑛}. Let𝑇 < ∞ denote

the time it takes for a validator to withdraw its stake after its with-

drawal transaction is finalized by the PoS protocol. We consider the

following four worlds:

World 1: The initial set of active validators is 𝑃 . Validators in 𝑃
and 𝑄 ′ are honest. At slot 0,Z inputs transactions tx′

𝑖
, 𝑖 = 1, .., 𝑛,

to the validators in 𝑃 . Here, tx′
𝑖
is the withdrawal transaction for v𝑖 .

Validators in 𝑃 execute the PoS protocol, and record the consensus

messages they observe in their transcripts. SupposeZ replaces each

v𝑖 with v′𝑖 ∈ 𝑄
′
as the new active validator.

At slot𝑇
fin
+𝑇 , (A,Z) spawns the client c1. Upon querying the

validators, c1 receives messages from the validators in𝑄 ′. By𝑇
fin
-

liveness, for all 𝑖 ∈ [𝑛], tx′
𝑖
∈ Lc1

𝑇
fin
+𝑇 . Moreover, by 𝑇

fin
+ 𝑇 , all

validators in 𝑃 have withdrawn their stake in c1’s view, and the set
of active validators is𝑄 ′.

15

https://docs.komodoplatform.com/whitepaper/introduction.html#intoduction-to-komodo
https://docs.komodoplatform.com/whitepaper/introduction.html#intoduction-to-komodo
https://blog.cosmos.network/launch-communications-june-community-update-e1b29d66338
https://blog.cosmos.network/launch-communications-june-community-update-e1b29d66338
https://supranational.atlassian.net/wiki/spaces/VA/pages/36569208/FPGA+Competition
https://supranational.atlassian.net/wiki/spaces/VA/pages/36569208/FPGA+Competition
https://notes.ethereum.org/\spacefactor \@m {}adiasg/weak-subjectvity-eth2#Distributing-Weak-Subjectivity-Checkpoint-States
https://notes.ethereum.org/\spacefactor \@m {}adiasg/weak-subjectvity-eth2#Distributing-Weak-Subjectivity-Checkpoint-States
https://notes.ethereum.org/\spacefactor \@m {}adiasg/weak-subjectvity-eth2#Distributing-Weak-Subjectivity-Checkpoint-States
https://www.youtube.com/watch?v=k4SacbLrypc
https://blog.ethereum.org/2020/01/13/validated-staking-on-eth2-1-incentives/
https://blog.ethereum.org/2020/01/13/validated-staking-on-eth2-1-incentives/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://veriblock.org/wp-content/uploads/2018/03/PoP-White-Paper.pdf
https://solana.com/solana-whitepaper.pdf

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

World 2: The initial set of active validators is 𝑃 . Validators in 𝑃
and𝑄 ′′ are honest. At slot 0,Z inputs transactions tx′′

𝑖
, 𝑖 = 1, .., 𝑛,

to the validators in 𝑃 . Here, tx′′
𝑖
is the withdrawal transaction for v𝑖 .

Validators in 𝑃 execute the PoS protocol, and record the consensus

messages they observe in their transcripts. SupposeZ replaces each

v𝑖 with v′′𝑖 ∈ 𝑄
′′
as the new active validator.

At slot𝑇
fin
+𝑇 , (A,Z) spawns client c2. Uponquerying thevalida-

tors, c2 receivesmessages from the validators in𝑄 ′′. By𝑇
fin
-liveness,

for all 𝑖 ∈ [𝑛], tx′′
𝑖
∈ Lc2

𝑇
fin
+𝑇 . Moreover, by𝑇

fin
+ 𝑇 , all validators

in 𝑃 have withdrawn their stake in c2’s view, and the set of active
validators is𝑄 ′′.

World 3: The initial set of active validators is 𝑃 . Validators in𝑄 ′

are honest. Validators in 𝑃 and𝑄 ′′ are adversarial.
At slot 0,Z inputs transactions tx′

𝑖
, 𝑖 = 1, .., 𝑛, to the validators in

𝑃 . Validators in𝑃 execute the PoS protocol, and record the consensus

messages they observe in their transcripts.

