
Multiple-Valued Plaintext-Checking
Side-Channel Attacks on Post-Quantum KEMs

Yutaro Tanaka1,2, Rei Ueno1,2, Keita Xagawa3, Akira Ito3,
Junko Takahashi3 and Naofumi Homma1,2

1 Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai-shi, 980-8577, Japan
yutaro.tanaka.t6@dc.tohoku.ac.jp, rei.ueno.a8@tohoku.ac.jp,

naofumi.homma.c8@tohoku.ac.jp
2 CREST, JST, 4–1–8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

3 NTT Social Informatics Laboratories, Nippon Telegraph and Telephone Corporation,
3–9–11 Midori-cho, Musashino-shi, Tokyo, 180-8535, Japan

keita.xagawa.zv@hco.ntt.co.jp, akira.ito.as@hco.ntt.co.jp,
junko.takahashi.fc@hco.ntt.co.jp

Abstract. This paper presents a side-channel analysis (SCA) on key encapsulation
mechanisms (KEMs) based on the Fujisaki–Okamoto (FO) transformation and its
variants. Many post-quantum KEMs usually perform re-encryption during key de-
capsulation to achieve CCA security. It has been shown that the side-channel leakage
of re-encryption can be exploited for mounting a key-recovery plaintext-checking at-
tack (KR-PCA), even if the CPA secure decryption constructing the KEM is securely
implemented. In this paper, we propose an efficient side-channel-assisted KR-PCA
on post-quantum KEMs, which achieves a key recovery with significantly fewer at-
tack traces than the existing one. The basic ideas of the proposed attack are to
present a new KR-PCA based on a multiple-valued (MV-)PC oracle and to utilize a
dedicated multi-classification neural network (NN) to implement an MV-PC oracle.
This paper also presents how to realize a sufficiently reliable MV-PC oracle from not
completely accurate NN model outputs, and analyzes the tradeoff between the key
recovery success rate and the number of attack traces, with its application to NIST
PQC selected algorithm Kyber and similar lattice-based Saber, FrodoKEM and NTRU
Prime, as well as SIKE, a candidate for the fourth round. Furthermore, the feasibil-
ity of the proposed attack is assessed through attack experiments on three typical
PRF implementations (i.e., SHAKE, SHA3, and AES software). In consequence, we
confirm that the proposed attack reduces the number of attack traces required for a
reliable key recovery by up to 87% compared to the existing attacks against Kyber
and other lattice-based KEMs under the condition of 99.9999% success rate for key
recovery. We also confirm that the proposed attack can reduce the number of attack
traces by 85% for SIKE.
Keywords: Side-channel analysis · Fujisaki–Okamoto transformation · Key encap-
sulation mechanism · Public key encryption · Post-quantum cryptography · Deep
learning

1 Introduction
1.1 Background
Public-key cryptosystems have been essential for information systems to realize; for ex-
ample, secure communication, authentication, and digital signatures are indispensable for
secure information communication. Since RSA and elliptic curve cryptography (ECC),

mailto:yutaro.tanaka.t6@dc.tohoku.ac.jp
mailto:rei.ueno.a8@tohoku.ac.jp
mailto:naofumi.homma.c8@tohoku.ac.jp
mailto:keita.xagawa.zv@hco.ntt.co.jp
mailto:akira.ito.as@hco.ntt.co.jp
mailto:junko.takahashi.fc@hco.ntt.co.jp

2

which have been representative and mainstream of public-key cryptography, were known
to be broken in a quantum polynomial time employing Shor’s algorithm, post-quantum
cryptography (PQC) has been actively studied. For constructing PQC, a public key en-
cryption scheme (PKE) with weak security (i.e., chosen-plaintext attack (CPA) security)
is first developed, and then a key encapsulation mechanism with strong security (i.e.,
chosen-ciphertext attack (CCA) security) is obtained by combining the PKE with the
Fujisaki–Okamoto (FO) transform [FO99] or its variants. Thus, re-encryption in decap-
sulation, an essence of the FO(-like) transform, plays an essential role in post-quantum
security.

For the practical use of PQC, security evaluation against implementation attacks such
as side-channel attacks is inevitable, in addition to the security evaluation against math-
ematical cryptanalysis attacks using only the input and output of the cryptographic
algorithm (i.e., plaintexts, ciphertexts, and public key). Initially, the side-channel at-
tacks focusing on the PKE decryption to exploit the secret key directly have been inten-
sively studied, like the side-channel attacks on the modular exponentiation/scalar mul-
tiplication in RSA/ECC. Recently, another attack approach has been reported (e.g.,
[GTN20,RRCB20,UXT+21]), where the attacker focuses on the leakage of re-encryption
to implement a decryption oracle which enables the attacker to mount a chosen-ciphertext
attack on the underlying CPA-secure PKE. Note that a decryption oracle does not neces-
sarily mean a full decryption oracle but includes, for example, a plaintext-checking oracle
and decryption-failure oracle. These attacks disclose that we need to protect not only
the PKE decryption but also the whole procedures of KEM decapsulation, including re-
encryption and equality/validity check of re-encrypted ciphertext, against side-channel
attacks. Ueno et al. [UXT+21] showed that such an attack is generally applicable to post-
quantum KEMs owing to the wide deployment of FO-like transform and demonstrated
that their attack can recover eight of the nine KEM candidates in the third round of the
NIST PQC standardization. Thus, the potential and limitation of such attacks (e.g., the
lower bound of attack traces for a successful key recovery) should be investigated to de-
velop secure KEM implementations, as they help to develop countermeasures and design
cryptographic protocols, including the determination of key pair lifetime and its update
timing.

1.2 Our contribution
This paper presents an improvement of the above attacks (especially focusing on [UXT+21])
in the aspects of key-recovery plaintext-checking attack (KR-PCA) and the corresponding
side-channel distinguisher design based on deep learning. The number of traces required
for the attack success is determined by two factors: (1) the number of decryption oracle
accesses required for key recovery and (2) the number of traces to realize a reliable de-
cryption oracle access. Therefore, a tight evaluation of the factors, that is, an efficient
key-recovery algorithm with a decryption oracle sufficiently and efficiently realizable from
side-channel traces, would contribute to understanding the lower bound of attack cost (i.e.,
the number of attack traces for successful key recovery). The basic ideas of the proposed
attack are twofold. The first is to present key-recovery attacks using a multiple-valued
plaintext-checking (MV-PC) oracle, which is a generalization of a PC oracle used in, for
example, [RRCB20, BDH+21, UXT+21]; the second is implementing the MV-PC oracle
using a multi-classification neural network (NN) from side-channel traces. Intuitively, we
show that a 2N -valued PC oracle (N ∈ N) provides an N -bit information of secret key
per access for lattice-based KEMs, whereas the conventional (binary) PC oracle in the
previous literature provides one bit per access.

Meanwhile, a µ-classification (µ > 2) is a more difficult task than a binary classification
in general. That is, the accuracy of an MV-PC oracle can be worse than a binary oracle,
which yields an increase of (2) the number of traces to realize a reliable PC oracle. If its

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 3

Table 1: Numbers of attack traces for successful key recovery for NIST PQC KEM stan-
dard/candidates with NIST security level 1

Ueno et al. Qin et al. This work Maximum reduction rate
[UXT+21] [QCZ+21]

Lattice Kyber 13,824 11,799 1,728 87% / 85.4%
Saber 27,648 13,284 3,456 87% / 74.0%
FrodoKEM 230,400 165,240 46,080 80% / 72.1%
NTRU 14,020 N/A 14,020 0% (No improvement)
NTRU Prime 15,327 N/A 1,926 87% / N/A

Code HQC 90,555 N/A 36,222 0% (No improvement)
BIKE 30 M N/A 30 M 0% (No improvement)
Classic McEliece Unknown Not applicable Not applicable Not applicable

Isogeny SIKE 2,610 N/A 406 85% / N/A

increase is more significant than the reduction of (1) the number of oracle accesses, the
attack using an MV-PC oracle makes no sense concerning the conventional attack using a
binary PC oracle. To address this problem, we also propose the usage of µ-valued NN to
implement an MV-PC oracle based on deep learning efficiently. Note that our proposal
includes how to learn an NN model that can be used for implementing the proposed
key-recovery attack using the MV-PC oracle. In addition, we also show and evaluate
the accuracy enhancement of MV-PC oracle realized using multiple traces and discuss
its information-theoretic aspects. As a result, the proposed attack achieves a significant
reduction in the number of attack traces required for a successful attack compared to the
conventional attacks using a binary PC oracle and binary-classification NN.

For experimental validation, we apply the proposed attack to the NIST PQC stan-
dard and fourth/third-round candidates for KEMs. Table 1 summarizes the experimental
results using real devices and open-source implementations: the minimum number of
attack traces required for a successful key recovery in our experiment. For a compari-
son, Table 1 also displays the numbers for the conventional attacks in [UXT+21] (worst
case) and [QCZ+21] (average case)1 and the corresponding reduction rate. For each key-
recovery attack, we derived the number of attack traces according to the accuracy of PC
oracle implementation using the NN in our experiment and majority vote (See Section 5).
From Table 1, we confirm that the proposed attack reduces the number of attack traces by
at most 87% (i.e., approximately 10 times more efficient), although the proposed attack is
not improved for NTRU and code-based KEMs due to the difficulty in the key-recovery at-
tack using MV-PC oracle. To the best of the authors’ knowledge, the proposed attack can
recover the secret key of Kyber, Saber, FrodoKEM, NTRU Prime, and SIKE with the least
number of traces among the power/EM side-channel attacks focusing on re-encryption,
which is validated using real devices and measurement.

1.3 Paper organization
The remainder of this paper is organized as follows: Section 2 reviews the KEM based
on FO transform and the previous SCAs on KEMs focusing on FO transform. In par-
ticular, this section focuses on the previous most-generalized attack in [UXT+21]. Sec-
tion 3 describes the proposed attack with its application to the NIST PQC standard
and fourth/third-round candidates with theoretical evaluations. Section 4 presents the
neural side-channel distinguisher design for mounting the proposed attack on practical
implementation and discusses its information-theoretic aspects. Section 5 conducts an ex-
perimental validation using real devices and open-source PRF implementation compatible
with PQCs. Finally, Section 6 concludes this paper.

1 [QCZ+21, Table 6] gave the expected numbers of queries used in KR-PCAs against lattice-based PQ
KEMs. We compute the expected numbers of traces by multiplying the expected numbers of queries with
the number of traces implementing a PC oracle.

