
On Secure Computation of Solitary Output Functionalities
With and Without Broadcast

Bar Alon∗

alonbar08@gmail.com
Eran Omri†

omrier@ariel.ac.il

July 18, 2022

Abstract

Secure multiparty computation (MPC) models scenarios, where a set of mutually distrusting
parties wish to compute some task over their private inputs. Assuming that the majority of the
parties are honest and that the parties have access to a broadcast channel, every function can
be computed with full security. Conversely, if either an honest majority or a broadcast channel
cannot be assumed (as is the case in various real-world settings), then there are functionalities
that cannot be computed with full security. Understanding the exact power of each of these
assumptions is a valuable goal.

In this paper, we study full security for solitary output functionalities (where only a single
party receives an output). We focus on three-party functionalities in the point-to-point model
(without broadcast), assuming an honest majority. We develop new techniques for analyzing the
security of MPC protocols in the point-to-point model. Using these techniques, we are able to
give a characterization for several interesting classes of solitary output three-party functionalities
(including Boolean and ternary-output functionalities over a polynomial-size domain) that are
computable with full security in the setting of an honest majority without a broadcast channel.

Furthermore, using our techniques, we make progress in understanding the set of solitary
output three-party functionalities that can be computed with full security, assuming broadcast
but no honest majority. Specifically, we extend the set of such functionalities that are known to
be computable, due to Halevi et al. [TCC ’19].

Keywords: broadcast; point-to-point communication; secure multiparty computation;
solitary output; impossibility result.

∗Department of Computer Science, Ariel University. Ariel Cyber Innovation Center (ACIC). Research supported
in part by grants from the Israel Science Foundation (no.152/17), and by the Ariel Cyber Innovation Center in
conjunction with the Israel National Cyber directorate in the Prime Minister’s Office.

†Department of Computer Science, Ariel University. Ariel Cyber Innovation Center (ACIC). Research supported
in part by grants from the Israel Science Foundation (no.152/17), by the Ariel Cyber Innovation Center in conjunction
with the Israel National Cyber directorate in the Prime Minister’s Office, and by the Robert L. McDevitt, K.S.G.,
K.C.H.S. and Catherine H. McDevitt L.C.H.S. endowment at Georgetown University. Part of this work was done
when E.O. was hosted by Georgetown University.

Contents
1 Introduction 1

1.1 Our Results . 2
1.2 Our Techniques . 8
1.3 Related Work . 17
1.4 Organization . 17

2 Preliminaries 17
2.1 Notations . 17
2.2 The Model of Computation . 19

3 Our Main Results in the Point-to-Point Model 22
3.1 Useful Definitions . 23
3.2 Our Main Results . 25

4 Impossibility Results 29
4.1 The Hexagon Argument . 29
4.2 Analyzing The Ensembles . 34

5 Positive Results For the Point-to-Point Model 41
5.1 Proving Theorem 3.7 . 41
5.2 Proving The Positive Direction of Theorem 3.9 . 43

6 Computation With Broadcast and a Dishonest Majority 45
6.1 Proofs of the Results . 47

7 Various Interesting Examples 53

Bibliography 58

A Definition of Security-With-Identifiable-Abort 61

1 Introduction
In today’s digital world, mutually distrustful parties communicate over large networks, such as the
Internet, and perform common tasks together, where each party holds some private information.
Secure multiparty computation (MPC) addresses this scenario and offers protocols for performing
tasks in untrusted environments while guaranteeing security. The two most basic security properties
are correctness and privacy. However, in most scenarios participating parties may also desire other
properties, such as, fairness (namely, either all parties receive an output or none do), and guaranteed
output delivery (honest parties always receive an output).

In this work we focus on the notion of full security, which captures all of the above security
properties (and several others).1 For general functionalities, there are two main ingredients that are
essential for achieving fully secure protocols for any (efficiently computable) functionality. These
ingredients are the guarantee that a strict majority of the parties are honest and the availability of
a broadcast channel (allowing any party to reliably send the same message to all parties). Indeed,
assuming an honest majority and a broadcast channel (on top of a complete point-to-point network)
there is an MPC protocol that computes any functionality with full security [7, 25].

Cleve [9] showed that without an honest majority full security cannot be achieved even for
the simple coin-tossing functionality (even with a broadcast channel). On the other hand, even if
two-thirds of the parties are honest, there is no fully secure protocol for computing the broadcast
functionality in the plain model (i.e., without setup/proof-of-work assumptions) [24, 22, 15]. This
raises the questions of identifying the set of functions that can be computed with full security
assuming one of these two ingredients, but not the other.

For the setting with broadcast but without an honest majority, a characterization was given for
the set of two-party, Boolean, symmetric (i.e., where all parties receive the same output) functions
over a constant size domain [19, 3, 23, 4]. The cases of asymmetric functions and of multiparty
functions were also investigated [18, 4, 13, 20, 12], but both characterizations are open. For the
setting of no broadcast and an honest majority, [11] characterized the symmetric functions that can
be computed with full security without broadcast. The investigation of this setting was extended to
deal with asymmetric functions in [2], who provided a variety of necessary and sufficient conditions
for full security in this setting.

In this paper, we investigate the above two questions for the special case of solitary output
functionalities, i.e., where only a single (predetermined) party receives an output from the com-
putation. Besides being an interesting special case of asymmetric functionalities, solitary output
functionalities capture many real-world scenarios of MPC. One motivating example is that of a
service provider, wishing to perform some private data analysis over the private inputs of its users,
where no one but the service provider should learn any information about the inputs or the output.
Solitary output functionalities are also important for the setting of non-interactive MPC such as
the Private Simultaneous Messages (PSM) model [14].

This leads us to the main question studied in this paper:

Characterize the set of solitary output functionalities
that can be computed with full security.

1Formally, full security is defined via the so-called real vs. ideal paradigm, where a (real-world) protocol is required
to emulate an ideal setting, in which the adversary is limited to selecting inputs for the corrupted parties and receiving
their outputs.

1

For these functionalities, fairness in not an issue. However, even for the setting with a broadcast
channel, Halevi et al. [20] showed that without an honest majority some solitary output function-
alities cannot be computed with guaranteed output delivery. On the positive end, they present
fully-secure protocols for several natural and useful families of solitary output functionalities, in-
cluding some variants of the Private Set Intersection (PSI) problem. For the setting without a
broadcast channel, only a handful of solitary output functionalities were known to be impossible
to compute, even when an honest majority is present [2, 16]. On the positive side, [2] identified a
class of solitary output functionalities that can be computed with full security.2 However, to the
best of our knowledge, no characterization was given for an interesting sub-class of functionalities
(either with or without a broadcast channel).

1.1 Our Results

In this paper, we focus on solitary output three-party functionalities where party A with input x,
party B with input y, and party C with input z, compute a functionality f with only A receiving
the output. Furthermore, we mainly focus on functionalities with polynomial-sized domain.

We develop new techniques for analyzing the security of MPC protocols in the point-to-point
model. Using these techniques, we are able to give a clean characterization for several interesting
classes of solitary output three-party functionalities (including, Boolean and even ternary-output
functionalities over a domain of polynomial size) that are computable with full security in the
setting of an honest majority without a broadcast channel. We believe that the new techniques
can prove useful in analyzing the security of protocols for a broader class of MPC settings. Indeed,
using these techniques, we show that any solitary output three-party Boolean functionality that can
be securely computed without broadcast assuming an honest majority, can be securely computed
with broadcast and no honest majority (extending the set of functionalities that are known to be
computable, due to Halevi et al. [20]).

For the sake of simplicity of the presentation, in the rest of this introduction we only consider
perfect security and functionalities with finite domain and range. A formal statement of the results
for functionalities with polynomial-sized domain and computational security is given in Section 3.
We will also limit the following discussion to two families of functionalities, for which our results
admit a characterization. The first family we consider is that of deterministic no-input output-
receiving party (NIORP) functionalities, where the output-receiving party A has no input. The
second family we consider is the set of (possibly randomized) ternary-output functionalities, where
the output of A is one of three values (with A possibly holding an input). In particular, this yields
a characterization for Boolean functionalities. Below are informal statements of the characteriza-
tions for deterministic functionalities. We handle randomized functionalities by a reduction to the
deterministic case (see Section 1.2.3 below).

Functionalities with no input for the output-receiving party (NIORP). Before stating
the theorem, we define a special partitioning of the inputs of B and C. The partition is derived
from an equivalence relation, which we call common output relation (CORE), hence, we call the
partition the CORE partition.

2The main positive result of [2] holds for functionalities where two parties receive an output, hence solitary output
is a special case of their results. Additionally, they identified several other solitary output functionalities that fall
outside of their main results, that can also be securely computed.

2

Definition 1.1 (CORE partition). Let f : ∅ × Y × Z 7→ W be a deterministic solitary output
three-party NIORP functionality. For inputs y, y′ ∈ Y, we say that y ∼ y′ if and only if there exists
z, z′ ∈ Z such that f(y, z) = f(y′, z′). We define the equivalence relation ≡ to be the transitive
closure of ∼. That is, y ≡ y′ if and only if either y ∼ y′ or there exists a sequence of inputs
y1, . . . , yk ∈ Y such that

y ∼ y1 ∼ . . . ∼ yk ∼ y′.

We partition the set of inputs Y according to the equivalence classes of ≡, and we write the partition
as Y = {Yi : i ∈ [n]}. We partition Z into disjoint sets Z = {Zj : j ∈ [m]} similarly. We refer to
these partitions as the CORE partitions of f .

As an example, consider the following solitary output three-party functionality given by the
matrix 0 1 2

1 3 4
3 4 5


Here B chooses a row, C chooses a column, and the output of A is the value written in the chosen
entry. Then the CORE partition of both the rows and the columns result in the trivial partition,
i.e., all rows are equivalent and all columns are equivalent. To see this, note that both the first and
second row contain the output 1. Therefore they satisfy the relation ∼. Similarly, the second and
last row satisfy ∼ since 3 (and 4) are a common output. Thus, the first and last row are equivalent
(though they do not satisfy the relation ∼). Similarly, all columns are equivalent.

We are now ready to state our characterization for NIORP functionalities.

Theorem 1.2 (Characterization of NIORP functionalities, informal). Let f : ∅ × Y × Z 7→ W
be a deterministic solitary output three-party NIORP functionality, and let Y = {Yi : i ∈ [n]} and
Z = {Zj : j ∈ [m]} be the CORE partitions of Y and Z, respectively. Then f can be securely
computed in the point-to-point model, if and only if there exists two families of efficiently samplable
distributions {Qi}i∈[n] and {Rj}j∈[m], such that the following holds. For all i ∈ [n], j ∈ [m], y ∈ Yi,
and z ∈ Zj, it holds that

f(y∗, z) ≡ f(y, z∗),
where y∗ ← Qi and z∗ ← Rj.

Stated differently, consider the partition of Y × Z into combinatorial rectangles defined by
R = {Yi ×Zj : i ∈ [n], j ∈ [m]}. Then f can be securely computed if and only if both B and C can
each associate a distribution to each set in the partition of their respective set of inputs, such that
the output distribution in each combinatorial rectangle in R is fixed.

In Table 1, we illustrate the usefulness of Theorem 1.2 by considering various functionalities
(which were also considered by [20]) related to private-set intersection (PSI), and mark whether
each variant can be computed with full security. Define the NIORP functionality PSIℓ1,ℓ2

k1,k2,m to
output to A the intersection of S1 and S2, held by B and C, respectively. Here, Si ⊆ {1, . . . , m}
and ki ≤ |Si| ≤ ℓi for every i ∈ {1, 2}. The variants we consider are those that apply some function
g over the output of A, i.e., the functionality the parties compute is g(PSIℓ1,ℓ2

k1,k2,m(S1,S2)). The
proofs for which parameters allow each function to be computed are presented in Section 7. It is
important to note that the domains of the functionalities are constant as otherwise some of the
claims are provably false (e.g., [2] showed that PSI1,1

1,1,κ, where κ is the security parameter, can be
securely computed).

3

Input restriction\Function g g(S) = S g(S) = |S| g(S) =
{

1 if S = ∅
0 otherwise

k1 = k2 = 0, or
ℓ1 = 0, or ℓ2 = 0, or
k1 = m, or k2 = m

✓ ✓ ✓

k1 = ℓ1 /∈ {0, m} and
k2 = ℓ2 /∈ {0, m}

✗ ✓ ✓

0 < k1 < ℓ1,
0 < k2 < ℓ2, and
ℓ1 + k2, k1 + ℓ2 > m

✗ ✗ ✓

Any other choice ✗ ✗ ✗

Table 1: Summary of our results stated for various versions of the PSI functionality. Each row in
the table above corresponds to a different choice of the parameters. Each column corresponds to a
different function g applied to the output of A.

Ternary-output functionalities. We next give our characterization for ternary-output func-
tionalities. In this setting, party A also has an input, and its output is a value in {0, 1, 2}. Similarly
to the NIORP case, we consider partitions over the inputs of B and C. Here, however, each in-
put x ∈ X is associated with a different CORE partition. For the characterization, we consider
the meet of all such partitions, which, intuitively, is the partition of the set using all partitions
together. Formally, for partitions P1, . . . ,Pn over a set S, their meet is defined as the collection of
all non-empty intersections, i.e.,

n∧
i=1

Pi :=
{
T ⊆ S : T ̸= ∅,∃T1 ∈ P1, . . . , Tn ∈ Pn s.t. T =

n⋂
i=1
Ti

}
.

Before stating the theorem, we formalize the meet of the CORE partitions, which we call
CORE∧-partition, for a given solitary output functionality.

Definition 1.3 (CORE∧-partition). Let f : X ×Y ×Z 7→ {0, 1, 2} be a deterministic solitary out-
put three-party ternary-output functionality. For every x ∈ X , we can view f(x, ·, ·) as a NIORP
functionality, and consider the same CORE partition as in Definition 1.1. We denote these par-
titions by Yx = {Yx

i : i ∈ [n(x)]} and Zx = {Zx
j : j ∈ [m(x)]}. We define the CORE∧-partitions

of f as the meet of its CORE partitions, that is, we let Y∧ = ∧
x∈X Yx and Z∧ = ∧

x∈X Zx. We
denote their sizes as n∧ = |Y∧| and m∧ = |Z∧|, and we write them as Y∧ = {Y∧i : i ∈ [n∧]} and
Z∧ = {Z∧j : j ∈ [m∧]}.

As an example, consider the deterministic variant of the convergecast functionality [16], CC :

4

({0, 1})3 7→ {0, 1} defined as3

CC(x, y, z) =
{

y if x = 0
z otherwise

Equivalently, CC can be defined by the two matrices

M0 =
(

0 0
1 1

)
and M1 =

(
0 1
0 1

)

Here, A chooses a matrix, B chooses a row, and C chooses a column. The output of A is the value
written in the chosen entry. Observe that in M0, the rows are not equivalent while the columns
are. In M1, however, the converse holds, namely, the row are equivalent while the columns are not.
Thus, in the CORE∧-partitions of CC any two inputs are in different sets.

We are now ready to state our characterization for ternary-output functionalities.

Theorem 1.4 (Characterization of ternary-output functionalities, informal). Let f : X × Y ×
Z 7→ {0, 1, 2} be a deterministic solitary output three-party ternary-output functionality, and let
Y∧ = {Y∧i : i ∈ [n∧]} and Z∧ = {Z∧j : j ∈ [m∧]} be its CORE∧-partition. Then f can be securely
computed in the point-to-point model, if and only if the following hold.

1. Either Yx = {Y} for all x ∈ X , or Zx = {Z} for all x ∈ X .

2. There exists an algorithm S, and there exists three families of efficiently samplable distribu-
tions {Px}x∈X , {Qi}i∈[n∧], and {Rj}j∈[m∧], such that the following holds. For all i ∈ [n∧],
j ∈ [m∧], y ∈ Y∧i , z ∈ Z∧j , and x ∈ X , it holds that

S(x, x∗, f(x∗, y, z)) ≡ f(x, y∗, z) ≡ f(x, y, z∗),

where x∗ ← Px, where y∗ ← Qi, and where z∗ ← Rj.

Observe that the deterministic convergecast functionality CC does not satisfy Item 1 since
Y0 ̸= {Y} and Z1 ̸= {Z}. Therefore it cannot be securely computed. We stress that the positive
direction of Theorem 1.4 holds even for functionalities that are not ternary-output. At first sight,
it might seems that the algorithm S is the same as a simulator for a corrupt A. However, we stress
that we only require S to output what would become the output of an honest A, and not the entire
view of the adversary. Arguably, determining whether such an algorithm exists is much simpler
than determining when a simulator for some protocol exists.

Randomized functionalities. So far, we have only dealt with deterministic functionalities. To
handle the randomized case, we show how to reduce it to the deterministic case. That is, we show
that for any randomized solitary output three-party functionality f , there exists a deterministic
solitary output three-party functionality f ′, such f can be securely computed if and only if f ′ can
be securely computed.

3Fitzi et al. [16] defined the convergecast functionality as the NIORP randomized solitary output functionality,
where A outputs y with probability 1/2, and outputs z with probability 1/2.

5

Proposition 1.5 (Reducing randomized functionalities to deterministic functionalities, informal).
Let f : X×Y×Z 7→ W be a (randomized) solitary output three-party functionality, and let R denote
the domain of its randomness. Define the deterministic solitary output three-party functionality
f ′ : (X ×R)× (Y ×R)× (Z ×R) 7→ W as

f ′((x, r1), (y, r2), (z, r3)) = f(x, y, z; r1 + r2 + r3),

where addition is done over R when viewed as an additive group. That is, the parties receive a
share of the randomness in a 3-out-of-3 secret sharing scheme. Then f can be securely computed if
and only if f ′ can be securely computed.

Assuming a broadcast channel. Surprisingly, we are also able to show that any (randomized)
solitary output three-party functionality that can be securely computed, as captured by Theo-
rems 1.2 and 1.4, can also be securely computed assuming the availability of a broadcast channel
with security holding against two corrupted parties. In particular, any solitary output three-party
Boolean functionality that can be securely computed without broadcast, assuming an honest ma-
jority, can be securely computed with broadcast and no honest majority. Moreover, the set of
functions captured by Theorems 1.2 and 1.4 extends the set of functions previously known to be
computable with broadcast, due to Halevi et al. [20] (see [20, Theorem 4.4]).

On the other hand, we claim that the converse is false. Indeed, consider the following solitary
output three-party variant of the soGHKL functionality, defined by the matrix

0 1
1 0
1 1


where B chooses a row, C chooses a column, and the output of A is the value written in the chosen
entry.

Since soGHKL is a NIORP functionality, by Theorem 1.2 it cannot be securely computed in the
point-to-point model. On the other hand, Halevi et al. [20] showed that soGHKL can be computed
assuming a broadcast channel.4 As a result, for NIORP and ternary-output solitary output three-
party functionalities, assuming a broadcast channel is strictly stronger than assuming an honest
majority. This is summarized below. We stress that the construction requires to assume the
existence of oblivious transfer, hence the resulting protocol admits computational security.

Theorem 1.6 (Informal). Let f : X × Y × Z 7→ W be a deterministic solitary output three-party
functionality. Assume that f is either a NIORP or a ternary-output functionality. Suppose that f
can be securely computed assuming an honest majority in the point-to-point model. Then, assuming
the existence of oblivious transfer and the availability of a broadcast channel, f can be computed
with computational security tolerating two corruptions.

Moreover, the converse is false. That is, there exists a NIORP Boolean functionality that can
be securely computed assuming a broadcast channel and no honest majority, but cannot be securely
computed in the point-to-point model assuming an honest majority.

In fact, Theorem 1.6 can be improved by slightly relaxing some of the conditions the function
has to satisfy (see Section 1.2.4 below for more details). Furthermore, Theorem 1.6 captures

4In fact, [20] gave three different protocols for computing soGHKL securely.

6

NIORP functionalities whose status was previously unknown, e.g., the NIORP functionality fspecial :
∅ × ({0, 1, 2, 3})2 7→ {0, . . . , 7} defined by the matrix

0 1 2 3
1 0 3 2
4 5 6 7
5 4 7 6


can be securely computed assuming a broadcast channel, tolerating two corruptions.

In Table 2 below, we present several examples of three-party functionalities, and compare their
status assuming no broadcast channel and one corruption, to the case where such a channel is
available with two possible corruptions.

Function\Model
Without broadcast
(honest majority)

With broadcast
(no honest majority)

Millionaires’ Problem:

GT(x, y, z) =


0 if x > y, z

1 if y > z, y ≥ x

2 otherwise

✗ Thm. 1.4 ✓ [20]

NIORP Millionaires’ Problem:

cGT(y, z) =
{

0 if y > z

1 otherwise
✓ Thm. 1.4 ✓ [20]

CC(x, y, z) ✗ Thm. 1.4 ✓ [20]

soGHKL(y, z) ✗ Thm. 1.4 ✓ [20]

Max(x, y, z) ✓ Thm. 1.4 ✓ [20]

EQ(y, z) =
{

1 if y = z

0 otherwise
✓ Thm. 1.4 ✓ [20]

ℓEQ(y, z) =
{

y if y = z

0 otherwise
✗ Thm. 1.4 ✗ [20]

fspecial : ∅ × ({0, 1, 2, 3})2 7→ {0, . . . , 7} ✓ Thm. 1.4 ✓ Thm. 1.4

Table 2: Comparing the landscape of functionalities that can be computed without broadcast but
with an honest majority, to functionalities that can be computed with broadcast but no honest
majority. All functions above have a constant domain. It is important that the domain of ℓEQ does
not include 0.

7

1.2 Our Techniques

We now turn to describe our techniques. In Section 1.2.1 we handle NIORP functionalities. Then,
in Section 1.2.2 we handle ternary-output functionalities. Then, in Section 1.2.3 we show how to
reduce the randomized case to the deterministic case. Finally, in Section 1.2.4 we prove Theorem 1.6,
showing that for the families of functions considered, the broadcast assumption is strictly stronger
than the honest majority assumption.

1.2.1 Characterizing NIORP Functionalities

We start with the negative direction of Theorem 1.2. Our argument is split into two parts. In
the first part, we adapt the hexagon argument due to Fischer et al. [15] to the MPC setting. This
results in 6 distributions, all of which are identically distributed. The second part of the proof is
dedicated to the analysis of these 6 distributions.

