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Abstract

Private function evaluation (PFE) is a special type of MPC protocols that, in addition to the
input privacy, can preserve the function privacy. In this work, we propose a PFE scheme for
RAM. In particular, we first design an efficient 4-server distributed ORAM scheme with amortized
communication O(logn) per access (both reading and writing). We then simulate a RISC RAM
machine over the MPC platform, hiding (i) the memory access pattern, (ii) the machine state
(including registers, program counter, condition flag, etc.), and (iii) the executed instructions. Our
scheme can naturally support a simplified TinyRAM instruction set; if a public RAM program
P with given inputs x needs to execute z instruction cycles, our PFE scheme is able to securely
evaluate P (x) on private P and x within 5z + 1 online rounds. We prototype and benchmark our
system for set intersection, binary search, quicksort, and heapsort algorithms. For instance, to
obliviously perform the binary search algorithm on a 104 array takes 9.21s with function privacy.

1 Introduction

In a secure private function evaluation (PFE) protocol, the MPC players want to collaboratively
evaluate a private function without revealing their private inputs to each other. The main difference
between PFE and the conventional MPC protocols is that in addition to the input privacy, PFE also
needs to preserve the function privacy. Such PFE schemes can be very beneficial for many security
sensitive applications, such as software diagnostic [1], medical applications [2], and intrusion detection
systems [3]. There, the service providers may require confidentiality of their specific algorithms during
the MPC evaluation.

In the past decades, how to design an efficient PFE protocol has been extensive studied in the
literature. Early works [4–6] deal with PFE problem by secure computation of universal circuit. A
universal circuit F is a circuit that takes as input a description of a circuit f (with at most z gates)
and an input x, runs f on x and outputs f(x). But transforming a boolean circuit to a universal
circuit would introduce a poly-logarithmic overhead; it is even worse for arithmetic circuits (e.g. as
high as O(z5) [7]). Recently, many works [8–14] are devoted to reduce the overhead of circuit size.
We highlight that those previous works are all limited by the fact that the private function must be
represented as a (arithmetic) circuit. Hereby, we ask the following challenging question:

Is it possible to design an efficient PFE MPC platform that can naturally support random-
access machines (RAM) programs?

In this work, we answer this question affirmatively.

1.1 Our Approach

We reduce this problem to simulating a RAM machine which can evaluate a secret shared program
while hiding its execution pattern. That is, (i) the memory access pattern, (ii) the machine state
(including registers, program counter, condition flag, etc.) and (iii) the executed instructions of the
RAM machine all need to be protected from the MPC players.

For hiding the data-dependent access pattern of random-access memory, it is natural to use Obliv-
ious RAM (ORAM) technique [15]. ORAM allows a secure CPU to access the untrusted memory
without revealing its access patterns. There are many works [16–24] devoted to reduce the asymptotic
ORAM overhead as well as practical efficiency. On the other hand, conventional ORAM schemes
are typically not MPC-friendly, even those with multiple non-colluding servers [25–28], because they
all require a trusted client who knows the queries to perform complex computation. Recent ORAM
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Table 1: Round and communication complexities of distributed ORAM schemes: n is the database
size; ` is the record size; λ, σ denote the cryptographic and statistical security parameters; d denotes
the AND depth of the circuit.

Rounds Communication

Circuit ORAM [31] O(log n) O(λ log3 n+ λ` log n)

Sqrt-ORAM [32] O(log n) O(λ`
√
n log3 n)

Floram [34] O(log n) O(
√
λ`n log n)

FJKW15 [30] O(log n) O(λσ log3 n+ ` log n)

JW18 [33] O(log n) O(λ log3 n+ ` log n)
BKKO20 [35] 6 O((λ+ `)

√
n)

HNO21 [36] O(d) O((λ+ `) log n)

Ours (offline+online) O(log n) + 1 O(λ log n) +O(log n+ `)

researches focus on designing distributed ORAM schemes [29–36] without trusted clients, which are
tailor-made for the MPC scenarios. To the best of our knowledge, Floram [34] is the best practical
distributed ORAM scheme in the literature. In Floram, the private data are stored in both the en-
crypted form (read-only) and the XOR-shared form (write-only). Based on distributed point function
(DPF) [37] technique, it takes O(log n) communication to obliviously fetch an item from the read-only
memory or obliviously write an item to the write-only memory, where n is the size of database. But in
order to achieve simultaneous read and write capabilities, Floram uses the stash-and-refresh technique,
which requires amortized refreshing communication O(

√
λ`n log n). Therefore, it wouldn’t work well

in our simulated RAM machine with frequent and alternating memory reading and writing. To ad-
dress this problem, we construct a 4-party efficient distributed ORAM in offline/online model, which
is inspired by other DPF-based (distributed) ORAM works [27, 28, 35]. In our scheme, the database
x is replicated shared among the 4 MPC players, i.e., x := x(1) + x(3) = x(2) + x(4), such that the
players P1 and P2 (P3 and P4) hold the same share. Both the oblivious reading and the oblivious
writing require O(log n) communication and 1 online round. Table 1 compares the access between our
distributed ORAM scheme and the related works. Furthermore, we have the cheapest initialization
with only 4n`-bit communication for building replicated shares.

For hiding the machine state and instruction execution, we propose a MPC platform to simulate
a RISC machine which is a simplified version of TinyRAM [38], using our distributed ORAM scheme
as a building block. Our system can obliviously evaluate a TinyRAM program without revealing each
operator and its operands. In particular, an oblivious instruction cycle consists of four phases: (i)
instruction reading, (ii) instruction decoding, (iii) operation evaluation, and (iv) result writing. Each
phase is implemented by 4-party computation protocols in the online/offline mode, and the whole
oblivious instruction cycle requires 5 online rounds. More specifically, in the instruction reading phase,
the MPC players jointly fetch the current instruction in the shared form using distributed ORAM. After
that, the MPC players securely decode the instruction to load the private arguments and determine the
secret operator by DPF. Both the instruction reading phase and the decoding phase costs one online
round. During the operation evaluation phase, we evaluate all possible operations in parallel via MPC
to obtain a series of replicated shared results. This phase requires three online rounds. In the result
writing phase, the MPC players obliviously select the right result according to the shared operator, and
then obliviously write the result into the destination register using our distributed ORAM. Although
the oblivious writing needs an online communication round, in practice, we perform this operation in
the same round as the instruction reading phase of the next cycle.

Our system can naturally support control flow, loops, subroutines, and recursion, etc. In more
concrete terms, we allow the early termination and branching without revealing the current conditional
values, and thus avoid the expensive transformation cost from the RAM program into straight-line
code for secure computation. For efficiency, our system does not hide the overall running time. That
is, if a public RAM program P with given inputs x needs to execute z instruction cycles, our system is
able to securely evaluate P (x) on private P and x within 5z+1 online rounds. Note that our system is
different from the prior CPU emulation works [39,40] which assume the program are known to parties.
Although another work [41] and the basic scheme in [39] can hide the program, their efficiency is much
worse than ours as shown in Sec. 5, where we prototype and benchmark our system.
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2 Preliminaries

2.1 Notations

Throughout this paper, we use the following notations and terminologies. Let λ ∈ Z be the security
parameter. Let [a, b] denote the set {a, a + 1, . . . , b}, [b] stands for [1, b] and Zn stands for [0, n − 1].
Denote a value x indexed by a label b as x(b), while xb means the value of x power of b. When S is
a set, s ← S stands for sampling s uniformly at random from S. When f is a algorithm, y ← f(x)
stands for running f on input x and getting the output y.

2.2 Secure Multiparty Computation

Secure multiparty computation (MPC) allows n mutually suspicious players to jointly evaluate a
function F of their private inputs without revealing additional information beyond the output of F .
Our security model for MPC protocols is based on the Universal Composibility (UC) framework [42].
Our model assumes synchronous communication over secure point-to-point channels. Informally, we say
that a protocol Π UC-realizes F with t-privacy, if it satisfies that for every semi-honest PPT adversity
A attacking an execution of Π and statically corrupting most t players, there is a simulator S attacking
the ideal process that uses F (by corrupting the same set of players), such that, the executions of Π
with A and that of F with S are indistinguishable to any network execution environment Z.

2.3 Secret Sharing

Secret sharing is an essential primitive of MPC protocols. In this paper, we use the following secret
sharing schemes and terminologies.
Arithmetic Secret Sharing. Denote a (2, 2)-additive secret sharing in Zn by JxK := {x(1), x(2)},
where x(1) +x(2) = x (mod n). Denote a (4, 4)-additive secret sharing in Zn by 〈x〉 := {x(1), . . . , x(4)},
where x(1) + x(2) + x(3) + x(4) = x (mod n). Denote a replicated secret sharing in Zn by 〈x〉rep :=
{x(1), x(2), x(3), x(4)}, where x(1) = x(2), x(3) = x(4) and x = x(1)+x(3) = x(2)+x(4) (mod n). Over the
ring Zn, when P1, P2 share JxK and P1, . . . , P4 share 〈y〉, JxK+〈y〉 the operation yields the result 〈x+y〉
as follows: using the additional shares of 〈0〉, the player Pj , j ∈ {1, 2} sets (x+y)(j) := x(j) +0(j) +y(j)

(mod n), and the player Pj , j ∈ {3, 4} sets (x + y)(j) := 0(j) + y(j) (mod n). Note that the MPC
players can use the zero-sharing protocol proposed by [43] to non-interactively construct 〈0〉 after the
initialization of seeds.

Yao’s Secret Sharing. Denote a Yao’s secret sharing of a bit x ∈ {0, 1} by JxKY := {k0, kx}, where
two labels k0, k1 ∈ {0, 1}λ represent 0, 1 respectively, k0 is the zero-label held by garbler and kx is the
real-label held by evaluator. Abusing notation, we denote a Yao’s secret sharing of a value x ∈ Zn by
JxKY := {Jx[t]KY}t∈Z`

:= {kt,0, kt,x[t]}t∈Z`
, where ` := dlog2 ne and x[t] stands for the t-th bit of x. In

addition, to enable free-XOR [44] and point-and-permute [45], we make the one-label for a bit defined
as an offset from its corresponding zero-label as kt,1 := kt,0 ⊕ ∆ for x[t], where the least significant
bit (LSB) of the offset ∆ is set to 1. Therefore, Jx[t]KY can be opened by kt,0[0]⊕ kt,x[t][0]. We name
kt,0[0] as the permute bit of x[t]. Note that, ∆ is chosen by the garbler and is fixed across a circuit.

Share Conversion. Here we describe how to convert the shared values among additive, replicated
and Yao’s secret sharing. We use {A,R,Y} to distinguish them respectively.
• A2R: To convert 〈x〉 into 〈x〉rep over the ring Zn, P1, P2 exchange x(1), x(2) while P3, P4 exchange
x(3), x(4). Then P1, P2 set x(1) := x(2) := x(1) + x(2) (mod n), and P3, P4 set x(3) := x(4) :=
x(3) + x(4) (mod n).

• A2Y: Given 〈x〉 over the ring Zn, the goal is to generate its equivalent Yao’s secret sharing
JxKY := {Jx[t]KY}t∈Z`

, where ` := dlog2 ne. Suppose P1 plays the role of garbler and P3 plays the
role of evaluator in the scheme. To reduce communication, we assume P1 and P2 agree on a random
seed η1 ∈ {0, 1}λ; P1 and P4 agree on a random seed η2 ∈ {0, 1}λ. In the first round, if the offset ∆
is not defined, P1 picks a random ∆ and sends it to P2 and P4. Next, for q ∈ {1, 3}, P1 generates

the labels {k(q)
t,0 , k

(q)
t,1 }t∈Z`

for the additive share x(q); for q ∈ {2, 4}, P1 and Pq generate the labels

{k(q)
t,0 , k

(q)
t,1 }t∈Z`

for x(q) together, where zero-labels are generated by PRF with ηq/2. After that, P1

garbles an adder circuit for x =
∑4
i=q x

(q) with all labels of {x(q)}q∈[4], and obtains {kt,0}t∈Z`
of
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Table 2: Notations used in our distributed ORAM scheme.

x database, which is a linear array
xk k-th record in database x
n number of records in database x
` bit-length of each record in database x

K key of DPF scheme
β evaluation result of DPF keys

β̃ shifted evaluation result of DPF keys
λ security parameter

i index of the record to be read/written
y value to be written in o-write
δ number of cyclic-shifting positions of the DPF full-domain evaluation results
∆v the difference between y − xi and the random value v
w, ζ random masks for re-randomizing shares

the value x. In the second round, P1 sends the garbled circuit to the evaluator P3, while each non-

evaluator Pq sends its real-labels {k(q)

t,x(q)[t]
}t∈Z`

to P3. In parallel to the two communication rounds

above, P3 runs OT functionality with P1 to receive the real-labels {k(3)

t,x(3)[t]
}t∈Z`

of its additive

share. Finally, P3 locally evaluate the garbled circuit to obtain {kt,x[t]}t∈Z`
of the value x.

• Y2R: Given the Yao’s secret sharing JxKY of a value x ∈ Zn, the goal is to generate its equivalent
〈x〉rep over the ring Zn. Suppose P1 is the garbler and P3 is the evaluator in the scheme. Let
` := dlog2 ne. First, P1 picks a random x(1) ∈ Zn and generates a garbled circuit for x(3) := x−x(1).

After that, P1 sends the garbled circuit, the real-labels {k(1)

t,x(1)[t]
}t∈Z`

of x(1), and the permute bits

{k(3)
t,0 [0]}t∈Zl

of x(3) to P3. Subsequently, P3 evaluates the garbled circuit to obtain {k(3)

t,x(3)[t]
}t∈Z`

,

calculates x(3)[t] := k
(3)
t,0 [0] ⊕ k(3)

t,x(3)[t]
[0] for t ∈ Z`, and then concatenates {x(3)[t]}t∈Z`

to get the

value x(3) ∈ Zn. Finally, P1 sends x(1) to P2 and P3 sends x(3) to P4.

2.4 Function Secret Sharing

Function Secret Sharing (FSS) is introduced by Boyle et al. [37]. We focus on the two-party schemes
of FSS. Given a function family F = {f(x) : Gin → Gout}, a dealer uses the FSS scheme for F to
split a function f(x) ∈ F into two additive shares Jf(x)K := {f1(x), f2(x)}, such that ∀x ∈ Gin,
f1(x) + f2(x) = f(x) (mod |Gout|).

Distributed Point Function (DPF) is an FSS scheme for the point function fα,β(x) : Gin → Gout

whose range only has one non-zero value fα,β(α) = β. It consists of algorithms Gen and Eval defined
as follows:
• Gen(1λ, fα,β) is a key generation algorithm that outputs a pair of keys (K(1),K(2)). Each key

includes a random PRF seed s and dlog2 |Gin|e+ 1 correction words. Each key is able to efficiently
describe the share of fα,β without revealing α, β.

