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2 Université de Picardie Jules Verne, France

{vlada.sedlacek, vojtechsu, dufkan, syso, matyas}@mail.muni.cz

Abstract. It can be tricky to trust elliptic curves standardized in a non-
transparent way. To rectify this, we propose a systematic methodology
for analyzing curves and statistically comparing them to the expected
values of a large number of generic curves with the aim of identifying
any deviations in the standard curves.

For this purpose, we put together the largest publicly available database
of standard curves. To identify unexpected properties of standard gener-
ation methods and curves, we simulate over 250 000 curves by mimicking
the generation process of four standards. We compute 22 different prop-
erties of curves and analyze them with automated methods to pinpoint
deviations in standard curves, pointing to possible weaknesses.
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1 Introduction

Many prominent cryptographers [Sch13; Loc+14; Ber+15; CLN15; Sco99] criti-
cize the selection of curves in all major elliptic curve standards [ANS05; Cer10;
Age11; SSL14]. The lack of explanation of parameters used in cryptographic
standards provides a potential space for weaknesses or inserted vulnerabilities.

This is a serious matter, considering that the popular NIST curves have been
designed by the NSA, which has been involved in a number of incidents: the Dual
EC DRBG standard manipulation [Hal13; BLN16; Che+], Clipper chip backdoor
[Tor94], or the deliberate weakening of the A5 cipher [BD00]. Bernstein et al.
[Ber+15] justify such skepticism, showing that the degrees of freedom in the
generation of elliptic curves offer a means to insert a backdoor. Relying on the
supposed implausibility [KM16] of weak curves escaping detection for such a long
time may prove catastrophic. As the usage of NIST curves increases with time
[Val+18], the impact of any vulnerability would be extensive at this moment.

Even though newer, more rigidly generated curves like Curve25519 [Ber06],
Ed448-Goldilocks [Ham15b] or NUMS curves [Bla+14] are on the rise, Lochter et
al. [Loc+14] argue that “perfect rigidity, i.e., defining a process that is accepted
as completely transparent and traceable by everyone, seems to be impossible.”
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Thus, a thorough wide-scale analysis of the standard curves is important to
establish trust in elliptic curve cryptosystems.

There is no clear way of looking for unknown vulnerabilities, especially within
elliptic curve cryptosystems with such a rich and complex theory behind them.
Our main idea is that if a hidden weakness is present in a curve, it can manifest
itself via a statistical deviation when we compare the curve to a large number of
generic curves. We consider two cases: either the deviation stems from the gen-
eration method of the curve, or from the choice of its parameters. Consequently,
we compare the curve to two types of curves – random curves in the former case
and curves generated according to the same standard in the latter case.

Core contributions. Our work provides the following contributions:

– We assemble the first public database of all standard3 curves (to the best of
our knowledge), with comprehensive parameter details.

– We develop an open-source, extensible framework DiSSECT for generating
curves according to known standards, and for statistical analysis of the stan-
dards. This includes a large number of test functions and visualization tools.

– We find properties of the standard GOST curves [PLK06; SF16] that are
inconsistent with the claimed [ANS18] generation method and present unre-
ported properties of the BLS12-381 [BLS02] curve.

In addition, we offer a new methodology for testing properties and potential
weaknesses of standard curve parameters and their generation methods. By a
systematic analysis of standard curves, we rule out multiple types of problems,
raising the level of trust in most of the curves.

This paper is organized as follows: In Section 2, we briefly survey the ma-
jor elliptic curve standards. Section 3 introduces our database and explains
our methodology for simulating and distinguishing curves. Section 4 gives an
overview of our proposed trait functions and presents the findings of the out-
lier detection. We report on the technicalities of our tool in Section 5 and draw
conclusions in Section 6. Appendix A contains descriptions of individual traits.

2 Background

Throughout the paper, we will use the following notation: p ≥ 5 is a prime
number, Fp is a finite field of size p, E(a, b) : y2 = x3+ ax+ b is an elliptic curve
over Fp, n = #E(Fp) is the order of the group of points over Fp, l the largest
prime factor of n, h = n/l is the cofactor, and t = p + 1 − n is the trace of
Frobenius of E. Parts of this section are adopted from [Sed22].

Even though pairing-friendly curves and curves over binary and extension
fields have found some applications, we focus mainly4 on the prevalent category

3 In this work, we use the adjective “standard” for widely used curves (from actual
standards and even that are/were a de facto standard).

4 However, binary, extension and pairing-friendly curves are included in our database
as well and have been included partly in our analysis.
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of prime field curves that are recommended for classical elliptic curve cryptosys-
tems. We include Montgomery and (twisted) Edwards curves as well, though for
unification purposes, we convert them to the short Weierstrass form, which is
universal.