Simultaneous with the execution above, (A,Z) creates a simu-

latedexecution in itshead,whereadifferent sequenceof transactions,

tx′′
𝑖
, 𝑖 ∈ [𝑛], are input to the validators in 𝑃 at slot 0. In the simulated

execution,Z replaces each v𝑖 with v′′𝑖 ∈ 𝑄
′′
as the new active valida-

tor. As in the real execution, validators in 𝑃 execute the PoS protocol,

and record the consensus messages they observe in their transcripts.

Finally, (A,Z) spawns two clients c1 and c2 at slot𝑇fin +𝑇 . Upon
querying the validators, c1 receives messages from the validators in

𝑄 ′ whereas c2 receives messages from the validators in𝑄 ′′. Since
the worlds 1 and 3 are indistinguishable by c1 except with negligible
probability, for all 𝑖 ∈ [𝑛], tx′

𝑖
∈ Lc1

𝑇
fin
+𝑇 with overwhelming prob-

ability. Since the worlds 2 and 3 are indistinguishable by c2 except
with negligible probability, for all 𝑖 ∈ [𝑛], tx′′

𝑖
∈ Lc2

𝑇
fin
+𝑇 with over-

whelming probability. Similarly, for all 𝑖 ∈ [𝑛], tx′
𝑖
∉ Lc2

𝑇
fin
+𝑇 , and

tx′′
𝑖

∉ Lc1
𝑇
fin
+𝑇 . Thus, L

c1
𝑇
fin
+𝑇 and Lc2

𝑇
fin
+𝑇 conflict with each other

with overwhelming probability.Moreover, at slot𝑇
fin
+𝑇 , in the view

of c1 and c2, the set of active validators are𝑄 ′ and𝑄 ′′ respectively,
and all validators in 𝑃 have withdrawn their stake.

As there is a safety violation and 𝑓a > 0, at least one validator

must have become slashable in the view of both clients. By definition

of the forensic protocol, with overwhelming probability, a validator

from the set 𝑄 ′′ becomes slashable in the clients’ views as (i) the

validators in 𝑃 have withdrawn their stake in the clients’ view and

(ii) those in𝑄 ′ are honest.
World 4: World 4 is the same as world 3, except that the val-

idators in𝑄 ′ are adversarial, those in𝑄 ′′ are honest, and the real
and simulated executions are run with the transactions tx′′

𝑖
and tx′

𝑖
respectively. As theworlds 3 and 4 are indistinguishable in the views

of the clients except with negligible probability, they again identify a

validator from𝑄 ′′ as slashable in world 2 with non-negligible prob-
ability. However, the validators in𝑄 ′′ are honest in world 2, which
is a contradiction with the definition of the forensic protocol. □

B PROOFOF THEOREM 4
Proof. Proof of part (1) Towards contradiction, suppose there

exists a PoS protocol Π that provides 𝑓s-accountable-safety, and 𝑓a-

𝑇
fin
-accountable-liveness for some integers 𝑓a, 𝑓s > 0 and𝑇

fin
< ∞.

Let 𝑓
l
denote the𝑇

fin
-liveness resilience of Π.

We first analyze the case 𝑓
l
≥ 𝑛/2. Let 𝑃 and𝑄 denote two sets

that partition the validators into two groups of size ⌈𝑛/2⌉ and ⌊𝑛/2⌋

respectively. Consider the following worlds, whereZ inputs exter-

nally valid bit strings, tx𝑃
𝑖
, 𝑖 ∈ [⌈𝑛/2⌉], and tx𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], to the

validators in 𝑃 and𝑄 respectively at the beginning of the execution.

Here, each validator 𝑖 in 𝑃 receives the unique string tx𝑃
𝑖
, and each

validator 𝑗 in𝑄 receives the unique string tx𝑄
𝑗
. Each string consists

of𝑚 bits, where𝑚 is a polynomial in the security parameter _.

World 1: There are two clients c1 and c2. Validators in 𝑃 are hon-

est, and those in 𝑄 are adversarial. In their heads, the adversarial

validators simulate the execution of ⌊𝑛/2⌋ honest validators that do
not receive any messages from those in 𝑃 over the network. They

also do not send any messages to 𝑃 and c1, but reply to c2.
Validators in𝑄 send messages to the timestamping service 𝐼 as

dictated by the protocol Π. There could be messages on 𝐼 sent by the

validators in 𝑃 that require a response from those in𝑄 . In this case,

the validators in𝑄 reply as if they are honest validators and have

not received any messages from those in 𝑃 over the network.