• Eval(b,K(b), x) is an evaluation algorithm. For ∀x ∈ Gin, ∀b ∈ [2], it outputs β
(b)
x ∈ Gout, such that

β
(1)
x + β

(2)
x = fα,β(x) (mod |Gout|).

When DPF is used to realize a PIR protocol, the servers need to run Eval on every element of the
input domain, named full domain evaluation. [46] provides a more efficient scheme for this case, rather
than executing |Gin| independent invocations of Eval. We denote it by EvalAll(b,K(b)).

Distributed Comparison Function (DCF) is an FSS scheme for the comparison function f<α,β(x) :

Gin → Gout, which outputs β if 0 ≤ x < α and outputs 0 if x ≥ α. Based on the DCF scheme, [47]
provides the Distributed Interval Containment Function (DICF) construction to compute interval
containment for a secret input and a publicly known interval. Denote the interval containment function
as f IC

p,q(x) : Gin → Gout, which outputs 1 if x ∈ [p, q] and outputs 0 otherwise. DICF is an FSS

scheme for the offset interval containment function f IC
p,q,rin,rout(x) : Gin → Gout with given random offset

rin, rout, such that f IC
p,q,rin,rout(x+rin)−rout = f IC

p,q(x). Similar to DPF, DICF also consists of algorithms
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It interacts with P := {P1, . . . , P4} and the adversary S.
It is parameterized with a set J .
Initially, set J := ∅;

• Upon receiving (Init, sid,x(j)) from Pj ∈ P:
– Send notification (Init, sid, Pj) to S;
– Set J := J ∪ {Pj};
– If |J | = 4:

∗ Assert x(1) = x(2) and x(3) = x(4);
∗ Record x := x(1) + x(3);

• Upon receiving (Oread, sid, ssid, i(j)) from Pj ∈ P, ignore the request if |J | 6= 4, otherwise:
– Send notification (Oread, sid, ssid, Pj) to S;
– Once all players have submitted their input, does:

∗ Compute i :=
∑4
j=1 i

(j) (mod n);

∗ Upon receiving (Rand, sid, ssid, o∗) from S for the corrupted party Pk:
· Pick random o(1), . . . , o(4) ← Z2` under the constraint

∑4
j=1 o

(j) = xi (mod 2`) and

o(k) = o∗;
· For j ∈ [4], send (Oread, sid, o(j)) to Pj ∈ P via private delayed channel.

• Upon receiving (Owrite, sid, ssid, i(j), x
(j)
i , y(j)) from Pj ∈ P, ignore the request if |J | 6= 4, otherwise:

– Send notification (Owrite, sid, ssid, Pj) to S;
– Once all players have submitted their input, does:

∗ Compute i :=
∑4
j=1 i

(j) (mod n);

∗ Set xi :=
∑4
j=1 y

(j) (mod 2`);

Functionality Fn,`
ram

Figure 1: The distributed ORAM functionality Fn,`ram.

(GenIC,EvalIC) as follows:
• GenIC

p,q(1
λ, f IC

p,q,rin,rout) generates (K(1),K(2)). Each key is able to efficiently describe the share of

f IC
p,q,rin,rout with publicly known p, q but without revealing rin, rout.

• EvalICp,q(b,K(b), x+ rin) outputs β(b) for b ∈ [2], such that β(1) + β(2) − rout = f IC
p,q(x) (mod |Gout|).

In the rest of paper, we focus on the case of rout = 0 and thus omit rout in the offset interval containment
function and the parameters of the DICF key generation algorithm.

Definition 1. Let T ⊂ [2]. We say a two-party FSS scheme (Gen,Eval) is T -secure for function family
F = {f : Gin → Gout}, if for all non-uniform PPT adversaries A, it holds that

Adv(1λ,A) =

∣∣∣∣∣∣∣∣Pr


(f1, f2, φ)← A(1λ); b← {1, 2};
(K(1),K(2))← Gen(1λ, fb);
b∗ ← A((K(i))i∈T , φ) :
f1, f2 ∈ F ∧ b = b∗

− 1

2

∣∣∣∣∣∣∣∣
is negligible in λ.

3 Distributed ORAM Scheme

In this section, we propose a new distributed ORAM scheme in the pre-processing (a.k.a. online/offline)
mode. Our distributed ORAM scheme is a 1-private 4-party computation protocol in which the nota-
tions used are summarized in Table. 2. The functionality Fn,`ram of our distributed ORAM is described

in Fig. 1. As shown in Fig. 2, our initialization protocol Πn,`
init only requires 4n`-bit communication.

For both oblivious reading and writing, the overall communication is O(log n) per access; besides, each
access only takes 1 round in the online phase. Our scheme allows unlimited number of reading and
writing operations without costly refreshing as in Floram [34].

Intuition. Conventionally, in a DPF-based two-server PIR protocol [37], the client holds an index
i ∈ Zn and both servers hold the same data x ∈ (Z2`)n. During the PIR protocol, the client generates
a pair of DPF keys for the point function fi,1(x) and then distributes them to the two servers. The

servers then jointly evaluate and return shares of xi :=
∑n−1
j=0 fi,1(j) · xj to the client. While in
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• With the private data x = (x0, . . . , xn−1) ∈ (Z2` )n, the client dose:

– For i ∈ Zn, generate x
(1)
i ← Z2` , set x

(2)
i := x

(1)
i and x

(3)
i := x

(4)
i := xi − x

(1)
i (mod 2`);

– For j ∈ [4], denote x(j) := (x
(j)
0 , . . . , x

(j)
n−1), and send (Init, sid,x(j)) to the player Pj ;

• Upon receiving (Init, sid,x(j)), Pj , j ∈ [4] stores x(j).

Protocol Πn,`
init

Figure 2: Initialization protocol Πn,`
init .

distributed ORAM, both the index and the data need to be protected from the MPC players using
either encryption or secret sharing.

To address the former issue for the oblivious reading, we let a third player (an non-evaluator of
this DPF), say P3, generate a pair of DPF keys (K(1),K(2)) of the point function fϕ,1(x) for a random
ϕ ∈ Zn in the offline phase. P3 then sends K1 and K2 to P1 and P2, respectively. In online phase, the
index i is additively secret shared among MPC players. The MPC Players jointly compute δ := i− ϕ
(mod n) in the additively shared form, and send their shares of δ to the evaluators, i.e., P1 and P2.
The evaluators then reconstruct δ, perform full domain evaluation of DPF fϕ and cyclic-shifts the
output array to the right δ positions (i.e., construct the sharing of f(ϕ+δ),1(x)), then use the shifted
array to obtain shared xi. To address the latter issue, we introduce a fourth player P4 and construct
the replicated secret sharing of the data x among four players (cf. Fig. 2). Note that the client of the
initialization could be regarded as any one of the MPC players. After that, P1 and P2 hold the same
shares of 〈x〉rep, so they can perform DPF evaluation aided by P3 on their same shares instead of the

plaintext; similarly for P3 and P4 aided by P1. Finally, P1 and P2 obtain the secret sharing of Jx(1)
i K

while P3 and P4 obtain the secret sharing of Jx(3)
i K, such that x

(1)
i + x

(3)
i = xi.

Our scheme can directly perform oblivious writing on the reading memory, i.e., the replicated shared
data. At a high level, if the MPC players want to obliviously write y into the i-th position, they need
to first fetch the existing xi using the aforementioned oblivious reading protocol. (Note that this step
can be omitted if xi is already known in the context, cf. Sec. 4, below.) More specifically, in the offline

phase, we let P1 and P3 jointly generate a pair of DPF keys (K(1)
1 ,K(2)

1 ) for the point function fr1,1(x)
via MPC, where r1 ∈ Zn is secret; meanwhile, we let P2 and P4 jointly generate another pair of DPF

keys (K(1)
v ,K(2)

v ) for the point function fr2,v(x) via MPC, where r2 ← Zn and v ← Z2` are secret.

After that, P1 and P2 exchange K(1)
1 and K(1)

v ; P3 and P4 exchange K(2)
1 and K(2)

v . In the online phase,
δw,1 := i− r1 (mod n), δw,2 := i− r2 (mod n) and ∆v := y−xi− v (mod 2`) are opened. For j ∈ Zn,
the MPC players then can jointly update xj := xj + ∆v · f(r1+δw,1),1(j) + f(r2+δw,2),v(j).

3.1 Oblivious Reading

The oblivious reading protocol of our distributed ORAM scheme is denoted as the o-read protocol. As
mentioned before, it is realized by a DPF-based PIR protocol with replicated shared database x and
additively shared selection index i, and only requires logarithmic communication in both offline and
online phase. After o-read, xi is additively shared among the 4 MPC players.

Protocol description. Our o-read protocol is designed in the online/offline model. To reduce the
protocol communication, we assume that P1 and P3 agree on a random seed η1 ∈ {0, 1}λ; P1 and P2

agree on a random seed η2 ∈ {0, 1}λ; P2 and P4 agree on a random seed η3 ∈ {0, 1}λ; P3 and P4 agree
on a random seed η4 ∈ {0, 1}λ.

In the offline phase, P3 invokes DPF.Gen to generate the DPF keys (K(1)
ϕ1 ,K

(2)
ϕ1 ) for the point

function fϕ1,1(x) : Zn → Z2` , where ϕ1 ← Zn is randomly picked; P1 invokes DPF.Gen to generate

DPF keys (K(1)
ϕ2 ,K

(2)
ϕ2 ) for the point function fϕ2,1(x) : Zn → Z2` , where ϕ2 ← Zn is randomly picked.

Subsequently, P3 sends K(1)
ϕ1 to P1 and K(2)

ϕ1 to P2; P1 sends K(1)
ϕ2 to P3 and K(2)

ϕ2 to P2.
In the online phase, the MPC players compute 〈δr,1〉 := 〈i〉 − Jϕ1K and 〈δr,2〉 := 〈i〉 − Jϕ2K, and

then open δr,1 to P1, P2 while opening δr,2 to P3, P4. After that, for j ∈ [2], the player Pj first invokes
DPF.EvalAll to full domain evaluate the DPF key received in the offline phase. Next, Pj cyclic-shifts

the evaluation result {β(j)
ϕ1,k
}k∈Zn

to the right δr,1 positions, denoted as {β̃(j)
ϕ1,k
}k∈Zn

. It is easy to see,
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Initialization:
• P1 and P3 agree on a random seed η1 ← {0, 1}λ;
• P1 and P2 agree on a random seed η2 ← {0, 1}λ;
• P2 and P4 agree on a random seed η3 ← {0, 1}λ;
• P3 and P4 agree on a random seed η4 ← {0, 1}λ.

Offline phase:
• Upon initialization, P1 does:

– Generate ϕ2 ← Zn, set ϕ
(1)
2 := ϕ2 − PRFZn

η2
(sid, 0);

– Set (K(1)
ϕ2 ,K

(2)
ϕ2 )← DPF.Gen(1λ, fϕ2,1);

– Send (sid,K(1)
ϕ2 ) to P3, (sid,K(2)

ϕ2 ) to P4;
• Upon initialization, P3 does:

– Generate ϕ1 ← Zn, set ϕ
(1)
1 := ϕ1 − PRFZn

η4
(sid, 0);

– Set (K(1)
ϕ1 ,K

(2)
ϕ1 )← DPF.Gen(1λ, fϕ1,1);

– Send (sid,K(1)
ϕ1 ) to P1, (sid,K(2)

ϕ1 ) to P2;

• Upon initialization, P2 sets ϕ
(2)
2 := PRFZn

η2
(sid, 0);

• Upon initialization, P4 sets ϕ
(2)
1 := PRFZn

η4
(sid, 0);

Online phase:
• With the private input (Oread, sid, ssid, i(j)), the player Pj , j ∈ {1, 2} does:

– Set w1,j ← PRFZn
η2j−1

(sid, 1), w2,j ← PRFZn
η2j−1

(sid, 2);

– Set δ
(j)
r,1 := i(j) + w1,j (mod n);

– Set δ
(j)
r,2 := i(j) − ϕ(j)

2 + w2,j (mod n);

– Send (sid, ssid, δ
(j)
r,1) to P3−j , (sid, ssid, δ

(j)
r,2) to P3 and P4;

• With the private input (Oread, sid, ssid, i(j)), the player Pj , j ∈ {3, 4} does:

– Set w1,j−2 ← PRFZn
η2j−5

(sid, 1);

– Set w2,j−2 ← PRFZn
η2j−5

(sid, 2);

– Set δ
(j)
r,1 := i(j) − ϕ(j−2)

1 − w1,j−2 (mod n);

– Set δ
(j)
r,2 := i(j) − w2,j−2 (mod n);

– Send (sid, ssid, δ
(j)
r,1) to P1 and P2, (sid, ssid, δ

(j)
r,2) to P7−j ;

• Upon receiving (sid, ssid, δ
(3−j)
r,1 ) from P3−j , (sid, ssid, δ

(3)
r,1 ) from P3 , and (sid, ssid, δ

(4)
r,1 ) from P4,

Pj , j ∈ {1, 2} does:

– Set δr,1 := δ
(1)
r,1 + δ

(2)
r,1 + δ

(3)
r,1 + δ

(4)
r,1 (mod n);

– Set (β
(j)
ϕ1,k

)k∈Zn ← DPF.EvalAll(j,K(j)
ϕ1 );

– Set β̃
(j)
ϕ1,k

:= β
(j)
ϕ1,k+δr,2 (mod n)

, for k ∈ Zn;

– Set ζj ← PRF
Z
2`
η2j−1

(sid), ζ3 ← PRF
Z
2`
η2 (sid);

– Return o(j) :=
∑n−1
k=0 (x

(j)
k · β̃

(j)
ϕ1,k

) + ζj + (−1)j · ζ3.

• Upon receiving (sid, ssid, δ
(1)
r,2 ) from P1, (sid, ssid, δ

(2)
r,2 ) from P2, and (sid, ssid, δ

(7−j)
r,2 ) from P7−j ,

Pj , j ∈ {3, 4} does:

– Set δr,2 := δ
(1)
r,2 + δ

(2)
r,2 + δ

(3)
r,2 + δ

(4)
r,2 (mod n);

– Set (β
(j)
ϕ2,k

)k∈Zn ← DPF.EvalAll(j − 2,K(j−2)
ϕ2 );

– Set β̃
(j)
ϕ2,k

:= β
(j)
ϕ2,k+δr,2 (mod n)

, for k ∈ Zn;

– Set ζj−2 ← PRF
Z
2`
η2j−5

(sid), ζ4 ← PRF
Z
2`
η3 (sid);

– Return o(j) :=
∑n−1
k=0 (x

(j)
k · β̃

(j−2)
ϕ2,k

)− ζj−2 + (−1)j · ζ4

Protocol Πn,`
read

Figure 3: O-read protocol Πn,`
read.

the only non-zero value is Jβ̃ϕ1,iK = 1 in the shifted array. Similarly, P3 and P4 use their DPF keys

(K(1)
ϕ2 ,K

(2)
ϕ2 ) and the corresponding δr,2 for cyclic-shifting to obtain {Jβ̃ϕ2,kK}k∈Zn

. Consequently, we

have xi =
∑4
j=1 ô

(j) (mod 2`) where for j ∈ [4]:

ô(j) :=

n−1∑
k=0

(x
(j)
k · β̃

(q)
ϕdj/2e,k

) (mod 2`)
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It interacts with P := {P1, P2} and the adversary S. It is parameterized with the DPF key generation algo-
rithm DPF.Gen.