Known curve vulnerabilities. When using elliptic curve cryptography (ECC)
in the real world, both sides of the scheme must agree on a choice of a partic-
ular curve. We need curves where the elliptic curve discrete logarithm prob-
lem (ECDLP) is difficult enough. The SafeCurves website [BL] presents a good
overview of known curve vulnerabilities (and discusses implementation-specific
vulnerabilities as well). In short, to avoid the known mathematical attacks, curve
should satisfy the following criteria:

– p should be large enough, e.g., over 256 bits if we aim for 128-bit security;
– l should be large enough, as this determines the complexity of the Pohlig-

Hellman attack [PH78] (again, roughly 256 bits for 128-bit security); ideally,
the same should hold for the quadratic twist of the curve (to avoid attacks
on implementations5);

– the curve should not be anomalous (i.e., n ̸= p), otherwise the Semaev-Satoh-
Araki-Smart additive transfer attack applies [Sma99; Sem98; SA+98];

– the embedding degree of E (i.e., the order of p in F×
l ) should be large enough

(e.g., at least 20), otherwise the MOV attack based on multiplicative trans-
fer using the Weil and Tate pairings applies [Sem96; FR94; MOV93] – in
particular, this rules out the cases t = 0 and t = 1;

– the absolute value of the CM field discriminant (i.e., the absolute discrimi-

nant of the field Q(
√
t2 − 4p) should not be too low ([BL] suggests at least

2100), otherwise Pollard’s ρ attack can be speeded up due to the presence of
efficiently computable endomorphisms of the curve [GLV01]. This does not
pose a serious threat for the moment though, as the limits of the speedup
are reasonably well understood.

2.1 Overview of standard curve generation

The main approach for finding a curve that satisfies the mentioned conditions is
repeatedly selecting curve parameters until the conditions hold. The bottleneck
here is point-counting: we can use the polynomial SEA algorithm [Sch95], but
in practice, it is not fast enough to allow on-the-fly ECC parameter generation.

Several standardization organizations have therefore proposed elliptic curve
parameters for public use. To choose a curve, one has to first pick the appropriate
base field. Several standards also choose primes of special form for more efficient
arithmetic, e.g., generalized Mersenne primes [Sol11] or Montgomery-friendly
primes [CLN15]. When the field and the curve form are fixed, it remains to pick
two6 coefficients, though one of them is often fixed.

5 This is often ignored in the standards though, except for the NUMS standard and
individual curves such as Curve25519.

6 At least for short Weierstrass, Montgomery and twisted Edwards curves.
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In this subsection, we survey the origin of all the standard curves. For easier
orientation, we divide the generation methods of standard curves into three
rough categories. Curves of unknown or ambiguous origin are hard to trust,
while verifiably pseudorandom ones make use of one-way functions in hopes of
addressing this. Other rigid methods go even further in attempts to increase
their transparency.

Unknown or ambiguous origin. The following is a list of curves we analyze
and whose method of generations is either completely unexplained or ambiguous.

– The 256-bit curve FRP256v1 has been recommended in 2011 by the French
National Cybersecurity Agency (ANSSI) in the Official Journal of the French
Republic [Jou11]. The document does not specify any method of generation.

– The Chinese SM2 standard [SSL14] was published in 2010 [DY15] by the
Office of State Commercial Cryptography Administration (OSCCA). The
standard recommends one 256-bit curve but does not specify the generation
method.

– In addition to the Russian GOST R 34.10 standard from 2001, six stan-
dardized curves were provided in [PLK06] and [SF16]. Again, no method of
generation was specified in the original standard, although there were some
attempts for explanation afterward [ANS18]. We discuss this in further sec-
tions.

– The Wireless Application Protocol Wireless Transport Layer Security Spec-
ification [Wir00] recommends 8 curves, 3 of which are over prime fields and
are not copied from previous standards. Their method of generation is not
described.

– Apart from verifiably pseudorandom curves, the Standards for Efficient Cryp-
tography Group (SECG) [Cer] recommends so-called Koblitz curves7, which
possess an efficiently computable endomorphism. However, the standard only
vaguely states “The recommended parameters associated with a Koblitz curve
were chosen by repeatedly selecting parameters admitting an efficiently com-
putable endomorphism until a prime order curve was found.”

Verifiably pseudorandom curves. Aiming to re-establish the trust in ECC,
several standards have picked the coefficients a, b in the Weierstrass form y2 =
x3+ax+b in a so-called verifiably pseudorandom way, as Figure 1 demonstrates.

The details differ and we study them more closely in Section 3.2. The common
idea is that the seed is made public, which limits the curve designer’s freedom to
manipulate the curve. However, this might not be sufficient, as Bernstein et al.
[Ber+15] show that one could still iterate over many seeds (and potentially also
over other “natural” choices) until they find a suitable curve. If a large enough
proportion of curves (say, one in a million) is vulnerable to an attack known to
the designer, but not publicly, this offers an opportunity to insert a backdoor.
In particular, we should be suspicious of curves whose seed’s origin is unknown.

7 Analyzing these curves is of great importance due to the usage of secp256k1 in
Bitcoin [Nak08].
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pick a
new seed

a, b = Hash(seed) E(a, b) output: std curve
secure

insecure

Fig. 1: A simplified template for generating verifiably pseudorandom curves over
a fixed field Fp.

In our analysis, we will focus on two major standards containing verifiably
pseudorandom generation procedures:

– The Brainpool curves, proposed in 2005 by Manfred Lochter and Johannes
Merkle under the titles ”ECC Brainpool Standard Curves and Curve Gener-
ation” [Brainpool] to focus on issues that have not been previously addressed
such as verifiable choice of seed or usage of prime of nonspecial form.

