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ABSTRACT
Coin mixing services allow users to mix their cryptocurrency coins

and thus enable unlinkable payments in a way that prevents track-

ing of honest users’ coins by both the service provider and the users

themselves. The easy bootstrapping of new users and backwards

compatibility with cryptocurrencies (such as Bitcoin) with limited

support for scripts are attractive features of this architecture, which

has recently gained considerable attention in both academia and

industry.

A recent work of Tairi et al. [IEEE S&P 2021] formalizes the no-

tion of a coinmixing service and proposes A
2
L, a new cryptographic

protocol that simultaneously achieves high efficiency and interop-

erability. In this work, we identify a gap in their formal model and

substantiate the issue by showing two concrete counterexamples:

we show how to construct two encryption schemes that satisfy

their definitions but lead to a completely insecure system.

To amend this situation, we investigate secure constructions of

coin mixing services. First, we develop the notion of blind condi-

tional signatures (BCS), which acts as the cryptographic core for

coin mixing services. We propose game-based security definitions

for BCS and propose A
2
L
+
, a modified version of the protocol by

Tairi et al. that satisfies our security definitions. Our analysis is in

an idealized model (akin to the algebraic group model) and assumes

the hardness of the one-more discrete logarithm problem. Finally,

we propose A
2
L
UC

, another construction of BCS that achieves the

stronger notion of UC-security (in the standard model), albeit with

a significant increase in computation cost. This suggests that con-

structing a coin mixing service protocol secure under composi-

tion requires more complex cryptographic machinery than initially

thought.

1 INTRODUCTION
Bitcoin and cryptocurrencies sharing Bitcoin’s core principles have

attained huge prominence as decentralized and publicly verifiable

payment systems. They have attracted not only cryptocurrency

enthusiasts but also banks [5], leading IT companies (e.g., Face-

book and PayPal), and payment providers such as Visa [19]. At the

same time, the initial perception of payment unlinkability based

on pseudonyms has been refuted in numerous academic research

works [38, 50], and the blockchain surveillance industry [29] demon-

strates this privacy breach in practice. This has led to a large amount

of work devoted to providing a privacy-preserving overlay to Bit-

coin in the form of coin mixing protocols [25].

Decentralized coin mixing protocols such as CoinJoin [1] or

CoinShuffle [44–46] allow a set of mutually distrusting users to

mix their coins to achieve unlinkability: that is, the coins cannot
be linked to their initial owners even by malicious participants.

These protocols suffer from a common drawback, the bootstrapping
problem, i.e., how to find a set of participants to execute the protocol.

In fact, while a high number of participants is desirable to improve

the anonymity guarantees provided by the coin mixing protocol,

such a high number is at the same time undesirable as it results in

poor scalability and makes bootstrapping harder.

An alternative mechanism is one in which a third party, referred

to as the hub, alleviates the bootstrapping problem by connecting

users that want to mix their coins. Moreover, the hub itself can

provide a coin mixing service by acting as a tumbler. In more detail,

users send their coins to the hub, which, after collecting all the

coins, sends them back to the users in a randomized order, thereby

providing unlinkability for an observer of such transfers (e.g., an

observer of the corresponding Bitcoin transactions).

Synchronization Puzzles. There are numerous reported cases

of “exit scams” by mixing services which took in new payments

but stopped providing the mixing service [51]. This has prompted

the design of numerous cryptographic protocols [2, 13, 31, 53] to

remove trust from the hub, providing a trade-off between trust

assumptions, minimum number of transactions, and Bitcoin com-

patibility [30]. Of particular interest is the work by Heilman et

al. [30], which lays the groundwork for the core cryptographic

primitive which can be used to build a mixing service. This primi-

tive, referred to as a synchronization puzzle, enables unlinkability
from even the view of a corrupt hub. However, Heilman et al. only

present informal descriptions of the security and privacy notions

of interest. Furthermore, the protocol proposed (TumbleBit) relies

on hashed time-lock contracts (HTLCs), a smart contract incompat-

ible with major cryptocurrencies such as Monero, Stellar, Ripple,

MimbleWimble, and Zerocash (shielded addresses), lowering the

interoperability of the solution.

The recent work of Tairi et al. [52] attempts to overcome both of

these limitations. It gives formal security notions for a synchroniza-

tion puzzle in the universal composability (UC) framework [15]. It

also provides an instantiation of the synchronization puzzle (called
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A
2
L) that is simultaneously more efficient and more interopera-

ble than TumbleBit, requiring only timelocks and digital signature

verification from the underlying cryptocurrencies.

In this work, we identify a gap in their security analysis, and we

substantiate the issue by presenting two concrete counterexamples:

there exist two encryption schemes (secure under standard crypto-

graphic assumptions) that satisfy the prerequisites of their security

notions, yet yield completely insecure systems. This shows that

our understanding of synchronization puzzles as a cryptographic

primitive is still inadequate. Establishing firm foundations for this

important cryptographic primitive requires us to rethink this object

from the ground up.

1.1 Our Contributions
We summarize the contributions of this work below.

Counterexamples. First, we identify a gap in the security model

of the synchronization puzzle protocol A
2
L [52], presenting two

concrete counterexamples (Section 3). Specifically, we show that

there exist underlying cryptographic building blocks that satisfy

the prerequisites stated in A
2
L, yet they allow for:

• a key recovery attack, in which a user can learn the long-term

secret decryption key of the hub;

• a one-more signature attack, in which a user can obtain 𝑛 signed

transactions from the hub while only engaging in 𝑛−1 successful
instances of signing a transaction which pays the hub. In other

words, the user obtains 𝑛 coins from the hub while the hub

receives only 𝑛 − 1 coins.
Both attacks run in polynomial time and succeed with overwhelm-

ing probability.

Definitions. To place the synchronization puzzle on firmer foun-

dations, we propose a new cryptographic notion that we call blind
conditional signatures (BCS). Our new notion intuitively captures

the functionality of a synchronization puzzle from [30, 52]. BCS is a

simple and easy-to-understand tool, and we formalize its security

notions both in the game-based (Section 4.1) and universal compos-
ability (Section 5) setting. The proposed game-based definitions

for BCS are akin to the well-understood standard security notions

for regular blind signatures [18, 47]. We hope that this abstraction

may lay the foundations for further studies on this primitive in all

cryptocurrencies, scriptless or not.

Constructions.We give two constructions, one that satisfies our

game-based security guarantees and one that is UC-secure. Both

require only the same limited functionality as A
2
L from the under-

lying blockchain. In more detail:

• We give amodified version of A
2
L (Sections 4.2 and 4.3) whichwe

refer to as A
2
L
+
that satisfies the game-based notions (Section 4.1)

of BCS, albeit in the linear-only encryption (LOE) model [28].

In this model, the attacker does not directly have access to a

homomorphic encryption scheme; instead, it can perform the

legal operations by querying the corresponding oracles. This

is a strong model with a non-falsifiable flavor, similar to the

generic/algebraic group model [23, 36, 49].

• We then provide a less efficient construction A
2
L
UC

that securely

realizes the UC notion of BCS (Section 5). This scheme signif-

icantly departs from the construction paradigm of A
2
L and is

Hub

1. Puzzle Promise

Alice

Bob

3. Puzzle Solve

Alice Bob

2. Send Puzzle

Alice Bob

4. Send Solution

Puzzle Promise

Puzzle Promise

Puzzle Solve

Puzzle Solve

Figure 1: Protocol flowof the synchronizationpuzzle, the un-
derlying cryptographic mechanism of Tumblebit and A2L.
Our approach in Blind Conditional Signatures follows a sim-
ilar execution. Dotted double-edged arrows indicate 2-party
protocols. Solid arrows indicate secure point-to-point com-
munication.

based on general-purpose cryptographic tools such as secure

two-party computation (2PC).

Our results hint at the fact that achieving UC-security for a syn-

chronization puzzle requires a radical departure from current con-

struction paradigms, and it is likely to lead to less efficient schemes.

On the other hand, we view the game-based definitions (a central

contribution of our work) as a reasonable middle ground between

security and efficiency.

1.2 Technical Overview
To put our work into context, we give a brief overview of A

2
L [52]

recast as a synchronization puzzle (a notion first introduced in [30]),

and discuss how it can be used as a coin mixing protocol. We then

outline the vulnerabilities in A
2
L and discuss how to fix them using

the tools that we develop in this work.

Synchronization Puzzles. A synchronization puzzle protocol is a

protocol between three parties: Alice, Bob, andHub (refer to Figure 1

for a pictorial description). The synchronization puzzle begins with

Hub and Bob executing a puzzle promise protocol (step 1) with

respect to some message,𝑚HB such that Bob receives a puzzle 𝜏

that contains a signature 𝑠 (at this point still hidden) on𝑚HB. Bob

wishes to solve the puzzle and obtain the embedded signature. To do

this, he sends the puzzle 𝜏 privately to Alice (step 2), who executes

a puzzle solve protocol (step 3) with Hub with respect to some

message𝑚AH such that, at the end of the protocol, Alice obtains

the signature 𝑠 , whereas Hub obtains a signature 𝑠 ′ on𝑚AH . Alice

then sends the signature 𝑠 privately to Bob (step 4). Such a protocol

must satisfy the following properties.
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Blindness: The puzzle solve protocol does not leak any information

to Hub about 𝜏 , and Hub blindly helps solve the puzzle. This ensures
that Hub cannot link puzzles across interactions.

Unlockability: If step 3 is successfully completed, then the secret

𝑠 must be a valid secret for Bob’s puzzle 𝜏 . This guarantees that

Hub cannot learn a signature on𝑚AH , without at the same time

revealing a signature on𝑚HB.

Unforgeability: Bob cannot output a valid signature on𝑚HB before

Alice interacts with the Hub.

Towards a Coin Mixing Service. As shown in [30, 52], the syn-

chronization puzzle is the cryptographic core of a coin mixing

service. First, Alice and Bob define the messages

𝑚AH : (𝐴 𝑣−−→ 𝐻 ) and𝑚HB : (𝐻 𝑣−−→ 𝐵)

where (𝑈𝑖
𝑣−−→ 𝑈 𝑗 ) denotes a cryptocurrency payment (e.g., on-

chain transaction or a payment over payment channels) that trans-

fers 𝑣 coins from 𝑈𝑖 to 𝑈 𝑗 . Second, Alice and Bob run the syn-

chronization puzzle protocol with Hub to synchronize the two

aforementioned transfers. Here, the signatures 𝑠 and 𝑠 ′ are the

ones required to validate the transactions defined by𝑚AH and𝑚HB.

The anonymity of mixing follows from the fact that multiple pairs

of users are executing the synchronization puzzle simultaneously

with Hub, and Hub cannot link its interaction on the left to the

corresponding interaction on the right. Throughout the rest of this

work, we mainly focus on the synchronization puzzle as a crypto-

graphic primitive. The application of a coin mixing protocol follows

as prescribed in prior works [30, 52].

The A2L System. In A
2
L, the blindness property is achieved by

making use of a re-randomizable linearly homomorphic (CPA-

secure) encryption. The puzzle𝜏 contains a ciphertext 𝑐 ← Enc(ek𝐻 ,
𝑠) encrypting the signature 𝑠 under the encryption key ek𝐻 of Hub.

During the puzzle solve step, Alice first re-randomizes the cipher-

text (and the underlying plaintext)

𝑐
𝑟−−→ 𝑐 ′ = Enc(ek𝐻 , 𝑠 + 𝑟 )

with a random scalar 𝑟 . Hub then decrypts 𝑐 ′ to obtain 𝑠 + 𝑟 , which
in turn reveals a signature 𝑠 ′ on 𝑚AH .

1
Alice can then strip off

the re-randomization factor 𝑟 and send 𝑠 to Bob later in step 4. In

the analysis, it is argued that the CPA-security of the encryption

scheme ensures unforgeability, whereas the re-randomization pro-

cess guarantees blindness. Unfortunately, we show in this work

that this claim is flawed.

Counterexamples.We observe that the encryption scheme is only

CPA-secure, and the Hub is offering a decryption oracle in disguise.

In these settings, the right notion of security is the stronger CCA-

security, which accounts exactly for this scenario. However, CCA-

security is at odds with blindness, since we require the scheme to

be (i) linearly homomorphic and (ii) publicly re-randomizable.
2
We

then substantiate this concern by showing two counterexamples.

Specifically, we show that there exist two encryption schemes that

satisfy the prerequisites spelled out by A
2
L, but enable two concrete

1
This is achieved via the notion of adaptor signatures, but for the sake of this overview
we ignore the exact details of this aspect.

2
It is well known that no encryption scheme that satisfies either of these properties

can be CCA-secure.

attacks against the protocol. Depending on the scheme, we can

launch one of the following attacks:

• A key recovery attack that completely recovers the long-term

secret key of the hub, i.e., the decryption key dk𝐻 .
• A one-more signature attack that allows one to obtain 𝑛 + 1

signatures on transactions from Hub to Bob, while only revealing

𝑛 signatures on transactions from Alice to Hub. Effectively, this

allows one to steal coins from the hub.

We stress that both these schemes are specifically crafted to make

the protocol fail: their purpose is to highlight a gap in the security

model of A
2
L. As such, they do not imply that A

2
L as implemented

is insecure, although we cannot prove it secure either. For a detailed

description of the attacks, we refer the reader to Section 3.2.

Can We Fix This? In light of our attacks, the natural question is

whether we can establish formally rigorous security guarantees for

the (appropriately patched) A
2
L system. While it seems unlikely

that A
2
L can achieve UC-security (more discussion on this later), we

investigate whether it satisfies some weaker, but still meaningful,

notion of security. Our main observation here is that a weak notion

of CCA-security for encryption schemes suffices to provide formal

guarantees for A
2
L. This notion, which we refer to as one-more CCA-

security, (roughly) states that it is hard to recover the plaintexts

of 𝑛 ciphertexts while querying a decryption oracle at most 𝑛 − 1
times. Importantly, this notion is, in principle, not in conflict with

the homomorphism/re-randomization requirements, contrary to

standard CCA-security.