4

Algorithm 1 CCA-secure KEM based on FO transform (KeyGen, Encaps, Decaps)
KeyGen
Input: 1λ

Output: sk, pk, s
1: Function KeyGen(1λ)
2: (sk, pk)← PKE.Gen(1λ);
3: s←$ M;
4: return (sk, pk, s);

Encaps
Input: pk
Output: c, k
1: Function Encaps(pk)
2: m←$ M;
3: r ← G(m[, pk]);
4: c← PKE.Enc(pk, m; r);
5: k ← H(m, c);
6: return (c, k);

Decaps
Input: c, sk, pk, s
Output: k
1: Function Decaps(c, sk, pk, s)
2: m′ ← PKE.Dec(sk, c);
3: r′ ← G(m′[, pk]);
4: c′ ← PKE.Enc(pk, m′; r′);
5: if c = c′ then
6: return H(m′, c);
7: else
8: return Hprf(s, c);

2 Related Works
2.1 IND–CCA secure KEM based on the FO transform
KEM is a public-key cryptographic primitive used to transmit a secret key securely. A
KEM consists of three probabilistic polynomial-time algorithms: key generation (KeyGen),
key encapsulation (Encaps), and key decapsulation (Decaps). Most post-quantum KEMs
are proven to be CCA secure owing to adopting FO-like transform. Here, we refer to
FO transform and its variants such as [HHK17, SXY18, BHH+19] as FO-like transform.
Algorithm 1 illustrates post-quantum KEMs constructed using an FO-like transform with
underlying public-key encryption (PKE) scheme, where we suppose that PKE is CPA
secure and consists of three probabilistic polynomial-time algorithms: key generation Gen,
encryption Enc and decryption Dec, whereas there are some FO-like transform variants
adaptable to other types of PKEs. Such KEMs employ pseudorandom function (PRF),
pseudorandom generator (PRG), and/or cryptographic hash function denoted by G, H,
and Hprf in Algorithm 1, which are frequently instantiated with SHA-3 or SHAKE.

The main focus of this paper is devoted to the decapsulation KEM.Decaps, which com-
putes the shared secret as a result of H at Line 6 from an input ciphertext c, a private key
sk and a public key pk (if the input ciphertext is valid). KEM.Decaps first applies the PKE
decryption PKE.Dec to compute the corresponding plaintext m′ from the ciphertext and
then performs a re-encryption for validating the computed m′; that is, computes PKE.Enc
in the same manner as KEM.Encaps to check whether the re-encrypted ciphertext c′ equals
to the input ciphertext c. If c = c′, the input ciphertext is considered valid, and the shared
key H(m′, c) is then calculated and output. Otherwise (i.e., c ̸= c′), the ciphertext is in-
valid, and a pseudorandom value computed using Hprf (or a rejection symbol) is calculated
and output at Line 8. Intuitively, the FO-like transforms perform the ciphertext verifica-
tion (like fault analysis countermeasures) to detect any invalid ciphertext and to stop its
output, as CCA for CPA secure PKEs generally queries invalid ciphertexts and exploits
its decryption result.

2.2 Existing side-channel attacks on FO-like transform
Side-channel attacks on the FO-like transforms were initially found in the pioneering works
by Guo et al. [GTN20] and Ravi et al. [RRCB20].

Guo et al. presented a timing attack exploiting the equality check (corresponding to
Line 5 in Algorithm 1). Ciphertexts of post-quantum KEMs are treated as a long vector
in CPUs/microcontrollers. A comparison using a usual operation (e.g., memcmp) takes
a (relatively) long time if two ciphertexts are very similar to each other; otherwise, the
comparison terminates immediately. They exploited this timing difference to implement
a PC oracle for lattice- and code-based KEMs, and gave key-recovery attacks for lattice-
based and code-based KEMs where the equivalence determination is not implemented in

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 5

constant time.
Ravi et al. showed the first power/EM attack on FO-like transform. Revi et al. im-

plemented a PC oracle or decryption failure oracle by exploiting the side-channel leakage
during PRF computation in re-encryption with a t-test-based template. They demon-
strated that their attack achieved the key recovery of six lattice-based KEMs, namely,
Kyber, Saber, FrodoKEM, Round5, NewHope and LAC.

In [BDH+21], Bhasin et al. showed attacks on masked polynomial comparison schemes
for Kyber, Saber, and FrodoKEM [OSPG18, BPO+20] by exploiting ciphertext equality
check in lattice-based KEMs and demonstrated its application to Kyber. They imple-
mented a PC oracle using a distinguisher based on the t-test. Recently, Ueno et al. showed
a generalization of power/EM attacks on FO-like transforms [UXT+21]. They showed that
the side-channel leakage during re-encryption can be generally exploited if a KR-PCA on
the underlying PKE is known. They demonstrated that their attack could achieve the key
recovery of eight out of nine KEMs of NIST PQC third-round candidates. The literature
reveals that we should consider the implementation security of not only PKE.Dec but also
the whole KEM computation, including re-encryption and equality/validity check when
applying side-channel attack countermeasures.

In one direction in this research field, many researchers have recently been devoted to
improving attack efficiency (i.e., reducing the number of attack traces) for a tight eval-
uation of lower bound of attack cost. For example, not limited to the attacks focusing
on re-encryption, side-channel-assisted CCA approaches have been extensively studied in
e.g. [XPRO20, RBRC22, SKL+20, REB+22, NDGJ21], especially for lattice-based KEMs,
although some studies focus on specific parts of the underlying PKE (e.g., message encod-
ing/decoding and number theoretic transform (NTT)) rather than FO-like transform to
achieve higher efficiency. More recently, in [QCZ+21], Qin et al. showed an improvement
of CCA on lattice-based KEMs using a binary key-mismatch oracle with adaptive queries,
which reduces the number of oracle accesses/queries compared to CCA used in [UXT+21].
Furthermore, in [SCZ+22], Shen et al. showed a side-channel-assisted CCA using a binary
PC oracle with a method to correct errors included in PC oracle outputs implemented
by a side-channel. They showed that the error tolerance reduces the number of traces to
implement a PC oracle, which reduces the total number of traces for the key recovery.
They also demonstrated its application to Kyber, which revealed that their attack could
achieve up to 55.4% reduction of the total number of traces for the key recovery compared
to [UXT+21].

2.3 Side-channel-assisted KR-PCA and neural side-channel distinguisher
An uppercase character (e.g., X) denotes a random variable/vector of a set denoted by
the calligraphic character (e.g., X), and a lowercase character (e.g., x) denotes an element
of the set (i.e., x ∈ X), if they are defined otherwise. The conditional probability of
Y = y given X = x is defined as pY |X(y|x) = pY,X(y, x)/pX(x). Let Pr be the probability
measure and p be the density or mass function. Let E denote the expectation operator.
A side-channel trace is defined as x ∈ X ⊂ Rℓ, where ℓ denotes the number of sample
points.

This paper focuses on the generalized attack utilizing a PC oracle and neural distin-
guisher reported by Ueno et al. [UXT+21]. Let (sk, pk) denote a key pair of a KEM, and
let c be a valid ciphertext corresponding to a plaintext m. Here, “plaintext m” denotes
the input to the PKE.Enc in KEM.Encaps (which corresponds the output of PKE.Dec in
KEM.Decaps). We call m and c the reference plaintext and ciphertext, respectively. Let
ĉ be an invalid ciphertext, which is a modification of c made by the attacker. When the
attacker queries ĉ, a PC oracle tells whether ĉ is decrypted to m or not. Note that the
attacker cannot obtain the decryption result of PKE.Dec (i.e., m′ in Algorithm 1), but

6

can obtain only the binary information. Formally, the PC oracle is defined as

O(c′; m) =

{
1 if PKE.Decsk(c′) = m,
0 othernwise.

We refer to a key-recovery attack using PC oracle as KR-PCA.
As it is known that many post-quantum KEMs are vulnerable to KR-PCA, Ueno et

al. experimentally showed that the attacker can recover the secret key of such KEMs if
the attacker can implement the PC oracle by utilizing the side-channel leakage. Ueno et
al. also presented the usage of the likelihood ratio test to realize a distinguisher checking
if m′ = m or not from side-channel traces (i.e., side-channel distinguisher). Let B be a
random variable that represents the oracle output (i.e., B = O(C ′; m) and b ∈ B = {0, 1}).
Let pB|X be the true conditional probability distribution of PC oracle output B given side-
channel trace X; that is, pB|X(1 | X) = Pr(M ′ = m | X) and pB|X(0 | X) = Pr(M ′ ̸=
m | X). According to the Neyman–Peason lemma [NP33], if the attacker knows the true
distribution pM |X , the attacker can perform the most powerful test for B = 1 or 0 (i.e.,
M = m or M ̸= m) given (multiple copies of) X. Let t be the number of traces available
for one PC oracle implementation. Here, the attacker queries an invalid ciphertext C ′

repeatedly t times to obtain t side-channe traces X0, X1, . . . , Xi, . . . , Xt−1. Ueno et al.
proposed to determine the PC oracle output B̂ as follows:

B̂ = arg max
b∈{0,1}

log
t−1∏
i=0

pB|X(b | Xi) = arg max
b∈{0,1}

t−1∑
i=0

log pB|X(b | Xi). (1)

The Neyman–Peason lemma guarantees that this is the most powerful test, as Equation (1)
is equivalent to the likelihood test ratio2 in accordance with Bayes’ theorem, supposing
that pB(0) = pB(1) = 1/2 and X0, X1, . . . , Xt−1 are independent and identically dis-
tributed.

However, such a true distribution is usually unavailable to an attacker/evaluator.
Accordingly, Ueno et al. proposed the usage of deep learning to imitate pB|X . Let
qθ(b|x) = qB|X(b | x; θ) be the conditional probability distribution represented by an
NN with a parameter θ. In a typical DL, an NN qθ is trained such that the cross entropy
(CE) is minimized, and the goal of DL is to find an optimal parameter θ̂ using a dataset
containing labeled side-channel traces. The CE is defined as

CE(qθ) = −E log qB|X(B | X; θ) = −
∫ ∑

b∈{0,1}

pB,X(b, x) log qB|X(b | x; θ) dx,

which is minimized if and only if p = qθ (although it is not guaranteed that there exists
such θ according to pB|X and hyperparameter). As the CE is usually incomputable due
to the expectation (i.e., integral), in practice, it is approximated by the negative log
likelihood (NLL) with the finite number of traces defined as follows:

L(qθ) = −1
s

z−1∑
j=0

log qB|X(Bj | Xj ; θ),

2Let Xt denote (X0, X1, . . . , Xt−1). The likelihood ratio test in this case originally estimates whether
the parameter is 1 or 0 (i.e., b = 1 or b = 0) by comparing pXt|B(Xt | 1) and pXt|B(Xt | 0).
By supposing that X0, X1, . . . , Xt−1 are independent and identically distributed, it holds pXt|B(Xt |
b) =

∏t−1
v=0 pX|B(Xi | b) =

∏t−1
i=0 pB|X(b | Xi)pX(Xi)/pB(b) in accordance with Bayes’ theorem.

By supposing that pB(0) = pB(1) = 1/2, this equation is followed by arg maxb pXt|B(Xt | b) =
arg maxb

∏t−1
i=0 pB|X(b | Xi) = arg maxb log

∑t−1
i=0 pB|X(b | Xi).

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 7

where z denotes the number of traces in the dataset, and Bj denotes the j-th PC oracle
output (i.e., label) corresponding to the j-th trace Xj in the dataset. In [UXT+21], Ueno
et al. showed that such an NN can achieve a sufficiently high accuracy to implement a
PC oracle, even for a masked software implementation [git21]. Moreover, Ueno et al. also
experimentally demonstrated that the likelihood ratio test using a trained NN can achieve
a higher success rate and fewer traces compared to a majority voting. This yields a key
recovery of post-quantum KEMs with the practical number of traces in total.