– NIST in collaboration with NSA presented the first standardization of curves
was in FIPS 186-2 in 2000 [Nat00]. However, the used generation method
already appeared in ANSI X9.62 in 1998 [Com+98]. Other standards recom-
mend these curves (e.g., SECG [Cer] or WTLS [Wir00]).

Another notable paper considering the verifiably pseudorandom approach is
“The Million dollar curve” which proposed a new source of public entropy for
the seeds, combining lotteries from several different countries [Bai+15].

1998 2000 2001 2005 2006 2009 2010 2011 2012 2013 2014 2016 2018 2019

X9.62

FIPS

SECG

IEEE

WTLS

GOST

Brainpool

OSCCA

ANSSI

NUMS

MIRACL

Fig. 2: Timeline of standardization of publicly available prime-field curves.
Dashed line indicates that the source does not specify curve parameters. In-
dividual curves (e.g., Curve25519) are omitted.
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Other rigid methods. As a reaction to the NIST standard curves, an interest
in faster curves generated using rigid and verifiable methods has emerged:

– Three Weierstrass curves and three twisted Edwards curves were proposed
by Black et al. [Bla+14] as an Internet draft called ”Elliptic Curve Cryptog-
raphy (ECC) Nothing Up My Sleeve (NUMS) Curves and Curve Generation”
[Bla+14].

– MIRACL library [MIR18] combines approaches of NUMS and Brainpool by
extracting seeds from well-known constants and iteratively incrementing one
of the parameters of a curve in the Weierstrass form.

– Bernstein’s Curve25519 and its sibling Ed25519 were created in 2006 [Ber06]
and since then have been widely accepted by the cryptography community.
The curve is in the Montgomery form and allows extremely fast x-coordinate
point operations while meeting the SafeCurves security requirements. In
2013, Bernstein et al. [Ber+13] proposed the curve Curve1174 with an en-
coding for points as strings indistinguishable from uniform random strings
(the Elligator map).

– To address higher security levels and maintain good performance, several au-
thors developed curves of sizes in the 400-521 bit range such as the Edwards
curve Curve41417 by Bernstein, Chuengsatiansup, and Lange [BCL14], Ed448-
Goldilocks by Hamburg [Ham15a], E-3363 by Scott [Sco15] or M, E curves
by Aranha1 et al. [Ara+13].

3 Methodology

Our ultimate goal is to enable assessment of security for standard curves. But
since it is not clear how to look for unknown curve vulnerabilities, we now aim
to pinpoint possible problems via identifying standard curves that deviate from
other curves in specific aspects. To find deviations we employ one of the following
strategies:

1. Compare curves from a standard to corresponding simulated ones.
If the standard curves were generated using the defined processes without any
hidden conditions, it would be unexpected to statistically distinguish them
from our simulated ones, yet we try to do exactly that. We are looking for a
standard curve achieving a value that is highly improbable when compared
to the simulated curves.

2. Compare curves from a standard to Random curves. If the generation
algorithm introduces a systematic bias, the first strategy will not allow us
to find it – the problem might occur in both the standard and simulated
curves. Thus this strategy tries to detect any sort of unexpected behaviour
by comparing curves from a given standard to Random8 curves.

8 In the remainder of this work, the word Random with capital R refers to the curves
we generated by our own method to be as generic as possible.
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To target specific curve properties, we describe and implement traits, which
are functions that take a curve as an input (sometimes with additional param-
eters) and output numerical results. We run these traits on standard curves as
well as simulated ones whenever it is computationally feasible and store the
results in our database.

3.1 Standard curve database

DiSSECT is, as far as we know, the first public database of all standard elliptic
curves, divided into 18 curve categories by their source. The database includes:

1. verifiably pseudorandom curves (X9.62, NIST, SEC, Brainpool);
2. pairing-friendly curves: Barreto-Lynn-Scott curves [BLS02], Barreto-Naehrig

curves [Per+11], Miyaji-Nakabayashi-Takano curves [MNT01]);
3. amicable curves: Tweedledee/Tweedledum [BGH19], Pallas/Vesta [Hop20];
4. rigidly generated NUMS curves and curves from the MIRACL library [MIR18];
5. Bernstein’s high performance curves [Ber06] and M, E curves [Ara+13];
6. curves from the standards ANSSI [Jou11], OSCCA [SSL14], GOST [PLK06;

SF16], OAKLEY [Orm98], WTLS [Wir00], ISO/IEC [ISO17] and others;

Although our analysis focuses mainly on prime-field curves, the database
contains 31 curves over binary fields and one over an extension field. Currently,
there are 188 standard curves in total. Note that we also include curves that
were but are no longer supported by the standards, and curves that are not
recommended for public use, but have been included in the documents for various
reasons (e.g., curves for implementation checks). The database provides filtering
by bit-length, field type, cofactor size, and curve form.

Additionally, our database contains five categories of simulated curves: X9.62sim,
Brainpoolsim, NUMSsim, Curve25519sim and Random9.

For each curve, we also precomputed usual properties such as the CM dis-
criminant, the j-invariant, the trace of Frobenius t, and the embedding degree.
This precomputation significantly speeds up computation of some traits.