Towards establishing a formal analysis of A
2
L, we introduce the

notion of blind conditional signatures (BCS) as the cryptographic

cornerstone of a synchronization puzzle. We propose game-based

definitions (Section 4.1) similar in spirit to the well-established secu-

rity definitions of regular blind signatures [18, 47]. We then prove

that A
2
L
+
, our appropriately modified version of A

2
L, satisfies

these definitions (Section 4.2). Our analysis comes with an impor-

tant caveat: we analyze the security of our scheme in the linear-only
encryption model. This is a model introduced by Groth [28] that

only models adversaries that are restricted to perform “legal” op-

erations on ciphertexts, similarly to the generic/algebraic group

model. While this is far from a complete analysis, it increases our

confidence in the security of the system.
3

UC-Security.The next question thatwe set out to answer is whether
we can construct a synchronization puzzle that satisfies the strong

notion of UC-security. We do not know how to prove that A
2
L (or

A
2
L
+
) is secure under composition, which is why we prove A

2
L
+

secure only in the game-based setting. The technical difficulty in

proving UC-security is that blindness is unconditional, and we lack

a “trapdoor mechanism” that allows the simulator to link adversar-

ial sessions during simulation in the security analysis; the proof

of UC-security in [52] is flawed due to this same reason. Thus,

in Section 5.2 we develop a different protocol (called A
2
L
UC

) that

we can prove UC-secure in the standard model. The scheme relies

on standard general-purpose cryptographic tools, such as 2PC, and

3
We resort to the LOE model because of the seemingly inherent conflict between linear

homomorphism and CCA-like security, both of which are needed for our application

(in our setting, the adversary has access to something akin to a decryption oracle).

Indeed, even proving that ElGamal encryption is CCA1-secure in the standard model is

a long-standing open problem, and we believe that the A
2
L approach would inherently

hit this barrier without some additional assumption.
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incurs a significant increase in computation costs. We stress that

we view this scheme as a proof-of-concept, and leave further im-

provements for practical efficiency as an open problem. We hope

that the scheme will shed some light on the barriers that need to

be overcome in order to construct a practically efficient UC-secure

synchronization puzzle.

1.3 Related Work
We recall some relevant related work in the literature.

Unlinkable Transactions. CoinJoin [1], Coinshuffle [44–46], and

Möbius [37] are coin mixing protocols that rely on interested users

coming together and making an on-chain transactions to mix their

coins. These proposals suffer from the bootstrapping problem (users

having to find other interested users for the mix) in addition to

requiring custom scripting language support from the underlying

currency and completing the mix with on-chain transactions. Pe-

run [22] andmixEth [48] aremixing solutions that rely on Ethereum

smart contracts to resolve contentions among users. An alternate

design choice is to incorporate coin unlinkability natively in the

currency. Monero [34] and Zcash [9] are the two most popular ex-

amples of currencies that allow for unlinkable transactions without

any special coin mixing protocol. This is enabled by complex on-

chain cryptographic mechanisms that are not supported in other

currencies.

RCCA Security.A security notion related to one-more CCA is that

of re-randomizable Replayable CCA (RCCA) encryption scheme [42].

The notion guarantees security even if the adversary has access to

a decryption oracle, but only for ciphertexts that do not decrypt

to the challenge messages. This is slightly different from what

we require in our setting, since in our application the adversary

will always query the oracle on encryption of new (non-challenge)

messages (because of the plaintext re-randomization). This makes

it challenging to leverage the guarantees provided by this notion

in our analysis.

2 PRELIMINARIES
We denote by 𝑛 ∈ N the security parameter and by 𝑥 ← A(in; 𝑟 )
the output of the algorithm A on input in using 𝑟 ←$ {0, 1}∗ as its
randomness. We often omit this randomness and only mention it

explicitly when required. We say that an algorithm is (non-uniform)

PPT if it runs in probabilistic polynomial time. We say that a func-

tion is negligible if it vanishes faster than any polynomial.

Digital Signature. A digital signature scheme ΠDS :=

(KGen, Sign,Vf) has a key generation algorithm (vk, sk) ←
KGen(1𝑛) that outputs a verification-signing key pair. The owner

of the signing key sk can compute signatures on a message𝑚 by

running 𝜎 ← Sign(sk,𝑚), which can be publicly verified using the

corresponding verification key vk by running Vf (vk,𝑚, 𝜎). We re-

quire that the digital signature scheme satisfies the standard notion

of strong existential unforgeability [27].

Hard Relations. We recall the notion of a hard relation 𝑅 with

statement/witness pairs (𝑌,𝑦). We denote by L𝑅 the associated

language defined as L𝑅 := {𝑌 | ∃𝑦, (𝑌,𝑦) ∈ 𝑅}. The relation is

called a hard relation if the following holds: (i) There exists a PPT

sampling algorithm GenR(1𝑛) that outputs a statement/witness

aSigForgeA,ΠADP
(𝑛)

Q := ∅
(sk, vk) ← KGen(1𝑛)

𝑚 ← AOS (·),OpS (·,·) (vk)
(𝑌, 𝑦) ← GenR(1𝑛)
�̃� ← PreSig(sk,𝑚,𝑌 )

𝜎 ← AOS (·),OpS (·,·) (�̃�, 𝑌 )
return (𝑚 ∉ Q ∧ Vf (vk,𝑚, 𝜎))

OS (𝑚)
𝜎 ← Sign(sk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

OpS (𝑚,𝑌 )
�̃� ← PreSig(sk,𝑚,𝑌 )
Q := Q ∪ {𝑚}
return �̃�

Figure 2: Unforgeability experiment of adaptor signatures

pair (𝑌,𝑦) ∈ 𝑅; (ii) The relation is poly-time decidable; (iii) For all

PPT adversaries A the probability of A on input 𝑌 outputting a

witness𝑦 is negligible. In this work we use the discrete log language

LDL defined with respect to a group G with generator 𝑔 and order

𝑝 . The language is defined as LDL := {𝑌 | ∃𝑦 ∈ Z𝑝 , 𝑌 = 𝑔𝑦} with
corresponding hard relation 𝑅DL.

Adaptor Signatures. Adaptor signatures [3] let users generate a
pre-signature on amessage𝑚which by itself is not a valid signature,

but can later be adapted into a valid signature using knowledge

of some secret value. More precisely, an adaptor signature scheme

ΠADP := (KGen, PreSig, PreVf,Adapt,Vf, Ext) is defined with re-

spect to a signature scheme ΠDS and a hard relation 𝑅. The key

generation algorithm is the same as in ΠDS and outputs a key pair

(vk, sk). The pre-signing algorithm PreSig(sk,𝑚,𝑌 ) returns a pre-
signature �̃� (we sometimes also refer to this as a partial signature).

The pre-signature verification algorithm PreVf (vk,𝑚,𝑌, �̃�) verifies
if the pre-signature �̃� is correctly generated. The adapt algorithm

Adapt(�̃�, 𝑦) transforms a pre-signature �̃� into a valid signature 𝜎

given the witness 𝑦 for the instance 𝑌 of the language L𝑅 . The
verification algorithm Vf is the same as in ΠDS. Finally, we have

the extract algorithm Ext(�̃�, 𝜎, 𝑌 ) which, given a pre-signature �̃� , a

signature 𝜎 , and an instance 𝑌 , outputs the witness 𝑦 for 𝑌 . This

can be formalized as pre-signature correctness.

Definition 2.1 (Pre-signature Correctness). An adaptor signature

scheme ΠADP satisfies pre-signature correctness if for every 𝑛 ∈
N, every message𝑚 ∈ {0, 1}∗, and every statement/witness pair

(𝑌,𝑦) ∈ 𝑅, the following holds:

Pr


PreVf (vk,𝑚,𝑌, �̃�) = 1

∧
Vf (vk,𝑚, 𝜎) = 1

∧
(𝑌,𝑦′) ∈ 𝑅

����������
(sk, vk) ← KGen(1𝑛)
�̃� ← PreSig(sk,𝑚,𝑌 )
𝜎 := Adapt(�̃�, 𝑦)
𝑦′ := Ext(𝜎, �̃�, 𝑌 )


= 1.

In terms of security, we want standard unforgeability even when

the adversary is given access to pre-signatures with respect to the

signing key sk.

Definition 2.2 (Unforgeability). An adaptor signature scheme

ΠADP is aEUF-CMA secure if for every PPT adversary A there

exists a negligible function negl such that

Pr

[
aSigForgeA,ΠADP

(𝑛) = 1

]
≤ negl(𝑛),

where the experiment aSigForgeA,ΠADP
is defined as in Figure 2.
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We also require that, given a pre-signature and a witness for

the instance, one can always adapt the pre-signature into a valid

signature (pre-signature adaptability).

Definition 2.3 (Pre-signature Adaptability). An adaptor signature

scheme ΠADP satisfies pre-signature adaptability if for any 𝑛 ∈ N,
any message𝑚 ∈ {0, 1}∗, any statement/witness pair (𝑌,𝑦) ∈ 𝑅,

any key pair (sk, vk) ← KGen(1𝑛), and any pre-signature �̃� ←
{0, 1}∗ with PreVf (vk,𝑚,𝑌, �̃�) = 1, we have:

Pr[Vf (vk,𝑚,Adapt(�̃�, 𝑦)) = 1] = 1.

Finally, we require that, given a valid pre-signature and a signa-

ture with respect to the same instance, one can efficiently extract

the corresponding witness (witness extractability).

Definition 2.4 (Witness Extractability). An adaptor signature

scheme ΠADP is witness extractable if for every PPT adversary

A, there exists a negligible function negl such that

Pr

[
aWitExtA,ΠADP (𝑛) = 1

]
≤ negl(𝑛),

where the experiment aWitExtA,ΠADP is defined as in Figure 3.

aWitExtA,ΠADP (𝑛)
Q := ∅
(sk, vk) ← KGen(1𝑛)

(𝑚,𝑌 ) ← AOS (·),OpS (·,·) (vk)
�̃� ← PreSig(sk,𝑚,𝑌 )

𝜎 ← AOS (·),OpS (·,·) (�̃�)
𝑦′ := Ext(𝜎, �̃�, 𝑌 )
return (𝑚 ∉ Q ∧ (𝑌, 𝑦′) ∉ 𝑅
∧ Vf (vk,𝑚, 𝜎))

OS (𝑚)
𝜎 ← Sign(sk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

OpS (𝑚,𝑌 )
�̃� ← PreSig(sk,𝑚,𝑌 )
Q := Q ∪ {𝑚}
return �̃�

Figure 3: Witness extractability experiment for adaptor sig-
natures

Combining the three properties described above, we can define

a secure adaptor signature scheme as follows.

Definition 2.5 (Secure Adaptor Signature Scheme). An adaptor

signature scheme ΠADP is secure if it is aEUF-CMA secure, pre-

signature adaptable, and witness extractable.

Linear-Only Homomorphic Encryption. A public-key encryp-

tion scheme ΠE := (KGen, Enc,Dec) allows one to generate a key
pair (ek, dk) ← KGen(1𝑛) that allows anyone to encrypt messages

as 𝑐 ← Enc(ek,𝑚) and allows only the owner of the decryption

key dk to decrypt ciphertexts as𝑚 ← Dec(dk, 𝑐). We require that

ΠE satisfies perfect correctness and the standard notion of CPA-

security [26]. We say that an encryption scheme is linearly homo-
morphic if there exists some efficiently computable operation ◦
such that Enc(ek,𝑚0) ◦ Enc(ek,𝑚1) ∈ Enc(ek,𝑚0 +𝑚1), where
addition is defined over Z𝑝 . The 𝛼-fold application of ◦ is denoted
by Enc(ek,𝑚)𝛼 .

Linear-only encryption (LOE) is an idealized model introduced

by Groth [28] as “generic homomorphic cryptosystem”. Here, homo-

morphic encryption is modeled by giving access to oracles instead

OGen (𝑖)
ek𝑖 ←$ {0, 1}𝑛

Enter (𝑖, ek𝑖 ) into table 𝐾

return ek𝑖

OEnc (ek𝑖 ,𝑚)
𝑐 𝑗 ←$ {0, 1}𝑛

Enter (𝑚,𝑐 𝑗 ) into table𝑀𝑖

return 𝑐 𝑗

ODec (ek𝑖 , 𝑐)
if ( ·, 𝑐) ∉ 𝑀𝑖 then return ⊥
else

Look up𝑚 corresponding to 𝑐 in𝑀𝑖

return𝑚

OAdd (ek𝑖 , 𝑐0, 𝑐1)
Look up𝑚0,𝑚1 corresponding to 𝑐0, 𝑐1 in table𝑀𝑖

𝑐 ←$ {0, 1}𝑛

Enter (𝑚0 +𝑚1, 𝑐) into table𝑀𝑖

return 𝑐

Figure 4: Linear-only encryption oracles

of their corresponding algorithms. A formal description of the ora-

cles is given in Figure 4. We note that although we do not model

such an algorithm explicitly, this model allows for (perfect) cipher-

text re-randomization by homomorphically adding 0 to the desired

ciphertext.

Non-Interactive Zero-Knowledge. Let R : {0, 1}∗ × {0, 1}∗ →
{0, 1} be an NP-witness-relation with corresponding NP-language

L := {𝑥 | ∃𝑤 s.t. R(𝑥,𝑤) = 1}. A non-interactive zero-knowledge

proof system NIZK := (Setup, P,V) for the relation R is initialized

with a setup algorithm Setup(1𝑛) that, on input the security pa-

rameter, outputs a common reference string crs and a trapdoor td.
A prover can show the validity of a statement 𝑥 with a witness𝑤

by invoking P(crs, 𝑥,𝑤), which outputs a proof 𝜋 . The proof 𝜋 can

be efficiently checked by the verification algorithm V(crs, 𝑥, 𝜋). We

require a NIZK system to be (1) zero-knowledge, i.e., there exists
a simulator 𝜋 ← Sim(td, 𝑥) that computes valid proofs without

the knowledge of the witness, (2) sound, i.e., it is infeasible for an
adversary to output a valid proof for a statement 𝑥 ∉ L, and (3) UC-
secure, i.e., one can efficiently extract from the proofs computed by

the adversary a valid witness (with the knowledge of the trapdoor

td), even in the presence of simulated proofs. For formal security

definitions, we refer the reader to [14, 21].

One-More DL.We recall the one-more discrete logarithm (OMDL)

assumption [6, 8].