As |𝑄 | = ⌊𝑛/2⌋ ≤ 𝑓
l
, by the 𝑓

l
-liveness ofΠ, clients c1 and c2 both

output tx𝑃
𝑖
, 𝑖 ∈ [⌈𝑛/2⌉] as part of their chains by slot𝑇

fin
. Since there

can be at most𝑚⌊𝑛/2⌋ − 1 bits of data on 𝐼 , and tx𝑄
𝑗
, 𝑗 ∈ [⌊𝑛/2⌋],

consists of𝑚⌊𝑛/2⌋ bits, c1 does not learn and cannot output all of

tx𝑄
𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], as part of its chain by slot𝑇

fin
with overwhelming

probability.

World 2:There are again two clients c1 and c2. Validators in 𝑃 are

adversarial, and those in𝑄 are honest. In their heads, the adversarial

validators simulate the execution of the ⌈𝑛/2⌉ honest validators from
world 1, and pretend as if they do not receive any messages from

those in𝑄 over the network. They also do not send any messages to

𝑄 and c1, but reply to the queries by c2. They send the samemessages

to 𝐼 as those sent by the honest validators within world 1.

As |𝑃 | = ⌈𝑛/2⌉ ≤ 𝑓
l
, by the 𝑓

l
-liveness of Π, clients c1 and c2 both

output tx𝑄
𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], as part of their chains by slot 𝑇

fin
. Since

there can be atmost𝑚⌊𝑛/2⌋ −1 bits of data on 𝐼 , and tx𝑃
𝑖
, 𝑖 ∈ [⌈𝑛/2⌉],

consists of𝑚⌈𝑛/2⌉ bits, c1 does not learn and cannot output all of

tx𝑃
𝑖
, 𝑖 ∈ [⌈𝑛/2⌉], as part of its chain by slot𝑇

fin
with overwhelming

probability

As the worlds 1 and 2 are indistinguishable by c2 except with
negligible probability, it outputs the same chain containing tx𝑃

𝑖
,

𝑖 ∈ [⌈𝑛/2⌉], and tx𝑄
𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], in both worlds with overwhelm-

ing probability. However, c1’s chain contains tx𝑃𝑖 , 𝑖 ∈ [⌈𝑛/2⌉], but
not tx𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], in world 1, and tx𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], but not tx𝑃

𝑖
,

𝑖 ∈ [⌈𝑛/2⌉], in world 2. This implies that there is a safety violation

in either world 1 or world 2 or both worlds with non-negligible prob-

ability. Without loss of generality, suppose there is a safety violation

in world 2. In this case, c1 asks the validators for their transcripts,
uponwhich the adversarial validators in𝑃 replywith transcripts that

omit themessages received from the set𝑄 . As 𝑓s > 0, by invoking the

forensic protocol with the transcripts received, c1 identifies a non-
empty subset𝑆 ⊆ 𝑃 of the adversarial validators, and outputs a proof

that the validators in𝑆 have violated the protocolΠ. However, in this
case, an adversarial validator in world 1 can emulate the behavior

of c1 in world 2, and ask the validators for their transcripts. It can

then invoke the forensic protocol with the transcripts, and output a

proof that identifies the same subset 𝑆 ⊆ 𝑃 of validators as protocol

violators. Since the two worlds are indistinguishable by c2 except

16

Bitcoin-Enhanced Proof-of-Stake Security:
Possibilities and Impossibilities

with negligible probability, upon receiving this proof, it identifies

the honest validators in 𝑆 ⊆ 𝑃 as protocol violators in world 1 as

well with non-negligible probability, which is a contradiction. By the

same reasoning, if the safety violation happened inworld 1, an adver-

sarial validator in world 2 can construct a proof accusing an honest

validator in world 2 in c2’s view with non-negligible probability,

again a contradiction.

We next analyze the case 𝑓
l
< 𝑛/2.