• Upon receiving (KeyGen, sid, r(j), v(j)) from Pj , j ∈ [2]:
– Send notification (KeyGen, sid, Pj) to S;
– Once both players have submitted their input, does:

∗ Compute r := r(1) + r(2) (mod n), v := v(1) + v(2) (mod 2`);
∗ Generate (K(1),K(2))← DPF.Gen(1λ, fr,v), for the point function fr,v(x) : Zn → Z2` ;

∗ For j ∈ [2], send (KeyGen, sid,K(j)) to Pj ∈ P via private delayed channel.

Functionality Fn,`
dGen[DPF.Gen]

Figure 4: Distributed DPF key generation functionality Fn,`dGen[DPF.Gen].

when q := 2 + (−1)j . Finally, we re-randomize ô(j) to ensure the uniform distribution.

3.2 Oblivious Writing

The oblivious writing protocol of our distributed ORAM scheme is denoted as o-write protocol. The
o-write protocol allows the 4 MPC players to jointly update y to the i-th position of database x without
revealing i and y. Analogously, our o-write protocol is designed in the online/offline mode, and it can
be directly applied to the replicated shared database.

For the sake of readability, we use FdGen[DPF.Gen] in o-write protocol description for distributed
DPF key generation, and its actual 2PC protocol ΠDPF.dGen can be found in [34].

Protocol description. As depicted in Fig. 5, our o-write protocol assumes that P1 and P3 agree on
a random seed η1 ∈ {0, 1}λ; P1 and P2 agree on a random seed η2 ∈ {0, 1}λ; P2 and P4 agree on a
random seed η3 ∈ {0, 1}λ; P3 and P4 agree on a random seed η4 ∈ {0, 1}λ.

In the offline phase, P1 and P3 invoke Fn,`dGen[DPF.Gen] to jointly generate a pair of DPF keys

(K(1)
1 ,K(2)

1 ) to describe a point function fr1,1(x), where random r1 ← Zn is additively shared between

P1 and P2. After the execution, P1 obtains the share K(1)
1 of fr1,1(x) and sends it to P2; P3 obtains

the share K(2)
1 and sends it to P4. Meanwhile, P2 and P4 also jointly generate a pair of DPF keys

(K(1)
v ,K(2)

v ) to express a point function fr2,v(x), where random r2 ← Zn and v ← Z2` are additively

shared between P2 and P4. Then P2 obtains the share K(1)
v of fr2,v(x) and sends it to P1; P4 obtains

the share K(2)
v and sends it to P2.

In the online phase, four MPC players jointly compute and open 〈δw,1〉 := 〈i〉 − Jr1K (mod n),
〈δw,2〉 := 〈i〉 − Jr2K (mod n), and 〈∆v〉 := 〈y〉 − 〈xi〉 − JvK (mod 2`). Each party then locally per-
forms full domain evaluation of obtained DPF keys, and cyclic-shifts the output arrays of shared
fr1,1, fr2,v to the right δw,1, δw,2 positions respectively, followed by adding the (scaled) shifted ar-

ray to the shares of data x. More specifically, Pj full domain evaluates K(dj/2e)
1 ,K(dj/2e)

v to get

{β(dj/2e)
1,k }k∈Zn

, {β(dj/2e)
v,k }k∈Zn

. After that, Pj cyclic-shifts {β(dj/2e)
1,k }k∈Zn

to the right δw,1 positions,

{β(dj/2e)
v,k }k∈Zn

to the right δw,2 positions, and denotes the shifted arrays as {β̃(dj/2e)
1,k }k∈Zn

and {β̃(dj/2e)
v,k }k∈Zn

respectively. Pj then updates the shares of database as

x
(j)
k := x

(j)
k + ∆v · β̃(dj/2e)

1,k + β̃
(dj/2e)
v,k (mod 2`), k ∈ Zn .

Note that P1 and P2 still have identical shares of x after the updating; similarly for P3 and P4. That
is, four parties obliviously write new value y at the i-th position and maintain the database in the
replicated shared form.

3.3 Security

We show the security of Πn,`
init , Πn,`

read and Πn,`
write with the following theorem, and its proof can be found

in Appendix B.

Theorem 1. Let DPFZn,Z2` be a secure function secret sharing scheme for point function fα,β(x) :

Zn 7→ Z2` with adversarial advantage Adv
DPF

Zn,Z
2`

(1λ,A). Let PRFZn : {0, 1}λ × {0, 1}in 7→ Zn be

8



Initialization:
• P1 and P3 agree on a random seed η1 ← {0, 1}λ;
• P1 and P2 agree on a random seed η2 ← {0, 1}λ;
• P2 and P4 agree on a random seed η3 ← {0, 1}λ;
• P3 and P4 agree on a random seed η4 ← {0, 1}λ.

Offline phase:

• P1 sets r
(1)
1 ← Zn, P3 sets r

(2)
1 ← Zn;

• P1 and P3 request Fn,`dGen[DPF.Gen]:

– P1 sends (KeyGen, sid, r
(1)
1 , 0) and gets K(1)

1 ;

– P3 sends (KeyGen, sid, r
(2)
1 , 1) and gets K(2)

1 ;

• P1 sends (sid,K(1)
1 ) to P2, P3 sends (sid,K(2)

1 ) to P4;

• P2 sets r
(1)
2 ← Zn, v(1) ← Z2` ;

• P4 sets r
(2)
2 ← Zn, v(2) ← Z2` ;

• P2 and P4 request Fn,`dGen[DPF.Gen]:

– P2 sends (KeyGen, sid, r
(1)
2 , v(1)) and gets K(1)

v ;

– P4 sends (KeyGen, sid, r
(2)
2 , v(2)) and gets K(2)

v ;

• P2 sends (sid,K(1)
v ) to P1, P4 sends (sid,K(2)

v ) to P3;

Online phase:

• With the private input (Owrite, sid, ssid, i(j), x
(j)
i , y(j)), the player Pj , j ∈ {1, 3} sets:

– w′k,q ← PRFZn
ηq

(sid, k), k ∈ [2], q ∈ {1, j + 1};

– w′3,q ← PRF
Z
2`
ηq (sid, 3), q ∈ {1, j + 1};

– δ
(j)
w,1 := i(j) − r(dj/2e)1 + (j − 2) · w′1,1 + w′1,j+1;

– δ
(j)
w,2 := i(j) + (j − 2) · w′2,1 + w′2,j+1;

– ∆v(j) := y
(j)
i − x(j) + (j − 2) · w′3,1 + w′3,j+1;

• With the private input (Owrite, sid, ssid, i(j), x
(j)
i , y(j)), the player Pj , j ∈ {2, 4} sets:

– w′k,q ← PRFZn
ηq (sid, k), q ∈ {3, j}, k ∈ [2];

– w′3,q ← PRF
Z
2`
ηq (sid, 3), q ∈ {3, j};

– δ
(j)
w,1 := i(j) + (j − 3) · w′1,3 − w′1,j ;

– δ
(j)
w,2 := i(j) − r(j/2)2 + (j − 3) · w′2,3 − w′2,j ;

– ∆v(j) := y
(j)
i − x(j) − v(j/2) + (j − 3) · w′3,3 − w′3,j ;

• Pj , j ∈ [4] sends (sid, ssid, δ
(j)
w,1, δ

(j)
w,2,∆v

(j)) to others.

• Upon receiving all (sid, ssid, δ
(k)
w,1, δ

(k)
w,2,∆v

(k)) from Pk for k ∈ [4]/j, party Pj , j ∈ [4] sets:

– δw,k :=
∑4
q=1 δ

(q)
w,k (mod n), for k ∈ [2];

– ∆v :=
∑4
q=1 ∆v(q) (mod 2`);

– (β
(dj/2e)
1,k )k∈Zn ← DPF.EvalAll(dj/2e,K(dj/2e)

1 );

– (β
(dj/2e)
v,k )k∈Zn ← DPF.EvalAll(dj/2e,K(dj/2e)

v );

– for k := 0 to n− 1:

∗ β̃
(dj/2e)
1,k := β

(dj/2e)
1,k+δw,1 (mod n)

;

∗ β̃
(dj/2e)
v,k := β

(dj/2e)
v,k+δw,2 (mod n)

;

∗ x
(j)
k := x

(j)
k + ∆v · β̃(dj/2e)

1,k + β̃
(dj/2e)
v,k .

Protocol Πn,`
write

Figure 5: O-write protocol Πn,`
write.

9



Table 3: Our instruction set.

Opcode Operator Operands Effects for registers Flag
00000 and i j A compute bitwise AND of rj and a and store result in i-th register result is 0`

00001 or i j A compute bitwise OR of rj and a and store result in i-th register result is 0`

00010 xor i j A compute bitwise XOR of rj and a and store result in i-th register result is 0`

00011 not i A compute bitwise NOT of a and store result in i-th register result is 0`

00100 shl i j A shift rj by a bits to the left and store result in i-th register MSB of rj
00101 shr i j A shift rj by a bits to the right and store result in i-th register LSB of rj
00110 add i j A compute rju + au and store result in i-th register overflow
00111 sub i j A compute rju − au and store result in i-th register borrow
01000 mull i j A compute rju · au and store the least significant bits of result in i-th register overflow
01001 umulh i j A compute rju · au and store the most significant bits of result in i-th register overflow
01010 smulh i j A compute signed rjs · as and store the most significant bits of result in i-th register over/underflow
01011 cmpe i A - ri = a
01100 cmpa i A - riu > au
01101 cmpae i A - riu ≥ au
01110 cmpg i A - ris > as
01111 cmpge i A - ris ≥ as
10000 mov i A store a in i-th register -
10001 cmov i A if flag = 1, store a in i-th register -
10010 store A i store ri in memory that is aligned to the a-th word -
10011 load i A store into i-th register the word in memory that is aligned to the a-th word -

10100 read i A store the next word of a-th tape in i-th register
no remaining
words in a-th
tape

10101 jmp A store a in pc -
10110 cjmp A if flag = 1, store a in pc -
10111 cnjmp A if flag = 0, store a in pc -
11000 ans A stall or halt (and return a) -

a secure pseudorandom function with adversarial advantage AdvPRFZn (1λ,A). Let PRFZ
2` : {0, 1}λ ×

{0, 1}in 7→ Z2` be a secure pseudorandom function with adversarial advantage Adv
PRF

Z
2`

(1λ,A). The se-

ries of protocols Πn,`
ram := {Πn,`

init ,Π
n,`
read,Π

n,`
write} UC-realizes Fn,`ram as described in Fig. 1 in the FdGen-hybrid

model against semi-honest adversaries who can statically corrupted up to 1 player with distinguishing
advantage

11 · AdvPRFZn (1λ,A) + 4 · Adv
PRF

Z
2`

(1λ,A) + 3 · Adv
DPF

Zn,Z
2`

(1λ,A)

4 MPC for TinyRAM

Our construction follows the RISC framework with random-access memory, whose word size is denoted
by ` and required to be a power of 2 and divisible by 8. It can be seen as a simplified version of
TinyRAM [38]. The state of this machine consists of the following.

• The program counter, denoted as pc ∈ {0, 1}`.
• The condition flag, denoted as flag ∈ {0, 1}`.
• m general purpose registers, each storing one word.
• Memory, which is a linear array (Mi)i∈Z

2`
of 2` words.

• Two input tapes: tape0 is used for the primary input, and tape1 is used for an auxiliary input. Each
tape has a read counter, denoted as rc0, rc1 ∈ {0, 1}` and input length, denoted as num0, num1 ∈
{0, 1}`.

During a program execution, we assume that the input tapes are read-only and the num0-th (or
num1-th) word in tape0 (or tape1) is set to 0. At each step, the machine executes an instruction that
changes its state. The instruction set of our RISC includes 25 instructions (a subset of the TinyRAM’s)
as summarized in Table 3. Let i ∈ Zm denote a register index and ri denotes the `-bit string currently
stored in the i-th register; A is either an immediate value or a register index, and a denotes its value
(i.e., the immediate value itself or the `-bit string currently stored in A-th register). To distinguish
between unsigned and signed integers represented by the same `-bit string x, we let xu stand for the
unsigned integer encoded by x, and xs stand for the signed integer. Each instruction is specified via
an operator and up to three operands. Generally, the first operand is the destination register where
the result shall be stored, and the other operands are the arguments to the instruction. In practice,
each instruction is encoded into a 2`-bit string, and it consists of following 6 fields:

10



Figure 6: Oblivious RAM-MPC Architecture.

• Field 1 stores the instruction operator, which is identified by an opcode op with 5 = dlog2 25e
bits.

• Field 2 stores an indicator, which consists of a bit and a (dummy) register index. It is set to
1||A[`−dlog2me,`) for all bits if A is a register index and 0||A[`−dlog2me,`) if A is an immediate value.

• Field 3 stores a register index with dlog2me bits.
• Field 4 stores a register index with dlog2me bits.
• Field 5 consists of `− 6− 3dlog2me bits of 0’s to pad the instruction.
• Field 6 stores an immediate value or a register index, which takes ` bits.

Therefore, our encoding scheme requires 6 + 3dlog2me ≤ `. For instance, if we take m, ` := 32, a valid
encoding of the instruction “mull 8 15 523”, where 523 is an immediate value, is as follows:

01000︸ ︷︷ ︸
mull

|| 001011︸ ︷︷ ︸
A is imm.

|| 01000︸ ︷︷ ︸
i:=8

|| 01111︸ ︷︷ ︸
j:=15

||
11 bits︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
padding

||
22 bits︷ ︸︸ ︷
0 . . . 0 1000001011︸ ︷︷ ︸

A:=523

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

We construct a series of MPC protocols to simulate the RISC machine as described above, where
programs can be executed obliviously in the RAM mode. That is, our system can naturally support
control flow, loops, subroutines, and recursion, etc. In our simulated RISC machine, each word is
represented by two’s complement. If a word x is secret, the MPC players share the unsigned integer
value it represents. Thus we will omit the subscript s or u that identify signed or unsigned of the word
value. Our registers, memory and tapes are shared among four parties in the replicated secret sharing
and supports random-access as described in Sec. 3, while flag, pc, {rc0, rc1} and {num0, num1} are
(4, 4)-additively shared. Note that the initial content of above all are specified by the program owner.
In addition, before “loading” a private program into our oblivious memory, the program owner should
unify the representation of each instruction. For example, the instruction “jmp A” is transformed to
“jmp i′ j′ A”, where i′, j′ ← Zm are dummy data.