Definition 2.6 (One-More Discrete Logarithm (OMDL) Assumption).
Let G be a uniformly sampled cyclic group of prime order 𝑝 and 𝑔 a

random generator of G. The one-more discrete logarithm (OMDL)

assumption states that for all𝑛 ∈ N there exists a negligible function

negl(𝑛) such that for all PPT adversaries A making at most 𝑞 =

5



poly(𝑛) queries to DL(·), the following holds:

Pr

 ∀𝑖 : 𝑥𝑖 = 𝑟𝑖

������
𝑟1, . . . , 𝑟𝑞+1 ←$Z𝑝
∀𝑖 ∈ [𝑞 + 1], ℎ𝑖 ← 𝑔𝑟𝑖

{𝑥𝑖 }𝑖∈[𝑞+1] ← ADL( ·) (ℎ1, . . . , ℎ𝑞+1)


≤ negl(𝑛),

where the DL(·) oracle takes as input an element ℎ ∈ G and returns

𝑥 such that ℎ = 𝑔𝑥 .

3 COUNTEREXAMPLES OF A2L
In the following, we recall the A

2
L system and present two coun-

terexamples to their main theorem.

3.1 Description of A2L
A
2
L is defined over the following cryptographic schemes:

• A digital signature scheme ΠDS, a hard relation 𝑅DL for a group

(G, 𝑔, 𝑝) with generator 𝑔 and prime order 𝑝 , and the correspond-

ing adaptor signature scheme ΠADP.

• A linearly homomorphic re-randomizable CPA-secure encryp-

tion scheme ΠE.
4

• A NIZK proof system ΠNIZK := (Setup, P,V) for the language

L := {(ek, 𝑌 , 𝑐) | ∃𝑠 s.t. 𝑐 ← ΠE .Enc(ek, 𝑠) ∧ 𝑌 = 𝑔𝑠 }.

The protocol has three parties: Alice, Bob, and Hub. At the begin-

ning of the system, Hub runs the setup (as described in Figure 9) to

generate its keys, which are the keys for the (CPA-secure) encryp-

tion scheme ΠE. The protocol then consists of a promise phase and

a solving phase.

Puzzle Promise. In the promise phase (Figure 12), Hub generates

a pre-signature �̃�𝐻HB on a common message𝑚HB with respect to a

uniformly sampled instance 𝑌 := 𝑔𝑠 . Hub also encrypts the witness

𝑠 in the ciphertext 𝑐 ← ΠE .Enc(ek𝐻 , 𝑠) under its own encryption

key ek𝐻 . Hub gives Bob the tuple (𝑌, 𝑐, 𝜋, �̃�𝐻HB), where 𝜋 is a NIZK

proof that certifies the ciphertext 𝑐 encrypts 𝑠 . Bob verifies that the

NIZK proof and the pre-signature are indeed valid. If so, he chooses

a random 𝑟 ←$Z𝑞 and re-randomizes the instance 𝑌 to 𝑌 ′ := 𝑌 · 𝑔𝑟
and also re-randomizes the ciphertext 𝑐 as 𝑐 ′ ← ΠE .Rand(𝑐, 𝑟 ). The
puzzle is set to 𝜏 := (𝑟,𝑚HB, �̃�

𝐻
HB, (𝑌, 𝑐), (𝑌

′, 𝑐 ′)).
Puzzle Solve. Bob sends the puzzle 𝜏 privately to Alice, who now

executes the puzzle solve protocol with Hub (Figure 13). Alice

samples a random 𝑟 ′ and further re-randomizes the instance 𝑌 ′ as
𝑌 ′′ := 𝑌 ′ · 𝑔𝑟 ′ and the ciphertext 𝑐 ′ as 𝑐 ′′ ← ΠE .Rand(𝑐 ′, 𝑟 ′). She
then generates a pre-signature �̃�𝐴AH on a common message𝑚AH

with respect to the instance 𝑌 ′′. She sends the tuple (𝑌 ′′, 𝑐 ′′, �̃�𝐴AH )
to Hub, who decrypts 𝑐 ′′ using the decryption key dk𝐻 to obtain 𝑠 ′′.
Hub then adapts the pre-signature �̃�𝐴AH to 𝜎𝐴AH using 𝑠 ′′ and ensures
its validity. It then sends the signature𝜎𝐴AH to Alice, who extracts the

witness for 𝑌 ′′ as 𝑠 ′′ ← ΠADP .Ext(�̃�𝐴AH , 𝜎
𝐴
AH , 𝑌

′′). Alice removes

the re-randomization factor to obtain the solution 𝑠 ′ := 𝑠 ′′ − 𝑟 ′ for
the instance 𝑌 ′. Alice finally sends 𝑠 ′ privately to Bob, who opens

the puzzle 𝜏 by computing the witness 𝑠 := 𝑠 ′ − 𝑟 and adapting

4
Technically, [52] uses a different abstraction called “re-randomizable puzzle”. However,

it is not hard to see that a re-randomizable linearly homomorphic encryption scheme

satisfies this notion. For completeness, we show this in Appendix A.

the pre-signature �̃�𝐻HB (given by Hub in the promise phase) to the

signature 𝜎𝐻HB.

3.2 Counterexamples
Next, we describe two cryptographic instantiations of A

2
L that

satisfy the formal definitions, yet enable two attacks. For the pur-

pose of these attacks, it suffices to keep in mind that Hub offers

the sender party (Alice) access to the following oracle, which we

refer to as OA2L
dk,ΠE,ΠADP

. On input a verification key vk, a message

𝑚, a group element ℎ, a ciphertext 𝑐 , and a partial signature �̃� , the

oracle behaves as follows:

• Compute 𝑥 ← ΠE .Dec(dk, 𝑐).
• Compute 𝜎 ′ ← ΠADP .Adapt(�̃�, 𝑥).
• If ΠADP .Vrfy(vk,𝑚, 𝜎 ′) = 1, return 𝜎 ′.
• Else return ⊥.
Note that returning 𝜎 ′ implicitly reveals 𝑥 , since

ΠADP .Ext(�̃�, 𝜎 ′, ℎ) = 𝑥 . It is also useful to observe that pro-

viding a valid pre-signature to the A
2
L oracle is trivial for an

adversary: generating a pre-signature that is valid when adapted

with a value 𝑥 requires only knowledge of the party’s own signing

key and of a value ℎ = 𝑔𝑥 . The leakage offered by this oracle (and

indeed the existence of this leakage) is not addressed in A
2
L’s

proof of security.

Key Recovery Attack. In our first attack, we completely recover

the decryption key dk of the hub by simply querying the oracle

OA2L
sk,ΠE,ΠADP

𝑛 times. For this attack, we assume that the encryption

scheme ΠE is (in addition to being re-randomizable and CPA-secure

as required by A
2
L):

• Linearly homomorphic over Z𝑝 .
• Circular secure for bit encryption, i.e., the scheme is CPA-

secure even given the bitwise encryption of the decryption key

Enc(ek, dk1), . . . , Enc(ek, dk𝑛).
• The above-mentioned ciphertexts (𝑐1, . . . , 𝑐𝑛) := (Enc(ek, dk1),

. . . , Enc(ek, dk𝑛)) are included in the encryption key ek.

Such schemes can be constructed from a variety of standard as-

sumptions [12]. It is easy to see that these additional requirements

do not contradict the initial prerequisites of the scheme.

Algorithm 1 Key Recovery Attack

Input: Hub’s ek along with the cipheretexts (𝑐1, . . . , 𝑐𝑛)
1: Initialize key guess dk′ := 0

𝑛

2: for 𝑖 ∈ 1 . . . 𝑛 do
3: Sample 𝑥 ←$Z𝑝 and compute ℎ := 𝑔𝑥

4: Sample a fresh signing key (vk, sk) ← KGen(1𝑛)
5: Set 𝑐′

𝑖
:= ΠE .Enc(ek, 𝑥) ◦ 𝑐𝑖 = ΠE .Enc(ek, 𝑥 + dk𝑖 )

6: Compute �̃�𝑖 ← ΠADP .PreSig(sk,𝑚,ℎ)
7: Query 𝑦 ← OA2L

dk,ΠE,ΠADP
(vk,𝑚,ℎ, 𝑐′

𝑖
, �̃�𝑖 )

8: If 𝑦 = ⊥ set dk′𝑖 := 1

9: end for
10: return dk′

The attack is shown in Algorithm 1. Note that, for a signing key

pair in the 𝑖-th iteration, if theOA2L
oracle returns𝑦 ≠ ⊥, this means

that in the coinmixing layer, the Hub has obtained a valid𝑦 and thus
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obtains Alice’s (adversary’s) signature on a transaction. Due to one-

time use of keys in this (cryptocurrency) layer, the attacker therefore

cannot reuse the same signing key pair in another iteration for a

different message (transaction). Therefore, it is necessary that the

attacker (Alice) sample 𝑛 signing keys to account for every iteration

being a non-⊥ query to OA2L
. This is realized in the real world by

the attacker having 𝑛 different sessions (of coin mixing), one for

each vk𝑖 , with Hub.

Observe that the response of the oracle is⊥ if and only if dk𝑖 = 1,

since ℎ = 𝑔𝑥 ≠ 𝑔𝑥+1. On the other hand, if dk𝑖 = 0, then the

oracle always returns a valid adapted signature 𝜎 ′. Thus, the attack
succeeds with probability 1.

One-More SignatureAttack.Wepresent a different attack, where

we impose different assumptions on the encryption scheme ΠE. We

discuss later in the section why these assumptions do not contradict

the pre-requisites of the A
2
L scheme. Specifically, in addition to

A
2
L’s requirement that the scheme is perfectly re-randomizable

and CPA-secure, we assume that it is:

• Linearly homomorphic over Z𝑝 .
• Supports homomorphic evaluation of the conditional bit flip

(CFlip) function, defined as

ΠE .CFlip(ek, 𝑖, Enc(ek, 𝑥)) := Enc(ek, 𝑦)

where

{
𝑦 = 𝑥 if 𝑥𝑖 = 0

𝑦 = 𝑥 ⊕ 𝑒𝑖 if 𝑥𝑖 = 1

and 𝑒𝑖 is the 𝑖-th unit vector.

The objective of the attack is to steal coins from the hub in the

coin mixing protocol. Specifically, at the A
2
L level, the attacker

will solve 𝑞 + 1 puzzles by querying the puzzle solver interface

successfully only 𝑞 times. Note that we do not count unsuccessful

(i.e., the oracle returns⊥) queries, since those non-accepting queries
do not correspond to any payment from Alice’s side.

Algorithm 2 One-More Signature Attack

Input: Bob’s ciphertexts (𝑐1, . . . , 𝑐𝑞+1) and group elements (ℎ1, . . . , ℎ𝑞+1) ,
where 𝑐 𝑗 = ΠE .Enc(ek, 𝑥 𝑗 ) and ℎ 𝑗 := 𝑔

𝑥 𝑗
, and Hub’s ek

1: Initialize guess 𝑥′
1
:= 0

𝑛
and a counter 𝑖 := 1

2: for 𝑖 = 1 . . . 𝑛 do
3: Sample a fresh signing key (vk, sk) ← KGen(1𝑛)
4: Compute 𝑐′

1
← ΠE .CFlip(ek, 𝑖, 𝑐1)

5: Sample (𝑟 (𝑖 )
1
, . . . , 𝑟

(𝑖 )
𝑞+1) ←$Z

𝑞+1
𝑝

6: Compute 𝑐′ := (𝑐′
1
)𝑟
(𝑖 )
1 ◦ (𝑐2)𝑟

(𝑖 )
2 · · · ◦ (𝑐𝑞+1)

𝑟
(𝑖 )
𝑞+1

7: Compute ℎ′ :=
∏𝑞+1

𝑗=1
ℎ
𝑟
(𝑖 )
𝑗

𝑗

8: Sign �̃� ← ΠADP .PreSig(sk,𝑚,ℎ′)
9: Query 𝑦𝑖 ← OA2L

dk,ΠE,ΠADP
(vk,𝑚,ℎ′, 𝑐′, �̃�)

10: If 𝑦𝑖 = ⊥ set 𝑥′
1,𝑖

:= 1

11: end for
12: Continue querying (without updating 𝑥′

1
) until 𝑞 non-⊥ queries have

been made

13: For all 𝑖 corresponding to a non-⊥ query, set 𝐸𝑖 to be the equation

𝑦𝑖 − 𝑟 (𝑖 )
1
𝑥′
1
= 𝑟
(𝑖 )
2
𝑥′
2
+ . . . + 𝑟 (𝑖 )

𝑞+1𝑥
′
𝑞+1

14: Solve (𝐸1, . . . , 𝐸𝑞) for (𝑥′
2
, . . . , 𝑥′

𝑞+1)
15: return (𝑥′

1
, 𝑥′

2
, . . . , 𝑥′

𝑞+1)

The attack is shown in Algorithm 2.We assume (for convenience)

that 𝑞 ≥ 𝑛 and that Z𝑝 ≤ 2
𝑛
and therefore 𝑥 𝑗 ∈ {0, 1}𝑛 . Observe

that the attack makes at most 𝑞 successful queries to the oracle, so

all we need to show is that the success probability is high enough.

First, we argue that the attack recovers the correct 𝑥 ′
1
= 𝑥1 with

probability 1. If the 𝑖-th bit 𝑥1,𝑖 = 0, then the CFlip operation does

not alter the content of the ciphertext and therefore

𝑐 ′ = Enc ©­«ek,
𝑞+1∑
𝑗=1

𝑟
(𝑖)
𝑗
· 𝑥 𝑗

ª®¬ and ℎ′ =
𝑞+1∏
𝑗=1

ℎ
𝑟
(𝑖 )
𝑗

𝑗
= 𝑔

∑𝑞+1
𝑗=1

𝑟
(𝑖 )
𝑗
·𝑥 𝑗

so the oracle always returns a non-⊥ response. On the other hand,

if 𝑥1,𝑖 = 1, then the above equality does not hold and therefore

OA2L
sk,ΠE,ΠADP

always returns ⊥.
This querying strategy is repeated for every bit of 𝑥 ′

1
and con-

tinued on 𝑥2, etc., until 𝑞 non-⊥ queries have been made. Because

𝑞 ≥ 𝑛, the attacker will have learned all 𝑛 bits of 𝑥 ′
1
by this point.

Thus, the set of equations (𝐸1, . . . , 𝐸𝑞) has exactly 𝑞 unknowns.

Since the coefficients are uniformly chosen, the equations are, with

all but negligible probability, linearly independent. Since Z𝑝 is a

field, the solution is uniquely determined and can be found effi-

ciently via Gaussian elimination.