Source # Source # Source # Source #

X9.62 40 BARP 6 OSCCA 1 X9.62sim 120k

Brainpool 14 BLS 6 BN 16 NUMSsim 1.2k

NUMS 24 GOST 9 AMIC 4 Curve25519sim 784

SECG 33 ISO 4 DJB 10 Brainpoolsim 12k

NIST 15 MNT 10 ANSSI 1 Random 250k

MIRACL 8 OAKLEY 2 WTLS 8 other 11

Table 1: Numbers of elliptic curves in our database grouped by their source.

9 The set of Random curves and their trait results is currently still evolving.
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3.2 Simulations

We have picked four major standards X9.62 [Com+98], Brainpool [Brainpool],
NUMS [Bla+14] and Curve25519 [Ber06] for simulations, since their generation
method was explained in enough detail and can be easily extended for large scale
generation. At a few points, the standards were a little ambiguous, so we filled
the gaps to reflect the choices made for the actual standard curves whenever
possible. We have simulated over 120 000 X9.62 curves, 12 000 Brainpool curves,
1 200 NUMS curves and 750 Curve25519 curves10.

The aim of this part is not to undertake a thorough analysis of the published
algorithms, rather explain our approach to the large-scale generation using the
given methods. For the details of the original algorithms, see the individual
standards. Although NUMS, Brainpool and Curve25519 provide a method for
generating group generators, we are currently not focusing on their analysis.

X9.62 - the standard. We focus on the generation method of the 1998 version
[Com+98]. Its input is a 160-bit seed and a large prime p and the output is an
elliptic curve in short Weierstrass form over the field Fp, satisfying the following
security conditions:

– “Near-primality”: The curve order shall have a prime factor l of size at least
min{2160, 4√p}. Furthermore, the cofactor shall be s-smooth, where s is a
small integer (the standard proposes s = 255 as a guide).

– The embedding degree of the curve shall be greater than 20. The standard
also specifies that to check this condition, we may simply verify that pe ̸= 1
(mod l) for all e ≤ 20.

– The trace t shall not be equal to 1.

Given a seed and a prime p, the standard computes a log(p)-bit integer r
using11 the function (1). The next step is choosing a, b ∈ Fp such that b2r = a3.
This process is repeated until the curve satisfies the security conditions men-
tioned above.

H(seed) = SHA-1(s︸ ︷︷ ︸
discard

eed)||SHA-1(seed + 1)|| . . . ||SHA-1(seed + i)︸ ︷︷ ︸
log(p)−bit integer as output

. (1)

X9.62 – our approach. For each of the five bit-lengths 128, 160, 192, 224 and
256 bits we have fixed the same prime as the standard (hence all curves of the
same bit-length are defined over the same field). Since there is no guidance in
the standard how to pick the seed for each iteration, we have taken the published
seed for each bit-length and iteratively incremented its value by 1. To pick a and
b, we have fixed a = −3 (as was done for most X9.62 curves for performance
reasons [CC86]) and computed b accordingly, discarding the curve if b2 = −27/r
does not have a solution for b ∈ Fp. We also restricted the accepted cofactors
to 1, 2, or 4 as this significantly accelerated the point counting. This choice also

10 This took up to a week per standard on 40-core cluster of Intel Xeon Gold 5218.
11 More precisely, H also changes the most significant bit of the output to 0.
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conforms to with the fact that the standard curves all have cofactor 1 and the
SECG standard (which overlaps with the X9.62 specifications) recommends the
cofactor to be bounded by 4. The point counting – the main bottleneck of the
computations – was done by an early-abort version of the SEA algorithm [Sch95].
For each of the five bit-lengths we have tried 5 million seeds, resulting in over
120 000 elliptic curves. Figure 3 captures a simplified overview of the algorithm.

seed :=
initial seed

r = H(seed)

output
E(a, b)

Increment
seed

E(−3,
√

−27
r )

secure

insecure

Fig. 3: X9.62 algorithm adjusted (indicated by the dashed line) for large-scale
generation.

Brainpool – the standard. The Brainpool standard proposes algorithms for
generating both the prime p and the curve over Fp. Since in our simulations we
have used the same finite fields as are in the recommended curve parameters we
will skip the algorithm for prime generation.

Given a seed and a prime, the curve generation process outputs an elliptic
curve in Weierstrass form that satisfies the following security conditions:

– The cofactor shall be 1, i.e. the group order n shall be prime.
– The embedding degree shall be greater than (n− 1)/100.
– The trace t shall not be equal to 1. Technical requirements then state that

t > 1.
– The class number of the endomorphism algebra of the curve should be larger

than 107.

The algorithm itself follows similar idea as X9.62, but in more convoluted way,
as can be seen in Figure 4. This time, the H function (1) is used to compute
both a and b in pseudorandom way. Roughly speaking, a given seed is repeatedly
incremented by 1 and mapped by H until an appropriate a is found and the
resulting seed is used for finding b in a similar way. If the curve does not satisfy
the condition, the seed is incremented and used again as the initial seed. See
the standard for details of generation, GenA and GenB represent generation of
a and b in Figure 4.

Brainpool – our approach. We have used the same approach as in X9.62 and
used the published seed as initial seed for the whole generation, incrementing
seed after each curve was found. Since generation of both a and b can in theory
take an arbitrary number of attempts, the seed is incremented after each failed
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attempt. We have again used 5 million seeds for each of the four bit-lengths
(160, 192, 224, 256) Brainpool recommends. The number of generated curves in
total is over 12 000. The drop in the proportion of generated curves compared
to X9.62 standard is caused by stricter conditions.