We will formally describe the details of the machine execution in Sec. 4.1, Sec. 4.2, Sec. 4.3 and
Sec. 4.4, below; briefly, each step is an oblivious instruction cycle following the architecture as shown
in Fig. 6: (i) parities first obliviously fetch the pc-th instruction; (ii) securely decode the instruction
to load arguments and determine the operator type (in the shared form); (iii) perform all possible
operations via MPC; (iv) obliviously select the right result based on the shared operator type and
write it into the destination register and condition flag.
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4.1 Instruction Fetching

Instruction fetching is the first phase of each instruction cycle. Since the private program instructions
are stored in the replicated-shared form while the program counter are (4, 4)-additively shared, we
utilize our o-read protocol to obliviously fetch the pc-th instruction and spend only 1 online round.

More specifically, four MPC players begin by invoking Π2`,∗
read with the secret shared program counter

〈pc〉 over the private memory, 1 and then locally increase the program counter as 〈pc〉 := 〈pc〉 + 2
(mod n).2 Note that, if needed, pc will be corrected during the evaluation of jump operations.

After this phase, parties shares the opcode 〈op〉, indicator 〈d〉 and operands {〈i〉, 〈j〉, 〈A〉} of the
current instruction.

4.2 Instruction Decoding

Our instruction decoding phase consists of (i) arguments loading from registers and (ii) operator
determination. While presented in two steps, we note that they can be performed at the same time
and require 1 online round.

4.2.1 Arguments Loading

We load 〈ri〉, 〈rj〉 and 〈a〉 by our o-read protocol in parallel as follows. For 〈ri〉 and 〈rj〉, four MPC

players simply invoke Πm,`
read with the input 〈i〉 and 〈j〉 respectively over the private registers. For 〈a〉,

parties first convert 〈A〉 to the replicated share form, and then jointly invoke Π
(2dlog2 me+m),`
read with the

indicator 〈d〉 over the replicated shared array in the form of

v := A, . . . , A︸ ︷︷ ︸
2dlog2 me

||(rk)k∈Zm .

If A is an immediate value, the MSB of d is 0, so that the d-th position is in the interval [0, 2dlog2me)
of v, where all items are A; if A is a register index, the MSB of d is 1 followed by the target register
index, so that the d-th position of v corresponds to the value of the A-th register. In practice, the

share conversion for A is performed in the same online communication round of Π
(2dlog2 me+m),`
read .

4.2.2 Operator Determination

We determinate the operator type of current instruction using the DPF scheme. After this step, 〈op〉
is converted to a unit vector of 25 elements in the shared form, where the op-th element is 1 and all the
other elements are 0’s. Namely, the MPC players share the point function fop,1(x) : Z25 → Z2` . More
specifically, to construct the shares of fop,1(x) without revealing op, P3 generates a pair of DPF keys
for the point function fψ1,1(x) : Z25 → Z2` , where ψ1 ∈ Z25 is randomly picked, and then distributes
them to P1, P2; P1 also generates a pair of DPF keys for the point function fψ2,1(x) : Z25 → Z2` , where
ψ2 ∈ Z25 is randomly picked, and then distributes them to P3, P4. Meanwhile, four MPC players open
〈δ1〉 := 〈op〉+ψ1 (mod 25) to P1, P2, 〈δ2〉 := 〈op〉+ψ2 (mod 25) to P3, P4. After that, P1 and P2 share
the point function f(δ1−ψ1),1(x) by evaluating Jfψ1,1(x)K with the input δ1 − x on the x-th position;
similarly, P3 and P4 share the point function f(δ2−ψ2),1(x). Note that δ1 − ψ1 = δ2 − ψ2 = op.

4.3 Operation Evaluation

Let õp ∈ Z25 denote our 25 supported operations while op stands for the right opcode of current
instruction. We construct a series of 4PC protocols to obliviously evaluate 25 operations. Except for
answer, each õp will produce results after execution, usually {resõp, flagõp}.3 To facilitate the selection
step in the next phase described in Sec. 4.4 below, we make all operation results shared in the replicated
secret sharing. Note that each oblivious instruction cycle requires executing all operations in parallel
to hide op. Therefore, in the evaluation of some operations, we can use the (intermediate) result of

1The ∗ symbol in Πn,∗read indicates that parties simultaneously but separately fetch each instruction filed using the same
DPF key.

2Each instruction takes two words in the memory.
3The instruction ans is used to signify the program has finished, thus resans and flagans are not required.
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Figure 7: Operations computation: Except for the answer, each õp has corresponding resõp and flagõp.
For ease of representation, the resõp and flagõp whose values must be ri and flag are omitted in the
figure.
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others to reduce the communication and computation. In addition, since some operations’ results
without resõp or flagõp (i.e., these operations do not modify registers or condition flag), we convert
〈ri〉, 〈flag〉 into 〈ri〉rep, 〈flag〉rep at the same round as instruction decoding, and set resõp := 〈ri〉rep (or
flagõp := 〈flag〉rep) if resõp (or flagõp) is undefined.

We utilize Yao’s garbled circuits (GC) with free-XOR [48] and half-gates [44] techniques to build
the low-latency evaluation protocol of bitwise operations and, or, xor, not, shl, shr. For other operations,
our private evaluation protocol is based on the arithmetic secret sharing with DICF and DPF schemes.
A detail description of our basic operation evaluation protocols appears in the Appendix A.

It is easy to see that performing all operations in parallel costs 3 online rounds by generating FSS
keys and truncation pairs in the offline phase, except for the multiplication operations which need 4
online rounds in our basic solutions. We now show how to compress the multiplication operations to 3
online rounds. Notice that the last A2R step of flagmull (and flagsmulh) computation causes the additional

communication round. To avoid that, we let P1 and P3 jointly generate DICF keys (K(1)
t ,K(2)

t ) for the

offset interval containment function f IC
0,2`−1,t(x) : Z22` → Z2` via MPC, and send K(1)

t ,K(2)
t to P2, P4

respectively. We refer to [47] for the detailed description of the distributed DICF key generation
protocol. Since then four parties can directly evaluate the DICF keys to obtain 〈flagmull〉rep in online
phase. Hence we can finish the operation evaluation phase in 3 online rounds, as summarized in Fig. 7.

4.4 Result Writing

The result writing phase is for updating the condition flag and registers. We begin by selecting the
right results based on the generated Jf(δ1−ψ1),1(x)K and Jf(δ2−ψ2),1(x)K, and then obliviously write
them into flag and i-th register by o-write protocol.

Note that after previous phases, the MPC players already obtain 〈ri〉rep, 〈flag〉rep, {〈resk〉rep}k∈Z24

and {〈flagk〉rep}k∈Z24 in the replicated secret sharing.Since P1, P2 share the point function f(δ1−ψ1),1(x),
and P3, P4 share the point function f(δ2−ψ2),1(x), parties can jointly compute

〈res〉 :=

23∑
k=0

res
(1)
k · Jf(δ1−ψ1),1(k)K + res

(3)
k · Jf(δ2−ψ2),1(k)K ,

〈flag〉 :=

23∑
k=0

flag
(1)
k · Jf(δ1−ψ1),1(k)K + flag

(3)
k · Jf(δ2−ψ2),1(k)K

over the ring Z2` without communication. MPC players then re-randomize the shares of 〈res〉 and
〈flag〉 to ensure their uniform distribution. It is obvious that the condition flag has been updated. To
obliviously write 〈res〉 into i-th register, the MPC players jointly invoke the o-write protocol with the
index 〈i〉, the old value 〈ri〉 and the new value 〈res〉. In practice, we perform the o-write in the same
round as the instruction fetching phase of the next oblivious instruction cycle.

4.5 Efficiency and Security

For efficiency, our system does not hide the overall run-time of the private RAM program. Therefore,
if a RAM program with given inputs needs z cpu cycles, our system only requires 5z+ 1 online rounds
to obliviously evaluate it without the leaks of program and inputs other than run-time. If in some
applications, this leakage is sensitive, we could hide the actual run-time by padding random cycles
w.r.t. differential privacy.

In terms of the security of our overall system, since all the MPC primitives are proven in the
UC framework, by the composition theorem, our PFE system is UC secure against one semi-honest
adversary with static corruption. In particular, our PFE system utilizes the proposed distributed
ORAM (cf. Sec. 3), 4-party addition/multiplication and share conversion protocol, garbled circuit,
and FSS schemes from [47] as building blocks. The security of our distributed ORAM is proven in
Sec. 3.3, and the rest protocols are all well-known MPC protocols whose security proof can be found
in the literature accordingly.
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(a) Initialization time in LAN (1Gbps/1ms) (b) Initialization Time in WAN (100Mbps/6ms)

(c) Read time in LAN (1Gbps/1ms) (d) Read time in WAN (100Mbps/6ms)

(e) Write time in LAN (1Gbps/1ms) (f) Write time in WAN (100Mbps/6ms)

Figure 8: Run-time (in different log scales) in LAN/WAN (bandwidth/RTT) setting. Where ours
refers to our distributed ORAM protocol; floram refers to [34]; sqrt refers to [32]; circuit refers to [31].

5 Implementation and Benchmarks

Our distributed ORAM scheme and PFE for TinyRAM scheme are implemented in C++. We imple-
ment the DPF and DICF schemes with the full domain evaluation from [46] and interval containment
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Table 4: Performance of our PFE scheme for different algorithms with different input sizes

Input Size 32 64 128 256 1024

Set Intersection
# of cycles 427 907 1603 3643 13747
Offline time (s) 12.97 27.27 50.01 110.70 420.72
Fetch time (s) 0.16 0.39 0.72 1.36 5.58
Decode time (s) 0.32 0.67 1.26 2.86 10.65
Eval. time (s) 8.37 17.46 30.47 70.68 269.10
Write time (s) 0.75 1.53 2.94 7.19 23.61
Total time (s) 22.54 47.32 85.39 192.79 729.66

Binary Search
# of cycles 12 64 75 96 111
Offline time (s) 0.39 2.03 2.27 2.91 3.24
Fetch time (s) 0.004 0.014 0.038 0.044 0.078
Decode time (s) 0.007 0.044 0.07 0.093 0.097
Eval. time (s) 0.20 1.25 1.49 1.87 2.21
Write time (s) 0.016 0.11 0.16 0.21 0.19
Total time (s) 0.62 3.45 4.06 5.13 5.81

Quick Sort
# of cycles 2860 6190 14656 29370 60090
Offline time (s) 90.52 198.31 479.70 918.13 1976.2
Fetch time (s) 1.23 2.67 6.03 12.45 25.33
Decode time (s) 2.28 4.81 10.93 20.27 44.71
Eval. time (s) 55.49 118.73 281.22 534.13 1151.9
Write time (s) 5.39 11.18 26.33 49.46 108.54
Total time (s) 154.91 335.66 804.19 1534.4 3306.5

gate from [47]. While performing the full domain evaluation, we prune the unnecessary branches for
efficiency. Furthermore, for distributed ORAM, we follow the Tree Trimming approach in [34] to re-
duce the number of layers for FSS evaluation. AES-128 is chosen for PRF function, and we implement
it by Intel’s AES-NI. EMP-toolkits [49] is used for GC evaluation. Our benchmarks are executed on
a desktop with Intel(R) Core i7 8700 CPU @ 3.2 GHz running Ubuntu 18.04.2 LTS; with 6 CPUs, 32
GB Memory and 1TB SSD. Our local AES computations are implemented

5.1 Distributed ORAM

We perform initialization, reading and writing benchmarks in 2 network environments for our dis-
tributed ORAM: local-area network (LAN, RTT: 1ms, bandwidth: 1Gbps) and wide-area network
network (WAN, RTT: 6ms, bandwidth: 100Mbps). For the purpose of comparison, we also perform
the same benchmarks for sqrt ORAM [32], circuit ORAM [31], and floram [34]. We make use of
their implementations provided by the original authors of these works, which are identical to the ones
previously reported by [34]. Note that, the writing operation in both our scheme and floram includes
reading and updating two steps. In our experiment, the element size is 32 bits, and the number of
ORAM elements is up to 229. Our results are reported in Fig.8.

Initialization. Our construction outperforms all the other schemes in terms of initialization because
it only requires building a replicated secret sharing of the database. Circuit ORAM has the slowest
initialization process whose run-time is several order of magnitude longer than others, and thus it is
impractical for large database sizes.

Reading. As we expected, the performance of our oblivious reading has a clear advantage over others
for large database sizes. Compared with floram, which is also based on DPF technique, we have much
lower bandwidth and fewer communication rounds because our o-read avoids distributed DPF key
generation. Therefore, our scheme shows increasing advantage along with lower bandwidth and higher
latency. Beyond roughly 226 elements, our computation overhead of the full-domain evaluation of DPF
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keys becomes the dominant factor in run-time. In this region, our performance is degrading to floram.
However, since the bottleneck is at computation, our scheme can be further improved by using multiple
cores.

Writing. The total run-time of our oblivious writing is comparable to floram. It is due to the fact that
the additional cost of refreshing of floram is not noticeable on average. Compared with sqrt ORAM
and circuit ORAM, our scheme shows significant performance improvement in LAN, although it is
slower than circuit ORAM (and sqrt ORAM with less than 221 elements) in WAN. In addition, our
oblivious writing allows to move a lot of computation and communication burden to the offline phase.
Thus, for large database sizes, our online run-time is superior to other solutions, including floram.
More specifically, at 222 elements, it has at least 6-fold concrete performance advantage over others in
WAN. This property is very attractive for practical applications.

5.2 PFE for TinyRAM

To demonstrate the power of our PFE scheme, we implement a variety of algorithms using the simplified
TinyRAM instruction set (cf. Table 3 at Supplemental Material), including set intersection, binary
search and quick sort. Following the Von-Neumann architecture, both data and program stored in
the same memory space. More specifically, for set intersection, similarly to [39] and [41], we use two
ordered arrays of equal length as input, and count how many elements are shared in the two arrays.
Denote the size of one input array as the input size of set intersection. For binary search and quick
sort, there is only one input array. In addition, quick sort is implemented by a recursive rather than a
for-loop structure in our experiment, so an extra 2 log n-word memory space is needed for the recursive
stack. In this case, we reserve the last 2 log n-word space of memory as the function stack, and use the
16-th register as the stack register.