3 Proposed Attack
3.1 Multiple-valued plaintext-checking (MV-PC) oracle
Although the PC oracle described in Section 2.3 is promising for CCA on many post-
quantum KEMs, its major drawback for CCA is that the attacker can obtain no more than
one-bit information per oracle access3, which yields the large number of traces required
for key recovery. The proposed attack utilizes another oracle named MV-PC oracle to
extract more bits of information per oracle access. Let µ be a positive integer. Consider
an attacker who knows that a ciphertext c′ is necessarily decrypted to either of µ plaintexts
m0, m1, . . . , mµ−1. The attacker can recover the secret key of the KEM with repeated and
adaptive queries if the attacker can know which plaintext c′ is decrypted to. Such oracle
is a generalization of the (binary) PC oracle with µ = 2. Note that, with no side-channel,
the FO-like transform theoretically does not give any information about which plaintext c′

corresponds to unless the adversary generates c′ from the actual encapsulation. We name
this oracle mutiple-valued plaintext-checking (MV-PC) oracle, which is formally defined
as

Oµ(c′; m0, m1, . . . , mµ−1) = v s.t. PKE.Decsk(c′) = mv.

Intuitively, µV-PC oracle provides at most log2 µ information to the attacker; therefore,
CCA using µV-PC oracle would achieve the key recovery with fewer oracle accesses by a
factor of 1/ log2 µ than the conventional KR-PCA with the binary PC oracle.

3.2 KR-MV-PCA algorithms for NIST PQC third-round KEM candi-
dates

3.2.1 Kyber

We briefly review Kyber and extend the existing KR-PCA into KR-MV-PCA.

Review of Kyber: The parameter sets of Kyber in Round 3 are summarized in Table 2.
Let R = Z[x]/(x256 + 1) and Rq = Z[x]/(x256 + 1, q), where each coefficient is in [−(q −
1)/2, (q − 1)/2] for odd q and [−q/2 + 1, q/2] for even q. For a ∈ Z+, we let Sa = {f ∈
R : fi ∈ {−a, −a + 1, . . . , a − 1, a} for i = 0, . . . , 255}. Let ei = (0i−1, 1, 0k−i) ∈ Rk be
the i-th unit vector of Rk.

A ciphertext of Kyber is denoted by (c1, c2) ∈ Rk × R and a secret key is denoted by
s = (s1, . . . , sk) ∈ Sk

η1
. The decapsulation algorithm first computes M =

⌈
(q/2dV)c2

⌋
−〈⌈

(q/2dU)c1
⌋

, s
〉

mod q ∈ Rq and obtains the plaintext ⌈(2/q)M⌋ mod 2 ∈ R2.

KR-PCA: We briefly review the KR-PCA against Kyber in Round 3 [HV20, XIU+21].
In order to determine si,j , the j-th coefficient of si, the attacker fixes c1 determined by
i, and modifies c2’s j-th coefficient and makes log2(2η1 + 1) queries to the PC oracle to
check if the decrypted plaintext is 0256 or not.

3For lattice-based KEMs, the expected amount of information is far less than one bit, depending on
its encoding method.

8

Table 2: Parameter sets of Kyber in Round 3
parameter sets k q η1 dU dV

Kyber512 2 3329 3 10 4
Kyber768 3 3329 2 10 4
Kyber1024 4 3329 2 11 5

Table 3: The behavior of mj for j = 0, . . . , N − 1 of m = Dec(s, (c1, c2)) on a ciphertext
(c1, c2) = ((U · x256−a) · ei,

∑N−1
ℓ=0 Ta+ℓx

ℓ) with U =
⌈
(2dU /q) · 276

⌋
mod 2dU and Ta+ℓ =⌈

(2dV /q) · 208 · ta+ℓ

⌋
mod 2dV .

(a) Kyber512

si,a+j

ta+j −3 −2 −1 0 1 2 3

−3 1 1 1 0 0 0 0
−2 1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 0 0 0 0 0 0 1
+2 0 0 0 0 0 1 1
+3 0 0 0 0 1 1 1

(b) Kyber768 and Kyber1024

si,a+j

ta+j −3 −2 −1 0 1 2 3

−2 1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0

+1 0 0 0 0 0 0 1
+2 0 0 0 0 0 1 1

KR-2N V-PCA: For the sake of easiness of implementing PC oracle, we design a query
ciphertext to the decrypted plaintext varies in the first N positions of plaintexts and fix
the rest as 0256−N by modifying the existing KR-PCA.

Suppose that we want to determine si,j for j = a, . . . , a+N−1, N sequential coefficients
of si starting from its a-th coefficient for a ∈ {0, . . . , 256 − N}. We consider a ciphertext

(c1, c2) =
(

(U · x256−a)ei, (
N︷ ︸︸ ︷

Ta, Ta+1, . . . , Ta+N−1,

256−N︷ ︸︸ ︷
0, . . . , 0)

)
,

where U =
⌈
(2dU /q) · 276

⌋
mod 2dU and Ta+j =

⌈
(2dV /q) · 208 · ta+j

⌋
mod 2dV with ta+j ∈

{−3, −2, . . . , 3}. The decryption algorithm computes M =
⌈
(q/2dV)c2

⌋
−

⌈
(q/2dU)c1

⌋
·

s mod q ∈ Rq. Expanding this, we have

Mj =

{
276si,a+j + 208ta+j (j = 0, . . . , N − 1)
276si,a+j (otherwise).

Recall that the j-th plaintext is mj = ⌈(2/q)Mj⌋ mod 2. Mj is decoded into 0 for j =
N, . . . , 256 since |(2/q) · 276 · b| < 1/2 for b ∈ {−η1, . . . , η1}. For j = 0, . . . , N − 1, Mj is
decoded into 0 if and only if |Mj | ≤ 832, that is, |276si,a+j + 208ta+j | ≤ 832. Thus, we
have the pattern of mj summarized in Table 3.

Hence we can run binary search on si,j ∈ {−η1, . . . , η1} in parallel and the number of
queries are reduced by the factor approximately 1/N . We estimate the upper bound of
the number of oracle access as log2(2η1 + 1) · ⌈256/N⌉ · k.

3.2.2 Saber

Let R = Z[x]/(x256 + 1) and Rq = Z[x]/(x256 + 1, q), where each coefficient is in [0, q).
For a ∈ Z+, we let Sa = {f ∈ R : fi ∈ {−a, −a + 1, . . . , a − 1, a} for i = 0, . . . , 255}.

Saber has three parameter sets, LightSaber, Saber, and FireSaber, summarized in
Table 4. A ciphertext of Saber is denoted by (c1, c2) ∈ Rk

p × RT and a secret key is
denoted by s ∈ Sk

η . The decapsulation algorithm first computes M = ⟨c1, s⟩ − (p/T)c2 +∑255
i=0 h2xi ∈ Rp where h2 = p/4 − p/2T + q/2p and obtains the plaintext m = M ≫

(log2(p) − 1) ∈ R2, that is, taking MSBs of M ∈ {0, . . . , 1023}256.

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 9

Table 4: Parameter sets of Saber in Round 3
parameter sets k q p T η h2

LightSaber 2 8192 1024 8 5 196
Saber 3 8192 1024 16 4 228
FireSaber 4 8192 1024 64 3 252

Table 5: Saber and FireSaber: The behavior of m′
0 of m′ = Dec(sk, (c1, c2)) on a ciphertext

(c1, c2) with c1 = U · x256−a · ei and c2 = t.

(a) Saber with U = −54 and −57

U = −54 U = −57

ski

t 0 1 0 1 2 3 4 5 6 7

−4 0 1 0 1 1 1 1 1 1 1
−3 0 0 0 1 1 1 1 1 1 1
−2 0 0 0 0 1 1 1 1 1 1
−1 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1

+1 0 0 0 0 0 0 0 1 1 1
+2 0 0 0 0 0 0 0 0 1 1
+3 0 0 0 0 0 0 0 0 0 1
+4 0 0 0 0 0 0 0 0 0 0

(b) FireSaber with U = −15

ski

t 0 13 14 15 16 17 18

−3 0 1 1 1 1 1 1
−2 0 0 1 1 1 1 1
−1 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1

+1 0 0 0 0 0 1 1
+2 0 0 0 0 0 0 1
+3 0 0 0 0 0 0 0

KR-PCA and KR-2N V-PCA for Saber/FireSaber: For Saber and FireSaber, we can
mount a similar attack to the above KR-MV-PCA against Kyber by extending the existing
KR-PCA in [OUKT21]. Adapting and summarizing the result of Osumi, Uemura, Kudo,
and Takagi [OUKT21], we obtain the table of the behavior of decrypted messages in
special ciphertexts c1 = U · x256−a · si and c2 = t to determine si,a in Table 5. (We can
verify this behavior by direct computation.)

On Saber, we first check if a coefficient is −4 or not with U = −54 and then determine
the other 8 cases with three adaptive queries with U = −57. As Kyber, we can run
this test in parallel, and we estimate the upper bound of the number of oracle access as
4 · ⌈256/N⌉ · 3

On FireSaber, we can run a binary search on si,j ∈ {−3, . . . , +3} in parallel and we
estimate the upper bound of the number of oracle access as 3 · ⌈256/N⌉ · 4.

KR-PCA for LightSaber: We review the KR-PCA against LightSaber in Round 3 [HV20],
which consists of two phases. Following the computation of [HV20], on input (c1, c2), the
decryption algorithm computes

Mj = (⟨c1, s⟩)j − 128 · c2,j + 196 mod 1024 ∈ {0, 1, . . . , 1023}

and decodes Mj into 0 if Mj ≤ 512 and into 1 otherwise. Let I := {−5, −4, −3, −2, +2, +3, +4, +5}.
The attacker first determines si,j is one of I or included in {−1, 0, +1}. If c2,j = 0,

then for c1 = U · ei with any constant U ∈ [−196/5, 196/5] and si,j ∈ {−5, . . . , +5} we
have mj = 0 if and only if Usi,j + 196 < 512. In addition, if c2,j = 2, then we have
−128 · 2 + 196 mod 1024 = 964. Thus, for c ∈ {2, 3, 4, 5}, we have mj = 0 if and only
if ((60/c)si,j + 964 mod 1024) < 512, that is, si,j ≥ c. By a similar computation, for
c ∈ {−5, −4, −3, −2}, we have mj = 0 if and only if ((60/c)si,j + 964 mod 1024) < 512,
that is, si,j ≤ c. Thus, the attacker can determines si,j is one of I or included in
{−1, 0, +1} by using 4 = ⌈log2(9)⌉ queries.

The attacker then determines si,j = −1, 0, +1. We define V + =
∑

j:si,j=4 or 5 5xj and
V − =

∑
j:si,j=−4 or −5 5xj . The attacker then makes two ciphertexts queries, (60 ·ei, 2xj +

V +) and (−60 · ei, 2xj + V −), to determine si,j = −1, 0, +1.