There is currently no known efficient method that computes the class number;
instead we checked that a related quantity – the CM discriminant – is greater
than 2100, following the SafeCurves recommendations [BL].

seed :=
initial seed

a, seeda := GenA(seed)
b, seedb := GenB(seeda)

Increment
seed

output E(a, b)
seed := seeda

seed := seedb

E(a, b)
secure

insecure

Fig. 4: Brainpool algorithm adjusted (indicated by the dashed line) for large-
scale generation.

NUMS – the standard. The NUMS generation method, in accordance with
its name, does not fall into the verifiably pseudorandom category. As Brain-
pool, NUMS proposes algorithms for generating both the prime field and the
curve. The lowest recommended bit-length for prime fields by NUMS is 256.
The method of prime generation works by starting with c = 1 and incrementing
this value by 4 until p = 2s − c is a prime congruent to 3 mod 4.

Although NUMS proposes algorithms for generating both Weierstrass and
Edwards curves, we have focused only on the Weierstrass curves. The curve is
found by searching for E(−3, b) satisfying the following security conditions by
incrementing b, starting from b = 1:

– The curve order as well as the order of its twist shall be primes.
– The trace t shall not equal 0 or 1. This condition is further extended by

requiring t > 1, supposedly for practical reasons.
– The embedding degree shall be greater than (n−1)/100 following the Brain-

pool standard.
– The CM discriminant shall be greater than 2100, following the SafeCurves

recommendations.

NUMS – our approach. We have used the same process, but this time iterat-
ing over 10 million values for b, for each of the four bit-lengths 160, 192, 224 and
256. Though the lowest recommended bit-length for prime fields by NUMS is
256, we have generated 160, 192 and 224-bit primes using the proposed method
to study curves of lower bit-lengths. This process produced over 1 200 curves,
implying that the twist condition is strongly restrictive.
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Curve25519 – the standard. Curve25519 was created in a similar rigid man-
ner as NUMS curves by minimizing one coefficient of the curve equation. The
prime 2255 − 19 for the prime field was chosen to be close to a power of 2 and
with bit-length slightly below multiple of 32 for efficiency of the field arithmetic.
Curve25519 is a Montgomery curve of the form y2 = x3 + Ax2 + x with the
smallest A > 2 such that A− 2 is divisible by 4 and:

– The cofactor of the curve and its twist shall be 8 and 4 respectively.
– The trace t shall not equal 0 or 1.
– The embedding degree shall be greater than (n− 1)/100.
– The CM discriminant shall be greater than 2100.

Curve25519 – our approach. Similarly to the NUMS approach we have it-
erated over A for bit-lengths 159, 191 and 255 where we have picked primes
2159 − 91 and 2191 − 19 for lower bitlengths. Iterating over 10 million values for
A resulted in roughly 804 curves in total.

Random – our approach. Since all of the simulated standards contain certain
unique properties (small b for NUMS, small A for Curve25519, bit overlaps in
Brainpool, rb2 = −27 for X9.62) and curves of the same bit-length share a
base field, we have also generated curves for bit-lengths 128, 160, 192, 224, 256
using the method depicted in Figure 5 that aims to avoid such biases. We call
such curves Random, as this term clearly describes our intention. However, for
practical reasons, we made the process deterministic using a hash function. For
each curve, we generated a prime for the base field by hashing (SHA-512) a
seed and taking the smallest prime bigger than this hash when interpreted as
an integer. Curve coefficients were chosen using the hash function as well, see
fig. 5. We kept such a curve if it was not anomalous, had cofactor 1, 2, 4 or 8
and satisfied the SafeCurves criteria on embedding degree and CM discriminant.
We tried 5 million seeds, resulting in over 250 000 Random curves.

seed:=0

p := GenPrime(seed)
a := SHA-512(seed)
b := SHA-512(a)

Increment
seed

output E(a, b)

E(a, b)
secure

insecure

Fig. 5: Random simulation.

3.3 Outlier detection

Our framework offers options for graphical comparisons for described distin-
guishing strategies. However, manual inspection does not scale well, so we utilize
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automated approaches to identify suspicious curves. Since we do not have (and
cannot have) a labeling that could be used for the typical supervised approaches,
we had to resort to unsupervised methods, namely outlier detection.

We built several datasets of simulated curves according to the selected dis-
tinguishing strategies. Each dataset of simulated curves consists only of curves
of the same bit-length that were generated by the same method. Table 2 shows
numbers of curves contained within each dataset. The rows correspond to the
used generation method and the columns to the bit-length of the selected curves.

256 bits 224 bits 192 bits 160 bits 128 bits

X9.62sim 18 502 22 211 18 836 27 780 36 126

Brainpoolsim 1 677 2 361 2 640 3 184 0

NUMSsim 83 109 191 325 0

Curve25519sim 140 0 366 278 0

Random 18 636 21 226 24 805 29 639 37 311

Table 2: Numbers of curves in our datasets of simulated curves.

Additionally, in cases where trait results are (mostly) independent of the
curve bit-length, we analyzed curves of all bit-lengths together. This approach
allowed us to study even curves that did not match any of the generated bit-
lengths.