N-More Signatures. The described attack is in fact even stronger

than shown. Using this method, an attacker A can use 𝑞 queries,

where ⌊𝑞⌋ = 𝑁𝑛, to recover 𝑁 + 𝑞 plaintexts. A does this by using

𝑁𝑛 queries to recover the first 𝑁 plaintexts 𝑥1, . . . , 𝑥𝑁 and 𝑁𝑛

equations as described previously (once it has flipped all 𝑛 bits

in 𝑥1, it starts flipping bits in 𝑥2, and so on). Using its remaining

queries, it obtains 𝑞 − 𝑁𝑛 more equations (either by continuing to

flip bits in further ciphertexts, which are however wasted, or by

simply choosing new values 𝑟𝑖 for the linear combinations) for a

total of 𝑞 equations. Using Gaussian elimination, it can recover the

remaining 𝑞 plaintexts 𝑥𝑁+1, . . . , 𝑥𝑁+𝑞 . Taken with the plaintexts

𝑥1, . . . , 𝑥𝑁 that were recovered bit-by-bit, the attacker has learned

𝑁 + 𝑞 plaintexts.

Instantiations. We now justify our additional assumptions on

the encryption scheme ΠE by describing suitable instantiations

that satisfy all the requirements. Clearly, if the scheme is fully-

homomorphic [24] then it supports both linear functions over Z𝑝
and conditional bit flips. However, we show that even a linear ho-

momorphic encryption (over Z𝑝 ) can suffice to mount our attack.

Specifically, given a CPA-secure linearly homomorphic encryp-

tion scheme (KGen∗, Enc∗,Dec∗), we define a bitwise encryption
scheme (KGen, Enc,Dec) as follows:

• KGen(1𝑛): Return the output of KGen∗ (1𝑛).
• Enc(ek, 𝑥): Parse 𝑥 as (𝑥 (1) , . . . , 𝑥 (𝑛) ) and return

(Enc∗ (ek, 𝑥 (1) ), . . . , Enc∗ (ek, 𝑥 (𝑛) )).
• Dec(dk, 𝑐): Parse 𝑐 as (𝑐 (1) , . . . , 𝑐 (𝑛) ) and return

∑𝑛
𝑖=1 2

𝑖−1 ·
Dec∗ (dk, 𝑐 (𝑖) ).

It is easy to show that the new scheme is CPA-secure via a standard

hybrid argument.

Next, we argue that one can efficiently implement the conditional

bit flip operation (CFlip) over such ciphertexts. Given a ciphertext
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𝑐 = (𝑐 (1) , . . . , 𝑐 (𝑛) ), we can conditionally flip the 𝑖-th bit by com-

puting

(𝑐 (1) , . . . , Enc∗ (ek, 0)︸       ︷︷       ︸
𝑖-th ciphertext

, . . . , 𝑐 (𝑛) ).

This is a correctly formed ciphertext, since the conditional bit flip al-

ways sets the 𝑖-th bit to 0 and leaves the other positions untouched.

Finally, we need to argue that the encryption scheme is still

linearly homomorphic over Z𝑝 . Note that this does not follow im-

mediately from the fact that (KGen∗, Enc∗,Dec∗) is linearly ho-

momorphic, since the new encryption algorithm decomposes the

inputs bitwise. Nevertheless, we show this indeed holds for the

case of two ciphertexts 𝑐 = (𝑐 (1) , . . . , 𝑐 (𝑛) ) and 𝑑 = (𝑑 (1) , . . . , 𝑑 (𝑛) )
encrypting 𝑥 and 𝑦, respectively. The general case follows analo-

gously. To homomorphically compute 𝛼𝑥 + 𝛽𝑦, where (𝛼, 𝛽) ∈ Z2𝑝 ,
we compute( (

𝑛
⃝
𝑖=1
(𝑐 (𝑖) )2

𝑖−1
)𝛼
◦

(
𝑛
⃝
𝑖=1
(𝑑 (𝑖) )2

𝑖−1
)𝛽
, Enc∗ (ek, 0),

. . . , Enc∗ (ek, 0)
)
.

A routine calculation shows that this ciphertext correctly decrypts

to the desired result 𝛼𝑥 + 𝛽𝑦.

4 BLIND CONDITIONAL SIGNATURES
In the following we formally define and instantiate blind condi-

tional signatures, the central cryptographic notion for coin mixing

services. Our goal here is to give a simple and easy-to-understand

formalization of a synchronization puzzle.

4.1 Definitions
A blind conditional signature (BCS) is executed among users Alice,

Bob, and Hub. The interfaces and associated security properties are

defined below.

Definition 4.1 (Blind Conditional Signature). A blind conditional

signature ΠBCS := (Setup, PPromise, PSolver,Open) is defined

with respect to a signature scheme ΠDS := (KGen, Sign,Vf) and
consists of the following efficient algorithms.

• ( ˜ek, ˜dk) ← Setup(1𝑛): The setup algorithm takes as input the

security parameter 1
𝑛
and outputs a key pair ( ˜ek, ˜dk).

• (⊥, {𝜏,⊥}) ← PPromise

〈
𝐻

(
˜dk, sk𝐻 ,𝑚HB

)
B

(
˜ek, vk𝐻 ,𝑚HB

) 〉: The puzzle

promise algorithm is an interactive protocol between two users

𝐻 (with inputs the decryption key
˜dk, the signing key sk𝐻 , and

a message𝑚HB) and B (with inputs the encryption key
˜ek, the

verification key vk𝐻 , and a message𝑚HB) and returns ⊥ to 𝐻

and either a puzzle 𝜏 or ⊥ to 𝐵.

• ({(𝜎∗, 𝑠),⊥}, {𝜎∗,⊥}) ← PSolver

〈
A

(
sk𝐴, ˜ek,𝑚AH , 𝜏

)
𝐻

(
˜dk, vk𝐴,𝑚AH

) 〉
: The

puzzle solving algorithm is an interactive protocol between two

users A (with inputs the signing key sk𝐴 , the encryption key

˜ek, a message𝑚AH , and a puzzle 𝜏) and 𝐻 (with inputs the de-

cryption key
˜dk, the verification key pk𝐴 , and a message𝑚AH )

and returns to both users either a signature 𝜎∗ (A additionally

receives a secret 𝑠) or ⊥.
• {𝜎,⊥} ← Open(𝜏, 𝑠): The open algorithm takes as input a puzzle

𝜏 and a secret 𝑠 and returns a signature 𝜎 or ⊥.

Next, we define correctness.

Definition 4.2 (Correctness). A blind conditional signature ΠBCS
is correct if for all 𝑛 ∈ N, all ( ˜ek, ˜dk) in the support of Setup(1𝑛),
all (vk𝐻 , sk𝐻 ) and (vk𝐴, sk𝐴) in the support of ΠDS .KGen(1𝑛), and
all pairs of messages (𝑚HB,𝑚AH ), it holds that

Pr

[
Vf (vk𝐻 ,𝑚HB,Open(𝜏, 𝑠)) = 1

]
= 1

and

Pr

[
Vf (vk𝐴,𝑚AH , 𝜎

∗) = 1

]
= 1

where

• 𝜏 ← PPromise

〈
𝐻

(
˜dk, sk𝐻 ,𝑚HB

)
B

(
˜ek, vk𝐻 ,𝑚HB

) 〉 and

• ((𝜎∗, 𝑠), 𝜎∗) ← PSolver

〈
A

(
sk𝐴, ˜ek,𝑚AH , 𝜏

)
𝐻

(
˜dk, vk𝐴,𝑚AH

) 〉
.

We now present the security guarantees of BCS in the game-

based setting. Our definition of blindness is akin to the strong

blindness notion of standard blind signatures [18], in which the

adversary picks the keys (as opposed to the weak version in which

they are chosen by the experiment)
5
. Roughly speaking, it says that

two promise/solve sessions cannot be linked together by the hub.
6

Definition 4.3 (Blindness). A blind conditional signature ΠBCS is

blind if there exists a negligible function negl(𝑛) such that for all

𝑛 ∈ N and all PPT adversaries A, the following holds:

Pr

[
ExpBlndAΠpuzzle

(𝑛) = 1

]
≤ 1

2

+ negl(𝑛)

where ExpBlnd is defined in Figure 5.
7

Next, we define unlockability, which says that it should be hard

for Hub to create a valid signature on Alice’s message that does

not allow Bob to unlock the full signature in the corresponding

promise session.

Definition 4.4 (Unlockability). A blind conditional signature

ΠBCS is unlockable if there exists a negligible function negl(𝑛)
such that for all 𝑛 ∈ N and all PPT adversaries A, the following

holds:

Pr

[
ExpUnlockAΠBCS

(𝑛) = 1

]
≤ negl(𝑛)

where ExpUnlock is defined in Figure 6.

Our definition of unforgeability is inspired by the unforgeabil-

ity of blind signatures [18]. We require that Alice and Bob cannot

5
We opt for this stronger version since we want to provide anonymity even in the

case of a fully malicious hub, which can pick its keys adversarially to try to link a

sender/receiver pair.

6
We do not consider the case in which Hub colludes with either Alice or Bob, since

deanonymization is trivial (Alice (resp. Bob) simply reveals the identity of Bob (resp.

Alice) to Hub); this is in line with [52].

7
In previous works, descriptions of unlinkability assume an explicit step for blinding

the puzzle 𝜏 between PPromise and PSolver. Here, we assume that PSolver performs

this blinding functionality.
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ExpBlndAΠBCS
(𝑛)

( ˜ek, vk𝐻
0
, vk𝐻

1
, (𝑚HB,0,𝑚AH ,0), (𝑚HB,1,𝑚AH ,1)) ← A(1𝑛)

(vk𝐴
0
, sk𝐴

0
) ← KGen(1𝑛)

(vk𝐴
1
, sk𝐴

1
) ← KGen(1𝑛)

𝜏0 ← PPromise
〈
A(vk𝐴

0
, vk𝐴

1
), B( ˜ek, vk𝐻

0
,𝑚HB,0)

〉
𝜏1 ← PPromise

〈
A(vk𝐴

0
, vk𝐴

1
), B( ˜ek, vk𝐻

1
,𝑚HB,1)

〉
𝑏 ← {0, 1}

(𝜎∗
0
, 𝑠0) ← PSolver

〈
A

(
sk𝐴

0
, ˜ek,𝑚AH ,0, 𝜏0⊕𝑏

)
,A

〉
(𝜎∗

1
, 𝑠1) ← PSolver

〈
A

(
sk𝐴

1
, ˜ek,𝑚AH ,1, 𝜏1⊕𝑏

)
,A

〉
if (𝜎∗

0
= ⊥) ∨ (𝜎∗

1
= ⊥) ∨ (𝜏0 = ⊥) ∨ (𝜏1 = ⊥)

𝜎0 := 𝜎1 := ⊥
else

𝜎
0⊕𝑏 ← Open(𝜏

0⊕𝑏 , 𝑠0)
𝜎
1⊕𝑏 ← Open(𝜏

1⊕𝑏 , 𝑠1)
𝑏′ ← A(𝜎0, 𝜎1)
return (𝑏 = 𝑏′)

Figure 5: Blindness experiment

ExpUnlockAΠBCS
(𝑛)

( ˜ek, vk𝐻 ,𝑚HB,𝑚AH ) ← A(1𝑛)

(vk𝐴, sk𝐴) ← KGen(1𝑛)

𝜏 ← PPromise
〈
A(vk𝐴), B( ˜ek, vk𝐻 ,𝑚HB)

〉
if 𝜏 = ⊥
(�̂�, �̂�) ← A

𝑏0 := (Vf (vk𝐴, �̂�, �̂�) = 1)
if 𝜏 ≠ ⊥

(𝜎∗, 𝑠) ← PSolver
〈
A

(
sk𝐴, ˜ek,𝑚AH , 𝜏

)
,A

〉
(�̂�, �̂�) ← A

𝑏1 := (Vf (vk𝐴, �̂�, �̂�) = 1) ∧ (�̂� ≠𝑚AH )

𝑏2 := (Vf (vk𝐴, 𝜎∗,𝑚AH ) = 1)

𝑏3 := (Vf (vk𝐻 ,𝑚HB,Open(𝜏, 𝑠)) ≠ 1)
return 𝑏0 ∨ 𝑏1 ∨ (𝑏2 ∧ 𝑏3)

Figure 6: Unlockability experiment

recover 𝑞 signatures from Hub while successfully querying the

solving oracle at most 𝑞 − 1 times. Since each successful query

reveals a signature from Alice’s key (which in turn corresponds to

a transaction from Alice to Hub), this requirement implicitly cap-

tures the fact that Alice and Bob cannot steal coins from Hub. The

winning condition 𝑏0 captures the scenario where the adversary

forges a signature of the hub on a message previously not used

in any promise oracle query. The remaining conditions 𝑏1, 𝑏2 and

ExpUnforgAΠBCS
(𝑛)

L := ∅,𝑄 := 0

( ˜ek, ˜dk) ← Setup(1𝑛)

(vk𝐻
1
,𝑚1, 𝜎1), . . . , (vk𝐻𝑞 ,𝑚𝑞, 𝜎𝑞) ← AOPP(·),OPS(·) ( ˜ek)

𝑏0 := ∃𝑖 ∈ [𝑞 ] s.t. (vk𝐻𝑖 , ·) ∈ L ∧ (vk𝐻𝑖 ,𝑚𝑖 ) ∉ L

∧ Vf (vk𝐻𝑖 ,𝑚𝑖 , 𝜎𝑖 ) = 1

𝑏1 := ∀𝑖 ∈ [𝑞 ], (vk𝐻𝑖 ,𝑚𝑖 ) ∈ L ∧ Vf (vk𝐻𝑖 ,𝑚𝑖 , 𝜎𝑖 ) = 1

𝑏2 :=
∧

𝑖,𝑗∈[𝑞 ],𝑖≠𝑗
(vk𝐻𝑖 ,𝑚𝑖 , 𝜎𝑖 ) ≠ (vk𝐻𝑗 ,𝑚 𝑗 , 𝜎 𝑗 )

𝑏3 := (𝑄 ≤ 𝑞 − 1)
return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 ∧ 𝑏3)

OPP(𝑚)

(vk𝐻 , sk𝐻 ) ← ΠADP .KGen(1𝑛)

L := L ∪ {(vk𝐻 ,𝑚) }

⊥ ← PPromise⟨𝐻 ( ˜dk, sk𝐻 ,𝑚),A(vk𝐻 ) ⟩

OPS(vk𝐴,𝑚′)

𝜎∗ ← PSolver⟨A, 𝐻 ( ˜dk, vk𝐴,𝑚′) ⟩
if 𝜎∗ ≠ ⊥ then𝑄 := 𝑄 + 1

Figure 7: Unforgeability experiment

𝑏3 together capture the scenario in which the adversary outputs 𝑞

valid distinct key-message-signature tuples while having queried

for solve only 𝑞 − 1 times. Hence, in the second condition, the at-

tacker manages to complete 𝑞 promise interactions with only 𝑞 − 1
solve interactions, whereas in the first winning condition, the ad-

versary computes a fresh signature that is not the completion of any

promise interaction. These conditions are technically incomparable:

an attacker that succeeds under one condition does not imply an

attacker succeeding on the other. It is important to note that this is

different from the unforgeability notion of blind signatures (where

the attacker only has access to a single signing oracle), since in our

case the hub is offering the attacker two oracles: promise and solve.