Note that the distributed DICF key generation leads expensive computation cost when the word
size ` is large. Therefore, we use our basic scheme with 6z online rounds instead of the more intricate
scheme with 5z + 1 online rounds in the benchmark, where the word size ` is set to 32 bits. All
experiments of our PFE scheme are carried out in the LAN setting. We record a detailed run-time
profile as shown in the Table 4. Since those algorithms execute the different amount of instruction
cycles depending on the different random input, our results are averages from 10 samples for each
input size. As expected, in our PFE scheme, almost half of the overhead is moved to the offline stage,
and the operation evaluation phase dominates the online run-time. The average time per oblivious
cycle is almost stable for input size varied between 25 and 210, whose trend is same as our distributed
ORAM. Therefore, we can predict that only beyond 219 input size, the cost of per oblivious cycle may
increase significantly.

Furthermore, we compare with [39] and [41] on set intersection. Our running instructions is com-
piled from the example provided by [39], as follows:

I0 : read %0, 0 I12 : add %0,%0, 1

I1 : read %1, 0 I13 : add %2,%2, 1

I2 : read %2, 0 I14 : add %29,%29, 1

I3 : read %3, 0 I15 : jmp I4

I4 : cmpa %1,%0 I16 : cmpa %30,%31

I5 : cnjmp I22 I17 : cnjmp I20

I6 : cmpa %3,%2 I18 : add %2,%2, 1

I7 : cnjmp I22 I19 : jmp I4

I8 : load %30,%0 I20 : add %0,%0, 1

I9 : load %31,%2 I21 : jmp I4

I10 : cmpe %31,%30 I22 : ans %29

I11 : cnjmp I16

where,
• Ii stands for the memory address of i-th instruction.
• %a denotes the a-th register.
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Table 5: Run-time (s) of PFE schemes for set intersection

Input Size 64 256 1024 4096

WGMK16 [39] 58.35 324.09 3068.19 -
Marcel17 [41] 6.43 44.12 1346.82 -

Ours
best

online 18.10 68.34 275.65 1161.49
total 42.53 161.03 649.46 2798.08

worst
online 32.56 135.83 547.16 2553.93
total 77.99 331.69 1303.22 5956.56

Table 6: A feasible solution for 2-collusion tolerance, where p1 := 3, p2 := 5, n := 7.

P1 P2 P3 P4 P5 P6 P7

x(1) 0 0 0 1 1 1 1
x(2) 0 1 1 0 0 1 1
x(3) 0 1 1 1 1 0 0
x(4) 1 0 1 0 1 0 1
x(5) 1 1 0 1 0 1 0

Let the input size be m. Since neither [39] or [41] provides test data, to avoid the unfairness from the
input, we record our run-time for the best computational complexity with 12m+7 cycles and the worst
computational complexity with 24m− 5 cycles. In the former case, two input arrays are identical; in
the latter case, there is no share element in two input arrays, and the i-th element of each array is
smaller than the (i+ 1)-th element of both arrays. As shown in Table 5, we achieve an overwhelming
performance advantage on large data sets. At the input size 210, even if our scheme uses the worst
input case, its total run-time is comparable to [41] and has a roughly 2-fold advantage over [39].

6 Notes on Scalability

Throughout this paper, our scheme assumes a scenario of 4 MPC parties with 1 corrupted. In this
section, we will discuss the scaling security of our scheme.

It is easy to see, the main barrier to scaling security is our distributed ORAM, whose setting
is now restricted by 2-party DPF and our replicated secret sharing scheme as defined in Section 2.
Fortunately, besides the efficient 2-party DPF, Boyle et al. also present the nontrivial construction of
p-party DPF for p ≥ 3 in [37]. For t collusion tolerance, assume our scaling scheme uses p1-party DPF
for o-read and p2-party DPF for o-write. It is obvious to require p1, p2 > t. Accordingly, the replicated
secret sharing scheme should satisfy the following conditions: (a) the secret is split into p2 shares, (b)
each share is holed by p1 different parties, and (c) any t parties cannot reconstruct the secret.4

Naively, we can set p1 := p2 := t+ 1, and introduce (t+ 1)2 MPC parties to achieve t-privacy. In
this solution, for i ∈ [t + 1], parties in the subset Pi := {P(t+1)i−t, . . . , P(t+1)i} hold the same share,

denoted as x(i) by abusing notations, of the secret x such that
∑t+1
i=1 x(i) = x. In o-read operation,

parties in Pi jointly evaluate the p1-party DPF for fϕi,1 to obliviously extract the i-th share of target
element, and thus a total of p2 different p1-party DPFs are required. In o-write operation, parties in
Pi evaluate the i-th keys of the p2-party DPFs for fr1,1, fr1,v to obliviously and identically update the
i-th share of target element, and thus only 2 p2-party DPFs are required.

Furthermore, adjusting the value of p1, p2, we can scale down the number of MPC parties, denoted
by n. Take the scenario of 2 corrupted parties as an example. Table 6 shows a feasible solution with
n < (2 + 1)2, where the element si,j = 0 in the i-th row and the j-th column indicates that x(i) is
holed by Pj . Its o-read and o-write operations are similar to above. In fact, scaling our scheme for

4Note that, it is not required that any t+ 1 parties can reconstruct the secret.

18



t-collusion is an optimization problem, which can be formally represented as follows:
p1, p2 > t; n > p1, p2;∑p2
i=1

∑n
j=1 si,j = (n− p1) · p2;∑n

j=1 si,j = n− p1, for i ∈ [p2];∑p2
i=1

∏
j∈Q si,j > 0, for Q ∈ {U|U ⊂ [n], |U| = t}.

7 Related Works

7.1 Distributed ORAM

ORAM-based MPC protocols enable dramatic efficiency improvements in processing large, secret
databases. Unfortunately, the traditional ORAM and multi-server ORAM has a main obstacle to effi-
ciency in MPC context: a trusted client, which leads to expensive overhead when instantiating it using
generic MPC. Therefore, a number of researches focus on designing distributed ORAM schemes that are
tailor-made for the MPC scenario. [31] proposes the well-known MPC-friendly circuit ORAM, which
achieves asymptotic circuit-complexity O(λ log3 n + λ` log n) per access. Its key idea is to complete
the eviction algorithm within a single scan of the current eviction path, while being as aggressive as
possible. [32] revisits the classical square-root ORAM and proposed a distributed variant with a recur-

sive position map instead of MPC hash function. Although its amortized complexity O(λ`
√
n log3 n)

is worse than 2PC circuit ORAM, it has better practical performance. 2PC Floram [34] needs fewer
MPC operations, compared with the prior distributed ORAM designs. However, to achieve simulta-
neous read and write capabilities, [34] requires a refresh operation with O(n`) communication cost
after every O(

√
n`/λ log n) writes to achieve simultaneous read and write capabilities. [35] extends

the Floram of [34] to 3PC distributed ORAM with constant round complexity. They use 3PC DPF
technology to get rid of the refresh operation, but 3PC DPF itself causes O((λ+`)

√
n) communication

and leads worse practical performance. The bandwidth of another 3PC distributed ORAM scheme [33]
is competitive to Floram. Nevertheless, they require heavy initialization phase as well as 2PC circuit
ORAM. [36] achieves the best asymptotic communication complexity O((λ+ `) log n) in the literature.
But they use costly SISO-PRP technique and require linear round complexity in AND gates depth.

7.2 CPU emulation via MPC

Several CPU emulation schemes (e.g. [39, 40]) have been proposed in an attempt to improve the
performance of privacy-preserving RAM program evaluation. However, their piratical design and im-
plementation hold only for private input but public program setting. For instance, in the inefficient
basic scheme of [39], they use garbled universal circuits to securely execute all possible instructions
at each step, and that hides the program; in its optimized system, they pad branches and map in-
structions to steps to reduce the number of possible instructions at each step, and that maintains the
branching privacy but incurs the risk of the program leakage. Furthermore, [41] aims to private func-
tion evaluation. But their solution for RAM-model computation comes with polylogarithmic overhead
O(z log3 n) while our protocol only requires O(z log n).

8 Conclusion

We present a 4-party PFE system for RAM program. We simulate a RISC machine in MPC context
that can naturally support a simplified version of TinyRAM [38]. As a building block, we design
a DPF-based distributed ORAM scheme with O(log n) communication per access, which may be of
independent interests. In the future, we will upgrade our PFE for malicious security and securely
reduce the number of memory operations’ evaluation aided by our private registers.

A Detailed Operation Evaluation

In this section, we show how to obliviously evaluate each operation via MPC in detail.
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A.1 Bitwise Operations

In our system, data are shared over the ring Z2` . The low-latency bitwise operations, denoted as
D := {and, or, xor, not, shl, shr}, are built using Yao’s garbled circuits (GC) with free-XOR and half-
gates techniques, and result in two rounds of share conversion communication overhead. In the first
round, the MPC players collaborate with the evaluator to convert their additive shares into GC’s
keys. Then the evaluator locally evaluates the aggregated additive shares and calculates the objective
boolean function locally. In the second round, all parties reconstruct the replicated secret shares of
the results by opening GC output label. More specifically, it works as follows.

resõp∈D. In our protocol P1 plays the GC garbler and P3 plays the GC evaluator. All parties perform

A2Y to convert 〈rj〉 and 〈a〉 to shared Yao’s select wire keys {k(q)
rj[t],t}t∈Z`

, {k(q)
a[t],t}t∈Z`

for q ∈ [4], and

send to P3. Instead of an adder circuit, P1 picks res
(1)
õp and generates the circuit with the function

res
(3)
õp := Fõp(

∑4
q=1 rj(q),

∑4
q=1 a

(q)) − res
(1)
õp . P1 sends the select wire keys of res

(1)
õp to P3. After

evaluating the GC circuit locally, P3 holds the Yao’s share {k(3)
resõp[t],t}t∈Z`

, and P1 holds another Yao’s

share {k(3)
0,t }t∈Z`

. Finally, P1 sends the permute bits of {k(3)
0,t }t∈Z`

to both P3 and P4, sends res
(1)
õp to

P2. P3 and P4 then xor and concatenate permute bits to obtain res
(3)
õp .

flagõp∈D. P1 picks flag
(1)
õp and generates the GC circuit for the function

flag
(3)
õp := Fflag(Fõp(

4∑
q=1

rj(q),

4∑
q=1

a(q)))− flag
(1)
õp

, where Fflag is set to the most/last significant bit of the variable for shl/shr operations, and (resõp = 0)
for the other operations. Then all parties execute 〈resõp〉rep calculation process to get 〈flagõp〉rep

A.2 Arithmetic Operations

These are various unsigned and signed integer operations, including addition (add), subtraction (sub)
and multiplication (mull, umulh and smulh). In each case, the corresponding flagõp is set to 1 if an
arithmetic overflow occurs and to 0 otherwise.

add&sub: For õp ∈ {add, sub}, we compute 〈rj + a〉 or 〈rj − a〉 over the ring Z2` and store the result
to 〈resõp〉rep after the A2R share conversion. To determine flagõp, we first convert the shared rj and a
from Z2` to Z2`+1 using the DICF scheme, and then compare the addition or subtraction result over
the ring Z2`+1 with 2`−1. flagõp is set to 1 if the result is greater than 2`−1 and to 0 otherwise. More
specifically, it works as follows.

resadd (or ressub). The MPC players add their local shares to obtain resadd in a shared form. That is,

res
(q)
add := rj(q) + a(q) (mod 2`) for q ∈ [4]. After that, parties spend a communication round to convert

〈resadd〉 into 〈resadd〉rep.

flagadd (or flagsub). When shares are individually converted from Z2` to Z2`+1 , the extra carry-in

value 2` may appear. Thus the MPC players need to check whether
∑4
q=1 ri(q),

∑4
q=1 a

(q) ∈ [0, 2` −
1] over the ring Z2`+1 , and then correct the individually converted shares based on the results of
interval containment computation. In detail, P1 generates DICF keys of the offset interval containment
functions f IC

0,2`−1,v(x) : Z2`+1 → Z2`+1 , where v ← Z2`+1 is random offset, and then distributes DICF

keys to P2, P4. Similarly, P2 generates DICF keys of f IC
0,2`−1,r(x) and distributes keys to P1, P3. After

that, P1, P3 hold Jf IC
0,2`−1,r(x)K, and P2, P4 hold Jf IC

0,2`−1,v(x)K. Parties then open 〈rj′〉 := 〈rj〉 + r

(mod 2`+1) to P1, P3, 〈a′〉 := 〈a〉+ v (mod 2`+1) to P2, P4, and jointly compute

〈r̂j〉 := 〈rj〉 − (1− Jf IC
0,2`−1,r(rj′)K) · 2` (mod 2`+1),

〈â〉 := 〈a〉 − (1− Jf IC
0,2`−1,v(a

′)K) · 2` (mod 2`+1)

by evaluating DICF keys in local.
Later, the MPC players jointly compare the 2` − 1 with the addition (or subtraction) result of

r̂j and â over Z2`+1 . More specifically, we let P1 generate DICF keys of f IC
0,2`−1,t(x) : Z2`+1 → Z2` ,

where t ← Z2`+1 is random offset, and then distribute keys to P2, P4. The four MPC players open
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• Upon receiving (Mul, sid, rj(q), a(q)):
– Pq∈{1,2} sends (sid, rj(q)) to P3−q , (sid, a(q)) to Pq+2;

– Pq∈{3,4} sends (sid, rj(q)) to P7−q , (sid, a(q)) to Pq−2;

• Upon receiving (sid, rj(3−q)), (sid, a(q+2)), Pq∈{1,2} sets:

– res(q) := (rj(3−q) + rj(q)) · (a(q) + a(q+2)) (mod 2`);
• Upon receiving (sid, rj(7−q)), (sid, a(q−2)), Pq∈{3,4} sets:

– res(q) := (rj(7−q) + rj(q)) · (a(q) + a(q−2)) (mod 2`);

Protocol Π`
mul

Figure 9: 4-party multiplication protocol Π`
mul.