The hexagon argument for NIORP functionalities. In the following, let f be a solitary
output three-party NIORP functionality (no input for the output receiving party), and let π be a
protocol computing f securely over point-to-point channels, tolerating a single corrupted party. At
a high level, the hexagon argument is as follows. Given the three-party protocol π, we construct
a new six-party protocol π′. Then, we consider six different semi-honest adversaries for π′, and
observe that each of them can be emulated by a malicious adversary in the original three-party
protocol π. By the security of π, each of the malicious adversaries can simulated in the ideal world
of f . Finally, since all adversaries for six-party protocol π′ we consider are semi-honest, the view of
each party is the identically distributed across all six scenarios. We then conclude that the output
of all six simulators must be identically distributed. We stress that π′ is not secure, but rather any
attacker for it can be emulated by an attacker for the three-party protocol π.

We next provide a more formal argument. Consider the following six-party protocol. We have
two copies of each party, all of which are acting honestly, i.e., each copy of party P is acting the
same as an honest P does in π. Furthermore, the parties are connected via a cycle graph as depicted
in Figure 1. Finally, we let B, B′, C, and C′ hold inputs y, y′, z, and z′, respectively.

A

B

C′

A′

B′

C
yz

y′ z′

Figure 1: The six-party protocol

Now, consider the following 6 attack-scenarios for the six-party protocol, where in each scenario
a semi-honest adversary corrupts four adjacent parties, as depicted in Figure 2. Observe that
each attacker can be emulated in the original three-party protocol π, by a malicious adversary

8

emulating the corresponding four parties in its head. For example, in Scenario 2a, an adversary in
π can emulate the attack by corrupting C, and emulating in its head two virtual copies of C, a copy
of A and a copy B.

A

B

C′
A′

B′

C

(a) Scenario 1

A

B

C′
A′

B′

C

(b) Scenario 2

A

B

C′
A′

B′

C

(c) Scenario 3

A

B

C′
A′

B′

C

(d) Scenario 4

A

B

C′
A′

B′

C

(e) Scenario 5

A

B

C′
A′

B′

C

(f) Scenario 6

Figure 2: The six adversaries in the hexagon argument. The shaded yellow areas in each scenario
correspond to the (virtual) parties the adversary controls.

We now focus on the output of A in an honest execution of the six-party protocol. Since in all
six attack-scenarios all parties are acting honestly, it follows that the view of party A is identically
distributed in all cases. In particular, its output is identically distributed, whether it is the output
of an honest A (i.e., in scenarios 1 and 2), or it is part of the view of the adversary. By the assumed
perfect security of π, each of the adversaries can be simulated in the corresponding ideal world
of the three-party functionality f . Thus, we obtain six different expressions for the output of A,
described as follows.
Scenarios 1 and 2: For each of the two scenarios, the simulator (of the three-party protocol)

defines a distribution over the input it sends to the trusted party. Therefore, the output of A
in scenario 1 must be distributed like f(y, z∗), where z∗ is sampled according to an efficiently
samplable distribution Ry′,z,z′ that depends only on y′, z, and z′. Similarly, the output of A
in scenario 2 must be distributed like f(y∗, z), where y∗ is sampled according to an efficiently
samplable distribution Qy,y′,z′ that depends only on y, y′, and z′.

Scenarios 4 and 5: In these two scenarios, A is being corrupted, and thus its output can be
generated by a simulator corrupting C in scenario 4, and a simulator corrupting B in scenario
5. Since B and C have no output, it follows that there exists two efficient algorithms SB and
SC, such that SC(y, z, z′) and SB(y, y′, z) are both identical to the output of the adversary in
the real world.

Scenarios 3 and 6: Similarly to the previous case, the output of A in the real world can be
generated by a simulator corrupting A in the ideal world of f . Since A receives an output
from the trusted party, it follows that there exists two efficient algorithms S3 and S6 such

9

that S3(y, z′, f(y′, z)) and S6(y′, z, f(y, z′)) are both identical to the output of A in the real
world.

To summarize, for all y, y′ ∈ Y and z, z′ ∈ Z, we have that there exist two efficiently samplable
distributions Qy,y′,z′ and Ry′,z,z′ over Y and Z, respectively, and four efficient algorithms SB, SC,
S3, and S6, such that the following holds.

f (y∗, z) ≡ f (y, z∗) ≡ SB
(
y, y′, z

)
≡ SC

(
y, z, z′

)
≡ S3

(
y, z′, f

(
y′, z

))
≡ S6

(
y′, z, f

(
y, z′

))
, (1)

where y∗ ← Qy,y′,z′ and where z∗ ← Ry′,z,z′ .

Analyzing the six distributions over the output of A. We now turn to the analysis of
Equation (1), which results in the necessary conditions stated in Theorem 1.2. First, observe that
since SB is independent of z′, it follows that all other distributions are also independent of it. Stated
differently, changing z′ to another value does not change the distributions. Similarly, since SC is
independent of y′ it follows that all other distributions are also independent of it as well. Let y0
and z0 be the lexicographically smallest elements of Y an Z, respectively, and define Q′y := Qy,y0,z0

and R′z := Ry0,z,z0 . Therefore,

f (y∗, z) ≡ f (y, z∗) ≡ S3
(
y, z′, f

(
y′, z

))
≡ S6

(
y′, z, f

(
y, z′

))
, (2)

for all y′ ∈ Y and z′ ∈ Z, where y∗ ← Q′y and z∗ ← R′z.
Let us focus on S3. Recall that the relation ∼ is defined as z ∼ z̃ if and only if there exists

ỹ, ỹ′ ∈ Y such that f(ỹ, z) = f(ỹ′, z̃). Since S3 is independent of y′, it follows that

S3
(
y, z′, f

(
y′, z

))
≡ S3

(
y, z′, f (ỹ, z)

)
≡ S3

(
y, z′, f

(
ỹ′, z̃

))
≡ S3

(
y, z′, f

(
y′, z̃

))
,

where the first and last transition follow from the observation that the output distribution of S3 is
independent of the value of y′, and the second transition follows from the fact that S3 receives the
same inputs in both cases. Therefore, changing z to z̃ where z ∼ z̃ does not change the distribution.
By transitivity of ≡, it follows that changing z to any z̃′ in the same set Zj ∈ Z, does not change
the distribution. Thus, all distributions in Equation (2) are not affected by such change.

As a result, for every j ∈ [m], every y ∈ Y, and every z, z̃′ ∈ Zj , it holds that

f(y∗, z) ≡ f(y∗, z̃′),

where y∗ ← Q′y. Similarly, by focusing on S6, it follows that i ∈ [n], every y, ỹ′ ∈ Yi, and every
z ∈ Z, it holds that

f(y, z∗) ≡ f(ỹ′, z∗),

where z∗ ← R′z.
This implies that we can define the distribution Q′y and R′z using only the sets from the par-

titions containing y and z, respectively. Indeed, for any i ∈ [n] let Q′′i := Q′yi
, where yi is the

lexicographically smallest element in Yi. Similarly, for any j ∈ [m] let R′′j := R′zj
, where zj is

the lexicographically smallest element in Zj . Therefore, by Equation (2) it follows that for every
i ∈ [n], j ∈ [m], y ∈ Yi, and z ∈ Zj it holds that

f(y∗, z) ≡ f(y, z∗),

where y∗ ← Q′′i and z∗ ← R′′j , as claimed.

10

The positive direction for NIORP functionalities. We now present a protocol for any
solitary output three-party NIORP functionality f , satisfying the conditions stated in Theorem 1.2.
Our starting point is the same as that of [11, 2], namely, computing f fairly (i.e., either all parties
obtain the output or non do). This follows from the fact that, by the honest-majority assumption,
the protocol of Rabin and Ben-Or [25] computes f assuming a broadcast channel; hence by [10] it
follows that f can be computed with fairness over a point-to-point network.

We now describe the protocol. The parties start by computing f with fairness. If they receive
outputs, then they can terminate, and output what they received.5 If the protocol aborts, then B
finds the unique i ∈ [n] such that y ∈ Yi and sends i to A. Similarly, C finds the unique j ∈ [m]
such that z ∈ Zj and sends j to A. Observe that this can be done efficiently since the domain
of f is of constant size. Party A then samples y∗ ← Qi and outputs f(y∗, zj), where zj is the
lexicographically smallest element in Zj .

Observe that correctness holds since when all parties are honest, the fair protocol will never
abort (note that without the fair computation of f the above protocol is not correct since A would
always output f(y∗, zj) instead of f(y, z)). Now, consider a corrupt B (the case of a corrupt C is
similar). First, note that the adversary does not obtain any information from the fair computation
of f . Next, if the adversary sends some i′ to A, then the simulator sends y∗ ← Qi′ to the trusted
party. Then the output of A in the ideal world is f(y∗, z). By our assumption on f this is identical
to f(y∗, zj), which is the output of A in the real world.

Next, consider a corrupt A. Since it does not obtain any information from the (failed) fair
computation of f , it suffices to show how a simulator that is given f(y, z) can compute the corre-
sponding i and j. Observe that by our definition for the partition of the inputs, any two distinct
combinatorial rectangles Yi × Zj and Yi′ × Zj′ , where (i, j) ̸= (i′, j′), have no common output.
Indeed, if f(y, z) = f(y′, z′), where (y, z) ∈ Yi ×Zj and (y′, z′) ∈ Yi′ ×Zj′ , then y ∼ y′ and z ∼ z′,
hence they belong to the same sets. Therefore, the simulator for the corrupt A can compute the
corresponding i and j given the output by simply looking them up (which can be done efficiently
since the domain is of constant size).

1.2.2 Characterizing Ternary-Output Functionalities

We now explain our techniques for proving Theorem 1.4. We begin with the negative direction.
Similarly to the proof of Theorem 1.2, the argument is comprised of the hexagon argument and the
analysis of the six distributions that are obtained. However, since A has an input, the argument is
much more involved.

A generalized hexagon argument. Unlike in the previous proof, here the hexagon argument
(as used there) does not suffice. To show where the argument falls short, let us first describe the six
distributions obtained from the hexagon argument. In this setting, where A now has an input, the
six-party protocol described earlier will now have A and A′ hold inputs x and x′, respectively. The
two inputs are then given to the correct adversaries from the six scenarios. Furthermore, observe
that S3 and S6, which corrupt A in the ideal world, can also send to the trusted party an input
x∗3 and x∗6, respectively, each sampled according to a distribution that depends on the simulator’s

5Although B and C are suppose to receive no output from f , in a fair computation they either receive the empty
string indicating that A received its output, or a special symbol ⊥ indicating abort.

11

inputs. Thus, to adjust the hexagon argument to this scenario, Equation (1) should now be replaced
with

f (x, y∗, z) ≡ f (x, y, z∗) (3)
≡ SB

(
x, y, y′, z

)
≡ SC

(
x, y, z, z′

)
≡ S3

(
x, x′, y, z′, x∗3, f

(
x∗3, y′, z

))
≡ S6

(
x, x′, y′, z, x∗6, f

(
x∗6, y, z′

))
,

where y∗ ← Qx′,y,y′,z′ , where z∗ ← Rx′,y′,z,z′ , where x∗3 ← P 3
x,x′,y,z′ , and where x∗6 ← P 6

x,x′,y′,z.
Now, recall that we defined the deterministic variant of the convergecast functionality [16],

CC : ({0, 1})3 7→ {0, 1} as

CC(x, y, z) =
{

y if x = 0
z otherwise

We observe that there exist distributions and algorithms satisfying Equation (3). Indeed, take
Qx′,y,y′,z′ to always output y, take Rx′,y′,z,z′ to always output z, and define SB and SC compute
CC(x, y, z). Then the first four distributions always output CC(x, y, z). Observe that for P 3

x,x′,y,z′

and P 6
x,x′,y′,z that always output 1 and 0, respectively, it holds that S3 and S6 receive z and y from

the trusted party, respectively. Therefore, the two algorithms can also compute CC(x, y, z).
However, as we will see below, the functionality CC cannot be computed securely in our setting.

Intuitively, this is because the adversary corrupting A as in Scenario 2c, learns both y′ and z.
However, in the ideal world, a simulator can only learn one of them. To generalize this intuition,
we consider the joint distribution of the outputs of A and A′ in the six-party protocol, rather than
only the distribution of the output of A. Doing a similar analysis results in the existence of six
efficiently samplable distributions P 3

x,x′,y,z′ , P 6
x,x′,y′,z, Qx,y,y′,z, Q′x′,y,y′,z′ , Rx,y,z,z′ , and R′x′,y′,z,z′ ,

and the existence of six efficient algorithms S3, S6, SB, S′B, SC, and S′C, where S3 and S6 output
two values (corresponding to the outputs of A and A′), such that the following six distributions are
identically distributed:

1. S3(x, x′, y, z′, x∗3, f(x∗3, y′, z)), where x∗3 ← P 3
x,x′,y,z′ .

2. S6(x, x′, y′, z, x∗6, f(x∗6, y, z′)), where x∗6 ← P 6
x,x′,y′,z.

3. (SB(x, y, y′, z, y∗1), f(x′, y∗1, z′)), where y∗1 ← Qx,y,y′,z.

4. (f(x, y∗2, z), S′B (x′, y, y′, z′, y∗2)), where y∗2 ← Q′x′,y,y′,z′ .

5. (SC(x, y, z, z′, z∗1), f(x′, y′, z∗1)), where z∗1 ← Rx,y,z,z′ .

6. (f(x, y, z∗2), S′C (x′, y′, z, z′, z∗2)), where z∗2 ← R′x′,y′,z,z′ .

Observe that for CC the above distributions and algorithms do not exist. Indeed, for x = 1 and
x′ = 0, it holds that CC(x′, y′, z∗1) = y′ and CC(x, y∗2, z) = z. However, S3 is given only one of y′ or
z, depending on the value of x∗3, hence it cannot always output both of them correctly.

12

Analyzing the six joint distributions over the outputs of A and A′. We now analyze the
new six distribution described earlier. First, similarly to the case of NIORP functionalities, the
marginal distribution of the first entry is independent of x′, y′, and z′, and the marginal distribution
of the second entry is independent of x, y, and z. Let us focus on S3 and the distribution P 3

x,x′,y,z′ .
Recall that by the distribution in Item 4 above, it holds that S3 must be able to output the

value f(x, y∗2, z). Further recall that we partitioned Z with respect to any x ∈ X , and we denote
the partition as Zx = {Zx

j : j ∈ [m(x)]}. Now, observe that from f(x, y∗2, z) it is possible to infer
the (unique) j ∈ [m(x)] satisfying z ∈ Zx

j . However, the only information that S3 can obtain on
j is from the output f(x∗3, y′, z) it receives from the trusted party, from which S3 can infer the set
containing z with respect to the partition of x∗3. Thus, x∗3 must be such that Zx∗

3
j∗

3
⊆ Zx

j , where
j∗3 ∈ [m(x∗3)] is such that z ∈ Zx∗

3
j∗

3
. Since the distribution P 3

x,x′,y,z′ , from which x∗3 is drawn from, is
independent of z, this must hold for all z. In other words, the partition Zx∗

3
must be a refinement

of Zx. Similarly, since S3 must also output f(x′, y′, z∗1), it follows that Yx∗
3

is a refinement of Yx′ .
As a result, for any x and x′ such x∗3 exists.

Now, since we assume f to be ternary-output, for every x it holds that either Yx = {Y} or
Zx = {Z}. However, to prove Item 1 of Theorem 1.4, we need to show a stronger statement,
reversing the order of quantifiers. That is, we need to show that Yx = {Y} for all x, or Zx = {Z}
for all x. Assuming otherwise, there exists x and x′ such that Yx ̸= {Y} and Zx′ ̸= {Z}. Then, as
argued above, there exists x∗ such that Yx∗ refines Yx and Zx∗ refines Zx′ . However, this implies
that Yx∗ ̸= {Y} and Zx∗ ̸= {Z}, which is impossible for ternary-output functions.

We now prove Item 2 of Theorem 1.4. From here on, we will only focus on the first (i.e., left)
entry in each of the above 6 distributions. The proof follows similar ideas to that of the NIORP
case. That is, we show that changing z to any z̃ that belongs to the same set Z∧j ∈ Z∧, does not
change the distribution. To see this, first observe that if z, z̃ ∈ Z∧j for some j ∈ [m∧], then for any
x there exists jx ∈ [m(x)] such that z, z̃ ∈ Zx

jx
. Then (focusing on the first entry in the output of

S3), a similar analysis to the NIORP case shows that

S3(x, x′, y, z′, x∗3, f(x∗3, y′, z))[0] ≡ S3(x, x′, y, z′, x∗3, f(x∗3, y′, z̃))[0],

for any fixed x∗3 ∈ X such that Zx∗
3

refines Zx. As the support of P 3
x,x′,y,z′ is exactly those x∗3 where

Zx∗
3

refines Zx, it follows that

S3(x, x′, y, z′, x∗3, f(x∗3, y′, z))[0] ≡ S3(x, x′, y, z′, x∗3, f(x∗3, y′, z̃))[0],

where x∗3 ← P 3
x,x′,y,z′ .

In the following we let x0, y0, and z0 be the lexicographically smallest elements of X , Y, and Z,
respectively. For i ∈ [n∧] let Q′′i := Qx0,yi,y0,z0 , where yi is the lexicographically smallest elements
of Y∧i . Similarly, for j ∈ [m∧] we let R′′j := R′x0,y0,zj ,z0 , where zj is the lexicographically smallest
element of Z∧j .

The algorithm S is defined to be either the first entry in the output of S3, or the first entry
in the output of S6, depending on whether Yx = {Y} for all x ∈ X , or Zx = {Z} for all x ∈
X . Assume without loss of generality that the former holds. In this case we let S(x, x∗, w) =
S3(x, x0, y0, z0, x∗, w)[0]. Then, for Px := P 3

x,x0,y0,z0 it holds that

S (x, x∗, f(x∗, y, z)) ≡ S3 (x, x0, y0, z0, x∗, f(x∗, y, z)) [0] ≡ f(x, y∗, z) ≡ f(x, y, z∗),

where x∗ ← Px, y∗ ← Q′′1 (recall we assume that Yx = {Y} for all x which implies that n∧ = 1),
and z∗ ← R′′j .

13

The positive direction for ternary-output functionalities. We turn to the positive direc-
tion. Here we show that the protocol suggested by [2] securely computes f . Roughly speaking, in
their protocol, in case an attack is detected (without the identity of the attacker being revealed)
party A interacts either B or C while ignoring the other party, where the decision is based only on
the function being computed (this is done even if the ignored party is honest).6

However, in [2], determining which party should interact with A (given the function f) is rather
difficult. In contrast, as we show below, in our setting this is only determined by Item 1. Specifically,
if Yx = {Y} for all x ∈ X then A interacts with C, and if Zx = {Z} for all x ∈ X then A interacts
with B. In fact, if both Yx = {Y} and Zx = {Z} hold for all x ∈ X , then A does not interact with
any party in case of an attack. Additionally, in this case the assumption of the existence of the
algorithm S and the distributions {Px}x∈X is made redundant.

We next present the protocol. We assume without loss of generality that Zx = {Z} for all
x ∈ X . First, similarly to the NIORP case, by the honest-majority assumption the parties can
compute f fairly. If the parties receive an output, they can terminate; otherwise, similarly to [2]
we let A and B compute the two-party functionality f(x, y, z∗), where z∗ ← R1, ignoring C in the
process (recall that since Zx = {Z} for all x ∈ X there is only one distribution given by Item 2 of
Theorem 1.4).

Similarly to the NIORP case, correctness holds due to the correctness of the fair protocol.
Furthermore, it is clear that a corrupt C cannot attack the protocol. Indeed, it does not gain any
information in the fair computation of f ; hence, if it aborts in this phase then the output of A is
g(x, y) = f(x, y, z∗), where z∗ ← R1. Similarly, a corrupt B cannot attack the protocol since its
simulator can send y∗ ← Qi, where i ∈ [n∧] is such that y ∈ Y∧i . By Item 2 of Theorem 1.4 the
output of A in the ideal world is

f(x, y∗, z) ≡ f(x, y, z∗) ≡ g(x, y),

where y∗ ← Qi and z∗ ← R1.
Next, consider a corrupt A. Similarly to the previous two cases, we only need to consider the

case where A aborts during the fair computation of f . Observe that the only information it receives
is g(x, y) = f(x, y, z∗), where z∗ ← R1. The simulator will simply send x∗ ← Px to the trusted
party, and receive back w as the output. Then, the corrupt A will output whatever S(x, x∗, w)
outputs. By Item 2 of Theorem 1.4, the simulator output is identically distributed as g(x, y).

1.2.3 Reducing the Randomized Case to the Deterministic Case

We next explain how to reduce the randomized case to the deterministic case. The reduction works
in both the positive and the negative directions. Thus, we obtain characterizations for randomized
NIORP functionalities, and randomized ternary-output functionalities as well.

Recall that for a randomized solitary output three-party f : X × Y × Z 7→ W, we define the
deterministic solitary output three-party functionality

f ′((x, r1), (y, r2), (z, r3)) = f(x, y, z; r1 + r2 + r3).

6For the general case, where the domain of f is not constant, the protocol we use is a slight generalization of the
one suggested by [2]. Specifically, the decision of whether A interacts with B or C in case of an attack depends on the
security parameter κ. Assuming the domain of f is of polynomial size in κ, the decision can be computed efficiently
and locally by every party.

14

Namely, the parties hold a share of the randomness of f in a 3-out-of-3 secret sharing scheme. We
next show that f can be securely computed in the point-to-point model if and only if f ′ can.

Let us first assume that f ′ can be securely computed. Then in order to compute f , the parties
will compute f ′ with their original inputs, and where r1, r2, and r3 are sampled uniformly at
random. Security follows from the fact that at least one party is honest, hence either r1, r2, or r3
are sampled uniformly at random.

Let us now assume that f can be securely computed. First, similarly to the previous protocols,
by the honest-majority assumption the parties can compute f ′ with fairness. If the parties receive
an output, they can terminate; otherwise they compute f on their respective inputs. Correctness is
given by the fact that the parties first compute f ′ fairly. Security is guaranteed since the adversary
obtains no information from the fair computation, and since the simulator can send a uniform
random r as part of the input, in case the fair computation aborted.