World 3: There are two clients, c1 and c2. Validators in 𝑃 are

honest, and those in𝑄 are adversarial. Adversarial validators behave

as described in world 1. Since there can be at most𝑚⌊𝑛/2⌋ − 1 bits of
data on 𝐼 , and tx𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], consists of𝑚⌊𝑛/2⌋ bits, c1 does not

learn and cannot output all of tx𝑄
𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], as part of its chain

by slot𝑇
fin
. As there are at least 𝑓

l
adversarial validators, either of

the following cases can happen:

• c1 outputs tx𝑃𝑖 , 𝑖 ∈ [⌈𝑛/2⌉], as part of its chain by slot𝑇fin.
• c1 does not output tx𝑃𝑖 , 𝑖 ∈ [⌈𝑛/2⌉], by slot𝑇fin.
World 4: There are again two clients, c1 and c2. Validators in 𝑃

are adversarial, and those in 𝑄 are honest. Adversarial validators

behave as described inworld 2. Since there can be atmost𝑚⌊𝑛/2⌋ −1
bits of data on 𝐼 , and tx𝑃

𝑖
, 𝑖 ∈ [⌈𝑛/2⌉], consists of𝑚⌈𝑛/2⌉ bits, c1

does not learn and cannot output all of tx𝑃
𝑖
, 𝑖 ∈ [⌈𝑛/2⌉], as part of

its chain by slot𝑇
fin
. As there are at least 𝑓

l
adversarial validators,

either of the following cases can happen:

• c1 outputs tx
𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], as part of its chain by slot𝑇

fin
.

• c1 does not output tx
𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], by slot𝑇

fin
.

As the worlds 3 and 4 are indistinguishable by c2 except with
negligible probability, it outputs the same, potentially empty, chain

in both worlds by𝑇
fin

with overwhelming probability. Suppose c2
did not output all of tx𝑃

𝑖
, 𝑖 ∈ [⌈𝑛/2⌉], as part of its chain by slot

𝑇
fin
. As this implies a violation of 𝑇

fin
-liveness in world 3, it asks

the validators for their transcripts, upon which the adversarial val-

idators in𝑄 reply with transcripts that omit the messages received

from the set 𝑃 . As 𝑓a > 0, by invoking the forensic protocol with the

transcripts received, c1 identifies a non-empty subset 𝑆 ⊆ 𝑄 of the

adversarial validators, and outputs a proof that the validators in 𝑆

have violated the protocol Π. However, in this case, an adversarial
validator in world 4 can emulate the behavior of c2 in world 3, and
ask the validators for their transcripts. It can then invoke the forensic

protocol with the transcripts, and output a proof that identifies the

same subset 𝑆 ⊆ 𝑄 of validators as protocol violators. Since the two

worlds are indistinguishable by c2 except with negligible probability,
upon receiving this proof, it would identify the honest validators in

𝑆 ⊆ 𝑄 as protocol violators in world 4 as well with non-negligible

probability, which is a contradiction. By the same reasoning, if c2
does not output tx𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], as part of its chain by slot 𝑇

fin
,

the adversary can construct a proof accusing an honest validator in

world 3 with non-negligible probability, again a contradiction.

Next, suppose c1 did not output all of tx𝑃𝑖 , 𝑖 ∈ [⌈𝑛/2⌉], as part of
its chain by slot 𝑇

fin
in world 3. As this implies a violation of 𝑇

fin
-

liveness in world 3, it asks the validators for their transcripts, upon

which the adversarial validators in 𝑄 reply with transcripts that

omit the messages received from the set 𝑃 . As 𝑓a > 0, by invoking

the forensic protocol with the transcripts received, c1 identifies a

non-empty subset 𝑆 ⊆ 𝑄 of the adversarial validators, and outputs

a proof that the validators in 𝑆 have violated the protocol Π. How-
ever, in this case, an adversarial validator in world 4 can emulate the

behavior of c1 in world 3, and ask the validators for their transcripts.
It can then invoke the forensic protocol with the transcripts, and

output a proof that identifies the same subset 𝑆 ⊆ 𝑄 of validators

as protocol violators. Since the two worlds are indistinguishable by

c2 except with negligible probability, upon receiving this proof, it
would identify the honest validators in 𝑆 ⊆ 𝑄 as protocol violators

in world 4 with non-negligible probability, which is a contradiction.