10

KR-2N V-PCA for LightSaber: We make the above KR-PCA into KR-2N V-PCA where
the decrypted plaintext varies only in the first N position.

Suppose that we want to determine N sequential coefficients of si from its a-th co-
efficient for a ∈ {0, . . . , 256 − N}; si,a+j for j = 0, . . . , N − 1. In this case, we query a
ciphertext

(c1, c2) =
(

(−U · x256−a)ei, (
N︷ ︸︸ ︷

2, . . . , 2,

256−N︷ ︸︸ ︷
0, . . . , 0)

)
,

where U ∈ [−196/5, +196/5]. For j = N, . . . , 256, we have Mj = ±Usi,a+j mod 256 + 196,
where the sign ± is depending on a and j. In any case, we have Mj < 512 and mj = 0.

For j = 0, . . . , N − 1, we have Mj = Usi,a+j − 128 · 2 + 196 mod 1024. Thus, for
c ∈ {2, 3, 4, 5}, we have mj = 0 if and only if ((60/c)si,a+j + 964 mod 1024) < 512, that
is, si,a+j ≥ c. By a similar computation, for c ∈ {−5, −4, −3, −2}, we have mj = 0 if and
only if ((60/c)si,a+j + 964 mod 1024) < 512, that is, si,a+j ≤ c. Unfortunately, we cannot
make adaptive queries here. Thus, we use eight queries to determine whether si,a+j is one
of I or included in {−1, 0, 1} in parallel.

Afterward, to determine si,j ∈ {−1, 0, +1}, we prepare the following queries: we define
V :=

∑255
j=0 vjxj , where vj := ⌈60sj/128⌉ for {j : si,j ∈ I} and vj = 0 for other j’s. Notice

that the parameter setting induces −196 < 60si,j − 128vj < 196 for si,j ∈ I. We then
query two ciphertexts (−60 · x256−a · ei, −V · x256−a +

∑
ℓ=0,...,N−1:si,a+ℓ∈{−1,0,+1} 2xℓ)

and (60 · x256−a · ei, V · x256−a +
∑

ℓ=0,...,N−1:si,a+ℓ∈{−1,0,+1} 2xℓ) to determine si,a+j ∈
{−1, 0, +1} for j = 0, . . . , N − 1 in parallel. For the first query, we have

Mj =


60si,a+j − 128 · 2 + 196 mod 1024 if j = 0, . . . , N − 1 and si,a+j ∈ {−1, 0, +1}
60si,a+j − 128vj + 196 mod 1024 if j = 0, . . . , N − 1 and si,a+j ∈ I
60si,a+j − 128vj + 196 mod 1024 if j = N, . . . , 255 − a

−(60si,a+j mod 256 − 128vj) + 196 mod 1024 if j = 255 − a, . . . , 255.

Thus, for j = 0, . . . , N − 1 and si,a+j ∈ {−1, 0, +1}, if si,a+j = 1, then we have Mj = 0
and mj = 0; otherwise, we have Mj = 964 or 904 and mj = 1. For other cases, we have
0 < Mj < 392 and mj = 0.

For the second query, by similar computation, we have mj = 1 if and only if j =
0, . . . , N − 1 and si,a+j = 0, 1. As summary, We can determine si,a+j ∈ {−1, 0, +1} for
j = 0, . . . , N − 1 by using those two queries.

Thus, the number of oracle access is upper-bounded by 8·⌈256/N⌉·2 plus 2·⌈256/N⌉·2.

3.2.3 FrodoKEM

In FrodoKEM, one of the lattice-based KEMs, is denoted the ciphertext by (C1, C2) ∈
Zm̄×n

q ×Zm̄×n̄
q and the secret key by S ∈ {−s, −s+1, . . . , s}n×n̄. During the decapsulation,

this ciphertext and the secret key are used to compute M = C2 − C1S ∈ Zm̄×n̄ to obtain
the plaintext ⌊M · 2B/q⌉ mod 2B ∈ Zm̄×n̄

2B .
When determining Si,j , the attacker fixes C1 determined from i, j, makes Si,j appear

in the calculation of M and queries log2(2s + 1) streets of ciphertexts appropriately while
changing C2. In this way, Si,j ∈ [−s, +s] can be determined. At this time, up to m̄ × n̄
Si,j can be determined in parallel at the same time. For N , when the 2N class PC oracle
is accessible, it is possible to reduce the number of queries to 1/N .

3.2.4 NTRU

Ding et al. [DDS+19] gave a KR-PCA against NTRU-HPS of NTRU and Zhang et al. [ZCD21]
gave that against NTRU-HRSS of NTRU. In their attacks, they seek a part of a secret
key g ∈ {−1, 0, +1}n. They first search the longest chain of +1 or −1 in g by querying

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 11

malformed ciphertexts to the PC oracle with a guess 0n. They then determine the remain-
ing coefficients of g by querying crafted ciphertexts to the PC oracle with a guess 0n. In
those procedures, the decision is made by checking if the decrypted plaintext is (rguess, 0)
or not. (For detail, see [UXT+21, Section 4.1.4].)

Ravi et al. [REB+22] gave SCA-assisted KR-PCA against NTRU (and Streamlined
NTRU Prime of NTRU Prime) by extending the chosen-ciphertext attack against old-school
NTRU [JJ00]. In their attack, we test if a decrypted plaintext is (rguess, mguess) or not
and determine a part of the secret key.

In both attacks, we currently do not know how to reduce the number of queries using
the MV-PC oracle. We leave exploiting the MV-PC oracle as an interesting open problem.

3.2.5 Streamlined NTRU Prime in NTRU Prime

Ravi et al. [REB+22] gave SCA-assisted KR-PCA against Streamlined NTRU Prime of
NTRU Prime as we already referred. In their attack, they implement the PC oracle by
using SCA, and they check if a decrypted plaintext is their guess (rguess, mguess) or not
and determine a part of the secret key.

Again, we currently do not know how to reduce the number of queries using the MV-PC
oracle. We leave exploiting the MV-PC oracle as an interesting open problem.

3.2.6 NTRU LPRime in NTRU Prime

NTRU LPRime is similar to Kyber and Saber, and we can mount KR-2N V-PCA against it.
Let R = Z[x]/(xp − x − 1) and Rq = Z[x]/(xp − x − 1, q). Let Sd = {f ∈ R : fi ∈

{−d, −d + 1, . . . , d − 1, d} for i = 0, . . . , p − 1}. A secret key is denoted by s ∈ S1.
We briefly review the KR-PCA in [XIU+21] with a small adaption. They first de-

termine the first N coefficients of s with non-adaptive two queries by checking if the
decrypted plaintext is of the form (m, 1, dots, 1), where m ∈ {0, 1}N . For the rest p − N
coefficients, they sequentially determine N coefficients of s with adaptive three queries
by checking if the decrypted plaintext is of the form (m, 1, . . . , 1), where m ∈ {0, 1}N .
(They determine sj + sj+1 ∈ {−2, −1, 0, +1, +2} and compute sj ∈ {−1, 0, +1}.) Thus
the number of queries to the MV-PC oracle is at most 2 + 3 · ⌈(p − N)/N⌉.

3.3 Code-based KEMs (Classic McEliece, BIKE, HQC)
MV-PC oracle does not improve the number of oracle accesses for key recovery. We have
three code-based KEMs, Classic McEliece, BIKE, and HQC.

• Classic McEliece: There is no known KR-PCA against Classic McEliece.

• BIKE: The existing KR-PCA (Guo et al. [GHJ+22]) is based on the GJS attack [GJS16],
in which the attacker sends many ciphertexts of invalid plaintexts with special pat-
terns and estimated decryption failure rates for each pattern. Thus, MV-PC oracle
is not useful to mount such attack against BIKE.

• HQC: There are two existing KR-PCAs for HQC in Round 3, Guo et al. [GHJ+22]
and Schamberger et al. [SHR+22].4 For a secret key s ∈ Fn

2 and a ciphertext
(c1, c2) ∈ Fn

2 × Fn1n2
2 , the decryption of HQC computes a plaintext as follows:

1. compute M = c2 ⊕ [c1 ⊗ s]i=0,...,n1n2−1 ∈ Fn1n2
2 ;

2. decode each Mi ∈ Fn2
2 into m̃i ∈ F8

2 ≃ F28 by using a decoder decodedRM of the
duplicated Reed-Muller code with parameter [n2, 8]2;

4Schamberger et al. [SHR+22] pointed out that the KR-PCA in [XIU+21] (and [UXT+21]) is incorrect
because of the mistreatment of the decoder in the decryption.

12

3. decode m̃ ∈ Fn1
28 into m ∈ Fk

28 ≃ F8k
2 by using a decoder decodeRS of the

Reed-Solomon code with parameters [n1, k1]28 .

Intuitively speaking, the KR-PCAs uses a close-to-0 oracle, which checks if the
input is decoded into 0 or not by decodedRM. Since we only have access to the
plaintext decoded by both decoders, we need to take account of decodeRS. In order
to determine si, we can design a query ciphertext (c1, c2) such that Mi is decoded
into 08 by decodedRM if and only if m = 08k by using the property of the Reed-
Solomon code.
To use the MV-PC oracle, we need to consider the behavior of the decrypted plain-
text after decoded by the inner decoder decodeRS, and we currently fail to design
such ciphertexts. We leave designing the KR-MV-PCA against HQC as an interest-
ing open problem.