Definition 4.5 (Unforgeability). A blind conditional signature

ΠBCS is unforgeable if there exists a negligible function negl(𝑛)
such that for all 𝑛 ∈ N and all PPT adversaries A, the following

holds:

Pr

[
ExpUnforgAΠBCS

(𝑛) = 1

]
≤ negl(𝑛)

where ExpUnforg is defined in Figure 7.

We define security as the collection of all properties.

Definition 4.6 (Security). A blind conditional signature ΠBCS is

secure if it is blind, unlockable, and unforgeable.
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OM-CCA-A2L
A
ΠE,𝑞

𝑄 := 0

(ek, dk) ← ΠE .KGen(1𝑛)
𝑟1, . . . , 𝑟𝑞+1 ←$ {0, 1}𝑛

𝑐𝑖 ← ΠE .Enc(ek, 𝑟𝑖 )

(𝑟 ′
1
, . . . , 𝑟 ′𝑞+1) ← A

OA2Ldk,ΠE,ΠADP (ek, (𝑐1, 𝑔𝑟1 ), . . . , (𝑐𝑞+1, 𝑔𝑟𝑞+1 ))
if 𝑟 ′𝑖 = 𝑟𝑖 ∀𝑖 ∈ 1, . . . , 𝑞 + 1 ∧𝑄 ≤ 𝑞 then return 1

else return 0

OA2L
dk,ΠE,ΠADP

(vk,𝑚,ℎ, 𝑐, �̃�)

check if vk ∈ Supp(ΠADP .KGen(1𝑛))
�̃� ← ΠE .Dec(dk, 𝑐)

if ΠADP .PreVf (vk,𝑚,ℎ, �̃�) = 1 and 𝑔�̃� = ℎ

𝑄 := 𝑄 + 1
return 𝜎′ ← ΠADP .Adapt(�̃�, �̃�)

else return ⊥

Figure 8: OM-CCA-A2L game

4.2 The A2L+ Protocol
In the following we describe our A

2
L
+
construction. Our scheme

is a provable variant of A
2
L (Section 3.1) and therefore we only

describe the differences with respect to the original protocol. The

concrete modifications are as follows:

• Augment the public key of Hub ek𝐻 with a NIZK proof that

certifies that ek𝐻 ∈ Supp(ΠE .KGen(1𝑛)). All parties verify this

proof during their first interaction with Hub.

• In PSolver (Figure 13), Hub additionally checks if vk𝐴AH is in

the support of ΠADP .KGen(1𝑛) before the decryption (line 6).

Furthermore, we replace the condition (line 8) with

ΠADP .PreVf (vk𝐴AH ,𝑚AH , 𝑌
′′, �̃�𝐴AH ) ≠ 1 ∨ 𝑔𝑠

′′
≠ 𝑌 ′′.

4.3 Security Analysis
In this section we present our security results and defer the proofs

to Appendix C. Before proving our main theorem, we define a

property which is going to be useful for our analysis.

Definition 4.7 (OM-CCA-A2L). An encryption scheme ΠE is one-

more CCA-A2L-secure (OM-CCA-A2L) if there exists a negligible

function negl(𝑛) such that for all 𝑛 ∈ N, all polynomials 𝑞 = 𝑞(𝑛),
and all PPT adversaries A, the following holds:

Pr

[
OM-CCA-A2L

A
ΠE,𝑞
(𝑛) = 1

]
≤ negl(𝑛),

where OM-CCA-A2L is defined in Figure 8.

The following technical lemma shows that an LOE scheme sat-

isfies this property, assuming the hardness of the OMDL problem.

The formal analysis of the below lemma is deferred to Appendix C.

Lemma 4.8. Let ΠE be an LOE scheme. Assuming the hardness of
OMDL, ΠE is OM-CCA-A2L secure.

Main Theorem. We are now ready to give the main theorem of

this section. The formal analysis is deferred to Appendix C.

Theorem 4.9. Let ΠE be an LOE scheme, ΠADP a secure adaptor
signature scheme, and ΠNIZK a sound NIZK proof system. Assuming
the hardness of OMDL, the A2L+ protocol is a secure blind conditional
signature scheme.

5 UC-SECURE BLIND CONDITIONAL
SIGNATURES

We now model security in the universal composability framework

from Canetti [15] extended to support a global setup [16] in order

to capture concurrent executions. We refer the reader to [15] for a

comprehensive discussion. We consider static corruptions, where
the adversary announces at the beginning which parties it corrupts.

We denote the environment by E. For a real protocol Π and an

adversary A we write EXECΠ,A,E to denote the ensemble corre-

sponding to the protocol execution. For an ideal functionality F
and an adversary S we write EXECF,S,E to denote the distribution

ensemble of the ideal world execution.

Definition 5.1 (Universal Composability). A protocol Π UC-

realizes an ideal functionality F if for any PPT adversary A there

exists a simulatorS such that for any environment E the ensembles

EXECΠ,A,E ≈ EXECF,S,E are computationally indistinguishable.

In our protocol, we assume the existence of a general-purpose

UC-secure 2-party computation (2PC) protocol [17, 32], where two

parties interact with the ideal functionality to compute a function

𝑓 (𝑥,𝑦) over their private inputs 𝑥 and 𝑦.

5.1 Ideal functionality
We describe the ideal functionality FBCS that captures the func-

tionality and security of BCS in the UC framework. We refer the

reader to Appendix D for the formal description of FBCS. The ideal
functionality has three routines, namely for puzzle promise, puzzle

solver, and open, which intuitively capture the functionality of BCS

as discussed in Section 4. On a high level, FBCS captures blindness
by sampling the puzzle identifiers pid and pid′, which correspond

to puzzle promise and puzzle solve interactions, locally together, but

never revealing them together to the hub. FBCS captures atomicity
by returning a successful message (not aborting) for pid during

open if and only if it sent a successful solved message during the

puzzle solve interaction for the puzzle identifier pid′ (where pid
and pid′ correspond to each other). Note that the above atomicity

guarantee implies the game-based definitions of unlockability and

unforgeability.

Our functionality FBCS is taken verbatim from the FA2L function-

ality in [52] except that we do not consider user registrations (as

done in FA2L) to tackle griefing attacks [43] in the coin mixing layer.

These attacks are mounted by Bob starting many puzzle promise

operations, each of which requires Hub to lock coins, whereas the

corresponding puzzle solver interactions are never carried out. As a

consequence, all of Hub’s coins are locked and no longer available,

which results in a form of denial of service attack. We argue that

the issue does not concern the functionality or security of BCS as

a cryptographic tool, but only affects the coin mixing protocol at

the transaction layer. We emphasize that griefing attacks can be
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thwarted at this layer in both the formal model and the construction

using the same ideas as in [52].

5.2 Our Protocol: A2LUC

We now describe our protocol A
2
L
UC

that realizes the ideal func-

tionality FBCS. We assume the following cryptographic building

blocks:

• An adaptor signature scheme ΠADP defined with respect to ΠDS
and a hard relation 𝑅DL.

• A UC-secure NIZK proof system ΠNIZK for the language

L := {(ek, 𝑌 , 𝑐) | ∃𝑠, s.t. 𝑐 ← ΠE .Enc(ek, 𝑠) ∧ 𝑌 = 𝑔𝑠 }.

• A UC-secure 2PC protocol.

• A CCA-secure [7] encryption scheme ΠE := (KGen, Enc,Dec)
with unique decryption keys.

The property of unique decryption keys is formalized below.

Definition 5.2 (Unique Decryption Keys). An encryption scheme

ΠE has unique decryption keys if the KGen algorithm is of the

following form:

• Sample dk←$ {0, 1}𝑛 .
• Run ek← Gen(dk).
Furthermore, for all ek output by KGen, there exists a unique dk
such that ek = Gen(dk). In other words, Gen is injective.

This property is already satisfied by most natural public-key en-

cryption schemes, but it can be generically achieved by augmenting

the encryption key with a perfectly binding commitment com(dk)
to the decryption key dk.

Protocol Description. We assume Alice and Hub have a key pair

for the signature scheme ΠDS. Specifically, we have the verification-

signing key pairs (vk𝐻HB, sk
𝐻
HB) and (vk

𝐴
AH , sk

𝐴
AH ), belonging to Hub

and Alice, respectively. We then have two messages𝑚 :=𝑚HB and

𝑚′ :=𝑚AH for which the users wish to generate blind conditional

signatures. The setup and open algorithms are formally described

in Figure 9. The puzzle promise and puzzle solver of A
2
L
UC

are

formally described in Figure 10 and Figure 11, respectively. For ease

of understanding, we briefly describe below our A
2
L
UC

protocol in

terms of the differences with the A
2
L protocol (Figures 12 and 13).

• The setup algorithm (Figure 9) of A
2
L
UC

generates the keys of

Hub, which are the keys for the (CCA-secure) encryption scheme

ΠE.

• In PPromise of A2
L
UC

(Figure 10),

– The NIZK proof system is UC-secure.

– Bob no longer re-randomizes the instance or the ciphertext.

Therefore, we drop the re-randomization steps (line 9 and

10) of PPromise in A
2
L (Figure 12). Simply set the puzzle to

𝜏 := (𝑚HB, �̃�
𝐻
HB, (𝑌, 𝑐)).

• In PSolver of A2
L
UC

(Figure 11),

– Alice no longer sends the ciphertext to Hub (line 5 of Fig-

ure 13). We therefore remove the local decryption step (line

6 of Figure 13), and replace it with a 2PC protocol (line 6 of

Figure 11).

– At the end of the 2PC protocol, Alice receives ⊥, while Hub
receives the value 𝑧. Hub additionally checks if 𝑌 ′ = 𝑔𝑧 (line

7) and uses 𝑧 to adapt the pre-signature �̃�𝐴AH to signature 𝜎𝐴AH .

Setup(1𝑛)
(ek𝐻 , dk𝐻 ) ← ΠE .KGen(1𝑛)

set ˜pk := ek𝐻 , ˜sk := dk𝐻

return ( ˜pk, ˜sk)

Open(𝜏, 𝑠)
parse 𝜏 := ( ·, �̃�, ·)
𝜎 ← ΠADP .Adapt(�̃�, 𝑠)
return 𝜎

Figure 9: Setup and Open algorithms of our conditional puz-
zle construction

– We add a check for Alice (line 10) that 𝜎𝐴AH is a valid signature

before extracting the witness 𝑧′ in line 12.

• The Open algorithm (Figure 9) is the same as in Figure 14 of

A
2
L, except we skip removing the randomness factor. The algo-

rithm in Figure 9 now simply adapts a pre-signature �̃� to a valid

signature 𝜎 which it returns as output.

5.3 Security Analysis
We now show that A

2
L
UC

satisfies UC-security. In favor of a simpler

analysis, we assume that the verification keys of all parties are

honestly generated. In practice, this can be enforced by augmenting

keys with NIZKs that certify their validity [11, 35]. We state here

our security theorem and defer the formal proof to Appendix C.

Theorem 5.3. Let ΠE be a CCA-secure encryption scheme, ΠADP
a secure adaptor signature scheme, 2PC a UC-secure two-party com-
putation protocol, and ΠNIZK a UC-secure NIZK for the language L
above. Then the A2LUC protocol UC-realizes FBCS.

6 EFFICIENCY
We now discuss the efficiency of our constructions A

2
L
+
and A

2
L
UC

in terms of number of cryptographic operations.

6.1 A2L+

Recall that we use an encryption scheme ΠE in the LOE model.

Below we present an instantiation of such a ΠE.

Instantiating Linear-Only Encryption. As shown in [10] it is

not sufficient to instantiate this with any linearly homomorphic

encryption (e.g., ElGamal). Though the scheme may not support

homomorphic operations beyond linear, it may still have obliviously
sampleable ciphertexts, i.e., the ability to sample a ciphertext with-

out knowing the underlying plaintext. Note that this falls outside

the LOE model, since there is no oracle that implements this func-

tionality. Thus, as suggested in [10] we implement an additional

safeguard needed to prevent oblivious sampling. Given a linearly

homomorphic encryption scheme Π∗E := (KGen∗, Enc∗,Dec∗) over
Z𝑝 , we define a candidate LOE ΠE := (KGen, Enc,Dec) as follows:
• KGen(1𝑛): Sample (ek∗, dk∗) ← KGen∗ (1𝑛) and some 𝛼 ←$Z𝑝 .

Return dk := (dk∗, 𝛼) as the decryption key and ek :=

(ek∗, Enc∗ (ek∗, 𝛼)) as the encryption key.

• Enc(ek∗, 𝑥): Compute 𝑐 as (Enc∗ (ek∗, 𝑥), Enc∗ (ek∗, 𝛼 ·𝑥)), where
Enc∗ (ek∗, 𝛼 · 𝑥) is computed homomorphically using ek.

• Dec(dk∗, 𝑐): Parse 𝑐 as (𝑐0, 𝑐1) and compute 𝑥0 ← Dec∗ (dk∗, 𝑐0)
and 𝑥1 ← Dec∗ (dk∗, 𝑐1). If 𝑥1 = 𝛼 · 𝑥0 return 𝑥0, else return ⊥.
We note that the security of ΠE follows from the security of Π∗E.