1.2.4 When a Broadcast Channel is Available

In this section we show that any NIORP or ternary-output functionality that can be securely com-
puted in the point-to-point model against a single corrupted party, can also be securely computed
assuming a broadcast channel against two corruptions. Similarly to the point-to-point model, we
will only handle deterministic functionalities, as the randomized case can be handled using the
same reduction from Section 1.2.3.

The NIORP case. Let us start with describing a protocol for the NIORP functionalities cap-
tured by Theorem 1.2. Recall that for these functionalities there exist two families of efficiently
samplable distributions {Qi}i∈[n] and {Rj}j∈[m] such that the following holds. For all i ∈ [n],
j ∈ [m], y ∈ Yi, and z ∈ Zj , it holds that

f(y∗, z) ≡ f(y, z∗),

where y∗ ← Qi and z∗ ← Rj .
In the following, we show that a larger class of functionalities than those described above, can

be securely computed against two corruptions. Specifically, it suffices to assume the existence of
only a single efficiently samplable distribution, one for B or one for C. By symmetry, we only
consider the latter case. That is, we assume there exists j∗ ∈ [m] and there exists an efficiently
samplable distribution Rj∗ over Zj∗ such that the following holds. For every i ∈ [n] and every
y, y′ ∈ Yi it holds that

f(y, z∗) ≡ f(y′, z∗), (4)

where z∗ ← Rj∗ .
The protocol is an extension of one of the protocols suggested by [20], and it proceeds as follows.

First, the parties compute a 3-out-of-3 secret sharing of the output f(x, y, z) using a secure-with-
identifiable-abort protocol (i.e., the adversary can force an abort after obtaining the output, but
at the expense of revealing the identity of a corrupted party).7 In case a single party aborts, the
remaining two parties compute the function on their inputs and with the input of the aborting

7Additionally, the shares are also signed using a MAC to ensure that B and C won’t change their values. For
simplicity we assume that a malicious adversary does not modify these values, but can abort the execution.

15

party set to a default value. Observe that since f is solitary output, this can be done securely using
the protocol of Kilian [21]. If both B and C abort, then A outputs f(x, y0, z0), where y0 ∈ Y and
z0 ∈ Z are default inputs.

If no abort occurs, then first B sends its share to A, and additionally, it sends the (unique)
index i ∈ [n] such that y ∈ Yi. If B aborts, then A and C compute f(x, y0, z). Otherwise, C sends
its share to A. If C aborts, then A outputs f(x, yi, z∗), where yi is the lexicographically smallest
element in Yi, and where z∗ ← Rj∗ .

Similarly to the point-to-point case, corrupting A will not provide the adversary with any infor-
mation since the index i can be inferred from the output given by the trusted party. Additionally,
B and C obtain no information from the execution, since their views contain only secret shares of
the output. Furthermore, if a corrupt B aborts (at any point during the computation), then it can
be simulated by sending y0 to the trusted party. Finally, if a corrupt C aborts after B sent its share,
then this attack can be simulated by sending z∗ ← Rj∗ to the trusted party. Then the output of A
in the ideal world is f(x, y, z∗), while its output in the real world is f(x, yi, z∗). By Equation (4),
the two distributions are identical.

The ternary-output case. We now turn to ternary-output functionalities. In fact, we show
that a much larger class of functionalities than those captured by Theorem 1.4, can be securely
computed. Similarly to the point-to-point case, the protocol we present securely computes non-
ternary-output functionalities. First, recall that by Item 1 of Theorem 1.4, it holds that either
Yx = {Y} for all x ∈ X , or Zx = {Z} for all x ∈ X . We assume the latter without loss of
generality. We next present a relaxation of Item 2 of Theorem 1.4 that suffices for f to be securely
computable against two corruptions. Specifically, we assume that there exists two distributions Q
and R over Y∧i and Z, respectively, for some i ∈ [n∧], such that the following holds. There exists
yi ∈ Y∧i , such that for all z ∈ Z, and x ∈ X , it holds that

f(x, y∗, z) ≡ f(x, yi, z∗), (5)

where y∗ ← Q and z∗ ← R. Observe that this is indeed a relaxation, since we do not require the
assumption of the existence of S, and the distributions {Px}x∈X and {Qi′}i′∈[n∧]\{i}, and since the
quantifier over yi is replaced with an existential quantifier.

The protocol proceeds as follows. The parties first compute a secret sharing of the output
of f(x, y, z) using a secure-with-identifiable-abort protocol. The sharing scheme is a 2-out-of-2
scheme, with the shares given only to A and B. Assuming the computation followed through, B
sends its share to A, which reconstructs the output. If B aborts at any point in the computation,
then A outputs f(x, yi, z∗) where z∗ ← R. If C aborts during the secure-with-identifiable-abort
computation, then its input is replaced with a default value and protocol restarts.

Clearly, corrupting C will not provide the adversary with any advantage. Additionally, cor-
rupting A and (possibly) B will provide the adversary with only the output. The only case left is
when B is corrupted and A is honest. In this case, the adversary gains no information from the
secure-with-identifiable-abort computation, since it obtains only one share of the output. Now, if
B aborts then we let its simulator send to the trusted party the input y∗ ← Q. Then A outputs
f(x, y∗, z) in the ideal world. On the other hand, in the real world the output of A is f(x, yi, z∗).
By Equation (5), the two distributions are identical.

16

1.3 Related Work

The hexagon argument has been used in the context of Byzantine agreement to rule out three-party
protocols tolerating one corruption [22, 24, 15]. Cohen et al. [11] considered symmetric (possibly
randomized) functionalities in the point-to-point model, and showed that a symmetric n-party
functionality f can be computed against t corruptions, if and only if f is (n− 2t)-dominated, i.e.,
there exists y∗ such that any n− 2t of the inputs can fix the output of f to be y∗.

Recently, Alon et al. [2] extended the discussion to consider asymmetric functionalities in the
point-to-point model. They provided various necessary and sufficient conditions for a functionality
to be securely computable. They considered some interesting examples for the special case of
solitary-output functionalities, however, provided no characterization for any class of functions.

Halevi et al. [20] investigated the round complexity required to compute solitary output func-
tionalities assuming the availability of a broadcast channel, but no honest majority. They provided
various negative and positive results. Solitary output computation was already considered in non-
interactive setting of MPC, such as PSM [14] and its robust variants [6, 1]. Badrinarayanan et al.
[5] investigated the round complexity required to compute solitary output functionalities, assuming
the availability of a broadcast channel and no PKI, and vice versa.

1.4 Organization

The preliminaries and definition of the model of computation appear in Section 2. In Section 3
we state our results in the point-to-point model. Then, in Sections 4 and 5 we prove the negative
and positive results, respectively. Finally, in Section 6 we state and prove our results assuming a
broadcast channel.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and distributions, lower-
case for values, and we use bold characters to denote vectors. For n ∈ N, let [n] = {1, 2 . . . n}. For
a set S we write s← S to indicate that s is selected uniformly at random from S. Given a random
variable (or a distribution) X, we write x← X to indicate that x is selected according to X. A ppt
algorithm is probabilistic polynomial time, and a pptm is a polynomial time (interactive) Turing
machine.

A function µ : N → [0, 1] is called negligible, if for every positive polynomial p(·) and all suffi-
ciently large n, it holds that µ(n) < 1/p(n). We write neg for an unspecified negligible function,
and write poly for an unspecified polynomial. For a randomized function (or an algorithm) f we
write f(x) to denote the random variable induced by the function on input x, and write f(x; r) to
denote the value when the randomness of f is fixed to r.

A distribution ensemble X = {Xa,n}a∈Dn,n∈N is an infinite sequence of random variables indexed
by a ∈ Dn and n ∈ N, where Dn is a domain that might depend on n. When the domains are clear,
we will sometimes write {Xa,n}a,n in order to alleviate notations.

The statistical distance between two finite distributions is defined as follows.
Definition 2.1. The statistical distance between two finite random variables X and Y is

SD (X, Y) = max
S
{Pr [X ∈ S]− Pr [Y ∈ S]} .

17

For a function ε : N 7→ [0, 1], the two ensembles X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N are
said to be ε-close, if for all sufficiently large n and a ∈ Dn, it holds that

SD (Xa,n, Ya,n) ≤ ε(n),

and are said to be ε-far otherwise. X and Y are said to be statistically close, denoted X
S≡ Y , if

they are ε-close for some negligible function ε. If X and Y are 0-close then they are said to be
equivalent, denoted X ≡ Y .

Computational indistinguishability is defined as follows.

Definition 2.2. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. We say that
X and Y are computationally indistinguishable, denoted X

C≡ Y , if for every non-uniform ppt
distinguisher D, there exists a negligible function µ(·), such that for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ µ(n).

The following is simple fact states that whenever two ensembles with polynomial-size supports
are computationally indistinguishable, they are also statistically close.

Fact 2.3. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two computationally indistinguish-
able ensembles over a set-family {Sn}n∈N, of size |Sn| ≤ poly(n). Then X

S≡ Y .

Proof sketch. Assume for the sake of contradiction that the claim is false. It follows that there
exists a set-family {Tn}n∈N where Pr [Xa,n ∈ Tn]− Pr [Ya,n ∈ Tn] ≥ 1/p(n), for some polynomial p.
Since Tn ⊆ Sn, it follows that Tn is of polynomial size, hence it can be given as auxiliary input to
a bounded distinguisher D. Then, D can distinguish X from Y by outputting 1 if its input belongs
to Tn, and outputting 0 otherwise, thus contradicting the assumption that X

C≡ Y . □

The following fact states an equivalent definition for statistical distance.

Fact 2.4. Let X = {Xa,n}a∈Dn,n∈N and Y = {Ya,n}a∈Dn,n∈N be two ensembles. Then X
S≡ Y if

and only if for every unbounded distinguisher D, there exists a negligible function µ(·), such that
for all n and a ∈ Dn, it holds that

|Pr [D(Xa,n) = 1]− Pr [D(Ya,n) = 1]| ≤ µ(n).

Definition 2.5 (Minimal and minimum elements). Let S be a set and let ⪯ be a partial order over
S. An element s ∈ S is called minimal, if no other element is smaller than s, that is, for any
s′ ∈ S, if s′ ⪯ s then s′ = s.

An element s ∈ S is called minimum if it is smaller then any other element, that is, for any
s′ ∈ S it holds that s ⪯ s′.

We next define a refinement of a partition of some set.

Definition 2.6 (Refinement of partitions). Let P1 and P2 be two partitions of some set S. We say
that P1 refines P2, if for every S1 ∈ P1 there exists S2 ∈ P2 such that S1 ⊆ S2.

The meet of two partitions is the partition formed by taking all non-empty intersections. For-
mally, it is defined as follows.

18

Definition 2.7 (Meet of partitions). Let P1 and P2 be two partitions of some set S. The meet of
P1 and P2, denoted P1 ∧ P2, is defined as

P1 ∧ P2 := {S1 ∩ S2 | ∀i ∈ {1, 2} : Si ∈ Pi and S1 ∩ S2 ̸= ∅} .

Observe that ∧ is associative, thus we can naturally extend the definition for several partitions.

Definition 2.8 (Equivalence class and quotient sets). For an equivalence relation ≡ over some set
S, and an element s ∈ S we denote by [s]≡ the equivalence class of s, i.e.,

[s]≡ :=
{
s′ ∈ S : s ≡ s′

}
.

We let S/ ≡ denote the quotient set with respect to ≡ defined as the set of all equivalence classes.
Stated differently, it is the partition of S induced by the equivalence relation ≡.

2.2 The Model of Computation

We provide the basic definitions for secure multiparty computation according to the real/ideal
paradigm, for further details see [17]. Intuitively, a protocol is considered secure if whatever an
adversary can do in the real execution of protocol, can be done also in an ideal computation, in
which an uncorrupted trusted party assists the computation.

In this paper we focus mostly on solitary output three-party functionalities. A functionality
is a sequence of function f = {fκ}κ∈N, where fκ : Xκ × Yκ × Zκ 7→ Wκ for every κ ∈ N.8 The
functionality is called solitary output if only one party obtains an output. We denote the parties
by A, B and C, holding inputs x, y, and z, respectively, and let A receive the output, denoted w.
To alleviate notations, we will remove κ from f and its domain and range, and simply write it as
f : X × Y × Z 7→ W.

Although we mostly focus one solitary output functionalities and deal with adversaries that
corrupt a single party, we present the definition for the general case, as it will be useful later.

The Real Model

A three-party protocol π is defined by a set of three ppt interactive Turing machines A, B, and
C. Each Turing machine (party) holds at the beginning of the execution the common security
parameter 1κ, a private input, and random coins. The adversary A is another ppt interactive
Turing machine describing the behavior of the corrupted parties. It starts the execution with input
that contains the identities of the corrupted parties, their inputs, and an additional auxiliary input
aux.

The parties execute the protocol over a synchronous network. That is, the execution proceeds
in rounds: each round consists of a send phase (where parties send their messages for this round)
followed by a receive phase (where they receive messages from other parties).

We consider a fully connected point-to-point network, where every pair of parties is connected
by a communication line. We will consider the secure-channels model, where the communication
lines are assumed to be ideally private (and thus the adversary cannot read or modify messages
sent between two honest parties). Depending on the context, we may assume the parties have

8The typical convention in secure computation is to let f : ({0, 1}∗)3 7→ {0, 1}∗. However, we will mostly be
dealing with functionalities whose domain is of polynomial size in κ, which is why we introduce this notation.

19

access to a broadcast channel. We note that our upper bounds (protocols) can also be stated
in the authenticated-channels model, where the communication lines are assumed to be ideally
authenticated but not private (and thus the adversary cannot modify messages sent between two
honest parties but can read them) via standard techniques, assuming public-key encryption. On
the other hand, stating our lower bounds assuming secure channels will provide stronger results.

We consider a fully connected synchronous point-to-point network, where every pair of parties
is connected by a communication line. We will consider the secure-channels model, where the
communication lines are assumed to be ideally private (and thus the adversary cannot read or
modify messages sent between two honest parties). Depending on the context, we may assume the
parties have access to a broadcast channel.

Throughout the execution of the protocol, all the honest parties follow the instructions of the
prescribed protocol, whereas the corrupted parties receive their instructions from the adversary.
The adversary is considered to be malicious, meaning that it can instruct the corrupted parties to
deviate from the protocol in any arbitrary way. Additionally, the adversary has full-access to the
view of the corrupted parties, which consists of their inputs, their random coins, and the messages
they see throughout this execution. At the conclusion of the execution, the honest parties output
their prescribed output from the protocol, the corrupted parties output nothing, and the adversary
outputs a function of its view. In some of our proofs we consider semi-honest adversaries that
always instruct the corrupted parties to honestly execute the protocol, but may try to learn more
information than they should.

We consider malicious adversaries, meaning that it can instruct the corrupted parties to deviate
from the protocol in any arbitrary way. The adversary has full-access to the view of the corrupted
parties, which consists of their inputs, their random coins, and the messages they see throughout
this execution. At the conclusion of the execution, the honest parties output their prescribed output
from the protocol, the corrupted parties output nothing, and the adversary outputs a function of its
view. In some of our proofs we consider semi-honest adversaries that always instruct the corrupted
parties to honestly execute the protocol.

We next define the real-world global view for security parameter κ ∈ N, inputs x, y, z ∈ {0, 1}∗,
and an auxiliary input aux ∈ {0, 1}∗ with respect to some adversary A controlling a subset I ⊆
{A, B, C} of the parties. Let OUTreal

π,A(aux) (κ, (x, y, z)) denote the outputs of the honest parties in a
random execution of π on inputs (x, y, z) and security parameter κ interacting with A with auxiliary
input aux corrupting the parties in I. Further let VIEWreal

π,A(aux) (κ, (x, y, z)) be the adversary’s
output, being a function of its view (i.e., its auxiliary input, its random coins, the input of the
corrupted party, and the messages it sees during the execution of the protocol) during an execution
of π. We denote the global view in the real model by

REALπ,A(aux) (κ, (x, y, z)) =
(

VIEWreal
π,A(aux) (κ, (x, y, z)) , OUTreal

π,A(aux) (κ, (x, y, z))
)

.

The Ideal Model

We consider an ideal computation with guaranteed output delivery (also referred to as full security),
where a trusted party performs the computation on behalf of the parties, and the ideal-model
adversary cannot abort the computation. An ideal computation of a three-party functionality
f = (f1, f2, f3), with f1, f2, f3 : ({0, 1}∗)3 → {0, 1}∗, on inputs x, y, z ∈ {0, 1}∗ and security
parameter κ, with an ideal-world adversary A running with an auxiliary input aux and corrupting
a subset I ⊆ {A, B, C} of the parties, proceeds as follows:

20

Parties send inputs to the trusted party: Each honest party sends its input to the trusted
party. The adversary A sends a value v from its domain as the input for the corrupted party.
Let (x′, y′, z′) denote the inputs received by the trusted party.

The trusted party performs computation: The trusted party selects a random string r, com-
putes (w1, w2, w3) = f (x′, y′, z′; r), and sends w1 to A, sends w2 to B, and sends w3 to C.

Outputs: Each honest party outputs whatever output it received from the trusted party and the
corrupted party outputs nothing. The adversary A outputs some function of its view (i.e.,
the auxiliary input, its randomness, and the input and output of the corrupted party).

We next define the ideal-world global view for security parameter κ ∈ N, inputs x, y, z ∈ {0, 1}∗,
and an auxiliary input aux ∈ {0, 1}∗ with respect to some adversary A controlling a subset I of
the parties. Let OUTideal

f,A(aux) (κ, (x, y, z)) denote the output of honest parties in a random execution
of the above ideal-world process, interacting with A. Further let VIEWideal

f,A(aux) (κ, (x, y, z)) be the
output (a simulated view) of A in such a process. We denote the global view in the ideal model by

IDEALf,A(aux) (κ, (x, y, z)) =
(

VIEWideal
f,A(aux) (κ, (x, y, z)) , OUTideal

f,A(aux) (κ, (x, y, z))
)

.

The Security Definition

Having defined the real and ideal models, we can now define security of protocols according to the
real/ideal paradigm.

Definition 2.9 (Malicious security). Let f be a three-party functionality and let π be a three-party
protocol. For t ∈ {1, 2}, we say that π computes f with t-security, if for every non-uniform ppt
adversary A, controlling a subset I ⊆ {A, B, C} of size at most t in the real-world, there exists a
non-uniform ppt adversary Sim, controlling the same subset I in the ideal-world such that{

IDEALf,Sim(aux) (κ, (x, y, z))
}

κ∈N,x,y,z,aux∈{0,1}∗

C≡
{

REALπ,A(aux) (κ, (x, y, z))
}

κ∈N,x,y,z,aux∈{0,1}∗
.

We define statistical t-security similarly, by replacing computational indistinguishability with sta-
tistical distance.

When t = 2 we will sometimes say that π computes f will full security.

Ideal computation with fairness. Although all our results are stated with respect to guaran-
teed output delivery, in our proofs we will consider a weaker security variant, where the adversary
may cause the computation to prematurely abort, but only before it learns any new information
from the protocol. Formally, security with fairness is defined by only modifying the ideal compu-
tation. Specifically, the difference is that during the Parties send inputs to the trusted party step,
the adversary can send a special abort symbol. In this case, the trusted party send ⊥ to all parties
instead of computing the function.

Ideal computation with security-with-identifiable-abort. We also use a security notion
called security-with-identifiable-abort where, similarly to fairness,the adversary can cause the com-
putation to prematurely abort. However, it can do so after learning the output, at the expense of
revealing the identity of a corrupted party (see Appendix A for a formal definition).

21

The Hybrid Model

The hybrid model is a model that extends the real model with a trusted party that provides ideal
computation for specific functionalities. The parties communicate with this trusted party in exactly
the same way as in the ideal models described above.

Let f be a functionality. Then, an execution of a protocol π computing a functionality g in the
f -hybrid model involves the parties sending normal messages to each other (as in the real model)
and in addition, having access to a trusted party computing f . It is essential that the invocations
of f are done sequentially, meaning that before an invocation of f begins, the preceding invocation
of f must finish. In particular, there is at most a single call to f per round, and no other messages
are sent during any round in which f is called.

Let type ∈ {g.o.d., fair, s.w.i.a}, and let A be a non-uniform ppt machine with auxiliary input
aux controlling a subset of the parties. We denote by HYBRIDf,type

π,A(aux)(κ, (x, y, z)) the random variable
consisting of the view of the adversary and the output of the honest parties, following an execution
of a protocol π with ideal calls to a trusted party computing f according to the ideal model “type,”
on input vector (x, y, z), auxiliary input aux to A, and security parameter κ. We call this the
(f, type)-hybrid model.

The sequential composition theorem of Canetti [8] states the following. Let ρ be a protocol
that securely computes f in the ideal model “type.” Then, if a protocol π computes g in the
(f, type)-hybrid model, then the protocol πρ, that is obtained from π by replacing all ideal calls to
the trusted party computing f with the protocol ρ, securely computes g in the real model.

Theorem 2.10 ([8]). Let t ∈ {1, 2}, let f be a three-party functionality, let type1, type2 ∈
{g.o.d., fair, s.w.i.a}, let ρ be a protocol that t-securely computes f with type1, and let π be a protocol
that t-securely computes g with type2 in the (f, type1)-hybrid model. Then, protocol πρ t-securely
computes g with type2 in the real model.

We make use of a known fact stating that any functionality can be computed fairly assuming
an honest majority.

Fact 2.11. Let f be a three-party functionality. Then (f, fair) can be computed with statistical
1-security.

This follows from the results of [25] and [10]. Specifically, Rabin and Ben-Or [25] showed how to
compute any functionality with full security assuming an honest majority and a broadcast channel.
On the other hand, Cohen and Lindell [10] showed that any protocol computing some functionality
f with full security assuming a broadcast channel, can be transformed into a protocol computing
f fairly over a point-to-point network without the use of broadcast.

3 Our Main Results in the Point-to-Point Model
In this section we present the statement of our main results in the point-to-point model. We
present a necessary condition and two sufficient conditions for solitary output three-party function-
alities with polynomial-sized domains, that can be computed with 1-security without broadcast.
In Section 3.2.1, we present several corollaries of our results. In particular, we show that vari-
ous interesting families of functionalities, such as deterministic NIORP and (possibly randomized)
ternary-output functionalities, our necessary and sufficient conditions are equivalent, thus we obtain
a characterization.