By the same reasoning, if c1 does not output tx
𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], as

part of its chain by slot𝑇
fin
, the adversary can, with non-negligible

probability, construct a proof accusing an honest validator in world

3 in c2’s view, again a contradiction.
Finally, if c1 outputs tx𝑃𝑖 , 𝑖 ∈ [⌈𝑛/2⌉], and tx

𝑄

𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], as part

of its chain respectively in worlds 3 and 4, and c2 outputs both tx𝑃𝑖 ,

𝑖 ∈ [⌈𝑛/2⌉], and tx𝑄
𝑗
, 𝑗 ∈ [⌊𝑛/2⌋], as part of its chain in both worlds,

if 𝑓s > 0, we reach a contradiction by the same reasoning presented

for the worlds 1 and 2. Consequently, under the given conditions, no

PoS protocol can provide a positive accountable safety and liveness

resilience simultaneously evenwith access to a timestamping service.

Proof of part (2) Part (2) can be proved using just theworlds 1 and 2
above, which shows a contradiction given the assumptions 𝑓

l
≥ 𝑛/2

and 𝑓s > 0. □

C SECURITY PROOFS
Proof of Proposition 2. Since Bitcoin is safe with parameter𝑘 ,

without loss of generality, suppose Cc1𝑟1 ⪯ C
c2
𝑟2 . Letℎ𝑖 , 𝑖 ∈ [𝑚1], and

ℎ 𝑗 , 𝑗 ∈ [𝑚2],𝑚1 ≤ 𝑚2, denote the sequence of hash values within

checkpoint transactions in c1’s and c2’s views at slots 𝑟1 and 𝑟2 re-
spectively. Note that the sequence observed by c1 is a subset of the
sequence observed by c2. Let 𝐵1 denote the first PoS block in ckpt

c1
𝑟1

that is not available or not finalized in c2’s view at slot 𝑟2, and define

𝑖1 as the index of the hash of the block that extends or is the same as

𝐵1. (If there is no such block 𝐵1, 𝑖1 = ∞.) Similarly, let 𝐵2 denote the

first PoS block in ckptc2𝑟2 that is not available or not finalized in c1’s
view at slot 𝑟1, and define 𝑖2 as the index of the hash of the block that

extends or is the same as 𝐵2. (If there is no such block 𝐵2, 𝑖2 = ∞.)
Note that if 𝑖1 < ∞, 𝑖2 = ∞, and if 𝑖2 < ∞, 𝑖1 = ∞, due to Line 16 of
Algorithm 1. In the former case, i.e., if 𝑖1 < 𝑖2, ckpt

c2
𝑟2 ≺ ckptc1𝑟1 . In

the latter case, i.e., if 𝑖2 ≤ 𝑖1, ckpt
c1
𝑟1 ⪯ ckptc2𝑟2 .

If 𝑟2 ≥ 𝑟1 + Δ, any PoS block available in c1’s view at slot 𝑟1 be-

comes available in c2’s view by slot 𝑟2. Similarly, by the safety of

Bitcoin with parameter 𝑘 , if 𝑟2 ≥ 𝑟1 + Δ, Cc1𝑟1 ⪯ C
c2
𝑟2 . In this case,

𝑖1 = ∞ and ckptc1𝑟1 ⪯ ckptc2𝑟2 . Finally, by the safety of Bitcoin with

parameter 𝑘 , Cc𝑟1 ⪯ C
c
𝑟2
for any 𝑟2 ≥ 𝑟1. Thus, ckptc𝑟1 ⪯ ckptc𝑟2 . □

Proof of Theorem 5. Suppose there are two clients c1, c2, and
slots 𝑟1, 𝑟2 such thatLc1

𝑟1 conflicts withL
c2
𝑟2 . Let𝐵1 and𝐵2 denote the

earliest conflictingPoSblocks or bundles inLc1
𝑟1 andL

c2
𝑟2 respectively.

Without loss of generality, let 𝑟1 and 𝑟2 be the first slots 𝐵1 and 𝐵2
appear in c1’s and c2’s PoS chains respectively.