Intuitively, we prevent oblivious ciphertext sampling, since it is
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Public parameters: group description (G, 𝑔, 𝑞), message𝑚HB
PPromise⟨𝐻 (dk𝐻 , sk𝐻HB), ·⟩ PPromise⟨·, 𝐵 (ek𝐻 , vk𝐻HB) ⟩
1 : 𝑠 ←$Z𝑝 , 𝑌 := 𝑔𝑠

2 : 𝑐 ← ΠE .Enc(ek𝐻 , 𝑠)
3 : 𝜋𝑠 ← NIZK.P( (ek𝐻 , 𝑌 , 𝑐), 𝑠)
4 : �̃�𝐻HB ← ΠADP .PreSig(sk𝐻HB,𝑚HB, 𝑌 )
5 :

𝑌, 𝑐, 𝜋𝑠 , �̃�
𝐻
HB

6 : If NIZK.V( (ek𝐻 , 𝑌 , 𝑐), 𝜋𝑠 ) ≠ 1 then return ⊥
7 : If ΠADP .PreVf (vk𝐻HB,𝑚HB, 𝑌 , �̃�

𝐻
HB) ≠ 1 then

8 : return ⊥
9 : set 𝜏 := (𝑚HB, �̃�

𝐻
HB, (𝑌, 𝑐))

10 : return ⊥ return 𝜏

Figure 10: Puzzle promise protocol of A2LUC

Public parameters: group description (G, 𝑔, 𝑞), message𝑚AH
PSolver⟨𝐴(sk𝐴AH , ek𝐻 , 𝜏), ·⟩ PSolver⟨·, 𝐻 (dk𝐻 , vk𝐴AH ) ⟩
1 : parse 𝜏 := ( ·, ·, (𝑌, 𝑐))
2 : 𝑟 ←$Z𝑝 , 𝑌

′
:= 𝑌 · 𝑔𝑟

3 : �̃�𝐴AH ← ΠADP .PreSig(sk𝐴AH ,𝑚AH , 𝑌
′)

4 :
𝑌 ′, �̃�𝐴AH

5 : If ΠADP .PreVf (vk𝐴AH ,𝑚AH , 𝑌
′, �̃�𝐴AH ) ≠ 1 then

return ⊥

6 : 2PC( (𝑟, 𝑐), (dk𝐻 ))
1 : if ek𝐻 ≠ ΠE .Gen(dk𝐻 )
2 : then abort

3 : 𝑠∗ ← ΠE .Dec(dk𝐻 , 𝑐)
4 : 𝑧 := 𝑠∗ + 𝑟
5 : return ( (⊥), (𝑧))

7 : If 𝑌 ′ ≠ 𝑔𝑧 then return ⊥
8 : 𝜎𝐴AH ← ΠADP .Adapt(�̃�𝐴AH , 𝑧)
9 :

𝜎𝐴AH

10 : If ΠADP .Vf (vk𝐴AH ,𝑚AH , 𝜎
𝐴
AH ) ≠ 1 then

11 : return ⊥
12 : 𝑧′ ← ΠADP .Ext(�̃�𝐴AH , 𝜎

𝐴
AH , 𝑌

′)
13 : 𝑠 := 𝑧′ − 𝑟
14 : return (𝜎𝐴AH , 𝑠) return 𝜎𝐴AH

Figure 11: Puzzle solver protocol of A2LUC

Table 1: Operations in A2L and A2L+ when instantiated with Schnorr or ECDSA adaptor signatures [4]. We give the number group exponen-
tiations (Exp) and group operations (Op) in both class groups (CL) and groups of prime order 𝑝 (G), where log𝑝 = 𝑛. Group element inversions
(Inv) only occur in class groups. Modular multiplications (×) and additions (+) are performed modulo 𝑞. We denote by #H the number of hash
computations. Decryption of a CL ciphertext also involves solving a discrete logarithm in a class group, which we denote by DLog.

Protocol Signature Exp (CL) Op (CL) Inv (CL) DLog (CL) Exp (G) Op (G) × mod 𝑞 + mod 𝑞 #H

A
2
L Schnorr 18 12 1 1 13 8 4 9 6

(insecure) ECDSA 18 12 1 1 27 8 17 10 11

A
2
L
+

Schnorr 28 20 2 2 14 9 5 9 6

ECDSA 28 20 2 2 32 10 21 12 11
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infeasible for an adversary to sample a ciphertext component 𝑐0
that is consistent with 𝑐1 without knowing the underlying plaintext

of 𝑐0.

Added Costs. The new consistency check by the hub in PSolver
adds 1 group operation and group exponentiation (Schnorr) or 5

group operations and 2 group exponentiations (ECDSA). The check

on Alice’s verification key vk𝐴AH adds 3 modular multiplications and

2 modular additions in the ECDSA case. Furthermore, applying the

LOE transformation described above to the CL encryption scheme

results in a doubled ciphertext size and a corresponding increase

in the operation count for decryption. We summarize the costs of

A
2
L and A

2
L
+
in Table 1.

6.2 A2LUC

Compared to A
2
L
+
, our A

2
L
UC

protocol removes the check on vk𝐴AH ,
adds a signature verification, and moves the re-randomization and

decryption into the 2PC. Additionally, ΠE is now required to be

CCA-secure and the NIZK used must be UC-secure. The cost of the

first two changes is minimal (net 1 group exponentiation, 1 group

operation, and 1 hash computation); the most significant overhead

is the result of the 2PC computation and the NIZK.

Assuming the CCA-secure ΠE in the 2PC is instantiated with

the (prime-order-based) Cramer-Shoup cryptosystem [20] with

SHA3-256 [40] as the hash function, this incurs an overhead of

11 exponentiations, 9 multiplications, and 1 division in a group of

prime order 𝑝 and

⌈
3𝑛
1088

⌉
· 38400 binary (AND) operations, where

the security parameter 𝑛 equals log𝑝 . Because the 2PC requires

a mix of arithmetic and binary operations, a mixed-circuit 2PC

protocol as implemented e.g. in [33] could be used. Additionally,

UC security of the NIZK can be achieved by replacing the use

of the Fiat-Shamir transform in A
2
L (and A

2
L
+
) with the Fischlin

transform, incurring a cost of roughly𝑂 (log(𝑛)) parallel repetitions
of the base Fiat-Shamir NIZK. We stress that we view A

2
L
UC

as

a proof-of-concept protocol showing the feasibility of achieving

UC-secure blind conditional signatures and leave the problem of

constructing an efficient UC-secure realization as an interesting

direction for future work.

7 CONCLUSIONS
We investigate the notion of synchronization puzzles, the crypto-

graphic building blocks at the core of hub-enabled coin mixing

services. We find that the previous formalization of a synchroniza-

tion puzzle in [52] is flawed. In fact, we identify several issues in its

formal model which can be easily exploited to break the security

of the resultant coin mixing protocol. We conclude that tighter

formalization of the functionality and security of synchronization

puzzles is necessary.

To fill this gap, we introduce the notion of blind conditional

signatures (BCS). Additionally, we provide different security for-

malizations for BCS at varying levels of strength (game-based and

in the UC framework) accompanied by a provably secure variant

of A
2
L called A

2
L
+
and a new provably UC-secure construction

A
2
L
UC

. Our performance evaluation results show an efficiency vs.

security trade-off in the case of our constructions, yet show with

A
2
L
+
that provably secure coin mixing services are deployable in

practice.
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A RANDOMIZABLE PUZZLES AND
HOMOMORPHIC ENCRYPTION

Here we recall the definitions of randomizable puzzles [52] and we

show that they are trivially satisfied by a CPA-secure homomorphic

encryption (over Z𝑝 ), with statistical circuit privacy [41]. We recall

the syntax as defined in [52].

Definition A.1 (Randomizable Puzzle). A randomizable puzzle

scheme RP = (PSetup, PGen, PSolve, PRand) with a solution space

S (and a function 𝜙 acting on S) consists of four algorithms defined

as:

(pp, td) ← PSetup(1𝑛): is a PPT algorithm that on input security

parameter 1
𝑛
, outputs public parameters pp and a trapdoor

td.
𝑍 ← PGen(pp, 𝜁 ): is a PPT algorithm that on input public param-

eters pp and a puzzle solution 𝜁 , outputs a puzzle 𝑍 .

𝜁 := PSolve(td, 𝑍 ): is a 𝐷𝑃𝑇 algorithm that on input a trapdoor td
and puzzle 𝑍 , outputs a puzzle solution 𝜁 .

(𝑍 ′, 𝑟 ) ← PRand(pp, 𝑍 ): is a PPT algorithm that on input public

parameters pp and a puzzle 𝑍 (which has a solution 𝜁 ),

outputs a randomization factor 𝑟 and a randomized puzzle

𝑍 ′ (which has a solution 𝜙 (𝜁 , 𝑟 )).

It is not hard to see that a linearly homomorphic encryption

scheme (KGen, Enc,Dec) matches the syntax of a randomizable

puzzle, setting pp to the encryption key and td to be the decryption

key. For the PRand algorithm, we can sample a random 𝑟 ←$Z𝑝
and compute

Enc(ek, 𝜁 ) ◦ Enc(ek, 𝑟 ) = 𝑐

which is an encryption of 𝜙 (𝜁 , 𝑟 ) = 𝜁 + 𝑟 . Next we recall the defini-
tion of security for randomizable puzzles.

Definition A.2 (Security). A randomizable puzzle scheme RP is

secure, if there exists a negligible function negl, such that

Pr

[
𝜁 ← A(pp, 𝑍 )

���� (pp, td) ← PSetup(1𝑛)
𝜁 ←$S, 𝑍 ← PGen(pp, 𝜁 )

]
≤ negl(𝑛) .

This follows as an immediate application of CPA-security (in fact,

even the weaker one-wayness suffices) of the encryption scheme.

Finally we recall the notion of privacy.

Definition A.3 (Privacy). A randomizable puzzle scheme RP is pri-

vate if for every PPT adversaryA there exists a negligible function

negl such that:

Pr[RPRandSecA,RP (𝑛) = 1] ≤ 1/2 + negl(𝑛)
where the experiment RPRandSecA,RP is defined as follows:

• (pp, td) ← PSetup(1𝑛)
• ((𝑍0, 𝜁0), (𝑍1, 𝜁1)) ← A(pp, td)
• 𝑏 ←$ {0, 1}
• (𝑍 ′

0
, 𝑟0) ← PRand(pp, 𝑍0)

• (𝑍 ′
1
, 𝑟1) ← PRand(pp, 𝑍1)

• 𝑏 ′ ← A(pp, td, 𝑍 ′
𝑏
)

• Return PSolve(td, 𝑍0) = 𝜁0 ∧ PSolve(td, 𝑍1) = 𝜁1
∧ 𝑏 = 𝑏 ′

Recall that circuit privacy implies that the distribution induced

by Enc(ek, 𝜁 ) ◦Enc(ek, 𝑟 ) is statistically close to that induced by a a
fresh encryption Enc(ek, 𝜁 +𝑟 ). This implies that privacy is satisfies

in a statistical sense. Thus we can state the following.

Lemma A.4. Assuming that (KGen, Enc,Dec) is a linearly homo-
morphic encryption with statistical circuit privacy, the there exists a
randomizable puzzle with statistical privacy.

B A2L PROTOCOL
We recall the formal description of Puzzle promise (Figure 12) and

Puzzle solver (Figure 13) of A
2
L. We report their protocol after

translating the same to our syntax for consistency. The setup algo-

rithm is the same as in Figure 9 and the open algorithm is given

in Figure 14.

C SECURITY PROOFS
Proof of Lemma 4.8.

Proof. We give a proof by reduction. LetA be a PPT adversary

with non-negligible advantage in the OM-CCA-A2L game. We now

construct an adversary R which uses A to break the security of

OMDL.

R is given (ℎ1, . . . , ℎ𝑞+1) = (𝑔𝑟1 , . . . , 𝑔𝑟𝑞+1 ) by the OMDL game.

It will run A to attempt to obtain the 𝑞 + 1 discrete logarithms

to win the game. Crucially, R must simulate A’s oracle access to

OA2L
sk,ΠE,ΠADP

, which consists of at most 𝑞 successful queries (but

unlimited ⊥ queries), while making at most 𝑞 queries (of any kind)

to its oracle DL(·).
R proceeds as follows. First, it samples 𝑞+1 uniform 𝜆-bit strings

(𝑐∗
1
, . . . , 𝑐∗

𝑞+1). Note that these are identically distributed to outputs

of OEnc. It enters (𝑋1, 𝑐
∗
1
), . . . , (𝑋𝑞+1, 𝑐∗𝑞+1) into a table 𝑀 , where

the 𝑋𝑖 are random variables. Now it sends (𝑐∗
1
, ℎ1), . . . , (𝑐∗𝑞+1, ℎ𝑞+1)

to the adversary A.
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Public parameters: group description (G, 𝑔, 𝑞), message𝑚HB
PPromise⟨𝐻 (dk𝐻 , sk𝐻HB), ·⟩ PPromise⟨·, 𝐵 (ek𝐻 , vk𝐻HB) ⟩
1 : 𝑠 ←$Z𝑝 , 𝑌 := 𝑔𝑠

2 : 𝑐 ← ΠE .Enc(ek𝐻 , 𝑠)
3 : 𝜋𝑠 ← NIZK.P( (ek𝐻 , 𝑌 , 𝑐), 𝑠)
4 : �̃�𝐻HB ← ΠADP .PreSig(sk𝐻HB,𝑚HB, 𝑌 )
5 :

𝑌, 𝑐, 𝜋𝑠 , �̃�
𝐻
HB

6 : If NIZK.V( (ek𝐻 , 𝑌 , 𝑐), 𝜋𝑠 ) ≠ 1 then return ⊥
7 : If ΠADP .PreVf (vk𝐻HB,𝑚HB, 𝑌 , �̃�

𝐻
HB) ≠ 1 then

8 : return ⊥
9 : 𝑟 ←$Z𝑞, 𝑌

′
:= 𝑌 · 𝑔𝑟

10 : 𝑐′ ← ΠE .Rand(𝑐, 𝑟 )
11 : Set 𝜏 := (𝑟,𝑚HB, �̃�

𝐻
HB, (𝑌, 𝑐), (𝑌

′, 𝑐′))
12 : return ⊥ return 𝜏

Figure 12: Puzzle promise protocol of A2L

Public parameters: group description (G, 𝑔, 𝑞), message𝑚AH
PSolver⟨𝐴(sk𝐴AH , ek𝐻 , 𝜏), ·⟩ PSolver⟨·, 𝐻 (dk𝐻 , vk𝐴AH ) ⟩
1 : Parse 𝜏 := ( ·, ·, ·, ·, (𝑌 ′, 𝑐′))
2 : 𝑟 ′ ←$Z𝑝 , 𝑌

′′
:= 𝑌 ′ · 𝑔𝑟 ′

3 : 𝑐′′ ← ΠE .Rand(𝑐′, 𝑟 ′)
4 : �̃�𝐴AH ← ΠADP .PreSig(sk𝐴AH ,𝑚AH , 𝑌

′′)
5 :