22

3.1 Useful Definitions

Before stating the result, we first present several important definitions. Throughout the entire
subsection, we let f : X ×Y ×Z 7→ W be a deterministic solitary output three-party functionality.

The first definition introduces an equivalence relation over the domains Y and Z with respect to
any fixed input x ∈ X . We call this relation the common output relation (CORE). Note that the
relation depends on the security parameter κ as well. We will not write κ as part of the notations
in order to alleviate them.

Definition 3.1 (CORE and CORE partition). For an input x ∈ X we define the relation ∼x over
Y as follows.

y ∼x y′ if there exist z, z′ ∈ Z such that f(x, y, z) = f(x, y′, z′).

We define relation ≡x, called CORE, to be the transitive closure of ∼x, i.e., y ≡x y′ if either
y ∼x y′ or if there exists y1, . . . , yk ∈ Y such that

y ∼x y1 ∼x . . . ∼x yk ∼x y′.

Observe that ≡x is an equivalence relation. We let Yx denote the set of equivalence classes of Y
formed by ≡x. We also abuse notations, and define the relations z ∼x z′ and z ≡x z′ over Z
similarly, and let Zx denote the set of equivalence classes over Z formed by ≡x.

Additionally, we denote n(x) = |Yx|, m(x) = |Zx|, and we write

Yx = {Yx
i : i ∈ [n(x)]} and Zx = {Zx

j : j ∈ [m(x)]}.

Finally, we let
Rx = {Yx

i ×Zx
j : i ∈ [n(x)], j ∈ [m(x)]}

be the partition of Y × Z into the combinatorial rectangles formed by Yx and Zx. We call Yx, Zx,
and Rx the CORE partitions of f with respect to x.

We next introduce equivalence relations over X that corresponds to the CORE partitions formed
by the inputs. In addition, we define partial orders over the the quotient sets associated with theses
equivalence relations. Roughly, both the equivalence relations and the partial orders are defined by
comparing the corresponding CORE partitions. Similarly to Definition 3.1, the following definition
also depends κ, which is omitted from the notations to alleviate them.

Definition 3.2 (Equivalence relations and partial orders over X). We define three equivalence
relations ≡B, ≡C, and ≡, over X as follows.

• We say that x ≡B x′ if Yx = Yx′.

• We say that x ≡C x′ if Zx = Zx′

• We say that x ≡ x′ if Rx = Rx′. Equivalently, x ≡ x′ if x ≡B x′ and x ≡C x′.
We define partial orders ⪯B, ⪯C, and ⪯ over the quotient sets X/≡B, X/≡C, and X/≡, respectively,
as follows.

• We say that [x]≡B ⪯B [x′]≡B if Yx refines Yx′.

• We say that [x]≡C ⪯C [x′]≡C if Zx refines Zx′.

23

• We say that [x]≡ ⪯ [x′]≡ if Rx refines Rx′. Equivalently, [x]≡ ⪯ [x′]≡ if [x]≡B ⪯B [x′]≡B and
[x]≡C ⪯C [x′]≡C.

For brevity, we write the partial orders as if they are over X , e.g., we write x ⪯B x′ instead of
[x]≡B ⪯B [x′]≡B. Finally, χ ∈ X is called B-minimal if [χ]≡B is minimal with respect to ⪯B, χ
is called C-minimal if [χ]≡C is minimal with respect to ⪯C, and χ is called R-minimal if [χ]≡ is
minimal with respect to ⪯.9

As mentioned in Section 1, we are interested in the meet of all CORE partitions. We call this
new partition the CORE∧-partition of f . Similarly to previous notations, CORE∧-partition also
depends on κ, and we will not write it to alleviate notations.

Definition 3.3 (CORE∧-partition). We denote

Y∧ :=
∧

x∈X
Yx =

∧
χ∈X :

χ is R-minimal

Yχ and Z∧ :=
∧

x∈X
Zx =

∧
χ∈X :

χ is R-minimal

Zχ,

and call these two partitions the CORE∧-partitions of f . We let n∧ = |Y∧| and m∧ = |Z∧|, and we
write the partitions as

Y∧ := {Y∧i : i ∈ [n∧]} and Z∧ := {Z∧j : j ∈ [m∧]}.

Finally, we let
R∧ = {Y∧i ×Z∧j : i ∈ [n∧], j ∈ [m∧]},

be the partition of Y × Z into the combinatorial rectangles formed by Y∧ and Z∧.
The partitions Y∧ and Z∧ are naturally associated with an equivalence relation ≡∧ over Y and

over Z, respectively: We say that y ≡∧ y′ if there exists Y∧ ∈ Y∧ such that y, y′ ∈ Y∧. Equivalently,
y ≡∧ y′ if y ≡χ y′ for all R-minimal χ ∈ X . Similarly, we say that z ≡∧ z′ if there exists Z∧ ∈ Z∧
such that z, z′ ∈ Z∧.

We next define an important special property of a functionality f , which we call CORE∧-forced.
This property plays a central role in both our positive and negative results, and generalizes the
forced property defined in [20], which states that any party can fix the distribution of the output,
using an appropriate distribution over its input.

Roughly, f is called CORE∧-forced if both B and C can each associate a distribution to each
set in the CORE∧-partition of their respective set of inputs, such that the output distribution of A
in each combinatorial rectangle in R∧ is fixed for every input x ∈ X .

Definition 3.4 (CORE∧-forced). The function f is said to be CORE∧-forced if there exists two
ensembles of efficiently samplable distributions Q = {Qκ,i}κ∈N,i∈[n∧] and R = {Rκ,j}κ∈N,j∈[m∧] over
Y and Z, respectively, such that the following holds.

{f(x, y∗, zj)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y, z∗)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, yi, z∗)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

9Note that if we had defined ⪯B, ⪯C, and ⪯ directly over X , then they would not correspond to partial orders.
Indeed, for the relations to be partial orders, it required that they are antisymmetric, i.e., if x ⪯ x′ and x′ ⪯ x then
x = x′. Observe that this is not generally the case, as the only guarantee we have is that x ≡ x′.

24

where y∗ ← Qκ,i, z∗ ← Rκ,j, and where yi and zj are the lexicographically smallest elements in Y∧i
and Z∧j , respectively.

Remark 3.5. Though our lowerbound shows that any securely computable solitary output function-
ality must be CORE∧-partition, this can be strengthen as follows. Instead of requiring that every
rectangle in R∧ is fixed for every x, it suffices to consider the meet of partitions formed by the CORE
partitions with respect to all R-minimal elements that are smaller than x, i.e.,

∧
χ⪯x:χ is R-minimal Rχ.

Then our lowerbound shows that for any x, the output distributions in the above collections of rect-
angles are fixed.

3.2 Our Main Results

We are now ready to state our results, providing both sufficient and necessary conditions for a
deterministic solitary output three-party functionalities with polynomial sized domain, to be com-
putable with 1-security over point-to-point channels. The result for randomized functionalities,
where the domain of the randomness is polynomial as well, is handled below in Proposition 3.10
by reducing it to the deterministic case. We start with stating our negative results.

Theorem 3.6. Let f : X ×Y×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists and |X |, |Y|, |Z| = poly(κ). If f can be computed with 1-
security, then the following hold.

1. For all sufficiently large κ ∈ N, and all χB and χC that are B-minimal and C-minimal, respec-
tively, there exists an R-minimal χ ∈ X such that χB ≡B χ ≡C χC.

2. f is CORE∧-forced.

Moreover, suppose that f has the property that for all sufficiently large κ, it holds that either y ≡x y′

for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all x ∈ X and z, z′ ∈ Z. Then there exists an ensemble
of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and there exists a ppt algorithm S such
that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced property.

The proof is given in Section 4.
We now state our two positive results. The first positive result considers functionalities that sat-

isfy the property given in the “moreover” part of Theorem 3.6. Specifically, we get a characterization
(see Corollary 3.8 below) for when such functionalities can be computed securely. Interestingly, the
protocol used in the proof of the theorem below is a slight generalization of the protocol suggested
by [2].

Theorem 3.7. Let f : X ×Y×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, that |X |, |Y|, |Z| = poly(κ), and that the following hold.

1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all
x ∈ X and z, z′ ∈ Z.

2. f is CORE∧-forced.

25

3. There exists an ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt
algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,x∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced
property.

Then f can be computed with 1-security.

We thus have the following corollary, stating a characterization for a special class of function-
alities.

Corollary 3.8. Let f : X ×Y×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists and that |X |, |Y|, |Z| = poly(κ). Further assume that f has
the property that for all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′

for all x ∈ X and z, z′ ∈ Z. Then f can be computed with 1-security if and only if the following
hold.

1. f is CORE∧-forced.

2. There exists an ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt
algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced
property.

The proof of Theorem 3.7 is given in Section 5.1. The next result gives another sufficient
condition. In fact, it characterizes a special class of functionalities, which includes (deterministic)
NIORP functionalities, where the output-receiving party A has no input (see Corollary 3.15 below).
Here, instead of assuming the functionality satisfies the property stated in the “moreover” part of
Theorem 3.6, we assume that A has a minimum input, i.e., smaller than all other inputs with
respect to ⪯.

Theorem 3.9. Let f : X ×Y×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), and that for all sufficiently large κ, there exists χ ∈ X such
that for all x ∈ X it holds that χ ⪯ x.10 Then f can be computed with 1-security if and only if it
is CORE∧-forced.

The negative direction directly follows from Theorem 3.6. We prove both Theorem 3.7 and the
positive direction of Theorem 3.9 in Section 5.

The next proposition reduces the randomized case to the deterministic case. We stress that the
reduction holds for general domain sizes, and functionalities where every party obtains an output
(in fact, the reduction can be easily generalized to the multiparty setting assuming an honest
majority).

10Note that there may be several minimum inputs, however, the assumption implies that they are all equivalent.

26

Proposition 3.10 (Reducing randomized functionalities to deterministic functionalities). Let
f : ({0, 1}∗)3 7→ {0, 1}∗ be a (randomized) three-party functionality. Define the deterministic func-
tionality f ′ : ({0, 1}∗)2 × ({0, 1}∗)2 × ({0, 1}∗)2 7→ {0, 1}∗ as follows.

f ′((x, r1), (y, r2), (z, r3)) = f(x, y, z; r1 ⊕ r2 ⊕ r3).

Then f can be computed with 1-security if and only if f ′ can be computed with 1-security.

Proof. Let us first assume that f ′ can be computed with 1-security. To compute f (in the (f ′, g.o.d.)-
hybrid model), the parties will invoke (f ′, g.o.d.) with their original inputs x, y, and z, and where
r1, r2, r3 ← {0, 1}∗ are sampled uniformly at random. Security follows directly from the fact that
either r1, r2, or r3 are guaranteed to be a uniform random string. Indeed, a simulator for some
corrupted party will send to the trusted party T the same input the corrupted party used in the
protocol.

We next show that if f can be computed with 1-security, then so is f ′. Using Fact 2.11 and
the composition theorem, it suffices to present a protocol for f ′ in the {(f, g.o.d.), (f ′, fair)}-hybrid
model.
. .
Protocol 3.11.

Private inputs: party A holds (x, r1) ∈ ({0, 1}∗)2, party B holds (y, r2) ∈ ({0, 1}∗)2, and party C
holds (z, r3) ∈ ({0, 1}∗)2.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (f ′, fair) with their inputs. Let w1, w2, and w2 be the outputs of A, B, and
C, respectively.

2. If w1, w2, w3 ̸= ⊥ then A outputs w1, B outputs w2, and C outputs w3.

3. Otherwise, the parties invoke (f, g.o.d.) on their inputs x, y, and z, and output the result.

. .

We next show that the protocol is secure. Consider an adversary A corrupting A. The other
cases are analogous. The simulator SimA will first query A to receive its input (x′, r′1) to (f ′, fair).

• If (x′, r′1) ̸= abort, then SimA sends (x′, r′1) to the trusted party.

• Otherwise, the adversary A chooses an input x′′ ∈ {0, 1}∗ to send to (f, g.o.d.).11 The
simulator samples r∗1 ← {0, 1}∗ and sends (x′′, r∗1) to the trusted party.

In both cases, SimA forwards the output w1 received from the trusted party to A, outputs whatever
A outputs, and halts.

Clearly, if A does not abort during the invocation of (f ′, fair), then its joint view and the output
of the honest parties is f(x′, y, z; r′1⊕r2⊕r3) in both worlds. Observe that if A does abort, however,
then the output in both worlds is distributed as f(x′′, y, z). □

11If A sends an invalid value or does not send any value, the simulator sets x′′ to be the default value used by the
ideal functionality of f .

27

3.2.1 Interesting Corollaries

Although our necessary and sufficient conditions do not coincide in general, for various interesting
families of functionalities the results do form a characterization. In the following section, we consider
several such interesting families, and present a characterization for them, as can be derived from
Theorems 3.6, 3.7 and 3.9.

We first state the characterization for functionalities with at most three possible outputs. For
this class of functionalities, we make the observation that for every x ∈ X , either y ≡x y′ for all
y, y′ ∈ Y, or z ≡x z′ for all z, z′ ∈ Z.

Corollary 3.12 (Characterization of ternary-output functionalities). Let f : X ×Y×Z 7→ {0, 1, 2}
be a deterministic solitary output three-party functionality. Assume that oblivious transfer exists
and that |X |, |Y|, |Z| = poly(κ). Then f can be computed with 1-security if and only if the following
hold.

1. For all sufficiently large κ ∈ N, and all χB and χC that are B-minimal and C-minimal, respec-
tively, there exists an R-minimal χ ∈ X such that χB ≡B χ ≡C χC.

2. f is CORE∧-forced.

3. There exists an ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt
algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(x, y∗, z)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced
property.

Proof. It suffices to show that Item 1 from the above statement implies Item 1 from Theorem 3.7.
That is, we show that for all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or
z ≡x z′ for all x ∈ X and z, z′ ∈ Z. Assume towards contradiction that for infinitely many κ’s,
there exists x, x′ ∈ X , y, y′ ∈ Y, and z, z′ ∈ Z such that y ̸≡x y′ and z ̸≡x′ z′. Now, observe
that as f is a ternary-output functionality, it holds that x and x′ are B-minimal and C-minimal,
respectively. Moreover, it holds that z ≡x z′ and that y ≡x′ y′. By (the assumed) Item 1 there
exists an R-minimal χ ∈ X satisfying x ≡B χ ≡C x′. However, such χ cannot exists since it satisfies
y ≡χ y′ and z ≡χ z′. □

We now state a characterization for functionalities that are symmetric with respect to the
inputs of B and C, i.e., where f(x, y, z) = f(x, z, y) for all x, y, and z. Here, the characterization
follows from the observation all y’s are equivalent and z’s are equivalent with respect to all x’s. In
particular, the CORE∧-forced property implies the simpler forced property (i.e., both B and C can
fix the distribution of the output).

Corollary 3.13 (Characterization of (B, C)-symmetric functionalities). Let f : X ×D×D 7→ W be
a deterministic solitary output three-party functionality. Assume that oblivious transfer exists, that
|X |, |D| = poly(κ), and that for all sufficiently large κ ∈ N, for all x ∈ X and for all y, z ∈ D it
holds that f(x, y, z) = f(x, z, y). Then f can be computed with 1-security if and only if it is forced.

We next state a characterization for the case where the input of party A is a single bit. The
proof follows from the observation that for such functionalities there exist a minimum χ.

28

Corollary 3.14. Let f : {0, 1} × Y × Z 7→ W be a deterministic solitary output three-party
functionality. Assume that |Y|, |Z| = poly(κ). Then f can be computed with 1-security if and only
if the following hold.

1. For all sufficiently large κ ∈ N, either 0 ⪯ 1 or 1 ⪯ 0.

2. f is CORE∧-forced.

Proof. First observe that if 0 ⪯ 1 or 1 ⪯ 0 for all sufficiently large κ ∈ N, then f can be computed
due to Theorem 3.9. For the other direction, we consider two cases. First, if f is not CORE∧-forced
then by Theorem 3.6 it cannot be computed with 1-security. Otherwise, if 0 ̸⪯ 1 and 1 ̸⪯ 0 infinitely
often, then both are R-minimal inputs infinitely often. However, there is no R-minimal χ such that
0 ≡B χ ≡C 1. Therefore, f cannot be computed due to Theorem 3.6. □

If A has no input, then the first property of Corollary 3.14 holds vacuously. Thus we have the
following.

Corollary 3.15 (Characterization of NIORP functionalities). Let f : ∅ × Y × Z 7→ W be a
deterministic solitary output three-party functionality. Assume that |Y|, |Z| = poly(κ). Then f can
be computed with 1-security if and only if it is CORE∧-forced.

4 Impossibility Results
In this section, we prove the necessary conditions stated in Theorem 3.6. Our proof is split into two
parts. In the first part, presented in Section 4.1, we apply the hexagon argument over the secure
protocol assumed to exist. This results in 6 ensembles of distributions, all of which are statistically
close. The second part of the proof, presented in Section 4.2, is dedicated to the analysis of these
6 ensembles. Specifically, we show how the assumption that the ensembles are close implies the
necessary conditions stated in Theorem 3.6.

4.1 The Hexagon Argument

In this section we present the hexagon argument, that is the first step in the proof of Theorem 3.6.
For a fixed a three-party protocol π = (A, B, C) that is defined over secure point-to-point channels
in the plain model (without a broadcast channel or trusted setup assumptions), we can associate a
six-party protocol denoted Hex(π) = (B, A, C, B′, A′, C′) as illustrated in Figure 1. Formally, Hex(π)
is defined as follows.

Definition 4.1 (The hexagon protocol). Given a three-party protocol π = (A, B, C) we denote by
Hex(π) = (B, A, C, B′, A′, C′) the following six-party protocol. Parties A and A′ are set with the code
of A from π, parties B and B′ with the code of B from π, and parties C and C′ with the code of C
from π.

The communication network of Hex(π) is a cycle. Party A is connected to C, which is connected
to B′, which is connected to A′, which is connected to C′, which is connected to B, which is connected
to A.

The following lemma states that any attacker corrupting any four adjacent parties in the six-
party protocol Hex(π), can be perfectly emulated by an adversary corrupting a single party in
three-party π.

29

Lemma 4.2 (Mapping attackers for Hex(π) to attackers for π). Let π = (A, B, C) be a three-party
protocol and let Hex(π) = (B, A, C, B′, A′, C′) be as in Definition 4.1. In the following, for possible
inputs (x, x′, y, y′, z, z′) for protocol Hex(π) we let h = (x, x′, y, y′, z, z′). Then the following hold.

1. For every non-uniform ppt adversary AB,C′

H corrupting {A, B, C′, A′} in Hex(π), there exists a
non-uniform ppt adversary A corrupting A in π, receiving the inputs y, z′, and x′ for B, C′,
and A′, respectively, as auxiliary information, that perfectly emulates AB,C′

H , namely
{

REALπ,A(y,z′,x′,aux)
(
κ,
(
x, y′, z

))}
κ,h,aux

≡
{

REALHex(π),AB,C′
H (aux) (κ, h)

}
κ,h,aux

.

2. For every non-uniform ppt adversary AB′,C
H corrupting {A′, B′, C, A} in Hex(π), there exists a

non-uniform ppt adversary A′ corrupting A in π, receiving the inputs y′, z, and x for B′, C,
and A, respectively, as auxiliary information, that perfectly emulates AB′,C

H , namely
{

REALπ,A′(y′,z,x,aux)
(
κ,
(
x′, y, z′

))}
κ,h,aux

≡
{

REALHex(π),AB′,C
H (aux) (κ, h)

}
κ,h,aux

.

3. For every non-uniform ppt adversary BA,C
H corrupting {B, A, C, B′} in Hex(π), there exists a

non-uniform ppt adversary B corrupting B in π, receiving the inputs x, z, and y′ for A, C, and
B′, respectively, as auxiliary information, that perfectly emulates BA,C

H , namely
{

REALπ,B(x,z,y′,aux)
(
κ,
(
x′, y, z′

))}
κ,h,aux

≡
{

REALHex(π),BA,C
H (aux) (κ, h)

}
κ,h,aux

.

4. For every non-uniform ppt adversary BA′,C′

H corrupting {B′, A′, C′, B} in Hex(π), there exists a
non-uniform ppt adversary B′ corrupting B in π, receiving the inputs x′, z′, and y for A′, C′,
and B, respectively, as auxiliary information, that perfectly emulates BA′,C′

H , namely
{

REALπ,B′(x′,z′,y,aux)
(
κ,
(
x, y′, z

))}
κ,h,aux

≡
{

REALHex(π),BA′,C′
H (aux) (κ, h)

}
κ,h,aux

.

5. For every non-uniform ppt adversary CA,B
H corrupting {C′, B, A, C} in Hex(π), there exists a

non-uniform ppt adversary C corrupting C in π, receiving the inputs y, x, and z for A, B, and
C, respectively, as auxiliary information, that perfectly emulates CA,B

H , namely
{

REALπ,C(y,x,z,aux)
(
κ,
(
x′, y′, z′

))}
κ,h,aux

≡
{

REALHex(π),CA,B
H (aux) (κ, h)

}
κ,h,aux

.

6. For every non-uniform ppt adversary CA′,B′

H corrupting {C, B′, A′, C′} in Hex(π), there exists a
non-uniform ppt adversary C′ corrupting C in π, receiving the inputs y′, x′, and z′ for A, B,
and C, respectively, as auxiliary information, that perfectly emulates CA′,B′

H , namely
{

REALπ,C′(y′,x′,z′,aux) (κ, (x, y, z))
}

κ,h,aux
≡
{

REALHex(π),CA′,B′
H (aux) (κ, h)

}
κ,h,aux

.

30

Proof. We will prove only Item 1 as the rest follows from a similar argument. Fix an adversary
AB,C′

H corrupting {A, B, C′, A′} in Hex(π). Define an adversary A corrupting A in π as follows. First,
it initializes AB,C′

H with input x for A, input y for B, input z′ for C′, input x′ for A′, and auxiliary
information aux. Each round, it passes to AB,C′

H the messages received from the honest parties B
and C, and replies to them as AB,C′

H does. Finally, A output whatever AB,C′

H outputs.
By the definition of A, in each round, the messages it receives from and sends to B and C in

π, are identically distributed to the messages AB,C′

H received from and sent to B′ and C in Hex(π).
Therefore the transcript in both executions are identically distributed. In particular, the joint
distribution of the view of the adversary and the output of the honest parties are identical in both
executions. □

An important use-case of the above lemma is for 1-secure protocols π computing some 3-party
functionality f . Here, any attacker in π that emulates some attacker for Hex(π) as given by
Lemma 4.2, can be simulated in the ideal world of f . Thus, we get the following corollary.