〈yt〉 := 〈r̂j〉 + 〈â〉 + t (mod 2`+1) to P2, P4. Upon receiving the DICF keys and yt, P2 and P4 jointly
compute

JflagaddK := 1− Jf IC
0,2`−1,t(yt)K (mod 2`)

by evaluating DICF keys in local. Finally, to construct 〈flagadd〉rep among four parties, P2 sends its
share of flagadd to P1 and P4 sends its share to P3.

mull: This operation computes 〈rj ·a〉 over the ring Z2` and stores the result to resmull in the replicated-
shared form. Analogous to the flagadd determination, to check whether rj · a /∈ Z2` , we first convert
the shared rj and a from Z2` to Z22` , then compare the multiplication result over the ring Z22` with
2` − 1. flagmull is set to 1 if the result is greater than 2` − 1 and to 0 otherwise. More specifically, it
works as follows.

resmull. The MPC players jointly invoke our 4-party multiplication protocol Π2`
mul (cf. Fig. 9) to compute

〈resmull〉 := 〈rj〉 · 〈a〉 (mod 2`), and then convert 〈resmull〉 to 〈resmull〉rep.

flagmull. First, parties convert 〈rj〉, 〈a〉 from Z2` to Z22` . This step is similar to flagadd computation,
and the main difference is that there are extra two carry-in bits in this case. That is, for each value,
parties require two functions of f IC

0,2`−1(x) : Z2`+1 → Z22` and f IC
0,2`+1−1(x) : Z2`+2 → Z2` to detect the

values of `-th bit and ` + 1-th bit, respectively. Denote the converted shares as 〈r̂j〉 and 〈â〉. Parties
then jointly compute 〈y〉 := 〈r̂j〉 · 〈â〉 (mod 22`) and compare 〈y〉 with 2` to get 〈flagmull〉rep as shown
in Fig. 10.

umulh: This operation computes 〈rj · a〉 over the ring Z22` and stores the most significant ` bits of
result to resumulh in the replicated-shared form. It requires a truncation and several share conversions
among Z2` and Z22` . Besides, flagumulh is determined by whether rj · a ≥ 2`, i.e., flagumulh = flagmull.
More specifically, it works as follows.

resumulh. The MPC players first convert 〈rj〉, 〈a〉 from Z2` to Z22` , and multiply them over the ring
Z22` . This step to obtain 〈rj ·a〉 ∈ Z22` is the same as in flagmull. In other words, parties can straightly
use the multiplication result 〈y〉 from flagmull computation. After that, parties jointly truncate 〈y〉 to
get the shared value of y’s most significant ` bits over the ring Z2` . More specifically, similar to the
share conversion, when shares are individually truncated (i.e., divided by 2`), two carry-in bits may
be lost. To correct this error, parties begin by generating a truncation pair 〈t〉rep, 〈t′〉 := 〈t · 2`〉 over
the ring Z22` , and then open 〈yt〉 := 〈y〉 − 〈t′〉 (mod 22`). After that, parties can jointly compute

〈yh〉rep := 〈t〉rep + yt >> ` (mod 22`),

hence, yh = y >> `. Finally, 〈resumulh〉rep can be obtained by individually removing the most significant
` bits of 〈yh〉rep.

flagumulh. For q ∈ [4], the player Pq sets res
(q)
umulh := res

(q)
mull.

smulh: This operation computes signed 〈rj · a〉 over the ring Z22` and stores the most significant
` bits of result to ressmulh in the replicated-shared form. Note that, rj and a are two’s complement
representation of the integers rjs and as. To increase their bit-length to 2`, we should securely add
the sign bits of rj and a to their left. flagsmulh is set to 1 if the result is in [2`−1, 22` − 2`−1 − 1], and is
set to 0 otherwise. More specifically, it works as follows.

ressmulh. The MPC players first check whether rj, a ∈ [0, 2`−1] to extract their sign bits JsrK and JsaK
respectively. In detail, P1 and P2 generate DICF keys for functions f IC

0,2`−1,v(x), f IC
0,2`−1,r(x) : Z2` → Z22`
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Offline phase:
• Upon initializetion, P1 does:

– Set vk,← Z2`+k , v
(1)
k := vk − PRF

Z
2`+k
η2 (sid, 0), k ∈ [2];

– Set (K(1)
v,k,K

(2)
v,k)← DICF.GenIC

0,k·2`−1
(1λ, f IC

0,k·2`−1,vk
), k ∈ [2];

– Generate t← Z22` ,

– Set (K(1)
t ,K(2)

t )← DICF.GenIC
0,k·2`−1

(1λ, f IC
0,k·2`−1,t

);

– Send (sid, (K(1)
v,k)k∈[2],K

(1)
t ) to P2;

– Send (sid, (K(2)
v,k)k∈[2],K

(2)
t ) to P4;

• Upon initializetion, P2 does:

– Set rk ← Z2`+k , r
(1)
k := rk − PRF

Z
2`+k
η4 (sid, 0), k ∈ [2];

– Set (K(1)
r,k,K

(2)
r,k)← DICF.GenIC

0,k·2`−1
(1λ, f IC

0,k·2`−1,rk
), k ∈ [2];

– Send (sid, (K(1)
r,k)k∈[2]) to P1, (sid, (K(2)

r,k)k∈[2]) to P3;

• Upon initialization, P2 sets v
(2)
k := PRF

Z
2`+k
η2 (sid, 0), k ∈ [2];

• Upon initialization, P4 sets r
(2)
k := PRF

Z
2`+k
η4 (sid, 0), k ∈ [2];

Online phase:
• Upon receiving (FlagMull, sid, rj(q), a(q)) from the environment Z, player Pq , q ∈ {1, 2} does:

– For k ∈ [2]:

∗ Set w1,q,k ← PRF
Z
2`+k
η2q−1

(sid, 1);

∗ Set w2,q,k ← PRF
Z
2`+k
η2q−1

(sid, 2);

∗ Set rj
(q)
k := rj(q) + w1,q,k (mod 2`+k);

∗ Set a
(q)
k := a(q) + v

(q)
k + w2,q,k (mod 2`+k);

– Send (sid, rj
(q)
1 , rj

(q)
2 ) to P1, P3, (sid, a

(q)
1 , a

(q)
2 ) to P2, P4;

• Upon receiving (FlagMull, sid, rj(q), a(q)) from the environment Z, player Pq , q ∈ {3, 4} does:
– For k ∈ [2]:

∗ Set w1,q−2,k ← PRF
Z
2`+k
η2q−5

(sid, 1);

∗ Set w2,q−2,k ← PRF
Z
2`+k
η2q−5

(sid, 2)

∗ Set rj
(q)
k := rj(q) + r(q) − w1,q−2 (mod 22`);

∗ Set a
(q)
k := a(q) − w2,q−2 (mod 22`);

– Send (sid, rj
(q)
1 , rj

(q)
2 ) to P1, P3, (sid, a

(q)
1 , a

(q)
2 ) to P2, P4;

• Upon receiving (sid, rj
(3−q)
1 , rj

(3−q)
2 ) from P3−q , (sid, rj

(3)
1 , rj

(3)
2 ) from P3 , and (sid, rj

(4)
1 , rj

(4)
2 ) from P4,

Pq , q ∈ {1, 3} does:

– Set rjk :=
∑4
q=1 rj

(q)
k (mod 2`+k) for k ∈ [2];

– Set β
(q)
r,k ← DICF.EvalIC

0,k·2`−1
(q,K(q)

r,k, rjk), k ∈ [2];

– Set r̂j
(q)

:= rj(q) +
∑2
k=1(β

(q)
r,k · k) · 2` (mod 22`);

– Set â(q) := a(q) − dq/2e · 2` (mod 22`);

– Invoke Π2`
mul with (Mul, sid, r̂j

(q)
, â(q)) to get y

(q)
t ;

– If q = 1, y
(q)
t := y(q) + t (mod 22`);

– Send (sid, y
(q)
t ) to P2 and P4;

• Upon receiving (sid, a
(1)
1 , a

(1)
2 ) from P1, (sid, a

(2)
1 , a

(2)
2 ) from P2, (sid, a

(7−q)
1 , a

(7−q)
2 ) from P7−q ,

Pq , q ∈ {2, 4} does:

– Set ak :=
∑4
q=1 a

(q)
k (mod 22`) for k ∈ [2];

– β
(q−2)
v,k ← DICF.EvalIC

0,k·2`−1
(q − 2,K(q−2)

v,k , ak), k ∈ [2];

– Set r̂j
(q)

:= rj(q) − dq/2e · 2` (mod 22`)

– Set â(q) := a(q) +
∑2
k=1(β

(q−2)
v,k · k) · 2` (mod 22`);

– Invoke Π2`
mul with (Mul, sid, r̂j

(q)
, â(q)) to get y(q);

– Send (sid, y
(q)
t ) to P6−q ;

• Upon receiving (sid, y
(k)
t ) from Pk∈[4]/q , Pq∈{2,4} does:

– Set yt := y
(1)
t + y

(2)
t + y

(3)
t + y

(4)
t (mod 22`);

– Set flag
(q/2)
mull ← DICF.EvalIC

0,2`−1
(q/2,K(q/2)

t , yt);

– Send flag
(q/2)
mull to Pq−1.

Protocol Π`
flagmull

Figure 10: mull overflow detection protocol Π`
flagmull

.
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respectively, where v, r ← Z2` are random offsets. P1 (and P2) then distribute their DICF keys to
P2, P4 (and P1, P3). Parties then open 〈rj′〉 := 〈rj〉 + r (mod 2`) to P1, P3, 〈a′〉 := 〈a〉 + v (mod 2`)
to P2, P4, and jointly compute

JsrK := 1− Jf IC
0,2`−1,r(rj′)K (mod 22`),

JsaK := 1− Jf IC
0,2`−1,v(a

′)K (mod 22`)

by locally evaluating DICF keys. Meanwhile, four parties convert 〈rj〉 and 〈a〉 from Z2` to Z22` as
unsigned integers, i.e., they can copy the converted shares of 〈r̂j〉 and 〈â〉 from flagmull computation.
After that, the MPC players obtain the sign extension values

〈r̂js〉 := 〈r̂j〉+ (22` − 2`) · JsrK (mod 22`),

〈âs〉 := 〈â〉+ (22` − 2`) · JsaK (mod 22`)

without communication. Next, parties compute 〈ys〉 := 〈r̂js〉 · 〈âs〉 (mod 22`), and then truncate the
most significant ` bits of 〈ys〉 to get 〈ressmulh〉rep by the same method as in resumulh computation.

flagsmulh. The MPC players detect whether ys ∈ [2`−1, 22` − 2`−1 − 1] based on DICF schemes. More

specifically, P1 generates DICF keys of the functions f IC
2`−1,22`−2`−1−1,t(x) : Z22` → Z2` where t← Z2`

is random offset, and distributes them to P2, P4. Parties then open 〈yt〉 := 〈ys〉+t (mod 22`) to P2, P4.
Upon receiving yt, P2 and P4 jointly compute

JflagsmulhK := 1− Jf IC
2`−1,22`−2`−1−1,t(yt)K (mod 2`)

by locally evaluating DICF keys. Finally, to construct 〈flagadd〉rep among four parties, P2 sends its
share of flagsmulh to P1 and P4 sends its share to P3.

A.3 Comparison Operations

We support the comparison of unsigned and signed integer, including cmpe, cmpa, cmpae, cmpg and
cmpge operations. Each comparison result is assigned to the corresponding flagõp and does not modify
any register. As mentioned before, we set 〈resõp〉rep := 〈ri〉rep to hide the operation.

cmpe: This operation checks if rj is equal to a. We use the DPF scheme to obliviously detect whether
its equivalent expression rj − a = 0 holds. More specifically, P1 generates a pair of DPF keys for the
point function fr,1(x) : Z2` → Z2` , where r ← Z2` is randomly picked. P1 then distributes the DPF
keys to P2 and P4. Parties jointly compute and open 〈δ〉 := 〈rj〉 − 〈a〉 + r (mod 2`) to P2 and P4.
After that, P2 and P4 compute JflagcmpeK := Jfr,1(δ)K, and send their shares to P1, P3 respectively to
construct 〈flagcmpe〉rep.

cmpae: This operation checks if rj is above or equal to a. It follows that 〈flagcmpae〉rep := 1−〈flagsub〉rep

(mod 2`).

cmpa: This operation checks if rj is above to a, whose comparison result is directly derived from the
results of cmpe and cmpae by 〈flagcmpa〉rep := 〈flagcmpae〉rep − 〈flagcmpe〉rep (mod 2`).

cmpge: This operation checks if signed rjs is greater than or equal to as. We combine the sign bits
of rj, a and y := rj − a (mod 2`) to compute flagcmpge. More specifically, in the same way as ressmulh

computation, the MPC players obliviously detect whether rj, a, y ∈ [0, 2`−1] by DICF scheme to obtain
their sign bits JsrK, JsaK and JsyK over the ring Z2` . After that, four parties jointly compute

〈flagcmpge〉 :=(1− JsyK) · (1− JsrK− JsaK + 2 · JsrK · JsaK)
+ JsaK · (JsrK + JsaK− 2 · JsrK · JsaK) (mod 2`)

and then convert 〈flagcmpge〉 to 〈flagcmpge〉rep.

cmpg: This operation checks if signed rjs is greater than as. It follows that 〈flagcmpg〉rep := 〈flagcmpge〉rep−
〈flagcmpe〉rep (mod 2`).

A.4 Move Operations

These are standard move operation mov and the conditional move operation cmov. Since both mov
and cmov do not modify the condition flag, we set 〈flagmov〉rep := 〈flagcmov〉rep := 〈flag〉rep.

mov: This operation stores 〈a〉 to 〈resmov〉rep. We only need to convert 〈a〉 into 〈a〉rep and then copy
it to 〈resmov〉rep.
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cmov: If flag = 1, this operation stores 〈a〉 to 〈rescmov〉rep; otherwise, set 〈rescmov〉rep := 〈ri〉rep. The
MPC players first jointly compute 〈rescmov〉 := 〈flag〉 · 〈a〉+ (1−〈flag〉) · 〈rj〉 (mod 2`) and then convert
〈rescmov〉 into 〈rescmov〉rep.

A.5 Memory Operations

We support load, store to randomly access the memory, and read to access input tapes. Note that our
memory operations only have register and immediate addressing modes.

load: This operation loads the a-th word in the memory into 〈resload〉rep, and it does not modify the
condition flag. To obliviously fetch Ma from the memory, we utilize our o-read protocol (cf. Fig. 3).
More specifically, it works as follows.

resload. The MPC players invoke Π
(2`),`
read to get 〈Ma〉, and then convert 〈Ma〉 to replicated secret sharing

as 〈resload〉rep.

flagload. Since this operation do not modify the condition flag, four MPC players directly set 〈flagload〉rep :=
〈flag〉rep.

store: This operation stores 〈ri〉 into the memory that is aligned to the a-th word. We first obliviously
fetch 〈Ma〉 and compute the new value y based on the operator type of current instruction. In practice,
the MPC players copy the shares of 〈Ma〉 obtained in resload computation, and utilize Jf(δ1−ψ1),1(x)K
generated in the instruction fetching phase to compute

〈y〉 :=Jf(δ1−ψ1),1(store)K · 〈ri〉
+ (1− Jf(δ1−ψ1),1(store)K) · 〈Ma〉 (mod 2`).