3.4 Isogeny-based KEM (SIKE)
We extend the KR-PCA on SIKE [GPST16, UXT+21] to KR-MV-PCA. We use µ =
3N -valued PC oracle for the key recovery of SIKE. In SIKE, given P̃A and Q̃A (i.e., the
points consisting in the SIKE ciphertext), the decapsulation first calculates Bob’s point
RAB = P̃A + [sk3]Q̃A on Alice’s elliptic curve EA with the order of 3eB , where sk3 ∈
{1, 2, . . . , 3eB − 1} is the secret key, and the j-variant of RAB is used for recovering the
plaintext. In KR-3N V-PCA, The attacker exploits the fact that the order of RAB is 3eB

as well as the KR-PCA in [GPST16, UXT+21], and recovers the secret key iteratively
from the least significant ternary digit to the upper digits in an N -digit-wise manner.
Let sk3 = 30β0 + 31β1 + · · · + 3wβw + · · · + 3eB−1βeB−1 (βw ∈ {0, 1, 2}) be the ternary
expanded secret key. We here consider a case that the attacker has already recovered
up-to the (lN − 1)-th ternary digit (i.e., β0, β1, . . . , βlN−1), and attempts the recovery of
the (lN -th ternary digits (i.e., βlN , . . . , βl(N+1)−1), where l is a natural number. Note
that l = 0 indicates that the attacker has recovered no digit yet and starts recovering
β0, . . . , βN−1. Let Kl = 30β0 + 31β1 + · · · + 3lN−1βlN−1 (K0 = 0) be the recovered part of
the secret key upto the (lN − 1)-th digit. Given P̃A and Q̃A, the attacker computes two
points on Alice’s curve as

P̃
(τ,i)
A = P̃A − [3eB−N(l+1)Kl]Q̃A,

Q̃
(τ,i)
A = Q̃A + [3eB−N(l+1)]Q̃A,

generates an invalid ciphertext (c(l)
0 , c1) with P̃

(l)
A and Q̃

(l)
A , and queries it. For the query,

the SIKE decapsulation calculates the generator of the cyclic group as

R
(l)
AB = (P̃A − [3eB−N(l+1)Kl]Q̃A) + [sk3](Q̃A + [3eB−N(l+1)]Q̃A)

= RAB + [3eB−N(l+1)(sk3 − Kl)]Q̃A,

instead of RAB for the reference ciphertext (c0, c1), and subsequently computes the j-
variant of EA/⟨R(τ,i)

AB ⟩. Here, it holds

[3eB−N(l+1)(sk3 − Kl)]Q̃A = [3eB−N(l+1)
eB−1∑
l=i

3lN
N−1∑
v=0

3vβlN+v]Q̃A,

= [3eB−N
N−1∑
v=0

3vβlN+v]Q̃A,

because the order of Q̃A is 3eB . Therefore, R
(l)
AB takes either of 3N values depending on

βlN , βN+1, . . . , βl(N+1)−1, which determines the value of plaintext m′. Thus, the attacker

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 13

Algorithm 2 Key-recovery 3N -valued plaintext-checking attack on SIKE
Input: Reference ciphertext (c0, c1) and candidate plaintexts m(0,0,...,0), m(1,0,...,0), . . . , m(2,2,...,2)

Output: Secret key sk3
1: Function AttackOnSIKE((c0, c1), m(0,0,...,0), m(1,0,...,0), . . . , m(2,2,...,2))
2: K0 ← 0;
3: for l = 0 to ⌈(eB − 1)/N⌉ do
4: P̃

(l)
A ← P̃A − [3eB−N(l+1)Ki]Q̃A;

5: Q̃
(l)
A ← Q̃A + [3eB−N(l+1)]Q̃A;

6: (c(l)
0 , c1)← ((EA, P̃

(l)
A , Q̃

(l)
A), c1);

7: Kl+1 ← Kl + 3lN ×O3N ((c(l)
0 , c1); m(0,0,...,0), m(1,0,...,0), . . . , m(2,2,...,2));

8: return K⌈(eB−1)/N⌉+1;

can recover the secret key digits βlN , βN+1, . . . , βl(N+1)−1 if the attacker can know the
plaintext corresponds to c′. Let m(b0,b1,...,bN−1) be a plaintext corresponding to

R
(b0,b1,...,bN−1)
AB = RAB + [3eB−N (30b0 + 31b1 + · · · + 3N−1bN−1)]Q̃A,

where RAB and Q̃A are for the reference ciphertext. As the attacker can compute all values
of [3eB−N

∑
v 3vbv]Q̃A for all bv ∈ {0, 1, 2} in advance without the secret key, a 3N -valued

PC oracle defined as

O3N ((c′
0, c1); m(0,0,...,0), m(1,0,...,0), . . . , m(2,2,...,2)) = 30b0 + 31b1 + · · · + 3N−1bN−1

s.t. SIKE.Decsk3((c′
0c1)) = m(b0,b1,...,bN−1),

is sufficient for the key recovery. Algorithm 2 illustrates the KR-3N V-PCA on SIKE, which
exploits the 3N -valued PC oracle at Line 7. The number of iterations is ⌈eB − 1/N⌉, which
is less by a factor of 1/2N than the KR-PCA in [UXT+21]. Note that we require only one
PC oracle access to recover a digit if N = 1, whereas the conventional binary PC oracle
for reference plaintext in [UXT+21] requires at least two accesses, which yields a higher
efficiency of the proposed attack. To implement the MV-PC oracle, we can employ the
hash function, and PRF in SIKE.Decaps as a leakage source as described in [UXT+21].

3.5 Complexity analysis
Table 6 describes the numbers of oracle accesses for KR-µV-PCA on lattice-based KEMs
and SIKE, and Table 7 reports the concrete values when N = 1, 2, . . . , 8. These tables
show the values for schemes with the security equivalent to AES128 and AES256 (i.e.,
NIST security levels 1 and 5, respectively). From the tables, we can confirm that the
increase of N (i.e., the usage of MV-PC oracle) significantly contributes to reducing the
number of oracle accesses. Note that this value corresponds to the number of attack
traces if we can implement the oracle with 100% accuracy using one side-channel trace;
in practice, we need multiple traces to implement a reliable oracle. In other words, if we
can implement the MV-PC oracle for greater N , we can perform the key recovery of these
KEMs very efficiently, as demonstrated in Section 5.

4 Neural side-channel distinguisher for MV-PC oracle
4.1 Basic concept
In this paper, we propose the usage of DL to implement an MV-PC oracle as well as the
existing study in [UXT+21]. Namely, we train a µ-classification NN to estimate which
a plaintext m0, m1, . . . , or mµ−1 corresponds to c′ from the power/EM trace(s) during

14

Table 6: Formulas for deriving number of oracle accesses required for KR-µV-PCA (µ =
2N for lattice-based KEMs and µ = 3N for SIKE)

KEM type Scheme Instance # Oracle accesses
Lattice Kyber Kyber-512 3 × ⌈256/N⌉ × 2

Kyber-1024 3 × ⌈256/N⌉ × 4
Saber LightSaber-KEM N = 1: at most 4 × 256 × 2 + 2 × 256 × 2

N ≥ 2: at most 8 × ⌈256/N⌉ × 2 + 2 × ⌈256/N⌉ × 2
FireSaber-KEM 3 × ⌈256/N⌉ × 4

FrodoKEM FrodoKEM-640 5 × ⌈640 × 8/N⌉
FrodoKEM-1344 4 × ⌈1344 × 8/N⌉

NTRU Prime ntrulpr653 2 + 3 × ⌈(653 − N)/N⌉
ntrulpr1277 2 + 3 × ⌈(1277 − N)/N⌉

Isogeny SIKE SIKEp434 ⌈274 × 2/(3N)⌉
SIKEp751 ⌈478 × 2/(3N)⌉

Table 7: Number of oracle accesses required for KR-MV-PCA when N = 1, 2, . . . , 8 (µ =
2N for lattice-based KEMs and µ = 3N for SIKE)

KEM type Scheme Instance # Oracle accesses
N = 1 2 3 4 5 6 7 8

Lattice Kyber Kyber-512 1,536 768 516 384 312 258 222 192
Kyber-1024 3,072 1,536 1,032 768 624 516 444 384

Saber LightSaber-KEM 3,072 2,560 1,720 1,280 1,040 860 740 640
FireSaber-KEM 3,072 1,536 1,032 768 624 516 444 384

FrodoKEM FrodoKEM-640 25,600 12,800 8,535 6,400 5,120 4,270 3,660 3,200
FrodoKEM-1344 43,008 21,504 14,336 10,752 8,604 7,168 6,144 5,376

NTRU ntruhrss701 2,804 N/A
ntruhps2048509 1,018 N/A
ntruhps4096821 1,642 N/A

NTRU Prime ntrulpr653 1,703 853 571 428 344 287 245 214
ntrulpr1277 3,575 1,789 1,195 896 719 599 512 448
sntrup653 2,712 N/A
sntrup1277 5,175 N/A

Isogeny SIKE SIKEp434 290 145 97 73 58 49 42 37
SIKEp751 319 160 107 80 64 54 46 40

PRF/PRG execution. Note that the profiling dataset can be acquired using the target
device without the secret key and the exiting study, which indicates the practicality of
the proposed attack in a real scenario.

Let Bµ be the random variable representing a µ-valued PC oracle output (i.e., Bµ =
Oµ(C ′; m0, m1, . . . , mµ−1) and b ∈ Bµ = {0, 1, . . . , µ − 1}). Let pBµ|X be the true condi-
tional probability distribution of Bµ given side-channel trace X; that is, pBµ|X(b | X) =
Pr(M ′ = mb | X). The goal of DL in the proposed attack is to imitate the true condi-
tional distribution of Bµ given a side-channel trace X using an NN qθ = qBµ|X(Bµ | X; θ).
Therefore, in the profiling phase, we train the NN to minimize CE(qθ) using a dataset
acquired from the target device. To acquire the dataset containing t labeled side-channel
traces (Bµ, X), the attacker computes a reference ciphertext c corresponding to the ref-
erence plaintext m using KEM.Encaps and the public key, computes a valid ciphertext
corresponding to each of m0, m1, . . . , and mµ−1 as well, and queries them to the tar-
get device to measure its side-channel trace. Thus, the NN training can be conducted
using the dataset in the same manner as DL-based side-channel attacks on symmetric
ciphers [BPS+18,KPH+19,PCP20,ZBHV20,WAGP20, ISUH21].

Note that some conventional side-channel attacks on the FO-like transform employ a
template based on the t-test [RRCB20,BDH+21]. Although their methods achieved suffi-
cient accuracy for a practical key recovery, their extension to MV-PC oracle is unknown,
which indicates an advantage of the usage of the proposed neural distinguisher.

We then describe how to realize a reliable µ-class PC oracle using multiple traces, as
the accuracy of an NN inference is not usually as high as 100%. Let αt be the resulting
accuracy using multiple NN inferences for t side-channel traces. The number of traces

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 15

for one MV-PC oracle implementation should be determined according to σ ≤ αt
u, where

u denotes the number of oracle accesses required for key recovery. As the most efficient
method for a high αt, we can use the likelihood ratio test as shown in [UXT+21]; namely,
we determine the oracle output B̂µ as

B̂µ = arg max
b∈Bµ

log
t−1∏
i=0

qBµ|X(b | Xi; θ) = arg max
b∈Bµ

t−1∑
i=0

log qBµ|X(b | Xi; θ). (2)

As proven in Section 4.2, if qθ = p, then this method is optimal, that is, this method can
maximize the success rate αt = Pr(B̂µ = Bµ).

However, one major drawback of this method is its difficulty in analytically evaluating
the resulting accuracy. As an easily evaluable alternative, our method can also employ a
majority voting of multiple inference results to evaluate the lower bound of the number
of attack traces for the key recovery. Using an NN with an accuracy of a, we can readily
evaluate the resulting accuracy αt by

αt ≥ 1 −
⌈t/2⌉∑
s=0

(
t

s

)
as(1 − a)t−s, (3)

because the majority voting result is always correct if more than ⌈t/2⌉ NN inference
results are correct. Note that its converse does not necessarily hold for majority voting of
µ-classification if µ > 2, and therefore αt is evaluated by an inequality. To evaluate the
value of αt as equality, we need to consider multinomial coefficients for the probabilities
that all incorrect labels are inferred as correct; but such an analysis is difficult in multi-
class classification. Therefore, we use Ineqality (3) as it can be readily evaluated using an
NN accuracy, which is also a common metric for NN.