Corollary 4.3 (Mapping attackers for Hex(π) to simulators for f). Let π = (A, B, C) be a three-
party protocol computing some solitary output three-party functionality f : ({0, 1}∗)3 7→ {0, 1}∗ with
1-security. Then the following hold.

1. For every non-uniform ppt adversary AB,C′

H corrupting {A, B, C′, A′} in Hex(π), there exists a
non-uniform ppt simulator SimB,C′

A in the ideal world of f corrupting A, such that{
IDEAL

f,SimB,C′
A (y,z′,x′,aux)

(
κ,
(
x, y′, z

))}
κ,h,aux

C≡
{

REALHex(π),AB,C′
H (aux) (κ, h)

}
κ,h,aux

.

2. For every non-uniform ppt adversary AB′,C
H corrupting {A′, B′, C, A} in Hex(π), there exists a

non-uniform ppt simulator SimB′,C
A in the ideal world of f corrupting A, such that{

IDEAL
π,SimB′,C

A (y′,z,x,aux)
(
κ,
(
x′, y, z′

))}
κ,h,aux

C≡
{

REALHex(π),AB′,C
H (aux) (κ, h)

}
κ,h,aux

.

3. For every non-uniform ppt adversary BA,C
H corrupting {B, A, C, B′} in Hex(π), there exists a

non-uniform ppt simulator SimA,C
B in the ideal world of f corrupting B, such that{

IDEAL
π,SimA,C

B (x,z,y′,aux)
(
κ,
(
x′, y, z′

))}
κ,h,aux

C≡
{

REALHex(π),BA,C
H (aux) (κ, h)

}
κ,h,aux

.

4. For every non-uniform ppt adversary BA′,C′

H corrupting {B′, A′, C′, B} in Hex(π), there exists a
non-uniform ppt simulator SimA′,C′

B in the ideal world of f corrupting B, such that{
IDEAL

π,SimA′,C′
B (x′,z′,y,aux)

(
κ,
(
x, y′, z

))}
κ,h,aux

C≡
{

REALHex(π),BA′,C′
H (aux) (κ, h)

}
κ,h,aux

.

5. For every non-uniform ppt adversary CA,B
H corrupting {C′, B, A, C} in Hex(π), there exists a

non-uniform ppt simulator SimA,B
C in the ideal world of f corrupting C, such that{

IDEAL
π,SimA,B

C (y,x,z,aux)
(
κ,
(
x′, y′, z′

))}
κ,h,aux

C≡
{

REALHex(π),CA,B
H (aux) (κ, h)

}
κ,h,aux

.

31

6. For every non-uniform ppt adversary CA′,B′

H corrupting {C, B′, A′, C′} in Hex(π), there exists a
non-uniform ppt simulator SimA′,B′

C in the ideal world of f corrupting C, such that{
IDEAL

π,SimA′,B′
C (y′,x′,z′,aux) (κ, (x, y, z))

}
κ,h,aux

C≡
{

REALHex(π),CA′,B′
H (aux) (κ, h)

}
κ,h,aux

.

One important use-case of Corollary 4.3 is when the six adversaries for Hex(π) are semi-honest.
This is due to the fact that the views of the honest parties are identically distributed in all six
cases, hence the same holds with respect to their outputs. Next, consider the joint distribution of
the outputs of A and A′ in Hex(π). Observe that for any adversary corrupting either of them, say
A, its simulator given by Corollary 4.3 must be able to generate the output of A, as it is part of
the view. Furthermore, if either A or A′ is honest, then the simulator can force the output of A in
the ideal world of f to be indistinguishable from the real world.

Now, recall that these simulators are for the malicious setting, hence they can send arbitrary
inputs to the trusted party. Thus, the distributions over the outputs depend on the distribution
over the input sent by each simulator to the trusted party. Notice that when considering semi-
honest adversaries for Hex(π) that have no auxiliary input, these distributions depend only on the
security parameter and the inputs given to the semi-honest adversary.

For example, in the case where {B, A, C, B′} are corrupted, the simulator samples a random
input y∗ according to some distribution Q that depends only on the security parameter κ, and the
inputs y, x, z, and y′ given to the adversary. The input y∗ must be such that the joint output of
the simulator and the output of A in the ideal world of f , must be indistinguishable from the joint
output of A and A′ in Hex(π).

Lemma 4.4. Let f : ({0, 1}∗)3 7→ {0, 1}∗ be a solitary output three-party functionality that can be
computed with 1-security. Then the there exists

• two ensembles of efficiently samplable distributions

PB,C′ = {P B,C′

κ,x,y,z′,x′}κ∈N,x,x′,y,z′∈{0,1}∗ and PB′,C = {P B′,C
κ,x′,y′,z,x}κ∈N,x,x′,y,z′∈{0,1}∗

over X ,

• two ensembles of efficiently samplable distributions

Q =
{
Qκ,y′,z,x,y

}
κ∈N,x,y,y′,z∈{0,1}∗ and Q′ =

{
Q′κ,y,z′,x′,y′

}
κ∈N,x,y,y′,z∈{0,1}∗

over Y,

• two ensembles of efficiently samplable distributions

R =
{
Rκ,z,x,y,z′

}
κ∈N,x,y,z,z′∈{0,1}∗ and R′ =

{
R′κ,z′,x′,y′,z

}
κ∈N,x,y,z,z′∈{0,1}∗

over Z,

• and six ppt algorithms SB,C′, SB′,C, SB, S′B, SC, and S′C,

such that the following six distribution ensembles are computationally indistinguishable

32

1. {SB,C′ (x, y, z′, x′, x∗1, f(x∗1, y′, z))}κ,x,x′,y,y′,z,z′, where x∗1 ← P B,C′

κ,x,y,z′,x′.

2. {SB′,C (x′, y′, z, x, x∗2, f(x∗2, y, z′))}κ,x,x′,y,y′,z,z′, where x∗2 ← P B′,C
κ,x′,y′,z,x.

3. {(SB (y′, z, x, y, y∗1) , f(x′, y∗1, z′))}κ,x,x′,y,y′,z,z′, where y∗1 ← Qκ,y′,z,x,y.

4. {(f(x, y∗2, z), S′B (y, z′, x′, y′, y∗2))}κ,x,x′,y,y′,z,z′, where y∗2 ← Q′κ,y,z′,x′,y′.

5. {(SC (z, x, y, z′, z∗1) , f(x′, y′, z∗1))}κ,x,x′,y,y′,z,z′, where z∗1 ← Rκ,z,x,y,z′.

6. {(f(x, y, z∗2), S′C (z′, x′, y′, z, z∗2))}κ,x,x′,y,y′,z,z′, where z∗2 ← R′κ,z′,x′,y′,z.

Moreover, if the domain of f is of polynomial size in κ, then the above ensembles are statistically
close.

Proof. let π be a three-party protocol computing f with 1-security, and consider an honest execution
of Hex(π). Let (OUT(κ, h), OUT′(κ, h)) denote the joint distribution of the outputs of A and A′,
respectively, in such execution of Hex(π), where h = (x, x′, y, y′, z, z′) are the inputs of the parties.
We will show how obtain each of the Ensembles 1–6, such that each of them is computationally
indistinguishable from (OUT,OUT’).

We first show how to obtain Ensemble 1. Ensemble 2 can be obtained using a similar argument.
Consider the semi-honest adversary AB,C′

H corrupting {A, B, C′, A′} with no additional auxiliary
information, that outputs the output of A and A′ (note that this is well-defined since the adversary
is semi-honest). By Item 1 from Corollary 4.3, there exists a non-uniform ppt simulator SimB,C′

A in
the ideal world of f corrupting A, such that{

IDEAL
f,SimB,C′

A (y,z′,x′)
(
κ,
(
x, y′, z

))}
κ,h

C≡
{

REALHex(π),AB,C′
H

(κ, h)
}

κ,h
.

Since only A receives an output in the idea world of f , it follows that{
VIEWideal

f,SimB,C′
A (y,z′,x′)

(
κ,
(
x, y′, z

))}
κ,h
≡
{

IDEAL
f,SimB,C′

A (y,z′,x′)
(
κ,
(
x, y′, z

))}
κ,h

C≡
{

VIEWreal
Hex(π),AB,C′

H
(κ, h)

}
κ,h

≡
{
(OUT, OUT′)

}
κ,h ,

where h = (x, x′, y, y′, z, z′). We let Pκ,x,y,z′,x′ denote the distribution over the input x∗ that SimB,C′

A
sends to the trusted party T, and let SB,C′(x, y, z′, x′, x∗1, w) output whatever SimB,C′

A outputs given
that it sent x∗1 to T and received the output w. Therefore,{

SB,C′ (
x, y, z′, x′, x∗1, f(x∗1, y′, z)

)}
κ,h
≡
{

VIEWideal
f,SimB,C′

A (y,z′,x′)

(
κ,
(
x, y′, z

))}
κ,h

C≡
{(

OUT(κ, h), OUT′(κ, h)
)}

κ,h ,

where x∗1 ← P B,C′

κ,x,y,z′,x′ .
We now show how to obtain Ensemble 3. The rest of the ensembles can be obtained using

a similar argument. Similarly to the previous case, we consider the semi-honest adversary BA,C
H

33

corrupting {B, A, C, B′} with no additional auxiliary information, that outputs the output of A. By
Item 3 from Corollary 4.3, there exists a non-uniform ppt simulator SimA,C

B in the ideal world of f
corrupting B, such that{

IDEAL
π,SimA,C

B (x,z,y′)
(
κ,
(
x′, y, z′

))}
κ,h

C≡
{

REALHex(π),BA,C
H

(κ, h)
}

κ,h
.

Since only A and A′ receives an output in the execution of Hex(π), it follows that{
REALHex(π),BA,C

H
(κ, h)

}
κ,h
≡
{(

VIEWreal
Hex(π),BA,C

H

(
κ,
(
x′, y, z′

))
, OUTideal

Hex(π),BA,C
H

(
κ,
(
x′, y, z′

)))}
κ,h

≡
{(

OUT(κ, h), OUT′(κ, h)
)}

κ,h .

Let Qκ,y′,z,x,y denote the distribution over the input y∗ that SimA,C
B sends to the trusted party T,

and let SB(y′, z, x, y, y∗1) output whatever SimA,C
B outputs given that it sent y∗1 to T. Then

{(
SB
(
y′, z, x, y, y∗1

)
, f(x′, y∗1, z′)

)}
κ,h ≡

{
IDEAL

π,SimA,C
B (x,z,y′)

(
κ,
(
x′, y, z′

))}
κ,h

C≡
{

REALHex(π),BA,C
H

(κ, h)
}

κ,h

≡
{(

OUT(κ, h), OUT′(κ, h)
)}

κ,h ,

where y∗1 ← Qκ,y′,z,x,y.
As for the “moreover” part, observe that if the domain of f is of polynomial size, then the

support of all ensembles is of polynomial size. Thus, by Fact 2.3 the ensembles are statistically
close. □

4.2 Analyzing The Ensembles

In this section we analyze the six distribution ensembles given by Lemma 4.4. For the sake of brevity,
throughout the entire section we fix a deterministic solitary output three-party functionality that
can be computed with 1-security f : X × Y ×Z 7→ W, where |X |, |Y|, |Z| = poly(κ). Additionally,
we fix all distribution ensembles and ppt algorithms from Lemma 4.4, using the same notations.

It will be convenient in the proof to use the following notion of statistical independence. Roughly,
a distribution ensemble is statistically independent of one of its variables, if changing the variable
results in a statistically close distribution ensemble.

Definition 4.5 (Statistical independence). Let X = {Xa,b,n}a∈Dn,b∈D′
n,n∈N be a distribution en-

semble. We say that X is statistically independent of {D′n}n∈N if

{Xa,b,n}a∈Dn,b,b′∈D′
n,n∈N

S≡ {Xa,b′,n}a∈Dn,b,b′∈D′
n,n∈N.

For the sake of simplifying the presentation, we will usually say that X is statistically indepen-
dent of b, rather than referring to its domain.

Theorem 3.6 follows from the following two claims, stating the conditions specified in it.

Claim 4.6. For all sufficiently large κ ∈ N, if χC and χB are C-minimal and B-minimal, respectively,
then there exists an R-minimal χ ∈ X such that χC ≡C χ ≡B χB.

34

Claim 4.7. For every κ ∈ N and every i ∈ [n∧] we let yi denote the lexicographically smallest
element of Y∧i . Similarly, for j ∈ [m∧] we let zj denote the lexicographically smallest element of
Z∧j . Then there exists two ensembles of efficiently samplable distributions Q = {Qκ,i}κ∈N,i∈[n∧] and
R = {Rκ,j}κ∈N,j∈[m∧] over Y and Z, respectively, such that the following holds.

{f(x, y∗, zj)}κ,x,i,j,y,z

S≡ {f(x, y∗, z)}κ,x,i,j,y,z

S≡ {f(x, y, z∗)}κ,x,i,j,y,z

S≡ {f(x, yi, z∗)}κ,x,i,j,y,z (6)

where y∗ ← Qκ,i, z∗ ← Rκ,j.
Moreover, suppose that f has the property that for all sufficiently large κ, it holds that either

y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all x ∈ X and z, z′ ∈ Z. Then there exists an
ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ,x,i,j,y,z
S≡ {f(x, y∗, z)}κ,x,i,j,y,z,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced property.
We prove Claims 4.6 and 4.7 below. We first make the following simple yet useful observation,

which states that each of the marginal distributions of the ensembles are statistically independent
of several of the inputs.
Claim 4.8. Consider the ppt algorithms SB,C′ and SB′,C from Lemma 4.4, and write them as
SB,C′ = (SB,C′

1 , SB,C′

2) and SB′,C = (SB′,C
1 , SB′,C

2). Then both SB,C′

1 and SB′,C
1 are statistically inde-

pendent of x′, y′, and z′. Similarly, both SB,C′

2 and SB′,C
2 are statistically independent of x, y, and

z.
Proof. We prove that SB,C′

1 is statistically independent of x′, y′, and z′The second statement can
proven using an analogous argument. Observe that by Lemma 4.4, it follows that

{SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z)

)
}κ,x,x′,y,y′,z,z′

S≡ {SB
(
y′, z, x, y, y∗

)
}κ,x,x′,y,y′,z,z′

S≡ {SC
(
z, x, y, z′, z∗

)
}κ,x,x′,y,y′,z,z′ ,

where y∗ ← Qκ,y′,z,x,y and z∗ ← Rκ,z,x,y,z′ . As SB and SC are statistically independent of x′, z′ and
x′, y′, respectively, it follows that SB,C′

1 is statistically independent of them as well. □

The following two lemmata are the main ingredients in our proof. The first lemma roughly
identifies the support of the inputs x∗1 and x∗2 used by ppt algorithms SB,C′ and SB′,C (up to negligible
probability). The second lemma identifies when it is possible to change some of the inputs, such
that the at least one of the marginal distributions of the outcome of the ppt algorithms SB,C′ and
SB′,C remains similar.
Lemma 4.9. Consider the distribution ensembles PB,C′ and PB′,C from Lemma 4.4. Then for
every x, x′ ∈ X , every y ∈ Y, and every z′ ∈ Z, it holds that

Pr
x∗

1←P B,C′
κ,x,y,z′,x′

[
x∗1 ̸⪯C x ∨ x∗1 ̸⪯B x′

]
= neg(κ).

Similarly, for every x, x′ ∈ X , every y′ ∈ Y, and every z ∈ Z, it holds that

Pr
x∗

2←P B′,C
κ,x′,y′,z,x

[
x∗2 ̸⪯B x ∨ x∗2 ̸⪯C x′

]
= neg(κ).

In particular, for all sufficiently large κ and every x, x′ ∈ X , there exists x∗ ∈ X such that

x∗ ⪯C x ∧ x∗ ⪯B x′.

35

Lemma 4.10. The following hold.

1. {
SB,C′

1
(
x, y, z′, x′, x∗1, f(x∗1, y′, z1)

)}
κ,x,x′,y,y′,z1,z2,z′

S≡
{

SB,C′

1
(
x, y, z′, x′, x∗1, f(x∗1, y′, z2)

)}
κ,x,x′,y,y′,z1,z2,z′

,

where z1 ≡x̃ z2 for all x̃ ⪯C x, and where x∗1 ← P B,C′

κ,x,y,z′,x′.

2. {
SB,C′

2
(
x, y, z′, x′, x∗1, f(x∗1, y′1, z)

)}
κ,x,x′,y,y′

1,y′
2,z,z′

S≡
{

SB,C′

2
(
x, y, z′, x′, x∗1, f(x∗1, y′2, z)

)}
κ,x,x′,y,y′

1,y′
2,z,z′

,

where y′1 ≡x̃ y′2 for all x̃ ⪯C x, and where x∗1 ← P B,C′

κ,x,y,z′,x′.

3. {
SB′,C

1
(
x′, y′, z, x, x∗2, f(x∗2, y, z′1)

)}
κ,x,x′,y,y′,z,z′

1,z′
2

S≡
{

SB′,C
1

(
x′, y′, z, x, x∗2, f(x∗2, y, z′2)

)}
κ,x,x′,y,y′,z,z′

1,z′
2

,

where z′1 ≡x̃ z′2 for all x̃ ⪯C x, and where x∗2 ← P B′,C
κ,x′,y′,z,x.

4. {
SB′,C

2
(
x′, y′, z, x, x∗2, f(x∗2, y1, z′)

)}
κ,x,x′,y1,y2,y′,z,z′

S≡
{

SB′,C
2

(
x′, y′, z, x, x∗2, f(x∗2, y2, z′)

)}
κ,x,x′,y1,y2,y′,z,z′

,

where y1 ≡x̃ y2 for all x̃ ⪯C x, and where x∗2 ← P B′,C
κ,x′,y′,z,x.

Lemmas 4.9 and 4.10 are proved in Sections 4.2.1 and 4.2.2, respectively. Before providing the
proofs, we first show that they imply Claims 4.6 and 4.7, and thus they imply Theorem 3.6.

Proof of Claim 4.6. Let χB and χC be B-minimal and C-minimal, respectively. We assume without
loss of generality that χB ̸≡ χC, as otherwise the claim is trivial. By Lemma 4.9 there exists χ ∈ X
satisfying χ ⪯B χB and χ ⪯C χC. By the minimality of χB and χC it follows that χ ≡B χB and
χ ≡C χC. It is left to show that χ is R-minimal. Let χ̃ ⪯ χ. By Lemma 4.9 there exists x̃ satisfying
x̃ ⪯B χ̃ ⪯B χ ≡B χB and x̃ ⪯C χ̃ ⪯C χ ≡C χC. By the minimality of χB and χC it follows that
χB ≡B x̃ ≡C χC. Therefore x̃ ≡B χ and x̃ ≡C χ, hence x̃ ≡ χ. □

Proof of Claim 4.7. We first define the distributions Qκ,i and Rκ,j , for i ∈ [n∧] and j ∈ [m∧]. Let
Q′ and R′ be the distribution ensembles from Lemma 4.4. In the following, we fix x0, y0, and
z0 to be the lexicographically smallest elements of X , Y, and Z, respectively. We let Qκ,i be the
distribution Q′κ,yi,z0,x0,y0 and let Rκ,j be the distribution R′κ,z0,x0,y0,zj

.
We now prove Equation (6). The second transition follows from Lemma 4.4. We prove the

first transition. The last transition can be proved using an analogous argument. Let SB,C′ be as in
Lemma 4.4, and let SB,C′

1 be the first entry in its output. First, observe that if z ≡∧ zj , then z ≡χ zj

for all R-minimal χ. The minimality of all such χ implies that z ≡x̃ zj for all x̃ ⪯C x. Second,
by Lemma 4.9 x∗ ⪯C x with probability at least 1− neg(κ). Thus, combining with Lemma 4.10 it
follows that{

SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z)

)}
κ,j,x,x′,y,y′,z,z′

S≡
{

SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zj)

)}
κ,j,x,x′,y,y′,z,z′

,

(7)

36

where x∗ ← P B,C′

κ,x,y,z′,x′ . Furthermore, by Claim 4.8 the above ensembles are statistically independent
of x′, y′, and z′, thus the ensembles are statistically close for fixed x′ = x0, y′ = y0, and z′ = z0,
i.e., it holds that{

SB,C′

1 (x, y, z0, x0, x∗, f(x∗, y0, z))
}

κ,j,x,y,z

S≡
{

SB,C′

1 (x, y, z0, x0, x∗, f(x∗, y0, zj))
}

κ,j,x,y,z
.