Namely, y is set to Ma if op = store and to ri otherwise. After that, we update the a-th word in the
memory to the value of 〈y〉 by our o-write protocol (cf. Fig. 5).

resstore&flagstore . This operation does not modify any register or the condition flag so that we set
〈resstore〉rep := 〈ri〉rep and 〈flagstore〉rep := 〈flag〉rep.

read: This operation reads the next word (i.e. 〈rca〉-th word) on the a-th tape, then stores it into
resread and sets flag := 0; if the a-th tape does not have remaining words, it stores 0 into resread and sets
flag := 1. We use our o-read protocol to obliviously fetch the next word in tape0 and tape1. After that,
we select the right word according to a. Since the numa-th word of tapea is 0, we keep rca = numa

when the input words are consumed to ensure the fetched word is 0. To check whether each tape has
any remaining input words, we let four parties hold two (4, 4)-additively shared words t0, t1. Initialize
them to 1 if tape0, tape1 have input words and to 0 otherwise. Once the input words in tape0 (or tape1)
are consumed, t0 (or t1) will set to 0. And then ta is the value of flagread. More specifically, it works
as follows.

resread. First of all, the MPC players invoke o-read protocol twice to obliviously fetch 〈rc0〉-th word
〈x0〉 in tape0 and 〈rc1〉-th word 〈x1〉 in tape1. Meanwhile, P1 generates two pairs of DPF keys for the
point functions fr0,1(x), fr1,1(x) : Z2` → Z2` , where r0, r1 ← Z2` are randomly picked, and distributes
these keys to P3 and P4. The MPC players open 〈δ0〉 := 〈rc0〉 − 〈num0〉 − 1 + r0 (mod 2`) and
〈δ1〉 := 〈rc1〉 − 〈num1〉 − 1 + r1 (mod 2`) to P3 and P4. After that, parties can jointly compute

〈k〉 := Jf(δ1−ψ1),1(read)K · 〈a〉 (mod 2`),

〈t′0〉 := 〈t0〉 − Jfr0,1(δ0)K (mod 2`),

〈t′1〉 := 〈t1〉 − Jfr1,1(δ1)K (mod 2`)

by local DPF key evaluation. If õp = read, a is set to 0 or 1 and k takes the value of a; if õp 6= read,
k takes the value of 0. And t′0 is set to 1 if tape0 has remaining words (i.e. rc0 < num0) and set to 0
otherwise; similarly for t′1. Parties then calculate the operation result and increases in read counters
as

〈resread〉 := (1− 〈k〉) · 〈x0〉+ 〈k〉 · 〈x1〉 (mod 2`),

〈δ0〉 := (1− 〈k〉) · Jf(δ1−ψ1),1(read)K (mod 2`),

〈δ1〉 := 〈k〉 · Jf(δ1−ψ1),1(read)K (mod 2`),

Finally, parties convert 〈resread〉 into 〈resread〉rep.
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flagread. With the intermediate result in resread computation, parties jointly compute 〈flagread〉 :=

(1 − 〈k〉) · 〈t′0〉 + 〈k〉 · 〈t′1〉 (mod 2`), and then convert 〈flagread〉 into 〈flagread〉rep. In addition, to
obliviously update t0, t1 and the read counters accordingly, parties need to compute

〈t0〉 := (1− Jf(δ1−ψ1),1(read)K)〈t0〉+ Jf(δ1−ψ1),1(read)K〈t′0〉,
〈t1〉 := (1− Jf(δ1−ψ1),1(read)K)〈t1〉+ Jf(δ1−ψ1),1(read)K〈t′1〉,
〈rc0〉 := 〈rc0〉+ 〈δ0〉〈flagread〉, 〈rc1〉 := 〈rc1〉+ 〈δ1〉〈flagread〉

over the ring Z2` . Namely, in the case of õp = read, rca will be increased if rca < numa and keep
rca = numa otherwise.

A.6 Jump Operations

These jump operations may (conditional) correct the incremented pc described in Sec. 4.1 of our
main text, and they do not modify any register or the condition flag, i.e., 〈resõp〉rep := 〈ri〉rep and
〈flagõp〉rep := 〈flag〉rep for õp ∈ {jmp, cjmp, cnjmp}.
jmp: This instruction is a standard jump operation that stores 〈a〉 in 〈pc〉. The MPC players only
need to compute

〈pc〉 := Jf(δ1−ψ1),1(jmp)K · JaK + (1− Jf(δ1−ψ1),1(jmp)K) · 〈pc〉
over the ring Z2` .

cjmp: This instruction stores 〈a〉 in 〈pc〉 if flag = 1. The MPC players should jointly compute

〈pc〉 :=Jf(δ1−ψ1),1(cjmp)K · (JaK · 〈flag〉+ 〈pc〉 · (1− 〈flag〉))
+ (1− Jf(δ1−ψ1),1(cjmp)K) · 〈pc〉 (mod 2`).

cnjmp: This operation stores 〈a〉 in 〈pc〉 if flag = 0. Similar to cjmp, it requires four parties to jointly
compute

〈pc〉 :=Jf(δ1−ψ1),1(cnjmp)K · (JaK · (1− 〈flag〉) + 〈pc〉 · 〈flag〉)
+ (1− Jf(δ1−ψ1),1(cnjmp)K) · 〈pc〉 (mod 2`).

A.7 Answer Operation

ans: This instruction leads to our RISC stall or stop, and does not require the following result writing
phase. More specifically, P1 and P2 open f(δ1−ψ1),1(ans) between each other. If f(δ1−ψ1),1(ans) = 1, P1

and P2 stop computation then return a(1) and a(2); similarly for P3 and P4.

B Proof of Theorem 1

Proof. To prove Thm. 1, we construct a PPT simulator S such that no non-uniform PPT environment
Z can distinguish between (i) the real execution ExecΠn,`

ram ,A,Z where the parties P := {P1, . . . , P4} run

protocols Πn,`
init , Πn,`

read and Πn,`
write in the real world and the corrupted parties are controlled by a dummy

adversary A who simply forwards messages from/to Z, and (ii) the ideal execution ExecFn,`
ram ,S,Z where

the parties P1, . . . , P4 interact with functionality Fn,`ram in the ideal world, and corrupted parties are
controlled by the simulator S. We consider following cases.

Case 1: P1 (or P2) is corrupted.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment Z. S
simulates the interface of Fn,`dGen[DPF.Gen] as well as honest parties P2, P3, P4 In addition, S simulates
the following interactions with A.

• Upon initialization, S acts as the honest party P3 to do:

– Set ϕ1, ϕ
(2)
1 ← Zn, ϕ

(1)
1 := ϕ1 − ϕ(2)

1 , r
(2)
1 ← Zn;

– Set K(1)
ϕ1 ,K

(2)
ϕ1 ← DPF.Gen(1λ, fϕ1,1);

– Send (sid,K(1)
ϕ1 ) to P1, (sid,K(2)

ϕ1 ) to P2;

– Send (KeyGen, sid, r
(2)
1 , 1) to Fn,`dGen[DPF.Gen];
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– Get (sid,K(2)
1 ) from Fn,`dGen[DPF.Gen];

– Send (sid,K(2)
1 ) to P4;

• Upon initialization, the simulator S acts as the honest party Pj , j ∈ {2, 4} to do:

– Set r
(j/2)
2 ← Zn, v(j/2) ← Z2` ;

– Send (KeyGen, sid, r
(j/2)
2 , v(j/2)) to Fn,`dGen[DPF.Gen], then gets (sid,K(j/2)

v ) and send (sid,K(j/2)
v )

to Pj−1;
• The simulator S does:

– Pick random w1,1, w1,2 ← Zn;
– Pick random w′k,q ← Zn, for k ∈ [2] and q ∈ [4];
– Pick random w′3,q ← Z2` , for q ∈ [4];

• Upon receiving (Oread, sid, ssid, Pj) for an honest party Pj , j ∈ {1, 2} from the external Fn,`ram,
the simulator S does:

– Set δ
(j)
r,1 := w1,j and δ

(j)
r,2 := 0;

– Send (sid, ssid, δ
(j)
r,1) to P3−j , (sid, ssid, δ

(j)
r,2) to P3 on behave of Pj ;

• Upon receiving (Oread, sid, ssid, Pj) for an honest party Pj , j ∈ {3, 4} from the external Fn,`ram,
the simulator S does:

– Set δ
(j)
r,1 := −ϕ(j−2)

1 − w1,j−2 and δ
(j)
r,2 := 0;

– Send (sid, ssid, δ
(j)
r,1) to P1 and P2, (sid, ssid, δ

(j)
2 ) to P7−j on behave of Pj ;

• Upon receiving (sid, ssid, δ
(1)
r,1 ) from the corrupted P1 to P2 and (sid, ssid, δ

(1)
r,2 ) from the corrupted

P1 to P3, P4, the simulator S does:

– Extract i(1) := δ
(1)
r,1 − PRFZn

η1 (sid, 1) (mod n);

– Send (Oread, sid, i(1)) to the external Fn,`ram;

– Compute δr,1 := δ
(1)
r,1 + δ

(2)
r,1 + δ

(3)
r,1 + δ

(4)
r,1 (mod n);

– Set (β
(1)
ϕ1,k

)k∈Zn ← DPF.EvalAll(1,K(1)
ϕ1 );

– Set β̃
(1)
ϕ1,k

:= β
(1)
ϕ1,k+δr,1 (mod n), for k ∈ Zn;

– Set ζ1 ← PRF
Z
2`
η1 (sid), ζ3 ← PRF

Z
2`
η2 (sid);

– Compute o(1) :=
∑n−1
k=0(x

(1)
k · β̃

(1)
ϕ1,k

) + ζ1 − ζ3 (mod 2`).

– Send (Rand, sid, ssid, o(1)) to the external Fn,`ram;
• Upon receiving (Owrite, sid, ssid, Pj) for an honest party Pj , j ∈ {1, 3} from the external Fn,`ram,

the simulator S does:
– Set δ

(j)
w,1 := −r(dj/2e)

1 + (j − 2) · w′1,1 + w′1,j+1;

– Set δ
(j)
w,2 := (j − 2) · w′2,1 + w′2,j+1;

– Set ∆v(j) := (j − 2) · w′3,1 + w′3,j+1;

– Send (δ
(j)
w,1, δ

(j)
w,2,∆v

(j)) to Pq, q ∈ [4]/j on behave of Pj ;

• Upon receiving (Owrite, sid, ssid, Pj) for an honest party Pj , j ∈ {2, 4} from the external Fn,`ram,
the simulator S does:

– δ
(j)
w,1 := (j − 3) · w′1,3 − w′1,j ;

– δ
(j)
w,2 := −r(j/2)

2 + (j − 3) · w′2,3 − w′2,j ;
– ∆v(j) := −v(j/2) + (j − 3) · w′3,3 − w′3,j ;
– Send (δ

(j)
w,1, δ

(j)
w,2,∆v

(j)) to Pq, q ∈ [4]/j on behave of Pj ;

Indistinguishability. We assume that the parties P1, . . . , P4 communicate with each other via the
secure channel functionality Fsc (omitted in the protocol description for simplicity). The indistin-
guishability is proven through a series of hybrid worlds H0, . . . ,H3.
Hybrid H0: It is the real protocol execution ExecΠn,`

ram ,A,Z .

Hybrid H1: H1 is the same as H0 except that in H1, {w1,q}q∈[2], ϕ
(2)
1 and {w′k,q}k∈[2],q∈[4] are picked

uniformly random from Zn instead of calculating from PRFZn ; {w′3,q}q∈[4] is picked uniformly random

from Z2` instead of calculating from PRFZ
2` .

Claim 1. If PRFZn : {0, 1}λ × {0, 1}in 7→ Zn is a secure pseudorandom function with adversarial
advantage AdvPRFZn (1λ,A) and PRFZ

2` : {0, 1}λ × {0, 1}in 7→ Z2` is a secure pseudorandom function
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with adversarial advantage Adv
PRF

Z
2`

(1λ,A), then H1 and H0 are indistinguishable with advantage

ε1 := 11 · AdvPRFZn (1λ,A) + 4 · Adv
PRF

Z
2`

(1λ,A).

Proof. We have changed 11 PRFZn outputs and 4 PRFZ
2` outputs to uniformly random strings; there-

fore, the overall advantage is 11 ·AdvPRFZn (1λ,A) + 4 ·Adv
PRF

Z
2`

(1λ,A) by hybrid argument via reduc-
tion.

Hybrid H2: H2 is the same as H1 except that in H2:
• Upon receiving (Oread, sid, ssid, Pj) for j ∈ {1, 2}:

– Set δ
(j)
r,1 := w

(j)
1 and δ

(j)
r,2 := 0.

• Upon receiving (Oread, sid, ssid, Pj) for j ∈ {3, 4}:
– Set δ

(j)
r,1 := −ϕ(j−2)

1 − w(j)
1 and δ

(j)
r,2 := 0.

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {1, 3}:
– Set δ

(j)
w,1 := −r(dj/2e)

1 + (j − 2) · w′1,1 + w′1,j+1;

– Set δ
(j)
w,2 := (j − 2) · w′2,1 + w′2,j+1;

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {2, 4}:
– Set δ

(j)
w,1 := (j − 3) · w′1,3 − w′1,j , δ

(j)
w,2 := (j − 3) · w′2,3 − w′2,j ;

instead of
• Upon receiving (Oread, sid, ssid, Pj) for j ∈ {1, 2}:

– Set δ
(j)
r,1 := i(j) + w1,j and δ

(j)
r,2 := i(j) − ϕ(j)

2 + w2,j .
• Upon receiving (Oread, sid, ssid, Pj) for j ∈ {3, 4}:

– Set δ
(j)
r,1 := i(j) − ϕ(j−2)

1 − w1,j−2 and δ
(j)
2 := i(j) − w2,j−2.

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {1, 3}:
– Set δ

(j)
w,1 := i(j) − r(dj/2e)

1 + (j − 2) · w′1,1 + w′1,j+1;

– Set δ
(j)
w,2 := i(j) + (j − 2) · w′2,1 + w′2,j+1;

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {2, 4}:
– Set δ

(j)
w,1 := i(j) + (j − 3) · w′1,3 − w′1,j ;

– Set δ
(j)
w,2 := i(j) − r(j/2)

2 + (j − 3) · w′2,3 − w′2,j ;

Claim 2. If DPFZn,Z2` := (Gen,Eval) is a secure function secret sharing scheme for point function

fα,β(x) : Zn 7→ Z2` with adversarial advantage Adv
Zn,Z2`

DPF (1λ,A), then H2 and H1 are indistinguishable

with advantage ε2 := 3Adv
Zn,Z2`

DPF (1λ,A).