𝑌 ′′, 𝑐′′, �̃�𝐴AH

6 : 𝑠′′ ← ΠE .Dec(dk𝐻 , 𝑐′′)
7 : 𝜎𝐴AH ← ΠADP .Adapt(�̃�𝐴AH , 𝑠

′′)
8 : If ΠADP .Vf (vk𝐴AH ,𝑚AH , 𝜎

𝐴
AH ) ≠ 1 then

9 : return ⊥

10 :
𝜎𝐴AH

11 : 𝑠′′ ← ΠADP .Ext(𝜎𝐴AH , �̃�
𝐴
AH , 𝑌

′′)
12 : If 𝑠′′ = ⊥ then return ⊥
13 : 𝑠′ := 𝑠′′ − 𝑟 ′

14 : return (𝜎𝐴AH , 𝑠
′) return 𝜎𝐴AH

Figure 13: Puzzle solver protocol of A2L

Open(𝜏, 𝑠 ′)
Parse 𝜏 := (𝑟, ·, �̃�, ·, ·)
𝑠 := 𝑠′ − 𝑟
𝜎 ← ΠADP .Adapt(�̃�, 𝑠)
return 𝜎

Figure 14: Open algorithm of A2L

Any queries A makes to the encryption scheme oracles (OGen,
OEnc,ODec,OAdd) and their corresponding responses are passed

along unchanged by R but recorded in its table 𝑀 . Whenever A
makes some query (vk𝑖 ,𝑚𝑖 , 𝑘𝑖 , 𝑐𝑖 , �̃�𝑖 ) to OA

2L
, R first checks that

vk𝑖 is in the support of ΠADP .KGen(1𝜆) (this is a publicly checkable
predicate since the valid verification keys are defined to be all group

elements). After this, it acts in one of four ways:

(1) If 𝑐𝑖 = 𝑐∗
𝑗

and 𝑘𝑖 = ℎ 𝑗 for some 𝑗 , it checks

PreVf (vk𝑖 ,𝑚𝑖 , 𝑘𝑖 , 𝑐𝑖 ) = 1. If not, it returns ⊥; otherwise, it

queries DL(ℎ 𝑗 ) to get 𝑥 𝑗 and returns ΠADP .Adapt(�̃�𝑖 , 𝑥 𝑗 ) to
A.

(2) If 𝑐𝑖 = 𝑐∗
𝑗
but 𝑘𝑖 ≠ ℎ 𝑗 , R sends ⊥ to A.

(3) If (·, 𝑐𝑖 ) ∉ 𝑀 , R sends ⊥ to A.

(4) Otherwise, let 𝑝𝑖 be the plaintext entry corresponding to 𝑐𝑖 in

𝑀 . Notice that, by the linear-only property of the encryption

scheme, 𝑝𝑖 is a polynomial in 𝑋1, . . . , 𝑋𝑞+1 with deg(𝑝𝑖 ) ≤ 1.

(a) If deg(𝑝𝑖 ) = 0, 𝑝𝑖 is some constant value 𝑥 𝑗 . In this case, R
uses 𝑥 𝑗 to proceed as the normal OA2L

oracle does (checks

if the pre-signature verifies and adapts it if so) and sends

its output to A.

(b) If deg(𝑝𝑖 ) = 1, define 𝑝𝑖 := 𝛼0 +𝛼1𝑋1 + . . .+𝛼𝑛𝑋𝑞+1. If 𝑘𝑖 =
𝑔𝛼0

∏𝑞+1
𝑘=1

ℎ
𝛼𝑘
𝑘

= 𝑔𝑝𝑖 and PreVf (vk𝑖 ,𝑚𝑖 , 𝑘𝑖 , 𝑐𝑖 ) = 1, R uses

a query DL(𝑘𝑖 ) to get 𝑥 𝑗 and outputs ΠADP .Adapt(�̃�𝑖 , 𝑥 𝑗 ).
Otherwise, it sends ⊥ to A.

Observe that R returns ⊥ without querying DL(·) for all ⊥ A2L-
queries A makes. Thus it makes at most 𝑞 queries to DL(·). If A
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outputs winning values (𝑟1, . . . , 𝑟𝑞+1), R outputs the same values,

thereby winning the OMDL game. By assumption,A succeeds with

non-negligible probability, and thusR alsowinswith non-negligible

probability. This violates the OMDL assumption, implying that no

such adversary A can exist. □

Proof of Theorem 4.9.

Proof. We argue about each property separately.

Lemma C.1 (Blindness). Assuming ΠNIZK is sound, the A2L+

scheme is blind in the LOE model.

Proof. This holds information-theoretically. Fix any two

PPromise executions. We now show, via a series of hybrid experi-

ments, that the cases of 𝑏 = 0 and 𝑏 = 1 are statistically close.

HybridH0: Run ExpBlnd with 𝑏 = 0.

HybridH1: In both runs of PSolver, sample 𝑟 ←$Z𝑞 and set 𝑌 ′′ :=
𝑔𝑟 and 𝑐 ′′ ← ΠE (pk𝐻 , 𝑟 ).
HybridH2: Compute 𝑐 ′′ and 𝑌 ′′ honestly using 𝜏1 in the first run

of PSolver and 𝜏0 in the second run of PSolver.

HybridH3: Run ExpBlnd with 𝑏 = 1.

Claim 1. For all PPT adversaries A,

EXECH0,A ≈ EXECH1,A

Proof. 𝑌 ′′ is 𝑔 raised to a uniform element and 𝑐 ′′ is an encryp-

tion of the same uniform element in both experiments, conditioned

on the ciphertext provided by the Hub being well-formed. Thus,

any distinguishing advantage necessarily corresponds to a violation

of the soundness property of ΠNIZK. It follows that the executions

are statistically indistinguishable. □

Claim 2. For all PPT adversaries A,

EXECH1,A ≈ EXECH2,A

Proof. This holds by the same logic as Claim 1. □

Claim 3. For all PPT adversaries A,

EXECH2,A ≡ EXECH3,A

Proof. The change is only syntactical and the executions are

identical. □

Hence, the cases of 𝑏 = 0 and 𝑏 = 1 are statistically indistinguish-

able. □

Lemma C.2 (Unlockability). Assuming that ΠADP is witness ex-
tractable, pre-signature adaptable, and unforgeable the A2L+ scheme
is unlockable.

Proof. We consider two cases separately.

(𝑏2 ∧ 𝑏3) = 1: First, let us consider the case in which A out-

puts a valid signature 𝜎𝐴AH while at the same time 𝑠 ′′ ←
ΠADP .Ext(vk𝐴AH , �̃�

𝐴
AH , 𝜎

𝐴
AH , 𝑌

′′) is not a valid witness for 𝑌 ′′. Then
we can give a reduction which breaks witness extractability with

non-negligible probability. The reduction samples a uniform ele-

ment 𝑟 ←$Z𝑞 and runsA. It sets 𝑌 ′′ := 𝑔𝑟 and uses the encryption

key
˜ek output by A compute 𝑐 ′′ ← ΠE .Enc( ˜ek, 𝑟 ). In the puzzle

solver phase, it sends 𝑌 ′′, 𝑐 ′′ and the witness extractability chal-

lenge �̃� to A and outputs the signature 𝜎 it receives in response

(note that this is perfectly indistinguishable from an honest run of

the protocol). Then ΠADP .Ext(vk𝐴AH , �̃�, 𝜎, 𝑌
′′) is not a valid witness

for 𝑌 ′′, but this violates the witness extractability of ΠADP, and

therefore the probability of this case occurring is negligible.

The above argument establishes that 𝑠 ′′ is a valid witness for

𝑌 ′′ with all but negligible probability. Since 𝑌 ′′ = 𝑌 · 𝑔𝑟+𝑟 ′ =

𝑔𝑦 ·𝑔𝑟+𝑟 ′ , the only valid witness for 𝑌 ′′ is 𝑦 + (𝑟 + 𝑟 ′), and therefore
𝑠 ′′ = 𝑦 + (𝑟 + 𝑟 ′). Hence 𝑦 = 𝑠 ′′ − (𝑟 + 𝑟 ′) is a valid witness for the

statement𝑌 and thus also for Bob’s pre-signature �̃�𝐻HB (recall that in

the protocol, Bob explicitly checks the pre-signature validity of �̃�HB
with respect to 𝑌 ). By pre-signature adaptability of ΠADP, we have

that ΠADP .Vf (vk𝐻HB,𝑚,ΠADP .Adapt(�̃�𝐻HB, 𝑦)) = 1 with probability

1. Therefore, the adversary succeeds in this case with negligible

probability.

(𝑏0 = 1) ∨ (𝑏1 = 1): In this case, the adversary is able to produce a

valid signature on a message without seeing any pre-signature on it.

This only happens with negligible probability by the unforgeability

of the adaptor signature scheme. □

Lemma C.3 (Unforgeability). Assuming the hardness of OMDL
and that ΠADP is witness extractable and unforgeable, the A2L+

scheme is unforgeable in the LOE model.

Proof. We give a series of hybrid experiments, show they are

indistinguishable, and prove by reduction to OM-CCA-A2L that no

adversary exists with non-negligible advantage against the final

hybrid.

HybridH0: This is the normal game ExpUnforg (Figure 7).

HybridH1: Simulate all NIZK proofs using ΠNIZK .Sim.

HybridH2: If ∃ 𝑖 ∈ [𝑞] such that Vf (vk𝐻𝑖 ,𝑚𝑖 , 𝜎𝑖 ) = 1 and (vk𝐻𝑖 , ·) ∈
L but (vk𝐻𝑖 ,𝑚𝑖 ) ∉ L, return 0.

HybridH3: If ∃ 𝑖 ∈ [𝑞] such that Vf(vk𝐻𝑖 ,𝑚𝑖 , 𝜎𝑖 ) = 1 and

𝑔Ext(�̃�𝑖 ,𝜎𝑖 ) ≠ 𝑌𝑖 , return 0.

Claim 4. For all PPT adversaries A,

EXECH0,A ≈ EXECH1,A

Proof. This follows directly from zero-knowledge of ΠNIZK.

□

Claim 5. For all PPT adversaries A,

EXECH1,A ≈ EXECH2,A

Proof. The hybrids differ only in the case where the attacker

returns a valid signature on a message that was not part of the tran-

script. By the unforgeability of the adaptor signature, this happens

only with negligible probability. □

Claim 6. For all PPT adversaries A,

EXECH2,A ≈ EXECH3,A

Proof. Any distinguishing advantage corresponds to the case

in which A outputs some tuple (vk𝐻𝑖 ,𝑚𝑖 , 𝜎𝑖 ) such that, for corre-

sponding (𝑌𝑖 , �̃�𝑖 ), 𝑔ΠADP.Ext(�̃�𝑖 ,𝜎𝑖 ) ≠ 𝑌𝑖 . In this case, we can give a

reduction to witness extractability of ΠADP. The reduction runs the
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setup as inH3 and receives a verification key vk from the witness

extractability game. It now picks some guess 𝑖∗ ←$ {1, . . . 𝑞 − 1}
(where 𝑞 − 1 is the number of queries of the adversary) for the

distinguishing index and startsA on
˜ek, behaving the same way as

H3 for all oracle queries, except for the 𝑖
∗
-th interaction, in which

it sets vk𝐻 := vk. In the execution of PPromise, it sends𝑚𝑖∗ to the

witness extractability game and receives �̃� , which it gives to A
instead of computing �̃�𝐻HB itself. Once A terminates and outputs

{vk𝐻𝑖 ,𝑚𝑖 , 𝜎𝑖 )}
𝑞

𝑖=1
, the reduction sends 𝜎𝑖∗ to its game. If it guessed

the distinguishing index 𝑖∗ correctly, this is a winning signature.

Suppose the distinguishing advantage is non-negligible. Since the

guess is correct with probability 1/(𝑞−1), the reduction violates wit-
ness extractability also with non-negligible advantage, which is a

contradiction. Hence the two experiments must be computationally

close. □

Now we give a reduction from hybridH3 to OM-CCA-A2L. Sup-

pose there exists an adversaryA with non-negligible success prob-

ability in H3. We give a reduction that uses A to win the OM-

CCA-A2L game. The reduction is given (𝑐1, ℎ1), . . . , (𝑐𝑞+1, ℎ𝑞+1). It
generates ( ˜ek, ˜dk) ← ΠE .KGen(1𝑛) and (vk𝐻 , sk𝐻 ) as in H3 and

startsA on input
˜ek. For OPPromise queries, the reduction follows

the same steps as H3 except it uses a different challenge ℎ𝑖 each

time it generates a pre-signature. When A queries OPSolver, the
reduction computes the completed signature 𝜎𝐴AH as the output of

OA2L
run on A’s inputs (vk𝐴AH ,𝑚

′, 𝑌 ′′, 𝑐 ′′, 𝜎𝐴AH ). Note that since
A makes at most 𝑞 non-⊥ queries to OPSolver, the reduction also

makes at most 𝑞 non-⊥ queries to OA2L
, as the oracles return ⊥ in

exactly the same cases.

Once A returns 𝑞 + 1 tuples (vk𝐻𝑗 ,𝑚 𝑗 , 𝜎 𝑗 ), the reduction com-

putes 𝑟𝑖 ← ΠADP .Ext(vk𝐻𝑗 , �̃�𝑖 , 𝜎 𝑗 , ℎ𝑖 )∀𝑖, 𝑗 ∈ [𝑞 + 1] until it has 𝑞 + 1
non-⊥ values 𝑟𝑖 (at most (𝑞 + 1)2 invocations of the algorithm)

and outputs those values. Note that by the definition ofH3, when

A completes successfully, 𝑔𝑟𝑖 = ℎ𝑖 ∀𝑖 ∈ [𝑞 + 1]. By assumption,

the reduction wins the OM-CCA-A2L game with non-negligible

probability. This violates OM-CCA-A2L-security of ΠE (implied by

Lemma 4.8), so no such adversary againstH3 exists. Thus, no adver-

sary with non-negligible success in ExpUnforg can exist either. □

The theorem follows directly from Theorems C.1 to C.3. □

Proof of Theorem 5.3.

Proof. We proceed by describing the UC simulator and arguing

about indistinguishability from the real execution of the protocol.

We consider the cases where the adversary corrupts a different

subset of parties separately. We describe the simulator for a single

session and the security of the overall interaction is established via

a standard hybrid argument.