Combined with Lemma 4.4 this implies that

{f(x, y∗, z)}κ,j,x,y,z

S≡
{

SB,C′

1 (x, y, z0, x0, x∗, f(x∗, y0, z))
}

κ,j,x,y,z

S≡
{

SB,C′

1 (x, y, z0, x0, x∗, f(x∗, y0, zj))
}

κ,j,x,y,z

S≡ {f(x, y∗, zj)}κ,j,x,y,z ,

where x∗ ← P B,C′
κ,x,y,z0,x0 and y∗ ← Q′κ,y,z0,x0,y0 . Finally, observe that this implies that

{f(x, y∗, zj)}κ,x,i,j,y,z

S≡ {f(x, y∗, z)}κ,x,i,j,y,z ,

where y∗ ← Q′κ,yi,z0,x0,y0 ≡ Qκ,i.
We now prove the “moreover” part of the claim. Let KB ⊆ N be the set of all κ ∈ N such that

y ≡x y′ for all x ∈ X and y, y′ ∈ Y, and let KC ⊆ N be the set of all κ ∈ N such that z ≡x z′

for all x ∈ X and z, z′ ∈ Z. For every κ ∈ KB, we define the distribution Pκ,x as P B,C′
κ,x,y0,z0,x0

and let S(1κ, x, x∗, w) output SB,C′

1 (x, y0, z0, x0, x∗, w). Similarly, for any κ ∈ KC we define the
distribution Pκ,x as P B′,C

κ,x0,y0,z0,x and let S(1κ, x, x∗, w) output SB′,C
1 (x0, y0, z0, x, x∗, w). Observe

that since |X |, |Y|, |Z| = poly(κ) identifying whether κ ∈ KB or κ ∈ KC can be done efficiently.
To conclude the proof, we now show that

{S (1κ, x, x∗, f(x∗, y, z))}κ,x,i,j,y,z
S≡ {f(x, y∗, z)}κ,x,i,j,y,z, (8)

where x∗ ← Pκ,x and y∗ ← Qκ,i. Assume for the sake of contradiction that Equation (8) is false.
Then the ensembles have statistical distance of at least 1/ poly(κ), for infinitely many κ ∈ N. By
assumption, κ ∈ KB ∪ KC for all sufficiently large κ, hence the distance of 1/ poly(κ) holds for
infinitely many κ ∈ KB ∪KC. We assume without loss of generality that all such infinitely many κ
belong to KB. However, by the definition of Pκ,x and the ppt algorithm S, it holds that

{S (1κ, x, x∗, f(x∗, y, z))}κ∈KB,x,i,j,y,z ≡ {SB,C′

1 (x, y0, z0, x0, x∗, f(x∗, y, z))}κ∈KB,x,i,j,y,z,

where x∗ ← P B,C′
κ,x,y0,z0,x0 . Thus,

{SB,C′

1 (x, y0, z0, x0, x∗, f(x∗, y, z))}κ∈KB,x,i,j,y,z ̸
S≡ {f(x, y∗, z)}κ∈KB,x,i,j,y,z,

which contradicts Lemma 4.4. □

4.2.1 Proof of Lemma 4.9

Proof of Lemma 4.9. We prove the first part of the claim. The second part follows from an analo-
gous argument. For brevity, we write x∗ instead of x∗1. Assume for the sake of contradiction that

37

there exists x, x′ ∈ X , y ∈ Y, z′ ∈ Z, and a polynomial p, such that for infinitely many κ’s it holds
that

Pr
x∗←P B,C′

κ,x,y,z′,x′

[
x∗ ̸⪯C x ∨ x∗ ̸⪯B x′

]
≥ 1/p(κ).

Then by the union bound it follows that for infinitely many κ’s either

Pr
x∗←P B,C′

κ,x,y,z′,x′
[x∗ ̸⪯C x] ≥ 1/2p(κ)

or
Pr

x∗←P B,C′
κ,x,y,z′,x′

[
x∗ ̸⪯B x′

]
≥ 1/2p(κ).

Assume the former without loss of generality. We next show that Ensembles 1 and 4 are statistically
far, that is, we show that

{SB,C′ (
x, y, z′, x′, x∗, f(x∗, y′, z)

)
}κ,x,x′,y,y′,z,z′ ̸ S≡ {

(
f(x, y∗, z), S′B

(
y, z′, x′, y′, y∗

))
}κ,x,x′,y,y′,z,z′ , (9)

where x∗ ← P B,C′

κ,x,y,z′,x′ and y∗ ← Q′κ,y,z′,x′,y′ , thus contradicting Lemma 4.4.
By Fact 2.4 it suffices to show a distinguisher. The distinguisher D will simply consider the first

entry and infer the equivalence class of z. Formally, let CClassx(w) output the unique j ∈ [m(x)]
such that w ∈ f(x,Y,Zx

j). Observe that CClassx can be computed in polynomial time since |Y|
and |Z| are polynomials. Then, given an output w ∈ W in the first entry, our distinguisher D
outputs 1 if CClassx(w) = j, where z ∈ Zx

j , and outputs 0 otherwise. Clearly, given the output
from the ensemble on the right-hand side of Equation (9), D outputs 1 with probability 1. We next
analyze the probability of SB′,C outputting a value w′ satisfying CClassx(w′) = j, and show that it
is significantly far from 1, thus proving that D has a noticeable distinguishing advantage.

Intuitively, if x∗ ̸⪯C x then SB,C′ lacks information about the equivalence class of z with respect
to the input x. Therefore it will have to guess it. In the following, we abuse notations and for z ∈ Z
we let CClassx(z) output the value j ∈ [m(x)] satisfying z ∈ Zx

j . Let SB,C′

1 be the first entry in the
output of SB,C′ . The next formalize the above intuition. First observe that by the union bound,
for each of the infinitely many κ’s considered there exists x̃ ∈ X satisfying x̃ ̸⪯C x, such that

Pr
x∗←P B,C′

κ,x,y,z′,x′
[x∗ = x̃] ≥ 1

2p(κ) · |X | .

We let z1, z2 ∈ Z satisfy z1 ≡x̃ z2 and z1 ̸≡x z2. The next claim roughly states that for SB,C′

1 ,
changing from z = z1 to z = z2 will not change its output with noticeable probability.

Claim 4.11. For all x′ ∈ X , y, y′ ∈ Y, and z′ ∈ Z, it holds that

Pr
[
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z1)

)
= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

)]
≥ 1

2p(κ) · |X | − neg(κ),

where the probability is taken over the random coins of SB,C′

1 , and where x∗ ← P B,C′

κ,x,y,z′,x′.

The claim is proven below. We first use it to show how D can distinguish with non-negligible
probability. Consider the case where z ← {z1, z2} is sampled uniformly at random and x∗ ←
P B,C′

κ,x,y,z′,x′ , where both are sampled independently. We denote

q := Pr
[
SB,C′

1
(
x, y, z′, x′, x∗1, f(x∗1, y′, z1)

)
= SB,C′

1
(
x, y, z′, x′, x∗2, f(x∗2, y′, z2)

)]
.

38

Then

Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z)

))
= CClassx (z)

]
= 1

2 · Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z1)

))
= CClassx (z1)

]
+ 1

2 · Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z2)

]
≤ 1

2 ·
(
q · Pr

[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z1)

]
+ 1− q

)
+ 1

2 · Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z2)

]
.

Now, let
a := Pr

[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z1)

]
,

and let
b := Pr

[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= CClassx (z2)

]
.

Then a + b ≤ 1. Therefore

Pr
[
CClassx

(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z)

))
= CClassx (z)

]
≤ 1

2 · (aq + 1− q) + 1
2 · b

≤ 1
2 · (aq + 1− q) + 1

2 −
1
2 · a

= 1
2 · (1− q) (1− a) + 1

2
≤ 1− 1

2 · q

≤ 1− 1
2 ·
(1

2p(κ) · |X | − neg(κ)
)

,

where the last inequality follows from Claim 4.11. Since we assume |X | to be polynomial in κ,
it follows that D has a noticeable distinguishing advantage. □

Proof of Claim 4.11. Since z1 ≡x̃ z2 there exists zi1 , . . . , zik
∈ Z such that

z1 ∼x̃ zi1 ∼x̃ . . . ∼x̃ zik
∼x̃ z2,

where k = k(κ). For convenience, we let zi0 := z1 and zik+1 := z2. This implies the existence of
yij , y′ij

∈ Y for every j ∈ {0, . . . , k + 1}, such that the following hold.

1. f(x̃, y′, zi0) = f(x̃, yi0 , zi0).

2. For all j ∈ {0, . . . , k} it holds that f(x̃, y′ij
, zij) = f(x̃, yij+1 , zij+1).

3. f(x̃, y′ik+1
, zik+1) = f(x̃, y′, zik+1).

Now, observe that the event

SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zi0)

)
= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zik+1)

)
is implied by the conjunction of the following four events:

39

1. SB,C′

1 (x, y, z′, x′, x∗, f(x∗, y′, zi0)) = SB,C′

1 (x, y, z′, x′, x∗, f(x∗, yi0 , zi0)).

2. For all j ∈ {0, . . . , k} it holds that

SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, y′ij

, zij)
)

= SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, yij+1 , zij+1)

)
.

3. For all j ∈ [k] it holds that

SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, yij , zij)

)
= SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, y′ij

, zij)
)

.

4. SB,C′

1

(
x, y, z′, x′, x∗, f(x∗, y′ik+1

, zik+1)
)

= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zik+1)

)
.

Furthermore, observe that Event 2 is implied by the event x∗ = x̃. Let E be the event that Events 1,
3, and 4 occur. Then

Pr
[
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zi0)

)
= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zik+1)

)]
≥ Pr [x∗ = x̃ | E] · Pr [E]

Additionally, by Claim 4.8 it follows that Pr [E] ≥ 1− neg(κ), hence
1

2p(κ) · |X | ≤ Pr [x∗ = x̃] ≤ Pr [x∗ = x̃ | E] · Pr [E] + neg(κ).

Therefore

Pr
[
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zi0)

)
= SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, zik+1)

)]
≥ 1

2p(κ) · |X | −neg(κ),

as claimed. □

4.2.2 Proof of Lemma 4.10

Proof of Lemma 4.10. We prove only the first item. The rest can be proved using a similar argu-
ment. We also write x∗ instead of x∗1 for the sake fo brevity. Assume towards contradiction that
the claim is false. Then by Fact 2.4 there exists a distinguisher D such that for infinitely many κ,
there exists x, x′ ∈ X , y, y′ ∈ Y, and z1, z2, z′ ∈ Z, satisfying

Pr
[
D
(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z1)

))
= 1

]
−Pr

[
D
(
SB,C′

1
(
x, y, z′, x′, x∗, f(x∗, y′, z2)

))
= 1

]
≥ 1

poly(κ) .

To alleviate notations, we will write S(x, y, x∗, w) instead of SB,C′

1 (x, y, z′, x′, x∗, w). First, we claim
that there exists x̃ ∈ X , such that x∗ = x̃ occurs with noticeable probability, and D distinguishes
the two ensembles for fixed x∗ = x̃. That is, it holds that

Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, z1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, z2)

))
= 1

]
≥ 1

poly(κ) .

Indeed,
1

poly(κ) ≤ Pr
[
D
(
S
(
x, y, x∗, f(x∗, y′, z1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x∗, f(x∗, y′, z2)

))
= 1

]
=
∑
x̃∈X

Pr [x∗ = x̃] ·
(
Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, z1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, z2)

))
= 1

])
≤ |X | ·max

x̃∈X

{
Pr [x∗ = x̃] ·

(
Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, z1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, z2)

))
= 1

])}
.

40

Since |X | is polynomial in κ, it follows that such x̃ exists.
Now, let zi1 , . . . , zik

∈ Z satisfy

z1 ∼x̃ zi1 ∼x̃ . . . ∼x̃ zik
∼x̃ z2,

and denote zi0 := z1 and zik+1 := z2. Since |Z| = poly(κ), by a hybrid argument there exists
ℓ ∈ {0, . . . , k} such that

Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ

)
))

= 1
]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ+1)

))
= 1

]
≥ 1

poly(κ) .

Let y′′ ∈ Y satisfy f(x̃, y′, ziℓ
) = f(x̃, y′′, ziℓ+1). We now show that D can distinguish

S(x, y, x∗, f(x∗, y′, ziℓ+1)) from S(x, y, x∗, f(x∗, y′′, ziℓ+1)), where x∗ ← P B,C′

κ,x,y,z′,x′ , thus contradicting
Claim 4.8. Indeed,

Pr
[
D
(
S
(
x, y, x∗, f(x∗, y′′, ziℓ+1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x∗, f(x∗, y′, ziℓ+1)

))
= 1

]
≥ Pr [x∗ = x̃] ·

(
Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′′, ziℓ+1)

))
= 1

]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ+1)

))
= 1

])
= Pr [x∗ = x̃] ·

(
Pr
[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ

)
))

= 1
]
− Pr

[
D
(
S
(
x, y, x̃, f(x̃, y′, ziℓ+1)

))
= 1

])
≥ 1

poly(κ) .

□

5 Positive Results For the Point-to-Point Model
In this section we prove Theorem 3.9 and the positive direction of Theorem 3.7, which give suffi-
cient conditions for a functionality f to be computable with 1-security. We prove Theorem 3.7 in
Section 5.1, and prove positive direction of Theorem 3.9 in Section 5.2.

5.1 Proving Theorem 3.7

In this section, we prove Theorem 3.7 by constructing a protocol for any functionality f satisfying
the properties given in the theorem. Interestingly, our protocol is a slight variant of the one given
by [2], where in case an attack is detected, A and one of the other parties interact in a two-
party computation, while ignoring the third party (even if it was honest). In particular, we get a
characterization for all functionalities that can be securely computed with such protocol.12

In the following section, we let KB ⊆ N be the set of all κ ∈ N such that y ≡x y′ for all x ∈ X
and y, y′ ∈ Y, and let KC ⊆ N be the set of all κ ∈ N such that z ≡x z′ for all x ∈ X and z, z′ ∈ Z.
Recall that we assume that f has the property where N \ (KB ∪KC) is finite. Define the families of
sets D = {Dκ}κ∈N as follows: let Dκ = Z for all κ ∈ KB or κ ∈ N \ (KB ∪ KC), and let Dκ = Y for
all κ ∈ KC. The two-party functionality g : X ×Dκ 7→ W is defined as

g(x, d) =
{

f(x, d, z∗) if κ ∈ KC

f(x, y∗, d) otherwise
12The slight variant we use, is that in our protocol, the identity of the party that will interact with A depends on

the security parameter κ. To get a characterization as to which functionalities can be securely computed with the
protocol of [2] directly, we need to reposition the quantifier over x in the first property from Theorem 3.7: For all
sufficiently large κ and for all x ∈ X , it holds that either y ≡x y′ for all y, y′ ∈ Y, or z ≡x z′ for all z, z′ ∈ Z.

41

where y∗ ← Qκ,1 and z∗ ← Rκ,1 (recall that in each case, there is only one equivalent class for the
inputs of B or C). Observe that since we assume the domain of f to be of polynomial size in κ, it
is possible to efficiently verify whether or not κ ∈ KC, and efficiently compute g.

We now present a protocol for computing f in the {(f, fair), (g, g.o.d.)}-hybrid model. By
Fact 2.11 (f, fair) can be computed in the plain model, and since g is a solitary output two-party
functionality, the result of Kilian [21] states it can be securely computed assuming OT. Thus,
Theorem 3.7 follows from the composition theorem.
. .
Protocol 5.1 (πACOS).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (f, fair) with their inputs. Let w1, w2, and w2 be the outputs of A, B, and
C, respectively.

2. If w1, w2, w3 ̸= ⊥ then A outputs w1.

3. Otherwise, if κ ∈ KC then parties A and B invoke (g, g.o.d.) with their inputs. If κ /∈ KC then
parties A and C invoke (g, g.o.d.) with their inputs.

4. Party A outputs whatever it received from g.
. .

Theorem 3.7 follows from the following lemma, stating the security of πACOS.

Lemma 5.2. Let f : X × Y ×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, |X |, |Y|, |Z| = poly(κ), and that the following hold.

1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all
x ∈ X and z, z′ ∈ Z.

2. f is CORE∧-forced.

3. There exists an ensemble of efficiently samplable distributions P = {Pκ,x}κ∈N,x∈X and a ppt
algorithm S such that

{S (1κ, x, x∗, f(x∗, y, z))}κ,x,i,j,y,z
S≡ {f(x, y∗, z)}κ,x,i,j,y,z,

where x∗ ← Pκ,x and y∗ ← Qκ,i, where Qκ,i is the distribution given the CORE∧-forced
property.

Then πACOS computes f with statistical 1-security in the {(f, fair), (g, g.o.d.)}-hybrid model.

Proof. πACOS is clearly correct since if all parties are honest, the fair computation of f will never
abort. We next show that the protocol is secure against any adversary B corrupting B. The case
of a corrupt C follows from a similar argument. We define the simulator SimB as follows.

1. Query B for its input y′ to (f, fair).

42

2. If y′ ̸= ⊥, then send y′ to the trusted party T, output whatever B outputs, and halt.

3. Otherwise, if κ ∈ KC, query B for its input y′′ to (g, g.o.d.). If κ ̸∈ KC, then set y′′ to be a
default value.

4. Find the unique value i ∈ [n∧] such that y′′ ∈ Y∧i , sample y∗ ← Qκ,i, and send y∗ to the
trusted party.

5. Output whatever B outputs and halt.

Since B receives no messages in the protocol, the inputs y′ and y′′ chosen by the adversary in the
real world, are identically distributed to their ideal world counterparts. Furthermore, it suffices
to show that the output of A in both worlds are statistically close. Clearly, given that y′ ̸= ⊥ or
κ ̸∈ KC the output of A in both worlds is identical. Otherwise, the output of A in the real world
is f(x, y′′, z∗), where z∗ ← Rκ,1 (recall that all z are equivalent with respect to ≡x). On the other
hand, in the ideal world, the output of A is f(x, y∗, z), where y∗ ← Qκ,i and i ∈ [n∧] is such that
y′′ ∈ Y∧i . By the CORE∧-forced property of f , the two distributions are statistically close.

We next fix an adversary A corrupting A. We define the simulator SimA as follows.

1. Query A for its input x′ to (f, fair).

2. If x′ ̸= ⊥, then send x′ to the trusted party T, pass the received output to A, output whatever
it outputs, and halt.

3. Otherwise, query A for its input x′′ to (g, g.o.d.).

4. Sample x∗ ← Pκ,x′′ and send it to the trusted party T.

5. Given an output w from T, send toA the result of S(1κ, x′′, x∗, w), output whateverA outputs,
and halt.

Since no honest party has an output, it suffices to show that the view of A in both worlds are
statistically close. First, since A does not receive any message before the invocation of g, it follows
that x′ and x′′ are identically distributed in both worlds. Now, in the real world, the only message
that A receives is f(x, y, z∗) if κ ∈ KC or f(x, y∗, z) if κ /∈ KC, where y∗ ← Qκ,1 and z∗ ← Rκ,1.
In the ideal world, on the other hand, it receives S(1κ, x′′, x∗, f(x∗, y, z)), where x∗ ← Pκ,x′′ . By
the assumption on f , this is statistically close to f(x, y∗, z), thus security holds with respect to all
κ /∈ KC. For all κ ∈ KC, the CORE∧-forced property implies that f(x, y∗, z) is statistically close to
f(x, y, z∗), concluding the proof. □

5.2 Proving The Positive Direction of Theorem 3.9

In this section we present a protocol for computing the functionalities captured by Theorem 3.9
with 1-security. We first present an intuitive description of the protocol.

Similarly to πACOS, the parties first compute f fairly and if the computation followed through,
then A outputs the result. Otherwise, the parties do the following. Both B and C (locally) compute
the equivalence classes of their respective inputs with respect to the lexicographically smallest
minimum input χ (i.e., smaller than all x ∈ X with respect to ⪯). They then send these values

43

to A, who samples their inputs y∗ and z∗ according to the appropriate distribution given by the
CORE∧-forced assumption, and outputs f(x, y∗, z∗).13

Intuitively, the only information a corrupt A obtains from the above interaction is the equiva-
lence classes of the inputs of B and C with respect to χ. This can be simulated by sending χ to the
trusted party, and search (by brute-force) for the equivalence classes. This can be done, since by
the definition of CORE partition, the equivalence classes are fully determined by the output and
the input χ.

We next formalize the above intuition. We present the protocol in the {(f, fair)}-hybrid model.
By Fact 2.11 (f, fair) can be computed in the plain model. Thus, Theorem 3.9 follows from the
composition theorem. In the following we let χ be the lexicographically smallest minimum input
with respect to ⪯.
. .
Protocol 5.3 (π).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (f, fair) with their inputs. Let w1, w2, and w2 be the outputs of A, B, and
C, respectively.

2. If w1, w2, w3 ̸= ⊥ then A outputs w1.

3. Otherwise, party B finds the (unique) index i ∈ [n(χ)] such that y ∈ Yχ
i and sends it to A.

Similarly, C sends the index j ∈ [m(χ)] such that z ∈ Zχ
j .

4. A samples and outputs w = f(x, y∗, zj), where y∗ ← Qκ,i and Qκ,i is the distribution given by
the CORE∧-forced property, and where zj is the lexicographically smallest element of Zχ

j .
. .

The next lemma immediately proves Theorem 3.9.

Lemma 5.4. Let f : X × Y ×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), that for all sufficiently large κ, there exists χ ∈ X such that
for all x ∈ X it holds that χ ⪯ x, and that f is CORE∧-forced. Then π computes f with statistical
1-security in the (f, fair)-hybrid model.

Proof. Clearly, π is correct since if all parties are honest, the fair computation of f will never
abort. We next show that the protocol is secure against any adversary B corrupting B. The case
of a corrupt C follows from a similar argument. We define the simulator SimB as follows.

1. Query B for its input y′ to (f, fair).

2. If y′ ̸= ⊥, then send y′ to the trusted party T, output whatever B outputs, and halt.

3. Otherwise, B sends to A a value i′ ∈ [n(χ)].

4. Sample y∗ ← Qκ,i′ , send it to T, output whatever B outputs, and halt.
13In the formal description of the protocol below, we let A set one the random inputs to be the lexicographically

smallest element in its equivalence class. This is only for the sake presentation and it does not affect the security of
the protocol.

44

Since B receives no messages, it suffices to show that the outputs of A in both worlds are statistically
close. Now, observe that the messages B sends are identically distributed in both worlds. For the
case where B sends and input y′ ̸= ⊥ to (f, fair), the output of A in both worlds is f(x, y′, z). Next,
assume that B sends y′ = ⊥ and then sends i′. Then the output of A in the real world is f(x, y∗, zj),
where y∗ ← Qκ,i′ and where zj in the lexicographically smallest element in Zχ

j . In the ideal world,
the output of A is f(x, y∗, z), where y∗ is distributed as before. By the CORE∧-forced property of
f , the two distributions are statistically close.

We next consider an adversary A corrupting A. We define the simulator SimA as follows.

1. Query A for its input x′ to (f, fair).

2. If x′ ̸= ⊥, then send x′ to the trusted party T, pass the received output to A, output whatever
it outputs, and halt.

3. Otherwise, send χ to T.

4. Let w be the output sent by T.

5. Find the (unique) i ∈ [n(χ)] and j ∈ [m(χ)] such that there exists y′ ∈ Yχ
i and z′ ∈ Zχ

j

satisfying w = f(x, y′, z′).