By the safety of Bitcoin, Cc1𝑟1 is a prefix of Cc2𝑟2 or vice versa with

overwhelming probability. By Proposition 2, ckptc1𝑟1 is a prefix of

ckptc2𝑟2 or vice versa.
17

Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan, andMohammad Ali Maddah-Ali

We first consider the case where at least one of the blocks is a

bundle. Without loss of generality, let 𝐵1 be a bundle and 𝐵 denote

the common parent of 𝐵1 and 𝐵2. Let𝑏 denote the Bitcoin blockwith

the liveness transaction that triggered the rollupmode, duringwhich

ℎ1, the hash of 𝐵1, and the corresponding 𝑛/2 signatures appeared
in Cc1𝑟1 . At slot 𝑟1, the prefix of c1’s PoS chain ending at 𝐵1 consists of
two pieces: (i) a checkpointed chain outputted using the prefix ofCc1𝑟1
that ends at the 2𝑘-th block extending 𝑏, (ii) bundles extending the

checkpointed chain until 𝐵1. If 𝐵 is also a bundle, the next block in

Lc2
𝑟2 following𝐵, i.e.𝐵2, has to be the same block as𝐵1 due to the con-

sistency of Cc1𝑟1 and Cc2𝑟2 . However, as 𝐵2 ≠ 𝐵1, 𝐵 cannot be a bundle.

If 𝐵 is not a bundle, it must be the last PoS block in c1’s check-
pointed chain preceding 𝐵1, implying that 𝐵1 is the first bundle in

Lc1
𝑟1 . However, this again implies𝐵1 = 𝐵2 since c1 and c2 agree on the

first block of the rollup mode whenever Cc1𝑟1 and Cc2𝑟2 are consistent.

As this is a contradiction, with overwhelming probability, neither

of the blocks 𝐵1 or 𝐵2 can be a bundle.

Finally, if neither of𝐵1 and𝐵2 is a bundle, proof of slashable safety

proceeds as given for Theorem 2. □

Proof of Theorem 6. As the number of honest active validators

is> 𝑛/2 at all times, no PoS block or bundle hashwith an unavailable

preimage can acquire signatures from over 𝑛/2 active validators of
the corresponding epoch. Hence, there cannot be any emergency

break and the clients do not stop outputting new PoS blocks or bun-

dles as part of their PoS chains while new checkpoints for available

and finalized PoS blocks continue to appear in Bitcoin.

Consider a transaction tx input to the honest validators at some

slot 𝑟 byZ. If tx does not appear in Lv
𝑟+𝑇tm in an honest validator

v’s view, v sends a liveness transaction to Bitcoin containing tx at
slot 𝑟 +𝑇tm. Let 𝑅, polynomial in the security parameter _, denote

the confirmation latency of Bitcoin with parameter 𝑘 . Then, by the

security of Bitcoin, with overwhelming probability, for all clients

c, the liveness transaction appears in Cc𝑟1 within the same Bitcoin

block 𝑏 by slot 𝑟1 = 𝑟 +𝑇tm + 𝑅,
Once a client c observes 𝑏 become 𝑘 deep in its Bitcoin chain,

which happens by some slot less than 𝑟1 + 𝑅, it sends a checkpoint
transaction for the block at the tip of its PoS chain. Subsequently, 𝑏

becomes at least 2𝑘 deep in c’s Bitcoin chain by some slot 𝑟2 ≤ 𝑟1+2𝑅
with overwhelming probability. In this case, there are two possibil-

ities: (1) tx ∈ ckptc𝑟2 , or (2) tx ∉ ckptc𝑟2 . If (1) happens, then for all

clients c, it holds that tx ∈ Lc
𝑟2
. If (2) happens, then each client c

enters the rollupmode by slot 𝑟2. Once in the rollupmode, an honest

validator v prepares a bundle of transactions containing tx by slot
𝑟2, which is viewed by all clients and signed by all honest validators

by slot 𝑟2 + Δ. Upon gathering these signatures, i.e., by slot 𝑟2 + 2Δ,
v sends the hash of the bundle and the signatures to Bitcoin. By the
security of Bitcoin, the hash and the signatures appear in the Bitcoin

chain of each client c at the sameposition by slot 𝑟3 = 𝑟2+2Δ+𝑅with

overwhelming probability. Since the PoS protocol is accountable, an

honest validator can never be identified as a protocol violator and

can never become slashable in the view of any client. This implies

that the signatures from the honest validators suffice to pass the 𝑛/2
threshold. Consequently, tx ∈ Lc

𝑟3
for each client c.