4.2 Information-theoretic aspects of side-channel distinguisher
In this subsection, we first show the optimality of the likelihood ratio test with the true
conditional probability distribution pBµ|X in Equation (2) as Theorem 1.
Theorem 1 (Optimal distinguish rule for MV-PC oracle implementation). Let pBµ|X
be the true conditional probability distribution of a µ-valued PC oracle Bµ given side-
channel traces X. Let B̂µ denote the attacker’s guess of Bµ. Suppose that t side-channel
traces Xt = (X0, X1, . . . , Xt−1) are independent and identically distributed (i.i.d). A
distinguish rule defined as

B̂µ = arg max
b∈Bµ

t−1∑
i=0

log pBµ|X(b | Xi),

is optimal, that is, maximizes the success rate of the guess Pr(B̂µ = Bµ).
Proof. Let ℓ(b̂, b) = 1{b̂ ̸=b} be a loss function, where 1 denotes the indicator function.
Note that Pr(B̂µ = Bµ) = E1{B̂µ=Bµ} = Eℓ(B̂µ, Bµ) holds. Optimal distinguish rule is
defined as a rule that maximizes the success rate in guessing the correct b. To obtain the
optimal distinguish rule, we rewrite the success rate as follows:
Pr(B̂µ = Bµ) = Eℓ(B̂µ, Bµ) = E1{B̂µ ̸=Bµ} = EE[1{B̂µ ̸=Bµ} | Xs] = E[1 − Pr(B̂µ = Bµ | Xs)].

Therefore, according to the i.i.d assumption, it holds

B̂µ = arg max
b

Pr(Bµ = b | Xt) = arg max
b

t−1∑
i=0

log pBµ|X(b | Xi).

16

Theorem 1 validates the usage of DL to imitate pBµ|X in the attack. We can evaluate an
upper bound of the success rate or this optimal distinguish rule using Theorem 2, similarly
to the key-recovery side-channel attacks on symmetric ciphers [dCGRP19, IUH22].

Theorem 2 (Upper bound of success rate of MV-PC oracle implementation). Let I(Bµ |
X) be the mutual information between a µ-valued PC oracle Bµ and side-channel traces
X. Assume that t side-channel traces Xt = (X0, X1, . . . , Xt−1) are i.i.d. The optimal
success rate of µ-valued PC oracle implementation using t traces, denoted by αt, is bounded
as

ξ(αt) ≤ tI(Bµ; X), (4)

where ξ is a function defined as

ξ(αt) = H(Bµ) − (1 − αt) log2(µ − 1) − H2(αt),

and H2 is the binary entropy function.

Proof. This is proven in the manner similar to [dCGRP19] using Fano’s inequality [CT06,
Theorem 2.10.1]. See Appendix A.

Corollary 1. Suppose that H(Bµ) = log2 µ. In the distinguish attack, to achieve the
success rate of 1 (i.e., αt = Pr(B̂µ = Bµ) = 1), it should hold

t ≥ log2 µ

I(Bµ; X)
. (5)

Proof. We have it if we substitute αt = 1 and H(Bµ) = log2 µ to Inequality (4).

Note that an upper bound of success rate conversely represents a lower bound of
the number of attack traces required to achieve a given success rate. Inequality (5)
corresponds to a shortcut evaluation formula used in [ABH+22], although there was no
proof for this case. It has been shown that the upper bounds of success rate based
on Fano’s inequality are meaningfully tight for the cases of key-recovery side-channel
attacks [dCGRP19, IUH22]; accordingly, Inequality (4) is also expected to be helpful for
a tight evaluation of the number of attack traces to implement a reliable MV-PC oracle.
The evaluation using Inequality (4) is available if I(Bµ; X) is available: for example, if
we assume that the noise is Gaussian distributed and additive (implying that I(Bµ; X)
is determined by its variance) and if the evaluator performs profiling for the device to
estimate I(Bµ; X).

As mentioned in [IUH22], intuitively speaking, the function ξ converts the success rate
to the number of bits required for a successful distinction. If the attacker requires a µ-
valued PC oracle with a success rate of 1, then ξ(1) = H(µ) = log2 µ, which indicates that
attacker requires log2 µ-bit information for the classification. In contrast, the attacker has
no advantage in the distinguish (i.e., αt = 1/µ), then ξ(1/µ) = 0, which indicates that
the attacker has no (i.e., zero-bit) information about the oracle output. Inequality (4)
states that the attacker should receive the more significant bits of information through
the side-channel traces (i.e., tI(Bµ; X)) than the above bits of information for a given
success rate.

We then discuss the relation between the successful MV-PC oracle implementation
and µ concerning Inequality (5). Given a value of µ, the range of I(Bµ; X) is determined
by [0, log2 µ]. If increasing µ, on the one hand, the coefficient of the right-hand side of
Inequality (5) becomes greater, as the attacker requires more bits to implement a µ-valued
PC oracle for greater µ. This indicates that the number of traces for successful distinction
potentially increases. On the other hand, the value of I(Bµ; X) is likely to get also greater
if we increase µ. This discussion indicates from the information-theoretic viewpoint that

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 17

Table 8: NN hyperparameters for µ-classification
Input Operator Output Activation function Batch normalization Pooling Stride

Conv1 1000 × 1 conv1d(3) 16 SELU Yes Avg (2) 2
Conv2 500 × 4 conv1d(3) 16 SELU Yes Avg (2) 2
Conv3 250 × 4 conv1d(3) 16 SELU Yes Avg (2) 2
Conv4 125 × 4 conv1d(3) 32 SELU Yes Avg (2) 2
Conv5 62 × 8 conv1d(3) 32 SELU Yes Avg (2) 2
Conv6 31 × 8 conv1d(3) 32 SELU Yes Avg (2) 2
FLT 15 × 8 flatten 120 - - - -
FC1 120 dense 256 SELU No No -
FC2 20 dense 256 SELU No No -
FC3 20 dense µ Softmax No No -

Table 9: Experimental conditions for evaluation of µ-classification NN
Reference pqm4 [KRSS19,pqm21]

Device STM32F407VGT6U
Board STM32F407G-DISC1

Side-channel EM radiation
Measurement Langer EMV-Technik

interface RF-U T-2 probe
Training traces 1, 000 × µ

Validation traces 500 × µ
Test traces 500 × µ

the number of traces for successful distinction does not increase by as great as the increase
of log2 µ if I(Bµ; X) sufficiently gets greater. This situation would frequently occur for
some (sufficiently practical) devices with low noise (such as one used in the experiment
of [BS21]). If we design an NN which can sufficiently exploit the information about Bµ

from X, we can implement a µ-valued PC oracle with a few traces even for large µ. This
implies that the attacker receives more bits of information from a trace as I(Bµ; X), which
yields a non-trivial reduction of the total number of attack traces for key recovery.

5 Experimental Validation

5.1 Experimental setup

We demonstrate experimental attacks to validate the feasibility and efficiency of the pro-
posed attack. In the experiment, we employed CUDA 11.4, cuDNN 8.0.5, Tensorflow-
gpu 2.4.1, and Keras 2.4.0 on an Intel Xeon W-2145 3.70 GHz and NVIDIA GeForce
RTX 2080 Ti to carry out the NN training. The learning rate was 0.0001, the batch size
was 64, and the number of epochs was 100. Table 8 illustrates the hyperparameters of
the CNN for traces with 1,000 sample points, where the top and bottom columns denote
the input and output layers, respectively, and the remaining hidden layers are connected
in the ascending order from the input to output. In the “Input” row, S1 × S2 denotes the
input shape, S1 is the trace size, and S2 is the input dimension. In the “Operator” row,
the operation at each layer, conv1d(F), denotes a convolution with a filter size of F .

Table 9 lists the experimental conditions for evaluating a µ-classification NN. We
employed the following three PRF implementations: non-protected AES, SHA3-512, and
SHAKE128/256 software. The input value to PRF is given in µ patterns, whereas the key
is fixed. For the test (i.e., evaluation of attack phase), we acquired 2,048 traces for each
plaintext (2,048 × µ traces in total). To evaluate the test accuracy, we randomly selected
500 × µ labeled traces for one trial, evaluated the accuracy for each trial, and repeated
this trial 10 times to average the accuracy.

18

Table 10: NN accuracy to distinguish PRF input
Implementation Accuracy for 2N classification

2 22 23 24 25 26 27 28

AES software 0.9995 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
SHA3-512 software 0.9993 0.9998 0.9994 0.9993 0.9993 0.9993 0.9992 0.9992

SHAKE128 software 0.9995 0.9997 0.9994 0.9995 0.9982 0.9982 0.9897 0.9746

Table 11: Minimum number of attack traces to achieve an SR
Scheme Instance # Minimum traces for attack phase (Class, Reduction rate)

SR = 1 − 0.16 1 − 0.17 1 − 0.18 1 − 0.19 1 − 0.110

Kyber Kyber-512 1,728 (256, 87.5%) 1,728 (256, 87.5%) 1,728 (256, 90.0%) 2,112 (256, 87.5%) 2,112 (256, 89.4%)
Kyber-1024 3,456 (256, 87.5%) 3,456 (256, 87.5%) 4,224 (256, 87.5%) 4,224 (256, 87.5%) 4,224 (256, 87.5%)

Saber LightSaber-KEM 5,760 (256, 79.2%) 5,760 (256, 79.2%) 7,040 (256, 79.2%) 7,040 (256, 79.2%) 7,040 (256, 82.4%)
FireSaber-KEM 3,456 (256, 87.5%) 3,456 (256, 87.5%) 4,224 (256, 87.5%) 4,224 (256, 87.5%) 4,224 (256, 89.4%)

FrodoKEM FrodoKEM-640 46,080 (64, 80.0%) 46,080 (64, 83.6%) 55,510 (32, 80.3%) 55,510 (32, 80.3%) 56,320 (32, 83.1%)
FrodoKEM-1344 77,436 (64, 80.0%) 77,436 (64, 83.6%) 93,184 (32, 80.3%) 93,184 (32, 80.3%) 107,520 (64, 80.8%)

NTRU Prime ntrulpr653 2,205 (256, 87.5%) 2,205 (256, 87.5%) 2,695 (256, 87.5%) 2,695 (256, 87.5%) 2,695 (256, 89.4%)
ntrulpr1277 4,311 (256, 87.5%) 4,311 (256, 89.8%) 5,269 (256, 87.5%) 5,269 (256, 87.5%) 5,269 (256, 89.4%)

SIKE SIKEp434 406 (256, 84.4%) 522 (256, 80.0%) 522 (256, 80.0%) 639 (256, 80.0%) 639 (256, 80.0%)
SIKEp751 448 (256, 84.4%) 576 (256, 80.0%) 576 (256, 80.0%) 704 (256, 80.0%) 704 (256, 80.0%)

5.2 Evaluation results
Table 10 reports the accuracy of the trained NN on the test sets for µ = 2N (N =
0, 1, . . . , 8). We can confirm from Table 10 that the trained NNs achieved a very high ac-
curacy (compared to DL-based key-recovery side-channel attacks on symmetric ciphers)
even when the number of classes increased. Even for large µ such as N = 8, the NN
can estimate Bµ with far higher accuracy than in the case of key-recovery side-channel
attacks (e.g., [PHJ+19]). This is probably because the NN in the proposed attack scenario
can exploit a whole operation rather than an S-box operation. High accuracy for large µ
validates the efficiency of the proposed attack using MV-PC oracle in practice, as demon-
strated in the following subsection. Note that even such a high accuracy is insufficient
for key recovery as it requires a lot of oracle accesses; therefore, we should consider the
enhancement of MV-PC oracle accuracy using multiple inference results.