6. Send i and j to A, output whatever it outputs, and halt.

Since B and C have no output, it suffices to show that the view of A in both worlds are close
(in fact, they are identically distributed). Now, if A sent an input x′ ̸= ⊥ to (f, fair), then in
both worlds the only message that A sees is f(x,′ , y, z). Otherwise, it obtains two values i and j
representing equivalence classes over Y and Z, respectively. Observe that the classes are the same
in both worlds since they where computed with respect to the minimum input χ. □

6 Computation With Broadcast and a Dishonest Majority
In this section we show that all three-party functionalities captured by our positive results from the
previous section, i.e., Theorems 3.7 and 3.9, can be computed given a broadcast channel, tolerating
two corruptions. In fact, we can even relax some of the requirements. Both of our results (stated
below) improve the results of Halevi et al. [20], who identify several classes of functionalities that
can be securely computed.

We next state our two results. We state the results only for deterministic functionalities, as
the randomized case can be handled with using a standard reduction. The first result states that
a generalized class of functionalities of those captured by Theorem 3.7, can be computed with full
security.

Theorem 6.1. Let f : X ×Y×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, that |X |, |Y|, |Z| = poly(κ), and that one of the following
holds.

1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all
x ∈ X and z, z′ ∈ Z.

2. f is CORE∧-forced.

45

Then f can be computed with full security.

The proof is given in Section 6.1.1. We next state our second result, which states that a
generalized class of functionalities of those captured by Theorem 3.9, can be computed with full
security. This result directly improves one of the results by Halevi et al. [20], who showed that any
all-but-one forced solitary output functionality (i.e., either B or C but not necessarily both, can fix
the output distribution), can be computed with full security.

For this result, we require to strengthen the definition of (all-but-P) CORE∧-forced. Intuitively,
all-but-P strong CORE∧-forced requires that the output distributions in some of the combinatorial
rectangles in R∧ to be close. Roughly speaking, for every x ∈ X there exists a minimal input χ
smaller than x with respect to an appropriate partial order, such that the output distribution in
the rectangles in Rχ can be fixed by the parties. Note that for CORE∧-forced, the distributions
for different rectangles could be far. Similarly to [20], for our construction it suffices to consider
an all-but-P strong CORE∧-forced functionality, for some P ∈ {B, C}, where the remaining party
in {B, C} \ {P} can fix the output distributions in the rectangles.

Definition 6.2 (All-but-P strong CORE∧-forced). Let f : X × Y × Z 7→ W be a deterministic
solitary output three-party functionality. We say that f is all-but-B strong CORE∧-forced, if there
exists an ensemble of efficiently samplable distributions {Rκ,j}κ∈N,j∈[m∧] such that the following
holds. For every sequence of inputs x = {xκ ∈ X}κ∈N, there exists a sequence of B-minimal inputs
χB = {χκ ∈ X}κ∈N, such that χκ ⪯ xκ for all κ ∈ N, and

{f(xκ, y, z∗)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j

S≡ {f(xκ, yχ, z∗)}κ∈N,xκ∈X ,i∈[n∧],j∈[m∧],y∈Y∧
i ,z∈Z∧

j
,

where yχ is the lexicographically smallest element such that yχ ≡χκ y and where z∗ ← Rκ,j. We
define C-strong CORE∧-forced similarly.

Observe that for any functionality with a minimum element for A, strong-CORE∧-forced is
equivalent to standard CORE∧-forced (since the minimum input satisfies the conditions stated
above).

We are now ready to state our result.

Theorem 6.3. Let f : X ×Y×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, that |X |, |Y|, |Z| = poly(κ) and that f is all-but-P strong
CORE∧-forced, for some P ∈ {B, C}. Then f can be computed with full security.

The proof of Theorem 6.3 is given in Section 6.1.2. We first discuss an interesting consequence
of Theorems 6.1 and 6.3. Observe that the conditions stated in Theorems 6.1 and 6.3 are relax-
ations of the conditions stated in Theorems 3.7 and 3.9, respectively. Therefore, for the families
of functionalities discussed in Section 3.2.1 (e.g., ternary-output), for which we have a complete
characterization in the point-to-point model, it holds that if a functionality f can be computed
assuming an honest majority but without a broadcast channel, then f can also be computed with
a broadcast channel, but with no honest majority. Thus, we have the following corollary.

Corollary 6.4. Let f : X ×Y×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that oblivious transfer exists, that |X |, |Y|, |Z| = poly(κ) and that either |W| ≤ 3 or |X | ≤ 2.
Then, if f can be computed with 1-security in the point-to-point model (without broadcast), then f
can be computed with full security given a broadcast channel.

46

Furthermore, since the conditions stated in Theorems 6.1 and 6.3 are strict relaxations of the
conditions stated in Theorems 3.7 and 3.9, it follows that the converse is not true. Thus, the
more common broadcast assumption is a strictly stronger than the honest majority assumption,
for the above families of functionalities. A concrete example that showcase the separation is the
following solitary output three-party variant of the GHKL function [19]. That is, the function
soGHKL : ∅ × {0, 1, 2} × {0, 1} 7→ {0, 1} given by the matrix

0 1
1 0
1 1


where B chooses a row, C chooses a column, and the output of A is the value written in the chosen
entry. Indeed, all inputs of B and C are equivalent, yet soGHKL is not forced and thus cannot be
computed in the point-to-point model. On the other hand, Theorem 6.3 requires that only one of
the parties needs to be able to fix the distribution of the output.

6.1 Proofs of the Results

In this section we proof Theorems 6.1 and 6.3. We start with proving Theorem 6.1 in Section 6.1.1,
and then proving Theorem 6.3 in Section 6.1.2.

6.1.1 Proof of Theorem 6.1

The idea of the protocol is as follows. The parties first compute a 2-out-of-2 secret sharing of the
output, where one share is given to party A, and the other share is given to either B or C depending
on κ. The second party, denoted P, to hold a share then sends it to A who reconstructs the output.
In case, P does not send the share, A replaces the aborting party’s input with a default input,
samples the input of the third party according the distribution associated with it as given by the
CORE∧-forced property, and compute the function on these inputs.

Intuitively, the party that does not receive any share provides no advantage to the adversary.
Additionally, corrupting A and P gives to the adversary only the output, hence it cannot attack
the protocol. Finally, when A is honest, corrupting and aborting P can be simulated by sending
an input sampled according the appropriate distribution associated with the default input of P, as
given by the CORE∧-forced property of f .

We next formalize the above intuition. Similarly to Section 5.1, let KB ⊆ N be the set of all
κ ∈ N such that y ≡x y′ for all x ∈ X and y, y′ ∈ Y, and let KC ⊆ N be the set of all κ ∈ N such
that z ≡x z′ for all x ∈ X and z, z′ ∈ Z. Recall that we assume that f has the property where
N \ (KB ∪ KC) is finite. Let P = B if κ ∈ KC, and let P = C otherwise. Further let P′ be the
remaining party in {B, C} \ {P}.

We let ShrGenf (x, y, z) be the three-party functionality that computes a 2-out-of-2 additive
secret sharing of the output f(x, y, z). The functionality gives the shares to only A either B or C
depending on κ (see Algorithm 6.5 below for a formal description). Additionally, it signs each of
the shares using a one-time MAC. To simplify the presentation, we assume that a corrupted party
will not modify it share, but may abort and not send it at all.
. .
Algorithm 6.5 (Functionality ShrGenf).

47

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. Compute w = f(x, y, z).

2. Share w in an 2-out-of-2 secret sharing scheme. For Q ∈ {A, P}, let w[Q] denote the share
associated with party Q.

3. Party A receives w[A], and party P receives w[P].
. .

We next present a protocol for computing f in the {(ShrGenf , s.w.i.a)}-hybrid model.
. .
Protocol 6.6 (πbc).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (ShrGenf , s.w.i.a) with their inputs.
- If A aborts then the computation halts.
- Otherwise, if P′ aborts then the parties restart without it, and with their input being set

to default values. If P aborts, go to Step 3.

2. If P is still active, it sends w[P] to A.

3. If P aborts during any step of the computation, then A does the following.

(a) If P = B, set y0 ∈ Y to be the lexicographically smallest element, sample z∗ ← Rκ,1, and
output f(x, y0, z∗).

(b) If P = C, set z0 ∈ Z to be the lexicographically smallest element, sample y∗ ← Qκ,1, and
output f(x, y∗, z0).

4. Otherwise, A outputs w[A] + w[P].
. .

The next lemma immediately proves Theorem 6.1

Lemma 6.7. Let f : X × Y ×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), and that the following hold.

1. For all sufficiently large κ, either y ≡x y′ for all x ∈ X and y, y′ ∈ Y, or z ≡x z′ for all
x ∈ X and z, z′ ∈ Z.

2. f is CORE∧-forced.

Then πbc computes f with statistical full security in the (ShrGenf , s.w.i.a)-hybrid model.

48

Proof. Clearly, the protocol is correct. Fix an adversary A corrupting a subset of the parties.
Observe that if A is corrupted, then the adversary sees at most two shares whose sum is the output
f(x, y, z). Therefore, this case can be simulated.

We now assume that A is honest. In this case, A (possibly) sees only the random value w[P].
If P′ is corrupted and aborts during the call to (ShrGenf , s.w.i.a), then the simulator replaces its
input with a default value. If P is corrupted and aborts during any step of the protocol, then the
simulator replaced its input with a random input as follows: If P = B then send y∗ ← Qκ,i where
i ∈ [n∧] is the unique index satisfying y0 ∈ Y∧i . Otherwise, if P = C then send z∗ ← Rκ,j where
j ∈ [m∧] is the unique index satisfying z0 ∈ Z∧j .

Then for all κ ∈ KC (i.e., P = B) it holds that the output of A in the ideal world is f(x, y∗, z),
which by the CORE∧-forced assumption, is statistically close to f(x, y0, z∗) that is the output of
A in the real world. Similarly, for all κ /∈ KC the outputs are statistically close. □

6.1.2 Proof of Theorem 6.3

We first present an intuitive description of the protocol. Towards constructing the protocol, we
use an algorithm, denoted StrP for P ∈ {B, C}, which computes efficiently the sequence of minimal
inputs that satisfy the conditions from Definition 6.2, for any all-but-P strong CORE∧-forced three-
party solitary output functionality. We present the algorithm in Section 6.1.3 below. We first use
it to construct the protocol.

Assume without loss of generality that the functionality f is all-but-B strong CORE∧-forced.
The idea is for the parties to compute a 3-out-of-3 secret sharing of the output. Additionally, A
and B will receive shares of the equivalence class of the input y held by B, with respect to the input
χ ⪯ x guaranteed to exist by the strong CORE∧-forced assumption.

The protocol proceeds as follows. First, B sends its two shares to A. In case of abort, A and C
restart the protocol with the input of B set to a default value. Otherwise, C sends its input to A,
which reconstructs the output. In case C aborts, A reconstructs B’s equivalence class and chooses
any input from it. It then samples an input for C according to a default distribution, and computes
f on these inputs. Intuitively, a corrupted B or C can be simulated by sending to the trusted party
either a default input or sample an input according to the distribution guaranteed to exist by the
CORE∧-forced assumption. Additionally, a corrupt A only learns the output and the equivalence
class of y with respect to χ, which can be inferred from the output since χ ⪯ x.

We next present a formal description of the protocol. Denote N = Nκ = ∏
x∈X n(x). We

next define the three-party share generator functionality ShrGen′f (x, y, z). Roughly speaking, it
computes a three-out-of-three additive secret sharing of the output f(x, y, z), and it shares between
A and B the equivalence class of y with respect to to χ, for the B-minimal χ that is computed by
the algorithm from Claim 6.12 (see Algorithm 6.8 below for a formal description). Additionally,
it signs each of the shares using a one-time MAC. To simplify the presentation, we assume that a
corrupted party will not modify it shares, but may abort and not send them at all. We now present
a formal description of ShrGen′f .
. .
Algorithm 6.8 (Functionality ShrGen′f).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

49

Computation:

1. Compute w = f(x, y, z).
2. Compute χ = StrB(1κ, x).
3. Find the unique index i ∈ [n(χ)] satisfying y ∈ Yχ

i .

Sharing phase:

1. Share w in an 3-out-of-3 secret sharing scheme. For P ∈ {A, B, C} let w[P] denote the
share associated with party P.

2. Sample i[A]← [N], and let i[B] = i− i[A] mod N .14

Output: Party A receives (χ, w[A], i[A]), party B receives (w[B], i[B]), and party C receives w[C]
(note that χ can also be computed locally by A).

. .

We next present a protocol for computing f in the {(ShrGen′f , s.w.i.a)}-hybrid model.
. .
Protocol 6.9 (π′bc).

Private inputs: A holds x ∈ X , B holds y ∈ Y, and C holds z ∈ Z.

Common input: the parties hold the security parameter 1κ.

1. The parties invoke (ShrGen′f , s.w.i.a) with their inputs.
- If A aborts then the computation halts.
- Otherwise, if any other party aborts the parties restart without it, and their input being

set to a default value.

2. If B is still active, it sends (w[B], i[B]) to A.
- In case B aborts, the parties set its input to a default value and restart the protocol

without it.

3. If C is still active, it sends w[C] to A.
- In case C aborts, A does the following.

(a) Set i = i[A] + i[B] mod n(χ) if B is active, and set i = 1 otherwise.
(b) Compute and output w∗ = f(x, yχ, z∗), where yχ is the lexicographically smallest

element of Yχ
i , and where z∗ ← Rκ,1.

4. If no party aborts, A reconstructs the output.
. .

The next lemma immediately proves Theorem 6.3

Lemma 6.10. Let f : X ×Y ×Z 7→ W be a deterministic solitary output three-party functionality.
Assume that |X |, |Y|, |Z| = poly(κ), and that f is all-but-B strong. Then π′bc computes f with
statistical full security in the (ShrGen′f , s.w.i.a)-hybrid model.

14We let mod n output in [n] instead of {0, . . . , n − 1} for convenience.

50

Proof. Clearly, the protocol is correct. Fix an adversary A corrupting a subset of the parties. We
separate the proof into two cases. For the first case, let us assume that A is honest. We assume
that both B and C are corrupted. The case where exactly one of them is corrupted can be handled
similarly. The simulator SimA does the following.

1. Query A for its input y and z to (ShrGen′f , s.w.i.a).

2. Send to A the values (w[B], i[B]) and w[C], where w[B], w[C]← W and where i[B]← [N]. If
A replies with (abort, P), for some P ∈ {B, C}, then go back to Step 1 with the input of P set
to a default value.

3. Otherwise, if B aborts at Step 2, then go back to Step 1 with the input of B set to a default
value.

4. If C aborts, sample z∗ ← Rκ,1 and send to the trusted party (y′, z∗), where y′ = y if B is
active, and y′ is a default value otherwise. Output whatever A outputs, and halt.

5. Otherwise, if C does not abort, send y and z to the trusted party T, output whatever A
outputs, and halt.

It’s clear that the views of A in both worlds are identically distributed, and in particular, its
responses are identically distributed as well. First, consider the case where C does not abort at
Step 3. Then the output of A in both worlds is f(x, y′, z), where y′ = y if B is active, and y′ is a
default value otherwise.

Now, consider the case where C does abort at Step 3. Let us first consider the real world. Then
the value i set by A is i = 1 if B is inactive, and i ∈ [n(χ)] is the unique index satisfying y ∈ Yχ

i if
B is active. Then the output of A is of the form f(x, y′real, z∗), where z′ ← Rκ,1, and where y′real is
the lexicographically smallest element in Yχ

i . Let us now consider the ideal world. The of A in this
case is f(x, y′ideal, z∗), where z∗ ← Rκ,1 as before, and where y′ideal = y if B is active, and is a default
value otherwise. Observe that, regardless of whether or not B is active, it holds that y′real ≡χ y′ideal.
By Claim 6.12, it follows that both outputs are statistically close.

We now assume that A is corrupted. We only deal with the case where C is also corrupted,
since the other cases are simpler. We define the simulator SimA as follows.

1. Query A for its inputs to (ShrGen′f , s.w.i.a). If the adversary aborts then restart without the
aborting party. Let x and z be the inputs used in the last call.

2. Send to A random shares of the output w[A], w[C] ← W, the random share i[A] ← [N], and
the R-minimal element χ as computed by ShrGen′f (recall that χ depends only on x).

3. Send x and z to the trusted party T, and let w be the output received from T.

4. Set w[B] = w − w[A]− w[C].

5. Find i ∈ [n(χ)] for which there exists y′ ∈ Yχ
i and z′ ∈ Z such that w = f(x, y′, z′).

6. Let i[B] = i− i[A] mod n(χ).

7. Send to A the pair (w[B], i[B]), output whatever A outputs and halt.
Clearly, since n(χ) divides N , the view of A in both worlds are identically distributed. Since no
honest party obtains an output from T, it follows that the real and ideal world are identically
distributed. □

51

6.1.3 The StrP Algorithm For Finding χB and χC

We next present the idea behind the algorithm StrP for P = B (the case where P = C is analogous).
For a given input x, the algorithm searches for a B-minimal input χB and two rectangles YχB

i ×Z
χB
j

and YχB
i′ × ZχB

j such that statistical distance between the output distributions that are associated
with the rectangles (as given by sampling either y or z according to the corresponding distributions
and computing f over these input) is maximized. The algorithm then outputs χB. Intuitively, if
χB does not satisfy the properties from Definition 6.2, then this contradicts the maximality of the
statistical distance. Note that the algorithm is efficient since we assume the domain of f to be of
polynomial size. We now formalize the above intuition.
. .
Algorithm 6.11 (StrP).

Setting: Suppose that f : X ×Y×Z 7→ W is a three-party solitary output all-but-P strong CORE∧-
forced functionality, and let Q and R be the associated distribution ensembles.

Input: The security parameter 1κ and x ∈ X .

Computation:

• If P = B, find a B-minimal χ ⪯B x, ŷ, ŷ′ ∈ Y, and j ∈ [m(χB)] such that ŷ ̸≡χ ŷ′ and
ŷ ≡x ŷ′, that maximizes

SD
(
f(x, ŷ, z∗1), f(x, ŷ′, z∗2)

)
,

where z∗1 , z∗2 ← Rκ,j are independent.
• If P = C find a C-minimal χ ⪯C x, i ∈ [n(χC)] and ẑ, ẑ′ ∈ Z such that ẑ ̸≡χ ẑ′ and

ẑ ≡x ẑ′, that maximizes
SD

(
f(x, y∗1, ẑ), f(x, y∗2, ẑ′)

)
,

where y∗1, y∗2 ← Qκ,i are independent.

Output: χ.
. .

Claim 6.12. Suppose that f is all-but-P strong CORE∧-forced, and fix a sequence of inputs x =
{xκ ∈ X}κ∈N. Define the sequence χ = {χκ}κ∈N, where χκ is the output of StrP(1κ, xκ). Then χ
is the sequence guaranteed to exists by the all-but-P strong CORE∧-forced assumption. That is, if
P = B then

{f(xκ, y, z∗)}κ,xκ,i,j,y,z

S≡ {f(xκ, yχ, z∗)}κ,xκ,i,j,y,z ,

where yχ is the lexicographically smallest element such that yχ ≡χκ y and where z∗ ← Rκ,j. Simi-
larly, if P = C then an analogous statement holds.

Proof. We prove the statement only for the case where P = B, as the other case is analogous.
Assume that the claim is false. Then for infinitely many κ, there exists i ∈ [n∧], j ∈ [m∧], y ∈ Y∧i ,
and z ∈ Z∧j , such that

SD (f(xκ, y, z∗1), f(xκ, yχ, z∗2)) > 1/ poly(κ),
where z∗1 , z∗2 ← Rκ,j are independent. Since y ≡χκ yχ, by the CORE∧-forced property of f , it
follows that there exists a different sequence χ′ = {χ′κ}κ∈N such that y ̸≡χ′

κ
yχ. However this

contradict the maximality assumption over χ. □

52

7 Various Interesting Examples
In this section we provide some interesting examples of functionalities, and identify which can be
securely computed with 1-security in the point-to-point model. Our examples include variants
of private-set intersection. Throughout the section, for natural numbers k, ℓ, m ∈ N satisfying
k ≤ ℓ ≤ m, we denote (

[m]
k

)
= {S ⊆ [m] : |S| = k}

and we denote (
[m]
k, ℓ

)
= {S ⊆ [m] : k ≤ |S| ≤ ℓ} .

Claim 7.1. For two natural numbers k ≤ m, let disjk,m :
([m]

k

)3
7→ {0, 1} be the solitary output

three-party disjointness functionality defined as

disjk,m(S1,S2,S3) =
{

1 if S1 ∩ S2 ∩ S3 = ∅
0 otherwise

Then disjk,m can be computed with 1-security if and only if k > 2m/3 or k = 0.

Proof. Observe that if k > 2m/3 or k = 0, then disjk,m is constant, and thus can be securely
computed. We now assume that 0 < k ≤ 2m/3 and show that disjk,m is not CORE∧-forced, and
thus cannot be computed securely. We separate the proof into two cases.

Case 1: m/2 < k ≤ 2m/3. We first show that for any S1, it holds that S2 ≡S1 S ′2 for all
S2,S ′2 ∈

([m]
k

)
. Indeed, since k > m/2 it follows that S1 ∩ S2 ̸= ∅ and that S1 ∩ S ′2 ̸= ∅. Therefore,

for any S3 ⊇ S1 ∩ S2 it holds that disjk,m(S1,S2,S3) = 0. Similarly, for any S ′3 ⊇ S1 ∩ S ′2 it holds
that disjk,m(S1,S ′2,S ′3) = 0. By symmetry, S3 ≡S1 S ′3 for all S3,S ′3 ∈

([m]
k

)
as well.

Now, assume towards contradiction that there exists a distribution R = {Rκ}κ∈N over
([m]

k

)
such that {

disjk,m (S1,S2,S∗3)
}

κ,S1,S2,S′
2

S≡
{

disjk,m

(
S1,S ′2,S∗3

)}
κ,S1,S2,S′

2
, (10)

where S∗3 ← Rκ. Since the domain of disjk,m is finite, there exists S3 ∈
([m]

k

)
such that PrS∗

3←Rκ [S∗3 =
S3] ≥ p infinitely often for some constant p > 0. Consider S1 that minimizes |S1 ∩S3|, i.e., it holds
that |S1∩S3| = 2k−m. Since 2k−m ≤ m/3, there exists S2 such that S1∩S2∩S3 = ∅. Therefore

PrS∗
3←Rκ

[
disjk,m (S1 ∩ S2 ∩ S∗3) = 1

]
≥ PrS∗

3←Rκ [S∗3 = S3] ≥ p,

holds infinitely often. On the other hand, for S ′2 = S1 it holds that disjk,m(S1,S ′2, ·) is the constant
0 function, hence

PrS∗
3←Rκ

[
disjk,m

(
S1 ∩ S ′2 ∩ S∗3

)
= 1

]
= 0

for all κ, contradicting Equation (10).