Finally, setting𝑇
fin

= 𝑟3 − 𝑟 = 2Δ + 4𝑅 +𝑇tm, which is polynomial

in _, we observe that unless there is a safety violation,𝑇
fin
-liveness

holds for all clients. □

Proof of Corollary 2. By Theorem 6, if the number of adver-

sarial active validators is less than 𝑛/2 at all times, the Babylon

protocol of Section 5.2 with fast finalization satisfies𝑇
fin
-liveness,

where 𝑇
fin

is a polynomial in the security parameter _. Thus, if a

transaction tx is input to an honest validator at some slot 𝑟 , then for

all clients c that follow the fast finalization rule, txwill be inLc
𝑟+𝑇

fin

.

If txwas included in a bundle, then once tx entersLc
𝑟+𝑇

fin

, it is also

in ckptc
𝑟+𝑇

fin

. On the other hand, if tx was included in a finalized

and available PoS block, it might be the case that the block extends

ckptc
𝑟+𝑇

fin

, but is not checkpointed yet.

At the end of each epoch, an honest validator v sends a checkpoint
transaction for the finalized and available PoS blocks extending its

checkpointed chain. As the PoS protocol is accountable, an honest

validator can never be identified as a protocol violator and can never

become slashable in the view of any client. Thus, the signatures from

the honest validators on v’s checkpoint are always viewed as valid by
all clients. Let 𝑅, polynomial in the security parameter _, denote the

confirmation latency of Bitcoin with parameter 𝑘 . Let𝑇 , polynomial

in the security parameter _, denote an upper bound on the duration

of epochs.

Suppose the validator v sent its signed checkpoint for a finalized
and available PoS block containing tx at the end of the epoch where
it observed tx in its PoS chain, e.g., at some slot 𝑟 ′ < 𝑟 + 𝑇

fin
+ 𝑇 .

Then, with overwhelming probability, for any client c, v’s signed
checkpoint is in Cc

𝑟 ′+𝑅 . As the valid signatures on the checkpoint by
the honest validators pass the 𝑛/2 threshold, with overwhelming

probability, either tx ∈ ckptc
𝑟 ′+𝑅 for all clients c, or there is a check-

point in the prefix of v’s checkpoint for conflicting PoS blocks. In
the latter case, the protocol enters the rollup mode as described in

Section 5.4, in which case txwould be included in a bundle. Conse-
quently, Babylon with slow finalization satisfies𝑇 ′

fin
-liveness, where

𝑇 ′
fin
≤ 𝑇

fin
+𝑇 + 𝑅 is a polynomial in the security parameter _. □

18

	Abstract
	1 Introduction
	1.1 From Proof-of-work to proof-of-stake
	1.2 Proof-of-stake security issues
	1.3 Leveraging external trust
	1.4 Babylon
	1.5 Security guarantees
	1.6 Outline

	2 Related Works
	2.1 Posterior corruption attacks
	2.2 Hybrid PoW-PoS protocols
	2.3 Timestamping

	3 Model
	3.1 Validators and clients
	3.2 Blocks and chains
	3.3 Environment and adversary
	3.4 Networking
	3.5 Security
	3.6 Accountable security
	3.7 Proof-of-Stake protocols
	3.8 Slashable security
	3.9 Model for Bitcoin
	3.10 Notation

	4 Optimal safety
	4.1 Safety is not slashable without external trust
	4.2 Babylon 1.0 protocol with fast finalization
	4.3 Security analysis

	5 Optimal liveness
	5.1 No accountable liveness
	5.2 Optimal liveness resilience: full Babylon protocol with fast finalization
	5.3 Safety Analysis
	5.4 Slashing and Liveness after Safety Violation
	5.5 Liveness Analysis

	6 Babylon with slow finalization: Bitcoin safety
	7 Conclusion
	References
	A Proof of Theorem 1
	B Proof of Theorem 4
	C Security Proofs