H Corrupted.We first give a simulator S𝐻 , then give a series of

hybrid experiments that gradually change the real experiment (i.e.,

the construction in Figures 10 and 11) into the ideal experiment

given by the interaction of the corrupted 𝐻 and the simulator S𝐻 ,
which has access to FBCS.
Simulator S𝐻 : Upon receiving (promise−req, 𝐵) from FBCS, S𝐻
proceeds as follows:

(1) Ask the attacker to initiate a session and receive in return

(𝑌, 𝑐, 𝜋𝑠 , �̃�𝐻HB). If ΠADP .PreVf (vk𝐻HB,𝑚HB, 𝑌 , �̃�
𝐻
HB) = 1 and

NIZK.V((ek𝐻 , 𝑌 , 𝑐), 𝜋𝑠 ) = 1, proceed as in the protocol and

send (promise−res,⊤) to FBCS. Otherwise, abort and send

(promise−res,⊥).
(2) Receive (promise, pid) from FBCS.
(3) Upon receiving (solve−req, 𝐴, pid′) from FBCS at some later

point, sample a uniform element 𝑦′←$Z𝑞 and generate keys

(vk𝐴AH , sk
𝐴
AH ) ← ΠADP .KGen(1𝑛). Compute 𝑌 ′ ← 𝑔𝑦

′
,

�̃�𝐴AH ← ΠADP .PreSig(sk𝐴AH ,𝑚AH , 𝑌
′) and send them to the

attacker.

(4) When the attacker initiates the 2PC, run the 2PC simulator to

recover its input dk𝐻 . If ek𝐻 ≠ ΠE .Gen(dk𝐻 ), program the

output of the 2PC to ⊥, otherwise to 𝑦′.
(5) Receive 𝜎𝐴AH in response from the attacker and check

that ΠADP .Vf (vk𝐴AH ,𝑚AH , 𝜎
𝐴
AH ) = 1. Additionally check if

ΠADP .Ext(�̃�𝐴AH , 𝜎
𝐴
AH , 𝑌

′) = 𝑦′. If both checks pass, send

(solve−res,⊤) to FBCS, compute 𝑠 ← ΠE .Dec(dk𝐻 , 𝑐), and out-
put (𝜎𝐴AH , 𝑠) as in the protocol; otherwise, send (solve−res,⊥)
and abort.

(6) If, at any point before the successful completion of step 4, the

attacker produces a valid signature 𝜎𝐴AH , or at any point in the

protocol (including after step 4), a valid signature on a message

𝑚′AH ≠𝑚AH , send (solve−res,⊥) to FBCS and abort.

HybridH0: This corresponds to the real protocol (Figures 10

and 11).

HybridH1: Simulate the 2PC (Fig. 11, line 6) and send the output 𝑧

to 𝐻 .

HybridH2: Replace𝑌
′
with𝑌 ′′ := 𝑔𝑦

′
where𝑦′←$Z𝑞 (Fig. 11, line

2). If ΠE .Gen(dk𝐻 ) = ek𝐻 , send 𝑦′ to 𝐻 instead of 𝑧; otherwise,

send ⊥.
HybridH3: Abort if 𝑧

′ ≠ 𝑦′ (after line 12 of Fig. 11).

HybridH4: Abort if any valid signature 𝜎𝐴AH is received on a dif-

ferent message𝑚′AH ≠𝑚AH or on any message before the 2PC has

successfully completed.

Claim 7. For all PPT distinguishers E,

EXECH0,A,E ≈ EXECH1,A,E

Proof. This follows directly from the security of the 2PC pro-

tocol. □

Claim 8. For all PPT distinguishers E,

EXECH1,A,E ≈ EXECH2,A,E

Proof. By the uniqueness of the decryption key

and correctness of ΠE, ek𝐻 = ΠE .Gen(dk𝐻 ) implies

ΠE .Dec(dk𝐻 ,ΠEnc .Enc(ek𝐻 ,𝑚)) = 𝑚 for all 𝑚 in the mes-

sage space. Thus, the output of the 2PC 𝑧 is necessarily 𝑠 + 𝑟 , where
𝑠 ∈ Z𝑞 such that 𝑐 = ΠE .Enc(ek𝐻 , 𝑠) ∧ 𝑌 = 𝑔𝑠 (this is guaranteed

by the NIZK). Since 𝑟 is uniformly random, 𝑦′ is identically

distributed to 𝑧 = 𝑠 + 𝑟 . The same holds for 𝑌 ′′ and 𝑌 ′ = 𝑌 · 𝑔𝑟 .
Furthermore, it still holds that 𝑦′ is the discrete logarithm of 𝑌 ′′

(cf. 𝑧 and 𝑌 ′). □

18



Claim 9. For all PPT distinguishers E,
EXECH2,A,E ≈ EXECH3,A,E

Proof. If 𝑧′ ≠ 𝑦′, by the uniqueness of dlog witnesses

𝑔𝑧
′

≠ 𝑌 ′′. By the witness extractability of ΠADP, Pr[𝑔𝑧
′

≠

𝑌 ′′ ∧ ΠADP .Vf (vk𝐴AH ,𝑚AH , 𝜎
𝐴
AH ) = 1] is negligible, so the abort

only happens with negligible probability. □

Claim 10. For all PPT distinguishers E,
EXECH3,A,E ≈ EXECH4,A,E

Proof. Any distinguishing advantage implies a case in which

A outputs some valid signature 𝜎𝐴AH for some message𝑚′AH for

which it has potentially been given a presignature �̃�𝐴AH and corre-

sponding statement 𝑌 . This signature is a winning instance in the

unforgeability experiment for ΠADP, but by assumption this only

occurs with negligible probability, and so the distinguishing advan-

tage must be negligible. Therefore the experiments are statistically

close. □

Claim 11. For all PPT distinguishers E,
EXECH4,A,E ≡ EXECFBCS,S,E

Proof. H4 is identical to the ideal world. □

A,B Corrupted. Again, we give a simulator S𝐴𝐵 that interacts

with FBCS and show by a series of hybrids that our protocol is

indistinguishable from ideal experiment in which the corrupted

parties interact with the simulator S𝐴𝐵 .
Simulator S𝐴𝐵 : When a recipient Bob indicates he would like to

initiate a transaction, S𝐴𝐵 proceeds as follows:

(1) Send (PPromise, 𝐴) to FBCS.
(2) Upon receiving (promise, (pid, pid′)) from FBCS, sample a

uniform value 𝑠 ←$Z𝑞 and compute 𝑌 ← 𝑔𝑠 . Generate

keys (ek𝐻 , dk𝐻 ) ← ΠE .KGen(1𝑛) and (vk𝐻HB, sk
𝐻
HB) ←

ΠADP .KGen(1𝑛); let 𝑐 ← ΠE .Enc(ek𝐻 , 0) and �̃�𝐻HB ←
ΠADP .PreSig(sk𝐻HB,𝑚HB, 𝑌 ). Simulate the NIZK 𝜋𝑠 ←
NIZK.Sim(td, (ek𝐻 , 𝑌 , 𝑐)). Finally, pre-compute 𝜎𝐻HB ←
ΠADP .Adapt(�̃�𝐻HB, 𝑠) and save ((pid, pid

′), (𝑌, 𝑐, 𝑠, 𝜎𝐻HB),⊥) into
a table P. Send (𝑌, 𝑐, 𝜋𝑠 , �̃�𝐻HB) to the attacker (who is imperson-

ating Bob).

(3) At a later point in time, the attacker sends (𝑌 ′, �̃�𝐴AH ) on behalf

of Alice. If ΠADP .PreVf (vk𝐴AH ,𝑚AH , 𝑌
′, �̃�𝐴AH ) ≠ 1, abort.

(4) When the attacker initiates the 2PC, run the 2PC simulator to

recover its inputs (𝑐∗, 𝑟∗); compute the result (⊥) and return it

to the attacker.

(5) Depending on whether or not 𝑐∗ ∈ P do the following:

(a) If 𝑐∗ ∈ P, retrieve the corresponding 𝑌 , 𝑠 , and

pid′. Check that 𝑌 ′ = 𝑌 · 𝑔𝑟 ∗ (if not, abort); send

ΠADP .Adapt(�̃�𝐴AH , 𝑠 + 𝑟
∗) to the attacker masquerading

as Alice and (PSolver, 𝐵, pid′) to FBCS. Update the last

element of the entry in P to ⊤.
(b) If 𝑐∗ ∉ P, compute 𝑧′ ← ΠE .Dec(dk𝐻 , 𝑐∗) +𝑟∗. Check that

𝑌 ′ = 𝑔𝑧
′
(if not, abort) and send ΠADP .Adapt(�̃�𝐴AH , 𝑧

′) to
the attacker. Send nothing to FBCS. (Note that this corre-
sponds to the case where some party Alice is paying Hub

without Bob initiating the interaction, which is something

that she can do at any time.)

(6) When the attacker outputs some valid signature 𝜎𝐻HB, check

that the following conditions hold:ΠADP .Vf (vk𝐻HB,𝑚HB, 𝜎
𝐻
HB) =

1 and ((pid, ·), (·, ·, ·, 𝜎𝐻HB),⊤) ∈ P. If so, send (Open, pid) to
FBCS; otherwise, abort.

HybridH0: This corresponds to the real protocol (Figures 10

and 11).

HybridH1: Replace the honestly-computed NIZK 𝜋𝑠 (Figure 10,

line 4) with a simulated proof.

HybridH2: Simulate the 2PC (Figure 11, line 6).

HybridH3: Add the list P and step 5 of the simulator (in particular,

case 5a) to Figure 11, line 7-10.

HybridH4: Replace 𝑐 (Figure 10, line 2) with an encryption of zero.

HybridH5: When Bob outputs a valid signature, abort if

(·, (·, ·, ·, 𝜎𝐻HB), 𝑏) ∈ P and 𝑏 ≠ ⊤.

Claim 12. For all PPT distinguishers E,

EXECH0,A,E ≈ EXECH1,A,E

Proof. This follows directly from the zero-knowledge property

of the NIZK. □

Claim 13. For all PPT distinguishers E,

EXECH1,A,E ≈ EXECH2,A,E

Proof. This follows directly from the UC-security of the 2PC

protocol. □

Claim 14. For all PPT distinguishers E,

EXECH2,A,E ≡ EXECH3,A,E

Proof. By definition, for 𝑐∗ ∈ P, the corresponding 𝑠 and 𝑌 in

P are ΠE .Dec(dk𝐻 , 𝑐∗) and 𝑔𝑠 , respectively. Therefore 𝑧′ = 𝑠 + 𝑟∗
and the case of 𝑐∗ ∈ P is handled in the same way as all cases were

in the previous hybrid experiment. □

Claim 15. For all PPT distinguishers E,

EXECH3,A,E ≈ EXECH4,A,E

Proof. Suppose towards a contradiction that E can distinguish

the two executions with nonnegligible probability. We give a reduc-

tion to the CCA-security game ofΠE. The reduction sets𝑚0 := 𝑠 and

𝑚1 := 0, sends them to the CCA game, and receives 𝑐 . It then acts as

hub in its interaction with E, computing everything as in Hybrid 3,

except for 𝑐 , which it sets to the ciphertext it received from the game.

When it needs to decrypt 𝑐∗ it uses the CCA decryption oracle. At

the end of the execution, based on E’s guess, it outputs a bit to the

CCA game (0 if E guessesH3, 1 otherwise), which will be correct

with nonnegligible advantage. This violates the CCA-security of

ΠE, so the two executions must be indistinguishable. □

Claim 16. For all PPT distinguishers E,

EXECH4,A,E ≈ EXECH5,A,E
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Ideal Functionality FBCS

Puzzle Promise: On input (PPromise, 𝐴) from 𝐵, FBCS proceeds as fol-

lows:

- Send (promise−req, 𝐵) to 𝐻 and S.
- Receive (promise−res, 𝑏) from 𝐻 .

- If 𝑏 = ⊥ then abort.

- Sample pid, pid′ ←$ {0, 1}𝑛 .
- Store the tuple (pid, pid′,⊥) into P.
- Send (promise, (pid, pid′)) to 𝐵, (promise, pid) to 𝐻 ,

(promise, pid′) to 𝐴, and inform S.
Puzzle Solver: On input (PSolver, 𝐵, pid′) from 𝐴, FBCS proceeds as fol-
lows:

- If ( ·, pid′, ·) ∉ P then abort.

- Send (solve−req, 𝐴, pid′) to 𝐻 and S.
- Receive (solve−res, 𝑏) from 𝐻 .

- If 𝑏 = ⊥ then abort.

- Update entry to ( ·, pid′,⊤) in P.
- Send (solved, pid′,⊤) to 𝐴, 𝐵 and S.

Open: On input (Open, pid) from 𝐵, FBCS proceeds as follows:
- If (pid, ·, 𝑏) ∉ P or 𝑏 = ⊥ then send (open, pid,⊥) to 𝐵 and

abort. Else send (open, pid,⊤) to 𝐵.

Figure 15: Ideal functionality FBCS (corresponds to FA2L
in [52]). Portions related to griefing protection (i.e., registra-
tion) have been removed.

Proof. If 𝑏 ≠ ⊤, Alice did not receive the completed signature

𝜎𝐴AH for that session and thus cannot recover the secret 𝑠 to send

to Bob. This means Bob’s signature 𝜎𝐻HB was created without know-

ing the witness for the pre-signature �̃�𝐻HB, which, by aEUF-CMA

of ΠADP, can only happen with negligible probability. Thus the

abort also only happens with negligible probability and the two

experiments are indistinguishable. □

Claim 17. For all PPT distinguishers E,
EXECH5,A,E ≡ EXECFBCS,S,E

Proof. H5 is identical to the ideal world. □

A,H Corrupted. This case is trivial, as 𝐵 has no secret information

and the simulator therefore simply follows the protocol.

H,B Corrupted. The simulator in this case follows the protocol

honestly. If hub publishes a valid signature 𝜎𝐴AH on a transaction

𝑚 that is not in the simulator’s (acting as Alice) transcript, the

simulator aborts. This means that the adversary was able to forge a

signature𝜎𝐴AH on some transaction𝑚 for which it did not previously

receive a pre-signature �̃�𝐴AH . By EUF-CMA of the adaptor signature

scheme, this case occurs with negligible probability and thus for

all PPT distinguishers E, the real world (an honest execution of the

protocol) and the ideal world (an interaction with the simulator)

are indistinguishable. □

D IDEAL FUNCTIONALITY FBCS
In Figure 15, we describe the ideal functionality FBCS that captures
the functionality and security of BCS in the UC framework.
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