53

Case 2: 0 < k ≤ m/2. The proof follows similar arguments to the previous case. We first
show that for any S1, it holds that S2 ≡S1 S ′2 for all S2,S ′2 ∈

([m]
k

)
. Indeed, since k ≤ m/2 it

follows that there exists S3 ∈
([m]

k

)
such that S1 ∩ S3 = ∅, and in particular, disjk,m(S1,S2,S3) =

disjk,m(S1,S ′2,S3) = 1. By symmetry, S3 ≡S1 S ′3 for all S3,S ′3 ∈
([m]

k

)
as well.

Assume towards contradiction that there exists a distribution ensemble R = {Rκ}κ∈N over
([m]

k

)
such that {

disjk,m (S1,S2,S∗3)
}

κ,S1,S2,S′
2

S≡
{

disjk,m

(
S1,S ′2,S∗3

)}
κ,S1,S2,S′

2
, (11)

where S∗3 ← Rκ. Since the domain of disjk,m is finite, there exists S3 ∈
([m]

k

)
such that PrS∗

3←Rκ [S∗3 =
S3] ≥ p infinitely often for some constant p > 0. Consider S1 = S2 = S3. Then, as k ̸= 0 it follows
that S3 ̸= ∅. Thus

PrS∗
3←Rκ

[
disjk,m (S1 ∩ S2 ∩ S∗3) = 0

]
≥ PrS∗

3←Rκ [S∗3 = S3] ≥ p,

holds infinitely often. On the other hand, since k ≤ m/2 there exists S ′2 ∈
([m]

k

)
such that S1∩S ′2 = ∅,

hence
PrS∗

3←Rκ

[
disjk,m

(
S1 ∩ S ′2 ∩ S∗3

)
= 0

]
= 0

for all κ, contradicting Equation (11). □

Claim 7.2. For k1, ℓ1, k2, ℓ2, m ∈ N where 0 ≤ k1 ≤ ℓ1 ≤ m and 0 ≤ k2 ≤ ℓ2 ≤ m, let PSIℓ1,ℓ2
k1,k2,m :

∅ ×
([m]

k1,ℓ1

)
×
([m]

k2,ℓ2

)
7→ 2[m] be the solitary output three-party private set intersection functionality

defined as
PSIℓ1,ℓ2

k1,k2,m(S1,S2) = S1 ∩ S2.

Then PSIℓ1,ℓ2
k1,k2,m can be computed with 1-security if and only if one of the following holds.

1. k1 = k2 = 0, or

2. ℓ1 = 0 or ℓ2 = 0, or

3. k1 = m or k2 = m.

Proof. We write PSI instead of PSIℓ1,ℓ2
k1,k2,m for brevity. We first show the positive direction. If

k1 = k2 = 0, then PSI is forced since both B and C can fix the output to be ∅. If ℓ1 = 0 or ℓ2 = 0
then PSI is the constant ∅ function. If k2 = m, then PSI is independent of its second argument and
in particular, is forced. 15

We now show the negative direction. We first show that S1 ≡ S ′1 and S2 ≡ S ′2, for all S1,S ′1 ∈([m]
k1,ℓ1

)
and S2,S ′2 ∈

([m]
k2,ℓ2

)
. We show only the former as the latter can be proved using an analogous

argument. Observe that if |S1 ∩ S ′1| ≥ k2, then for any S2 ⊆ S1 ∩ S ′1 of size k2 ≤ |S2| ≤ ℓ2 it
holds that PSI(S1,S2) = S2 = PSI(S ′1,S2). On the other hand, if |S1 ∩ S ′1| < k2, then there exists
S2 ∈

([m]
k2

)
such that S1 ∩ S ′1 ⊆ S2 and S2 ∩ (S1 \ S ′1) = S2 ∩ (S ′1 \ S1) = ∅.

15Note that in all cases we do not need to assume the existence of OT. For the first case, where k1 = k2 = 0, we
can use the protocol where if the fair computation fails, we let A output ∅. For the other two cases the computation
is trivial, since either the function is constant, or the protocol where B or C send their input to A is secure.

54

Now, assume towards contradiction that PSI is CORE∧-forced. since all inputs are equivalent,
it follows that PSI is forced. Then there exists an ensemble of efficiently samplable distributions
R = {Rκ}κ∈N such that

{S1 ∩ S∗2}κ,S1,S′
1

S≡
{
S ′1 ∩ S∗2

}
κ,S1,S′

1
, (12)

where S∗2 ← Rκ. Since the domain of PSI is finite, there exists S2 ∈
([m]

k2,ℓ2

)
such that PrS∗

2←Rκ [S∗2 =
S2] ≥ p infinitely often for some constant p > 0. Now, recall that k1 ̸= 0 or k2 ̸= 0. We assume the
latter without loss of generality. Thus, S2 ̸= ∅. We next separate the proof into two cases.

Case 1: |S2| ≤ ℓ1. In this case, there exists S1 ∈
([m]

k1,ℓ1

)
such that S2 ⊆ S1. Therefore

PrS∗
2←Rκ [S1 ∩ S∗2 = S2] ≥ PrS∗

2←Rκ [S∗2 = S2] ≥ p

infinitely often. However, since S2 ̸= ∅ there exists S ′1 ∈
([m]

k1,ℓ1

)
such that S2 ̸⊆ S ′1. Thus

PrS∗
2←Rκ [S ′1 ∩ S∗2 = S2] = 0

for all κ, contradicting Equation (12).

Case 2: |S2| > ℓ1. In this case, there exists S1,S ′1 ∈
([m]

k1,ℓ1

)
such that S1,S ′1 ⊆ S2. Moreover,

since k1 ̸= m and ℓ1 ̸= 0, it follows that we can take S1 ̸= S ′1. Thus

PrS∗
2←Rκ [S1 ∩ S∗2 = S1] ≥ PrS∗

2←Rκ [S∗2 = S2] ≥ p

infinitely often. However,
PrS∗

2←Rκ [S ′1 ∩ S∗2 = S1] = 0

for all κ, contradicting Equation (12). □

Claim 7.3. For k1, ℓ1, k2, ℓ2, m ∈ N where 0 ≤ k1 ≤ ℓ1 ≤ m and 0 ≤ k2 ≤ ℓ2 ≤ m, let PSIZEℓ1,ℓ2
k1,k2,m :

∅ ×
([m]

k1,ℓ1

)
×
([m]

k2,ℓ2

)
7→ {0, . . . , m} be the solitary output three-party functionality defined as

PSIZEℓ1,ℓ2
k1,k2,m(S1,S2) = |S1 ∩ S2| .

Then PSIZEℓ1,ℓ2
k1,k2,m can be computed with 1-security if and only if one of the following holds.

1. k1 = k2 = 0, or

2. ℓ1 = 0 or ℓ2 = 0,

3. k1 = m or k2 = m, or

4. k1 = ℓ1 and k2 = ℓ2.

55

Proof. We write PSIZE instead of PSIZEℓ1,ℓ2
k1,k2,m for brevity. Similarly to the PSI functionality, if

k1 = k2 = 0, then PSIZE is forced since both B and C can fix the output to be 0. If ℓ1 = 0 or
ℓ2 = 0, then PSIZE is the constant 0. If k1 = m or k2 = m, then PSIZE is independent of one of its
arguments and in particular, is forced. Finally, if k1 = ℓ1 and k2 = ℓ2 then PSIZE is forced since
the uniform distribution for both parties fixes the output distribution to be uniform.

We now show the negative direction. We first show that S1 ≡ S ′1 and S2 ≡ S ′2, for all S1,S ′1 ∈([m]
k1,ℓ1

)
and S2,S ′2 ∈

([m]
k2,ℓ2

)
. We show only the former as the latter can be proved using an analogous

argument. Observe that the set of possible outputs for a fixed S1 ∈
([m]

k1,ℓ1

)
is exactly

{max {0, |S1|+ k2 −m} , . . . , min {|S1|, ℓ2}} .

Then, if |S1| = |S ′1| there are S2,S ′2 ∈
([m]

k2,ℓ2

)
such that |S1 ∩ S2| = |S ′1 ∩ S2|. Next, consider the

case where S ′1 = S ∪ {a}, where a /∈ S1. Then there are no such S2 and S ′2 if and only if

max {0, |S1|+ 1 + k2 −m} > min{|S1|, ℓ2}.

However, since |S1|, ℓ2 ≥ 0 and |S1|+k2−m < |S1| as k2 ̸= m, it follows that |S1|+k2−m ≥ ℓ2. This
is clearly impossible since this implies that |S1| ≥ ℓ2 − k + m ≥ m. The case where |S ′1| > |S1|+ 1
can be done using an inductive argument (over |S ′1| − |S1|).

We now show that PSIZE is not forced and hence cannot be computed with 1-security. Recall
that for the negative direction, we assume that k1 ̸= ℓ1 or k2 ̸= ℓ2. Assume the former without
loss of generality, and assume towards contradiction that PSIZE is forced. Then there exists an
ensemble of efficiently samplable distributions R = {Rκ}κ∈N such that

{|S1 ∩ S∗2 |}κ,S1,S′
1

S≡
{∣∣S ′1 ∩ S∗2 ∣∣}κ,S1,S′

1
, (13)

where S∗2 ← Rκ. Since the domain of PSIZE is finite, there exists S2 ∈
([m]

k2,ℓ2

)
such that

PrS∗
2←Rκ [S∗2 = S2] ≥ p infinitely often for some constant p > 0. We separate the proof into

two cases.

Case 1: k1 < k2. Fix S1 ∈
([m]

k1

)
such that S1 ⊆ S2, and fix some a ∈ S2 \ S1. Let n = |S1 ∩ S2|,

and let S ′1 = S1 ∪ {a} (note that S ′1 ∈
([m]

k1,ℓ1

)
since k1 ̸= ℓ1). Then

PrS∗
2←Rκ [|(S1 ∪ {a}) ∩ S∗2 | = n + 1] ≥ PrS∗

2←Rκ [S∗2 = S2] ≥ p,

infinitely often. However, for those exact same κ it holds that

PrS∗
2←Rκ [|S1 ∩ S∗2 | = n + 1] = 0,

resulting in a contradiction.

Case 2: k1 ≥ k2. Fix S1 ∈
([m]

k1+1
)

such that S2 ⊆ S1, and fix some a ∈ S1 \ S2. Let n = |S1 ∩S2|.
Then

PrS∗
2←Rκ [|S1 ∩ S∗2 | = n] ≥ PrS∗

2←Rκ [S∗2 = S2] ≥ p,

infinitely often. However, since ℓ2 ̸= 0 it follows that S2 ̸= ∅, hence for those exact same κ it holds
that

PrS∗
2←Rκ [|(S1 \ {a}) ∩ S∗2 | = n] = 0,

resulting in a contradiction. □

56

Claim 7.4. For k1, ℓ1, k2, ℓ2, m ∈ N where 0 ≤ k1 ≤ ℓ1 ≤ m and 0 ≤ k2 ≤ ℓ2 ≤ m, let disjℓ1,ℓ2
k1,k2,m :

∅ ×
([m]

k1,ℓ1

)
×
([m]

k2,ℓ2

)
7→ {0, . . . , m} be the solitary output three-party functionality defined as

disjℓ1,ℓ2
k1,k2,m(S1,S2) =

{
1 if S1 ∩ S2 = ∅
0 otherwise

Then disjℓ1,ℓ2
k1,k2,m can be computed with 1-security if and only if one of the following holds.

1. k1 = k2 = 0, or

2. ℓ1 = 0 or ℓ2 = 0, or

3. k1 = m or k2 = m, or

4. k1 = ℓ1 and k2 = ℓ2.

5. ℓ1 + k2 > m and k1 + ℓ2 > m.

Proof. We write disj instead of disjℓ1,ℓ2
k1,k2,m for brevity. Similarly to the PSI and PSIZE functionality,

if k1 = k2 = 0, then disj is forced since both B and C can fix the output to be 1. If ℓ1 = 0 or ℓ2 = 0
then disj is the constant 1. If k1 = m or k2 = m, then disj is independent of one of its arguments
and in particular, is forced. If k1 = ℓ1 and k2 = ℓ2 then disj is forced since the uniform distribution
for both parties fixes the output distribution to be uniform. Finally, if ℓ1 +k2 > m and k1 +ℓ2 > m,
then both parties can fix the output to be 0.

We now show the negative direction. We first show that S1 ≡ S ′1 and S2 ≡ S ′2, for all S1,S ′1 ∈([m]
k1,ℓ1

)
and S2,S ′2 ∈

([m]
k2,ℓ2

)
. We show only the former as the latter can be proved using an analogous

argument. Since disj is Boolean, it suffices to show that there exists S1 ∈
([m]

k1,ℓ1

)
for which disj(S1, ·)

is not constant. Clearly, since we assume ℓ1, ℓ2 ̸= 0, any S1 ∈
([m]

k1,ℓ1

)
must intersects at least one

S2 ∈
([m]

k2,ℓ2

)
. Now, recall that we assume that either ℓ1 + k2 ≤ m or k1 + ℓ2 ≤ m. Either way,

it follows that k1 + k2 ≤ m. Therefore, for any S1 ∈
([m]

k1

)
there exists S2 ∈

([m]
k2

)
that does not

intersects S1.
We now show that disj is not forced and hence cannot be computed with 1-security. Recall that

for the negative direction, we assume that k1 ̸= ℓ1 or k2 ̸= ℓ2. Assume the former without loss of
generality, and assume towards contradiction that disj is forced.

Then there exists two ensembles of efficiently samplable distributions Q = {Qκ}κ∈N R =
{Rκ}κ∈N such that, in particular

{disj (S∗1 ∩ S2)}κ,S2,S′
2

S≡
{
disj

(
S∗1 ∩ S ′2

)}
κ,S2,S′

2
, (14)

and

{disj (S1 ∩ S∗2)}κ,S1,S′
1

S≡
{
disj

(
S ′1 ∩ S∗2

)}
κ,S1,S′

1
, (15)

where S∗1 ← Qκ and S∗2 ← Rκ. We next We next separate the proof into two cases.

Case 1: ℓ1 + k2 ≤ m and k1 + ℓ2 > m. In this case, disj(·,S2) ≡ 0 for any S2 ∈
([m]

ℓ2

)
, but

disj(S1, ·) ̸≡ 0 for any S1 ∈
([m]

k1,ℓ1

)
. Similarly to Claim 7.1, this immediately contradicts Equa-

tion (14).

57

Case 2: k1 + ℓ2 ≤ m. We show that for S1 ←
([m]

k1

)
and S ′1 ←

([m]
k1+1

)
sampled independently,

the statistical distance between disj (S1 ∩ S∗2) and disj (S ′1 ∩ S∗2) is not negligible. This implies that
there exists S1 and S ′1 for which the statistical distance is not negligible, thus Equation (15) does
not hold.

Observe that for any S2 ∈
([m]

n

)
, for some n ∈ {k2, . . . , ℓ2}, it holds that

PrS1←([m]
k1

) [S1 ∩ S2 = ∅] = PrS1←([m]
k1

) [S1 ⊆ [m] \ S2] =
(m−n

k1

)(m
k1

) .

Similarly,

PrS′
1←([m]

k1+1) [S1 ∩ S2 = ∅] =
(m−n

k1+1
)(m

k1+1
) .

Let d(n) := (m−n
k1

)
(m

k1
) −

(m−n
k1+1)

(m
k1+1)

. Then for any n ≤ m − k1 it holds that d(n) > 0. Since k1 + ℓ2 ≤ m,

it follows that d(n) > 0 for any n ∈ {k2, . . . , ℓ2}. Now, for every n ∈ {k2, . . . , ℓ2} and every κ ∈ N,
let pn,κ = PrS∗

2←Rκ [|S∗2 | = n]. Then

PrS1←([m]
k1

),S∗
2←Rκ

[S1 ∩ S2 = ∅]− PrS′
1←([m]

k1+1),S∗
2←Rκ

[
S ′1 ∩ S2 = ∅

]
=

ℓ2∑
n=k2

pn,κ · d(n).

Since there exists n∗ for which pn∗,κ ≥ 1/n∗ infinitely often, it follows that the above difference is
at least d(n∗)/n∗, which is non-negligible. □

Bibliography
[1] N. Agarwal, S. Anand, and M. Prabhakaran. Uncovering algebraic structures in the mpc landscape. In

Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
381–406. Springer, 2019.

[2] B. Alon, R. Cohen, E. Omri, and T. Suad. On the power of an honest majority in three-party compu-
tation without broadcast. In Theory of Cryptography Conference, pages 621–651. Springer, 2020.

[3] G. Asharov. Towards characterizing complete fairness in secure two-party computation. In Proceedings
of the 11th Theory of Cryptography Conference(TCC), pages 291–316, 2014.

[4] G. Asharov, A. Beimel, N. Makriyannis, and E. Omri. Complete characterization of fairness in se-
cure two-party computation of Boolean functions. In Proceedings of the 12th Theory of Cryptography
Conference(TCC), part I, pages 199–228, 2015.

[5] S. Badrinarayanan, P. Miao, P. Mukherjee, and D. Ravi. On the round complexity of fully secure
solitary mpc with honest majority. Cryptology ePrint Archive, 2021.

[6] A. Beimel, A. Gabizon, Y. Ishai, E. Kushilevitz, S. Meldgaard, and A. Paskin-Cherniavsky. Non-
interactive secure multiparty computation. In Annual Cryptology Conference, pages 387–404. Springer,
2014.

[7] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for noncryptographic fault-
tolerant distributed computations. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing (STOC), pages 1–10, 1988.

58

[8] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13
(1):143–202, 2000.

[9] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract).
In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC), pages 364–369,
1986.

[10] R. Cohen and Y. Lindell. Fairness versus guaranteed output delivery in secure multiparty computation.
Journal of Cryptology, 30(4):1157–1186, 2017.

[11] R. Cohen, I. Haitner, E. Omri, and L. Rotem. Characterization of secure multiparty computation
without broadcast. Journal of Cryptology, 31(2):587–609, 2018.

[12] D. Dachman-Soled. Revisiting fairness in MPC: polynomial number of parties and general adversar-
ial structures. In R. Pass and K. Pietrzak, editors, Proceedings of the 18th Theory of Cryptography
Conference(TCC), part II, volume 12551, pages 595–620. Springer, 2020.

[13] V. Daza and N. Makriyannis. Designing fully secure protocols for secure two-party computation of
constant-domain functions. In Proceedings of the 15th Theory of Cryptography Conference(TCC), part
I, pages 581–611, 2017.

[14] U. Feige, J. Killian, and M. Naor. A minimal model for secure computation. In Proceedings of the
twenty-sixth annual ACM symposium on Theory of computing, pages 554–563, 1994.

[15] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus prob-
lems. Distributed Computing, 1(1):26–39, 1986.

[16] M. Fitzi, J. A. Garay, U. M. Maurer, and R. Ostrovsky. Minimal complete primitives for secure multi-
party computation. Journal of Cryptology, 18(1):37–61, 2005.

[17] O. Goldreich. Foundations of Cryptography – VOLUME 2: Basic Applications. Cambridge University
Press, 2004.

[18] S. D. Gordon and J. Katz. Complete fairness in multi-party computation without an honest majority.
In Proceedings of the 6th Theory of Cryptography Conference(TCC), pages 19–35, 2009.

[19] S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party computation.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 413–422,
2008.

[20] S. Halevi, Y. Ishai, E. Kushilevitz, N. Makriyannis, and T. Rabin. On fully secure MPC with solitary
output. In Proceedings of the 17th Theory of Cryptography Conference(TCC), part I, pages 312–340,
2019.

[21] J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing (STOC), pages 20–31, 1988.

[22] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals problem. ACM Transactions on
Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[23] N. Makriyannis. On the classification of finite Boolean functions up to fairness. In Proceedings of the
9th Conference on Security and Cryptography for Networks (SCN), pages 135–154, 2014.

[24] M. C. Pease, R. E. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of
the ACM, 27(2):228–234, 1980.

59

[25] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS), pages 73–85, 1989.

60

A Definition of Security-With-Identifiable-Abort
We next define an ideal computation with security-with-identifiable-abort, where a trusted party
performs the computation on behalf of the parties, and where the ideal-model adversary can
abort the computation after learning the output, but at the expense of revealing the identity
of a corrupted party. An ideal computation of a three-party functionality f = (f1, f2, f3), with
f1, f2, f3 : ({0, 1}∗)3 → {0, 1}∗, on inputs x, y, z ∈ {0, 1}∗ and security parameter κ, with an ideal-
world adversaryA running with an auxiliary input aux and corrupting a (strict) subset I ⊆ {A, B, C}
of the parties proceeds as follows:

Parties send inputs to the trusted party: Each honest party sends its input to the trusted
party. For each corrupted party, the adversary A sends a value v from the corresponding
domain as the input for the corrupted party. Let (x′, y′, z′) denote the inputs received by the
trusted party.

The trusted party performs computation: The trusted party selects a random string r, com-
putes (wA, wB, wC) = f (x′, y′, z′; r), and sends {wP}P∈I to A.

Malicious adversary instructs trusted party to continue or halt: The adversary A sends
either continue or (abort, P) for some P ∈ I to T. If it sent continue, then for every honest
party Q the trusted party sends it wQ. Otherwise, if A sent (abort, P), then T sends (abort, P)
to the each honest party Q.

Outputs: Each honest party outputs whatever output it received from the trusted party and the
corrupted parties output nothing. The adversary A outputs some function of its view (i.e.,
the auxiliary input, its randomness, and the input and output of the corrupted parties).

61

	Introduction
	Our Results
	Our Techniques
	Related Work
	Organization

	Preliminaries
	Notations
	The Model of Computation

	Our Main Results in the Point-to-Point Model
	Useful Definitions
	Our Main Results

	Impossibility Results
	The Hexagon Argument
	Analyzing The Ensembles

	Positive Results For the Point-to-Point Model
	Proving Theorem 3.9
	Proving The Positive Direction of Theorem 3.11

	Computation With Broadcast and a Dishonest Majority
	Proofs of the Results

	Various Interesting Examples
	Bibliography
	Definition of Security-With-Identifiable-Abort