In the following, we evaluate the number of attack traces using a majority-vote-based
distinguisher as a lower bound of success rate, as we mentioned in Section 4. Figure 1
reports the number of attack traces required for the key recovery with a success rate greater
than threshold τ . Table 11 shows the minimum number of attack traces in Figure 1, the
number of classes at that time, and the reduction rate from 2-classification. Note that,
as the attack on SIKE utilizes a 3N -valued PC oracle, we evaluated the values using a
2N ′ -classification NN which includes a 3N -classification such that 2N ′

> 3N . Note also
that N = 1 is equivalent to the conventional attack using a binary PC oracle in [UXT+21],
except for the case of SIKE. We determined the number of attack traces for one µ-valued
PC oracle (i.e., t) should be αt

u greater than a threshold τ , where u denotes the number
of oracle accesses for key recovery in Table 7 and αt

u represents the success rate of key
recovery (not of one µ-valued PC oracle access). In this experiment, we set τ as 1 − 0.16

to 1 − 0.110. The number of attack traces is finally derived as t × u. Full data on the
number of attack traces for each class is given in Appendix B.

From Table 12, we can confirm that the proposed attack significantly reduces the
number of attack traces for key recovery compared to the existing attack in [UXT+21]
(i.e., N = 1). In particular, when N = 5–8, the proposed attack achieves at most 80–87%
reduction at the cost of profiling (i.e., training NN). In addition, the number of attack
traces for very high key-recovery success rate (e.g., τ = 1 − 0.110) is not very larger than
that for τ = 1 − 0.16. This would be because of the high accuracy of the NN, which
achieves a sufficiently reliable µ-valued PC oracle access with a few traces. Although
some improvements of CCA on these KEMs with a binary key-mismatch or PC oracle
have also been developed in [QCZ+21], the proposed attack with MV-PC oracle achieved

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 19

2 4 8 16 32 64 128 256
Class

0
2500
5000
7500

10000
12500
15000
17500
20000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(a) Kyber-512

2 4 8 16 32 64 128 256
Class

0
5000

10000
15000
20000
25000
30000
35000
40000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(b) Kyber-1024

2 4 8 16 32 64 128 256
Class

0
5000

10000
15000
20000
25000
30000
35000
40000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(c) LightSaber-KEM

2 4 8 16 32 64 128 256
Class

0
5000

10000
15000
20000
25000
30000
35000
40000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(d) FireSaber-KEM

2 4 8 16 32 64 128 256
Class

0

50000

100000

150000

200000

250000

300000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(e) FrodoKEM-640

2 4 8 16 32 64 128 256
Class

0

100000

200000

300000

400000

500000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(f) FrodoKEM-1344

2 4 8 16 32 64 128 256
Class

0

5000

10000

15000

20000

25000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(g) ntrulpr653

2 4 8 16 32 64 128 256
Class

0

10000

20000

30000

40000

50000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(h) ntrulpr1277

3 9 27 81 243
Class

0

500

1000

1500

2000

2500

3000

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(i) SIKEp434

3 9 27 81 243
Class

0
500

1000
1500
2000
2500
3000
3500

Tr

ac
es

1-1e-6
1-1e-7
1-1e-8
1-1e-9
1-1e-10

(j) SIKEp751

Figure 1: Number of attack traces required for successful key recovery

a less number of oracle accesses/attack traces than them, as shown in Table 1. In addition,
in [SCZ+22], Shen et al. recently presented an efficient side-channel-assisted CCA using
the binary PC oracle with a method to correct the errors in the NN inference, which
achieved 45.9–55.4% reduction of the number of attack traces for the key recovery of
Kyber, whereas the proposed attack achieved 87% reduction. Thus, the proposed attack
achieved the highest efficiency and the least number of attack traces for the key recovery
with regard to the state-of-the-art CCAs and side-channel attacks.

20

6 Conclusion
This paper presented an efficient power/EM side-channel attack on KEMs with FO-like
transforms based on MV-PC oracle. The proposed SCA is an extension/generalization
of side-channel-assisted CCA using the re-encryption leakage to implement a decryption
oracle. We also presented the design of a DL-based side-channel distinguisher using a
multi-class classification NN and discussed its information-theoretic aspects. We demon-
strated a set of experimental attacks using typical PRF implementations. We confirmed
from the results that the proposed SCA can perform the key recovery against major lattice-
based and isogeny-based KEM implementations with significantly fewer attack traces than
the state-of-the-art (side-channel-assisted) CCAs. To the best of the authors’ knowledge,
the proposed attack achieved the least number of attack traces for the key recovery among
the existing attacks.

The proposed attack is more efficient when the larger number of classifications (i.e., µ)
is achieved. This yields an attack efficiency but also incurs a higher cost in NN training
(i.e., profiling). In practice, the cost of (offline) profiling would be trivial rather than that
of the online attack phase. Developing a more efficient learning method for the proposed
attack would be an important future subject. In addition, a further evaluation/validation
of the proposed attack on other implementations especially masked ones, would be future
work.

Appendix A: Proof of Theorem 2
Let H(X) be the entropy of a random variable X. Suppose that the side-channel attack
is represented as a Markov chain of Bµ ↔ X ↔ B̂µ, similarly to [HRG14, dCGRP19].
Due to the definition of mutual information, it holds

I(Bµ; Xt) = H(Bµ) − H(Bµ | Xt).

As B̂µ is a function of X, it holds H(Bµ | Xt) = H(Bµ | Xt, B̂µ), which is followed by

I(Bµ; Xt) = H(Bµ) − H(Bµ | Xt, B̂µ)
≥ H(Bµ) − H(Bµ | B̂µ). (6)

According to Fano’s inequality [CT06, Theorem 2.10.1] on the Markov chain Bµ ↔ X ↔
B̂µ, it holds

H(Bµ | B̂µ) ≤ H2(αt) + (1 − αt) log2(|Bµ| − 1). (7)

Combining Inequalities (6) and (7), we have

ξ(αt) = H(Bµ) − (1 − αt) log2(µ − 1) − H2(αt) ≤ I(Bµ; Xt).

Since I(Bµ; Xt) ≤ tI(Bµ; X) due to the i.i.d assumption, we conclude ξ(αt) ≤ tI(Bµ; X),
as required.

Appendix B: Number of attack traces required for key re-
covery
Table 12 shows the number of attack traces required for the key recovery, where the
minimum number for each column is highlighted by bold.

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 21

Table 12: Number of attack traces required for successful key recovery

(a) τ = 0.999999 (= 1 − 0.16)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 13,824 5,376 4,644 3,456 2,808 2,322 1,998 1,728

Kyber-1024 27,648 10,752 9,288 6,912 5,616 4,644 3,996 3,456
Saber LightSaber-KEM 27,648 23,040 15,480 11,520 9,360 7,740 6,660 5,760

FireSaber-KEM 27,648 10,752 9,288 6,912 5,616 4,644 3,996 3,456
FrodoKEM FrodoKEM-640 230,400 115,200 76,815 57,600 46,080 46,970 54,900 67200

FrodoKEM-1344 387,072 193536 129,024 96,768 77,436 78,848 92,160 11,2896
NTRU Prime ntrulpr653 17,622 6,860 5,877 4,419 3,528 2,934 2,529 2,205

ntrulpr1277 34,470 17,244 11,493 8,631 6,903 5,742 4,932 4,311
Isogeny SIKE SIKEp434 2,610 1,305 679 511 406 N/A

SIKEp751 2,871 1,440 963 560 448 N/A

(b) τ = 0.9999999 (= 1 − 0.17)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 13,824 6,912 4,644 3,456 2,808 2,322 1,998 1,728

Kyber-1024 27,648 13,824 9,288 6,912 5,616 4,644 3,996 3,456
Saber LightSaber-KEM 27,648 23,040 15,480 11,520 9,360 7,740 6,660 5,760

FireSaber-KEM 27,648 13,824 9,288 6,912 5,616 4,644 3,996 3,456
FrodoKEM FrodoKEM-640 230,400 115,200 76,815 57,600 46,080 46,970 62,220 67,200

FrodoKEM-1344 473,088 193,536 157,696 118,272 77,436 78,848 104,448 123,648
NTRU Prime ntrulpr653 17,622 8,820 5,877 4,419 3,528 2,934 2,529 2,205

ntrulpr1277 42,130 17,244 11,493 8,631 6,903 5,742 4,932 4311
Isogeny SIKE SIKEp434 2,610 1,305 873 657 522 N/A

SIKEp751 2,871 1,440 963 720 576 N/A

(c) τ = 0.99999999 (= 1 − 0.18)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 16,896 6,912 4,644 4,224 3,432 2,838 2,442 1,728

Kyber-1024 33,792 13,824 11,352 8,448 6,864 5,676 4,884 4,224
Saber LightSaber-KEM 33,792 23,040 18,920 14,080 11,440 9,460 8,140 7,040

FireSaber-KEM 33,792 13,824 11,352 8,448 6,864 5,676 4,884 4,224
FrodoKEM FrodoKEM-640 281,600 140,800 93,885 70,400 56,320 55,510 69,540 73,600

FrodoKEM-1344 473,088 236,544 157,696 118,272 94,644 93,184 116,736 134,400
NTRU Prime ntrulpr653 21,538 8,820 7,183 5,401 4,312 3,586 3,091 2,695

ntrulpr1277 42,130 17,244 14,047 10,549 8,437 7,018 6,028 5,269
Isogeny SIKE SIKEp434 2,610 1,305 873 657 522 N/A

SIKEp751 2,871 1,440 963 720 576 N/A

(d) τ = 0.999999999 (= 1 − 0.19)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 16,896 6,912 5,676 4,224 3,432 2,838 2,442 2,112

Kyber-1024 33,792 13,824 11,352 8,448 6,864 5,676 4,884 4,224
Saber LightSaber-KEM 33,792 28,160 18,920 14,080 11,440 9,460 8,140 7,040

FireSaber-KEM 33,792 13,824 11,352 8,448 6,864 5,676 4,884 4,224
FrodoKEM FrodoKEM-640 281,600 140,800 93,885 70,400 56,320 55,510 69,540 80,000

FrodoKEM-1344 473,088 236,544 157,696 118,272 94,644 93,184 116,736 145,152
NTRU Prime ntrulpr653 21,538 8,820 7,183 5,401 4,312 3,586 3,091 2,695

ntrulpr1277 42,130 17,244 14,047 10,549 8,437 7,018 6,028 5,269
Isogeny SIKE SIKEp434 3,190 1,595 1,067 803 639 N/A

SIKEp751 3,509 1,760 1,177 880 704 N/A

(e) τ = 0.9999999999 (= 1 − 0.110)
KEM type Scheme Instance # Traces for attack phase

N = 1 2 3 4 5 6 7 8
Lattice Kyber Kyber-512 19,968 8,448 5,676 4,224 3,432 2,838 2,442 2,112

Kyber-1024 39,936 16,896 11,352 8,448 6,864 5,676 4,884 4,224
Saber LightSaber-KEM 39,936 28,160 18,920 16,640 13,520 9,460 8,140 7,040

FireSaber-KEM 39,936 16,896 11,352 8,448 6,864 5,676 4,884 4,224
FrodoKEM FrodoKEM-640 332,800 140,800 110,955 83,200 56,320 64,050 76,860 86,400

FrodoKEM-1344 559,104 236,544 186,368 139,776 111,852 107,520 129,024 155,904
NTRU Prime ntrulpr653 25,454 10,780 7,183 5,401 4,312 3,586 3,091 2,695

ntrulpr1277 49,790 21,076 14,047 10,549 8,437 7,018 6,028 5,269
Isogeny SIKE SIKEp434 3,190 1,595 1,067 803 639 N/A

SIKEp751 3,509 1,760 1,177 880 704 N/A

References
[ABH+22] Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova,

Tobias Schneider, and François-Xavier Standeart. Systematic study of de-

22

cryption and re-encryption leakage: The case of Kyber. In International
Workshop on Constructive Side-Channel Analysis and Secure Design, volume
13211 of Lecture Notes in Computer Science, pages 236–256, 2022.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and defending masked polynomial
comparison for lattice-based cryptography. IACR Trans. Cryptogr. Hardw.
Embedded Syst., 2021(3):334–359, 2021.