We augmented each dataset with standard curves according to distinguish-
ing strategies, i.e., Random curves with each category of standard curves, and
the other three simulated categories only with standard curves of the same type.
From these augmented datasets, we derived feature vectors consisting of all com-
puted trait results, as well as some of their subsets. The features were scaled
using a min-max scaler to fit within the [0; 1] range. In case some results were
not computed, they were replaced with −1, signifying that the given value took
too long to compute (e.g., the factorization of large numbers). Finally, we ran
the local outlier factor algorithm [Bre+00] to identify outliers within each aug-
mented dataset. If the approach reported a standard curve as an outlier, we
inspected such results closer.

4 Traits

DiSSECT currently contains 22 trait functions12 – traits for brevity – designed to
test a wide range of elliptic curve properties, including mathematical character-
istics of curves, all SafeCurves ECDLP requirements, and properties connected
to curve standards or implementations. In particular, the traits are not limited
to properties connected to known attacks or vulnerabilities, and aim to find new
interesting deviations.

12 See https://dissect.crocs.fi.muni.cz/ or Appendix A for a full list.

https://dissect.crocs.fi.muni.cz/
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We have divided the traits into five categories:

Potential attacks. These traits test the classical properties of elliptic curves
relevant to known attacks (the order and cofactor of the curve; the quadratic
twist; the embedding degree). However, we also cover lesser-known and threat-
ening attacks, for example, the factorization of values of the form kn ± 1 as a
generalization of [Che06]. To test scalar multiplication, essential to all ECC pro-
tocols, we inspect multiplicative orders of small values modulo the group order
n. Another trait follows the idea from [Che02], with a possible connection of the
discrete logarithm on ECC to factorization.

Complex multiplication. Although at this moment there is no serious attack
utilizing any knowledge about the CM discriminant or class number, these values
are the defining features of an elliptic curve. They determine the structure of
the endomorphism ring, the torsion points, isogeny classes, etc. Multiple traits
deal with the factorization of t, the size and the factorization of the Frobenius
discriminant D = t2 − 4p, as well as how D changes as we move the defining
base field to its extensions. We also compute bounds on the class number using
the Dirichlet class number formula [Dav80].

Torsion. We have designed several traits to directly analyze the torsion points
of a given elliptic curve. One of the traits computes the degree of the extension
Fpk/Fp over which the torsion subgroup is (partially) defined. Lower degrees
might lead to computable pairings. Another trait approaches torsion from the
direction of division polynomials and computes their factorization. We also con-
sider the lift E(Fp) → E(Q) and computes the size of the torsion subgroup over
Q which might be relevant for lifting of ECDLP.

Isogenies. Both torsion and complex multiplication can be described using iso-
genies. Kernel polynomial of every isogeny is a factor of the division polynomial,
and the special cases of isogenies, endomorphisms, form an order in an imag-
inary quadratic field of Q(

√
D). One of isogeny traits computes the degree of

the extension where some/all isogenies of a given degree are defined. Isogeny
traits also analyze isogenies of ordinary curves and the corresponding isogeny
volcanoes – their depth and the shape of so-called crater, and also the number
of neighbors for a given vertex in the isogeny graph.

Standards and implementation. During our analysis of standard methods
for generating curves, we have noticed unusual steps in the algorithms, so we
designed traits to capture the resulting properties. The nature of the Brainpool
standard (see Figure 4) causes overlaps in the binary representations of the curve
coefficients in roughly half of the generated curves. The NUMS standard, as well
as the Koblitz curves, use small curve coefficients by design. The X9.62 standard
uses the relation b2r = a3 to determine the curve coefficients from r. The SECG
standard recommends the curves secp224k1 and secp256k1 together with the
group generators; the x-coordinate of half of both of these generators is the same
small number.

Most attacks on the ECDLP are aiming at specific implementation vulner-
abilities. To address this, we propose traits that target possible irregularities
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in practical implementations. One trait follows the idea of [Wei+20], where the
authors analyze the side-channel leakage caused by improper representation of
large integers in memory. Based on [Bai+09], we designed a trait that analyzes
the number of points with a low Hamming weight on a given curve.

4.1 Notable findings

GOST curves. The trait that analyzes the size of the coefficients in the Weier-
strass form was motivated by the NUMS standard. However, our outlier detection
also recognized two 256-bit GOST curves (CryptoPro-A-ParamSet, CryptoPro-C
-ParamSet) in this trait, and a closer inspection in Figure 6 revealed that both
curves have small b coefficients (166 and 32858). This contradicts Alekseev, Niko-
laev, and Smyshlyaev [ANS18], who claim that all of the seven standardized
GOST R curves were generated in the following way13:

1. Select p that allows fast arithmetic.

2. Compute r by hashing a random seed with the Streebog hash function.

3. For the generation of twisted Edwards curve eu2 + v2 = 1 + du2v2, put
e = 1, d = r. For the generation of Weierstrass curve y2 = x3 + ax + b, put
a = −3 and b equal to any value such that rb2 = a3.

4. Check the following security conditions:

– n ∈ (2254, 2256) ∪ (2508, 2512).