Proof. Note that P1 only sees {δ(j)
r,1 , δ

(j)
w,1, δ

(j)
w,2}j∈[4]; therefore, the modification of {δ(j)

r,2}j∈[4] is oblivious
to the corrupted party P1. In the hybrid H1, we have

• δ
(1)
r,1 := i(1) + w1,1, δ

(2)
r,1 := i(2) + w1,2;

• δ
(3)
r,1 := i(1) − ϕ(1)

1 − w1,1, δ
(4)
r,1 := i(1) − ϕ(2)

1 − w1,2;

• δ
(1)
w,1 := i(j) − r(1)

1 − w′1,1 + w′1,2, δ
(2)
w,1 := i(j) − w′1,3 − w′1,2;

• δ
(3)
w,1 := i(j) − r(2)

1 + w′1,1 + w′1,4, δ
(4)
w,1 := i(j) + w′1,3 − w′1,4;

• δ
(1)
w,2 := i(j) − w′2,1 + w′2,2, δ

(2)
w,2 := i(j) − r(1)

2 − w′2,3 − w′2,2;

• δ
(3)
w,2 := i(j) + w′2,1 + w′2,4, δ

(4)
w,2 := i(j) − r(2)

2 + w′2,3 − w′2,4;

It is straightforward that the distribution of {δ(j)
r,1}j∈[4] are uniformly random under the condition

δr,1 :=
∑4
k=1 δ

(k)
r,1 = i − ϕ1 where ϕ1 is used to generate the DPF keys (K(1)

ϕ1 ,K
(2)
ϕ1 ); similarly for

{δ(j)
w,1}j∈[4] and {δ(j)

w,2}j∈[4]. Whereas δr,1 := −ϕ1, δw,1 := −r1 and δw,2 := −r2 in the hybrid H2, we
can show that if there exists an adversary A who can distinguish the view of H2 from the view of H1

then we can construct an adversary B who uses A in a blackbox fashion can break at least one of the
three DPFZn,Z2` := (Gen,Eval) with the same advantage. Therefore, H2 and H1 are indistinguishable
with adversarial advantage ε2 := 3 · Adv

DPF
Zn,Z

2`
(1λ,A).

Hybrid H3: H3 is the same as H2 except that in H2:
• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {1, 3}:

– Set ∆v(j) := (j − 2) · w′3,1 + w′3,j+1;
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• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {2, 4}:
– Set ∆v(j) := −v(j/2) + (j − 3) · w′3,3 − w′3,j ;

instead of
• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {1, 3}:

– Set ∆v(j) := y
(j)
i − x(j) + (j − 2) · w′3,1 + w′3,j+1;

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {2, 4}:
– Set ∆v(j) := y

(j)
i − x(j) − v(j/2) + (j − 3) · w′3,3 − w′3,j ;

Claim 3. H3 and H2 are perfectly indistinguishable.

Proof. Since {w′3,j}j∈[4], {y
(j)
i }j∈[4] and {x(j)}j∈[4] are uniformly random in Z2` , the distribution of

{∆v(j)}j∈[4] and {y(j)
i − x(j)}j∈[4] are identical. Therefore, H3 and H2 are perfectly indistinguishable.

The adversary’s view of H2 is identical to the simulated view ExecFn,`
read ,S,Z

. Therefore, the overall

distinguishing advantage is
11 · AdvPRFZn (1λ,A) + 4 · Adv

PRF
Z
2`

(1λ,A) + 3 · Adv
DPF

Zn,Z
2`

(1λ,A) .

Case 2: P3 (or P4) is corrupted.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment Z. S
simulates the interface of Fn,`dGen[DPF.Gen] as well as honest parties P1, P2, P4 In addition, S simulates
the following interactions with A.

• Upon initialization, S acts as the honest party P1 to do:

– Set ϕ2, ϕ
(2)
2 ← Zn, ϕ

(1)
2 := ϕ2 − ϕ(2)

2 , r
(1)
1 ← Zn;

– Set K(1)
ϕ2 ,K

(2)
ϕ2 ← DPF.Gen(1λ, fϕ2,1);

– Send (sid,K(1)
ϕ2 ) to P3, (sid,K(2)

ϕ2 ) to P4;

– Send (KeyGen, sid, r
(1)
1 , 0) to Fn,`dGen[DPF.Gen] then get (sid,K(1)

1 ) and send (sid,K(1)
1 ) to P2;

• Upon initialization, the simulator S acts as the honest party Pj , j ∈ {2, 4} to do:

– Set r
(j/2)
2 ← Zn, v(j/2) ← Z2` ;

– Send (KeyGen, sid, r
(j/2)
2 , v(j/2)) to Fn,`dGen[DPF.Gen], then get (sid,K(j/2)

v ) and send (sid,K(j/2)
v )

to Pj−1;
• The simulator S does:

– Pick random w2,1, w2,2 ← Zn;
– Pick random w′k,q ← Zn, for k ∈ [2] and q ∈ [4];
– Pick random w′3,q ← Z2` , for q ∈ [4];

• Upon receiving (Oread, sid, ssid, Pj) for an honest party Pj , j ∈ {1, 2} from the external Fn,`ram,
the simulator S does:

– Set δ
(j)
r,1 := 0 and δ

(j)
r,2 := w2,j − ϕ(j)

2 ;

– Send (sid, ssid, δ
(j)
r,1) to P3−j , (sid, ssid, δ

(j)
r,2) to P3 on behave of Pj ;

• Upon receiving (Oread, sid, ssid, Pj) for an honest party Pj , j ∈ {3, 4} from the external Fn,`ram,
the simulator S does:

– Set δ
(j)
r,1 := 0 and δ

(j)
r,2 := −w2,j−2;

– Send (sid, ssid, δ
(j)
r,1) to P1 and P2, (sid, ssid, δ

(j)
r,2) to P7−j on behave of Pj ;

• Upon receiving (sid, ssid, δ
(3)
r,2 ) from the corrupted P3 to P4 and (sid, ssid, δ

(3)
r,1 ) from the corrupted

P3 to P1, P2, the simulator S does:

– Extract i(3) := δ
(3)
r,2 − PRFZn

η1 (sid, 2) (mod n);

– Send (Oread, sid, i(3)) to the external Fn,`ram;

– Compute δr,2 := δ
(1)
r,2 + δ

(2)
r,2 + δ

(3)
r,2 + δ

(4)
r,2 (mod n);

– Set (β
(1)
ϕ2,k

)k∈Zn ← DPF.EvalAll(1,K(1)
ϕ2 );

– Set β̃
(1)
ϕ2,k

:= β
(1)
ϕ2,k+δr,2 (mod n), for k ∈ Zn;

– Set ζ1 ← PRF
Z
2`
η1 (sid), ζ4 ← PRF

Z
2`
η4 (sid);

– Compute o(3) :=
∑n−1
k=0(x

(1)
k · β̃

(1)
ϕ1,k

)− ζ1 − ζ4 (mod 2`).

– Send (Rand, sid, ssid, o(3)) to the external Fn,`ram;
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• Upon receiving (Owrite, sid, ssid, Pj) for an honest party Pj , j ∈ {1, 3} from the external Fn,`ram,
the simulator S does:

– Set δ
(j)
w,1 := −r(dj/2e)

1 + (j − 2) · w′1,1 + w′1,j+1;

– Set δ
(j)
w,2 := (j − 2) · w′2,1 + w′2,j+1;

– Set ∆v(j) := (j − 2) · w′3,1 + w′3,j+1;

– Send (sid, ssid, δ
(j)
w,1, δ

(j)
w,2,∆v

(j)) to Pq, q ∈ [4]/j on behave of Pj ;

• Upon receiving (Owrite, sid, ssid, Pj) for an honest party Pj , j ∈ {2, 4} from the external Fn,`ram,
the simulator S does:

– δ
(j)
w,1 := (j − 3) · w′1,3 − w′1,j ;

– δ
(j)
w,2 := −r(j/2)

2 + (j − 3) · w′2,3 − w′2,j ;
– ∆v(j) := −v(j/2) + (j − 3) · w′3,3 − w′3,j ;
– Send (sid, ssid, δ

(j)
w,1, δ

(j)
w,2,∆v

(j)) to Pq, q ∈ [4]/j on behave of Pj ;

Indistinguishability. We assume that the parties P1, . . . , P4 communicate with each other via the
secure channel functionality Fsc (omitted in the protocol description for simplicity). The indistin-
guishability is proven through a series of hybrid worlds H0, . . . ,H3.
Hybrid H0: It is the real protocol execution ExecΠn,`

ram ,A,Z .

Hybrid H1: H1 is the same as H0 except that in H1, {w2,q}q∈[2], ϕ
(2)
1 and {w′k,q}k∈[2],q∈[4] are picked

uniformly random from Zn instead of calculating from PRFZn ; {w′3,q}q∈[4] is picked uniformly random

from Z2` instead of calculating from PRFZ
2` .

Claim 4. If PRFZn : {0, 1}λ × {0, 1}in 7→ Zn is a secure pseudorandom function with adversarial
advantage AdvPRFZn (1λ,A) and PRFZ

2` : {0, 1}λ × {0, 1}in 7→ Z2` is a secure pseudorandom function
with adversarial advantage Adv

PRF
Z
2`

(1λ,A), then H1 and H0 are indistinguishable with advantage

ε1 := 11 · AdvPRFZn (1λ,A) + 4 · Adv
PRF

Z
2`

(1λ,A).

Proof. We have changed 11 PRFZn outputs and 4 PRFZ
2` outputs to uniformly random strings; there-

fore, the overall advantage is 11 ·AdvPRFZn (1λ,A) + 4 ·Adv
PRF

Z
2`

(1λ,A) by hybrid argument via reduc-
tion.

Hybrid H2: H2 is the same as H1 except that in H2:
• Upon receiving (Oread, sid, ssid, Pj) for j ∈ {1, 2}:

– Set δ
(j)
r,1 := 0 and δ

(j)
r,2 := w2,j − ϕ(j)

2 ;
• Upon receiving (Oread, sid, ssid, Pj) for j ∈ {3, 4}:

– Set δ
(j)
r,1 := 0 and δ

(j)
r,2 := −w2,j−2;

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {1, 3}:
– Set δ

(j)
w,1 := −r(dj/2e)

1 + (j − 2) · w′1,1 + w′1,j+1;

– Set δ
(j)
w,2 := (j − 2) · w′2,1 + w′2,j+1;

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {2, 4}:
– Set δ

(j)
w,1 := (j − 3) · w′1,3 − w′1,j ;

– Set δ
(j)
w,2 := (j − 3) · w′2,3 − w′2,j ;

instead of
• Upon receiving (Oread, sid, ssid, Pj) for j ∈ {1, 2}:

– Set δ
(j)
r,1 := i(j) + w1,j and δ

(j)
r,2 := i(j) − ϕ(j)

2 + w2,j .
• Upon receiving (Oread, sid, ssid, Pj) for j ∈ {3, 4}:

– Set δ
(j)
r,1 := i(j) − ϕ(j−2)

1 − w1,j−2 and δ
(j)
2 := i(j) − w2,j−2.

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {1, 3}:
– Set δ

(j)
w,1 := i(j) − r(dj/2e)

1 + (j − 2) · w′1,1 + w′1,j+1;

– Set δ
(j)
w,2 := i(j) + (j − 2) · w′2,1 + w′2,j+1;

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {2, 4}:
– Set δ

(j)
w,1 := i(j) + (j − 3) · w′1,3 − w′1,j ;

– Set δ
(j)
w,2 := i(j) − r(j/2)

2 + (j − 3) · w′2,3 − w′2,j ;
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Claim 5. If DPFZn,Z2` := (Gen,Eval) is a secure function secret sharing scheme for point function

fα,β(x) : Zn 7→ Z2` with adversarial advantage Adv
Zn,Z2`

DPF (1λ,A), then H2 and H1 are indistinguishable

with advantage ε2 := 3Adv
Zn,Z2`

DPF (1λ,A).

Proof. Note that P1 only sees {δ(j)
r,2 , δ

(j)
w,1, δ

(j)
w,2}j∈[4]; therefore, the modification of {δ(j)

r,1}j∈[4] is oblivious
to the corrupted party P1. In the hybrid H1, we have

• δ
(1)
r,2 := i(1) − ϕ(1)

2 + w2,1, δ
(2)
r,2 := i(2) − ϕ(2)

2 + w2,2;

• δ
(3)
r,2 := i(1) − w2,1, δ

(4)
r,2 := i(1) − w2,2;

• δ
(1)
w,1 := i(j) − r(1)

1 − w′1,1 + w′1,2, δ
(2)
w,1 := i(j) − w′1,3 − w′1,2;

• δ
(3)
w,1 := i(j) − r(2)

1 + w′1,1 + w′1,4, δ
(4)
w,1 := i(j) + w′1,3 − w′1,4;

• δ
(1)
w,2 := i(j) − w′2,1 + w′2,2, δ

(2)
w,2 := i(j) − r(1)

2 − w′2,3 − w′2,2;

• δ
(3)
w,2 := i(j) + w′2,1 + w′2,4, δ

(4)
w,2 := i(j) − r(2)

2 + w′2,3 − w′2,4;

It is straightforward that the distribution of {δ(j)
r,2}j∈[4] are uniformly random under the condition

δr,2 :=
∑4
k=1 δ

(k)
r,2 = i − ϕ2 where ϕ2 is used to generate the DPF keys (K(1)

ϕ2 ,K
(2)
ϕ2 ); similarly for

{δ(j)
w,1}j∈[4] and {δ(j)

w,2}j∈[4]. Whereas δr,2 := −ϕ2, δw,1 := −r1 and δw,2 := −r2 in the hybrid H2, we
can show that if there exists an adversary A who can distinguish the view of H2 from the view of H1

then we can construct an adversary B who uses A in a blackbox fashion can break at least one of the
three DPFZn,Z2` := (Gen,Eval) with the same advantage. Therefore, H2 and H1 are indistinguishable
with adversarial advantage ε2 := 3 · Adv

DPF
Zn,Z

2`
(1λ,A).

Hybrid H3: H3 is the same as H2 except that in H2:
• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {1, 3}:

– Set ∆v(j) := (j − 2) · w′3,1 + w′3,j+1;
• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {2, 4}:

– Set ∆v(j) := −v(j/2) + (j − 3) · w′3,3 − w′3,j ;
instead of

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {1, 3}:
– Set ∆v(j) := y

(j)
i − x(j) + (j − 2) · w′3,1 + w′3,j+1;

• Upon receiving (Owrite, sid, ssid, Pj) for j ∈ {2, 4}:
– Set ∆v(j) := y

(j)
i − x(j) − v(j/2) + (j − 3) · w′3,3 − w′3,j ;

Claim 6. H3 and H2 are perfectly indistinguishable.

Proof. Since {w′3,j}j∈[4], {y
(j)
i }j∈[4] and {x(j)}j∈[4] are uniformly random in Z2` , the distribution of

{∆v(j)}j∈[4] and {y(j)
i − x(j)}j∈[4] are identical. Therefore, H3 and H2 are perfectly indistinguishable.

The adversary’s view of H2 is identical to the simulated view ExecFn,`
read ,S,Z

. Therefore, the overall

distinguishing advantage is
11 · AdvPRFZn (1λ,A) + 4 · Adv

PRF
Z
2`

(1λ,A) + 3 · Adv
DPF

Zn,Z
2`

(1λ,A) .

This concludes the proof.
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