[BHH+19] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and
Edoardo Persichetti. Tighter proofs of CCA security in the quantum random
oracle model. In TCC, pages 61–90, 2019.

[BPO+20] Florian Bache, Clara Paglialong, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-speed masking for polynomial comparison in lattice-based
KEMs. IACR Trans. Cryptogr. Hardw. Embedded Syst., 2020(3):483–507,
2020.

[BPS+18] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and intro-
duction to ASCAD database. IACR ePrint archive: Report 2018/053, 2018.
https://eprint.iacr.org/2018/053.

[BS21] Olivier Bronchain and François-Xavier Standeart. Breaking masked imple-
mentations with many shares on 32-bit software platforms: or when the
security order does not matter. IACR Trans. Cryptogr. Hardw. Embedded
Syst., 2021(3):202–234, 2021.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wi-
ley Series in Telecommunications and Signal Processing). Wiley-Interscience,
USA, 2006.

[dCGRP19] Eloi de Chérisey, Sylvain Guilly, Olivier Rioul, and Pablo Piantanida. Best
information is most successful: Mutual information and success rate in side-
channel analysis. IACR Trans. Cryptogr. Hardw. Embedded Syst., 2019(2):49–
79, 2019.

[DDS+19] Jintai Ding, Joshua Deaton, Kurt Schmidt, Vishakha, and Zheng Zhang. A
simple and efficient key reuse attack on NTRU cryptosystem. IACR ePrint
archive: Report 2019/1022, 2019. https://eprint.iacr.org/2019/1022.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In CRYPTO, pages 537–554, 1999.

[GHJ+22] Qian Guo, Clemens Hlauschek, Thomas Johansson, Norman Lahr, Alexander
Nilsson, and Robin Leander Schröder. Don’t reject this: Key-recovery timing
attacks due to rejection-sampling in HQC and BIKE. IACR Trans. Cryptogr.
Hardw. Embedded Syst., 2022(3):223–263, 2022.

[git21] Fast, constant-time and masked AES assembly implementations for ARM
Cortex-M3 and M4. https://github.com/Ko-/aes-armcortexm, May 2021.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack
on MDPC with CCA security using decoding errors. In ASIACRYPT Part
I, pages 789–815, 2016.

https://eprint.iacr.org/2018/053
https://eprint.iacr.org/2019/1022
https://github.com/Ko-/aes-armcortexm

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 23

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Bo Yan Ti. On
the security of supersingular isogeny cryptosystems. In ASIACRYPT, pages
63–91, 2016.

[GTN20] Qian Guo, Johansson Thomas, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki–Okamoto transforma-
tion and its application on FrodoKEM. In CRYPTO, pages 359–386, 2020.

[HHK17] Denis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki–Okamoto transformation. In TCC, pages 341–371, 2017.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good is not good enough:
Deriving optimal distinguishers from communication theory. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 55–74,
2014.

[HV20] Loïs Huguenin-Dumittan and Serge Vaudenay. Classical misuse attacks on
NIST round 2 PQC - the power of rank-based schemes. In ACNS, Part I,
pages 208–227, 2020.

[ISUH21] Akira Ito, Kotaro Saito, Rei Ueno, and Naofumi Homma. Imbalanced data
problems in deep learning-based side-channel attacks: Analysis and solution.
IEEE Trans. Inf. Forensics Security, 16:3790–3802, 2021.

[IUH22] Akira Ito, Rei Ueno, and Naofumi Homma. On the success rate of side-
channel attacks on masked implementations: Information-theoretical bounds
and their practical usage. Cryptology ePrint Archive, Report 2022/576, 2022.
https://eprint.iacr.org/2022/576.

[JJ00] Éliane Jaulmes and Antoine Joux. A chosen-ciphertext attack against NTRU.
In CRYPTO, pages 20–35, 2000.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Han-
jalic. Make some noise. unleashing the power of convolutional neural networks
for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embedded
Syst., 2019(3):148–179, 2019.

[KRSS19] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking NIST PQC on ARM Cortex-M4. IACR
ePrint archive: Report 2019/844, 2019. https://eprint.iacr.org/2019/
844.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johanson. A side-channel
attack on a masked IND-CCA secure Saber KEM. IACR Trans. Cryptogr.
Hardw. Embedded Syst., 2021(4):676–707, 2021.

[NP33] Jerzy Neyman and Egon Sharpe Peason. IX. On the problem of the most
efficient tests of statistical hypotheses. Philosophical Transactions of the
Royal Society A, 231:694–706, 1933.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2–secure and masked ring-LWE implementation. IACR Trans.
Cryptogr. Hardw. Embedded Syst., 2018(1):142–174, 2018.

[OUKT21] Yuki Osumi, Shusaku Uemura, Momonari Kudo, and Tsuyoshi Takagi. Key
mismatch attack on SABER. In SCIS 2021, January 2021. In Japanese.

https://eprint.iacr.org/2022/576
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844

24

[PCP20] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. Strength in num-
bers: Improving generalization with ensembles in machine learning-based
profiled side-channel analysis. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, (4):337–364, 2020.

[PHJ+19] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The Curse of Class Imbalance and Conflicting Metrics with Ma-
chine Learning for Side-channel Evaluations. IACR Trans. Cryptogr. Hardw.
Embedded Syst., (1):209–237, 2019.

[pqm21] Post-quantum crypto library for the ARM Cortex-M4. https://github.
com/mupq/pqm4, April 2021.

[QCZ+21] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, and Jintai Ding. A sys-
tematic approach and analysis of key mismatch attacks on lattice-based NIST
candidate KEMs. In ASIACRYPT, pages 92–121, 2021.

[RBRC22] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopad-
hyay. On exploiting message leakage in (few) NIST PQC candidates for prac-
tical message recovery attacks. IEEE Transactions on Information Forensics
and Security, 17:684–699, 2022.

[REB+22] Prasanna Ravi, Martianus Frederic Ezerman, Shivam Bhasin, Anupam
Chattopadhyay, and Sujoy Sinha Roy. Will you cross the threshold for
me? generic side-channel assisted chosen-ciphertext attacks on NTRU-based
KEMs. IACR Trans. Cryptogr. Hardw. Embedded Syst., 1:722–761, 2022.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE and
KEMs. IACR Trans. Cryptogr. Hardw. Embedded Syst., 2020(3):307–335,
2020.

[SCZ+22] Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang. Find the
bad apples: An efficient method for perfect key recovery under imperfect SCA
oracles—a case study of Kyber. Cryptology ePrint Archive, Paper 2022/563,
2022. https://eprint.iacr.org/2022/563.

[SHR+22] Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-
Zeh, and Georg Sigl. A power side-channel attack on the Reed-Muller Reed-
Solomon version of the HQC cryptosystem. Cryptology ePrint Archive, Paper
2022/724, 2022. https://eprint.iacr.org/2022/724.

[SKL+20] Bo-Yeon Sim, Jihoon Kwon, Joohoo Lee, Il-Ju Kim, Tae-Ho Lee, Hyojin
Yoon, Jihoon Cho, and Dong-Gak Han. Single-trace attacks on message
encoding in lattice-based KEMs. IEEE Access, 8:183175–183191, 2020.

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure
key-encapsulation mechanism in the quantum random oracle model. In EU-
ROCRYPT, pages 520–551, 2018.

[UXT+21] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/EM analysis
on post-quantum KEMs. IACR Trans. Cryptogr. Hardw. Embedded Syst.,
2022(1):296–332, 2021.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://eprint.iacr.org/2022/563
https://eprint.iacr.org/2022/724

Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma 25

[WAGP20] Lennert Wouters, Victors Arribas, Benedikt Gierlichs, and Bart Praneel.
Revisiting a methodology for efficient CNN architectures in profiling at-
tacks. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2020(3):147–168, 2020.

[XIU+21] Keita Xagawa, Akira Ito, Rei Ueno, Junko Takahashi, and Naofumi Homma.
Fault-injection attacks against NIST’s post-quantum cryptography round 3
KEM candidates. In ASIACRYPT, pages 33–61, 2021.

[XPRO20] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magni-
fying side-channel leakage of lattice-based cryptosystems with chosen cipher-
texts: The case study of Kyber. IACR ePrint archive: Report 2020/912,
2020. https://eprint.iacr.org/2020/912.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient CNN architectures in profiling attacks. IACR
Trans. Cryptogr. Hardw. Embedded Syst., 2020(1):1–36, 2020.

[ZCD21] Xiaohan Zhang, Chi Cheng, and Ruoyu Ding. Small leaks sink a great ship:
An evaluation of key reuse resilience of PQC third round finalist NTRU-
HRSS. In ICICS, pages 283–300, 2021.

https://eprint.iacr.org/2020/912

	Introduction
	Background
	Our contribution
	Paper organization

	Related Works
	IND–CCA secure KEM based on the FO transform
	Existing side-channel attacks on FO-like transform
	Side-channel-assisted KR-PCA and neural side-channel distinguisher

	Proposed Attack
	Multiple-valued plaintext-checking (MV-PC) oracle
	KR-MV-PCA algorithms for NIST PQC third-round KEM candidates
	Code-based KEMs (Classic McEliece, BIKE, HQC)
	Isogeny-based KEM (SIKE)
	Complexity analysis

	Neural side-channel distinguisher for MV-PC oracle
	Basic concept
	Information-theoretic aspects of side-channel distinguisher

	Experimental Validation
	Experimental setup
	Evaluation results

	Conclusion