– The embedding degree is at least 32 (resp. 132) if n ∈ (2254, 2256) (resp.
if n ∈ (2508, 2512)).

– The curve is not anomalous.

– The j-invariant is not 0 or 1728.
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Fig. 6: Two GOST curves (CryptoPro-A-ParamSet, CryptoPro-C-ParamSet)
exhibit particularly low bit-length of b parameter, even though Alekseev, Niko-
laev, and Smyshlyaev [ANS18] claim that they were generated pseudorandomly.

13 The authors support their claims by providing seeds for two of the seven curves. We
find it problematic that the seeds were not previously made public.
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Fig. 7: BLS12-381 and BLS simulated curves exhibit unexpectedly large comple-
ment of the order of 2 in Z∗

n when compared to Random curves.

Thus the small size of b (which should be pseudorandom if r is) implies that
it is very unlikely that they were generated with this claimed method. More
precisely, since b2 = −27/r in Fp and p has 256 bits, then the probability for
b = 166, resp. b = 32858 is 2−248, resp. 2−240, considering the bitlengths of the
parameters. We hypothesise that the CryptoPro-A-ParamSet curve was gener-
ated by incrementing b from 1 until the GOST security conditions were satis-
fied. We have verified that b = 166 is the smallest such value with the added
condition that the cofactor is 1 (otherwise, the smallest value is b = 36). The
CryptoPro-C-ParamSet does not have this property, as its b coefficient 32858 is
only the 80th smallest such value. However, there is an additional problem with
the generator point (0,

√
32858). It was shown [Gou03], prior to the standard-

ization of this curve, that there exist side-channel attacks utilizing such special
points with x = 0. If we consider the existence of such point as another condition
imposed on the curves, then 32858 is the 46th smallest value. We employed DiS-
SECT to distinguish this particular curve for from the rest of the 45 curves using
the implemented traits in order to explain their choice, but without results.

Furthermore, the trait inspecting CM discriminant revealed that the third
curve CryptoPro-B-ParamSet from [PLK06] has a CM discriminant of −619.
Such a small value is extremely improbable, unless the curve was generated by
the CM method [Brö06]. (The CM discriminant −915 of gost256 is small as
well, but this curve was used just as an example and there are no claims about
its generation.)

The BLS12-381 Curve. The trait that measures ϕ(n) divided by the multi-
plicative order of 2 modulo n (low multiplicative orders translate to high values
and vice versa) identified the BLS12-381 curve [Bow17] as an outlier in the set of
Random curves. While some traits were expected to show statistical differences
between pairing-friendly curves and Random curves, the cause was not clear for
this particular trait. To further investigate this, we have adopted the generation
method of the BLS12-381 curve to DiSSECT. Figure 7 shows the results of the
trait on Random curves, the BLS12-381 curve and the BLS simulated curves.
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Fig. 8: Simulation of BLS curves while ignoring different properties have shown
that the special construction of n caused the unexpected behavior.

Figure 7 shows that the unexpected detection of BLS12-381 as an outlier
was not a coincidence. Rather it was caused by the generation method, and
consequently the properties, of the BLS12-381 curve. To briefly summarize, the
generation method works by finding an integer x satisfying:

– x has low hamming weight,

– x is divisible by 216,

– n = x4 − x2 + 1 is a prime,

– p = 1
3n(x− 1)2 + x is a prime.

When such x is found, the CM method is used to construct a BLS curve14 over
Fp with cardinality 1

3n(x−1)2. We have identified exactly what conditions in the
BLS generation method were behind the outlier detection of BLS12-381 curve
by removing each condition and computing the trait for these modified curves.
On one hand, Figure 8 shows that the conditions on x and special form of p
have little or no impact on the results of the trait. On the other hand, we can
see that the conditions that were the main cause of the unexpected results of
BLS12-381 is the special form of the order n = x4 − x2 + 1. Indeed, in this case
ϕ = x2(x−1)(x+1) which means that small multiplicative orders are more likely
than for general n. Although this does not seem to cause any vulnerabilities in
the BLS12-381 curve, it reveals an undocumented property of the generation
method.

The Bitcoin curve. A trait that inspects the x-coordinate of inverted generator
scalar multiples, i.e., x-coordinates of points k−1G, where k ∈ {1, . . . , 8}, was
inspired by Brengel et al. [BR18], who reported an unexpectedly low value for
k = 2 on the Bitcoin curve secp256k1. Furthermore, Maxwell [Max15] pointed
out that secp224k1 yields exactly the same result. Pornin [Por19] guesses that
this was caused by reusing the code for Koblitz curves with the same seeds,
together with poor documentation.

14 Iterating through 100 million values of x we have generated 54 BLS curves.
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We analyzed the results of this trait in our visualization framework (Figure 9)
and discovered that secp256k1 and secp224k1 are the only standard curves for
which the x-coordinate of k−1G is significantly shorter than the full bit-length.

166 192 224 256
Bit-length of the x-coordinate of 2−1G

0

2

4

C
u

rv
e

co
u

nt

256-bit

224-bit

192-bit

Fig. 9: Curves secp256k1 and secp224k1 exhibit significantly shorter x-
coordinate of the point 2−1G than expected. The other standard curves of given
bit-lengths are also plotted.

Brainpool overlaps. The trait designed to detect bit-overlaps in the Weier-
strass coefficients, revealed a structure in the Brainpool curves, already observed
by Bernstein et al. [Ber+15].

0 79 80 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
Overlap of coefficients (log2)

0

20

40

C
u

rv
e

co
u

nt
(%

)

Brainpool (2)

Brainpool sim (1677)

Random (18636)

Fig. 10: Bit-overlap of 256-bit standard Brainpool, simulated Brainpool, and
Random curves.

More precisely the trait compares coefficients a and b when stripped of
160 bits (SHA-1 output size) from the left and right respectively. Inspecting
brainpoolP256r1, we can see the identical segments in a, b:

a = 0x7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9

b = 0x26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6
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Such overlaps occur during roughly half of the time during generation; e.g.,
for brainpoolP{192,256,384} but not for brainpoolP{160,224,320}. Figure 10
illustrates this effect for the Brainpool standard and simulated curves.

5 Our tool DiSSECT

DiSSECT is an open-source tool for generating elliptic curves according to our
standard simulation methods, computing traits on elliptic curves, and analyzing
data using automated approaches and an easy-to-use visualization environment.
The tool does not aim to perform rigorous statistical tests given the limited
sample size of standard curves. Its code contains implementations of all 22 traits
described in Appendix A, and it can be easily extended. Adding a new trait
requires only a short description of its function and writing a few lines of Sage
code that computes the new trait result for a given curve.

The tool provides an approach for automated outlier detection to systemat-
ically identify deviations. A Jupyter notebook environment can be used to per-
form a more detailed analysis of computed trait results. Both of these approaches
allow configuring the subset of analyzed curves, traits, and their parameters, and
can access locally stored data as well as our publicly accessible database.

Our website15 https://dissect.crocs.fi.muni.cz/ contains detailed in-
formation about curves in our database and corresponding trait results, and trait
descriptions with statistics. For a more complex data inspection, the analysis en-
vironment configured with access to our database can be launched directly from
the website.

6 Conclusions

Our framework DiSSECT aspires to survey all standard elliptic curves and to
assist in identification of potential problems by comparing them to simulated
ones and visualizing the results. We built it as a foundation of elliptic curve
cryptanalysis for the cryptographic community and hope that more cryptogra-
phers and mathematicians will join the project. DiSSECT’s code is available at
our repository16.

Our tool revealed two surprising types of deviations. We realized that the
generation process of three GOST curves described by Alekseev, Nikolaev, and
Smyshlyaev [ANS18] is inconsistent with the sizes of the b coefficient in two cases
and with the size of the CM discriminant in the third one. Properly documenting
such properties is crucial for re-establishing trust in the standard curves and the
whole ECC ecosystem. We cannot expect its users, developers, or policy-makers
to notice even fairly obvious deviations (e.g., small Weierstrass coefficients), as
they often do not access the parameters directly.

15 https://dissect.crocs.fi.muni.cz/
16 https://github.com/crocs-muni/DiSSECT

https://dissect.crocs.fi.muni.cz/
https://dissect.crocs.fi.muni.cz/
https://github.com/crocs-muni/DiSSECT
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We found an interesting, previously undescribed property of the BLS12-381
curve (related to smoothness) that is caused by its generation. Recent attacks
[KB16] on special properties of pairing-friendly curves have proven that aware-
ness of all properties caused by the pairing-friendly generation methods is crucial.
In particular, our approach of isolation of individual properties in BLS generation
has shown to have a lot of potential for future research of security of pairing-
friendly curves. One further interesting improvement of DiSSECT would be an
implementation of clustering algorithms that would help uncover biases system-
atically introduced by these properties. Another approach might be combining
DiSSECT with statistical tools such as [Obr+15].

Selected parts of DiSSECT could also be used to quickly assess new individ-
ual curves. This might be useful for implementations following the idea of Miele
and Lenstra [ML15], trading standard curves for ephemeral on-the-fly generated
ones. Besides cryptographic applications, DiSSECT might also be useful to num-
ber theorists by providing them with empiric distributions of various traits. It
is unrealistic to go through the whole space of trait results for different param-
eter choices and curve sets manually. Thus we employed an automated outlier
detection method, which found all discrepancies we discovered manually. Still,
there may be other outliers, and we believe it is an interesting open problem
to statistically evaluate the results in a way that takes into account the inner
structure of the data for a given trait.
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A List of traits

The following is a list of all traits used for curve analysis. Each trait takes as an
input an ordinary elliptic curve E/Fp : y2 = x3 + ax+ b of order n.

trait name input output
cofactor int r Tuple (n1, n2) such that the group E(Fpr ) is isomorphic

to Zn1
× Zn2

and n1|n2 (n1 = 1 for cyclic groups).
discriminant The factorization of D = t2 − 4p = v2dK , where dK is the

discriminant of the endomorphism algebra of E.
twist order int r The factorization of the cardinality of the quadratic twist

of E(Fpr ).
kn fact. int k The factorizations of kn+ 1 , kn− 1
torsion

extension

prime l k1, k2, k2/k1, where k1, k2 are the smallest integers satis-
fying E[l] ∩ E(Fpk1 ) ̸= ∅ and E[l] ⊆ E(Fpk2 ).

conductor int r The factorization of Dr/D1, where Dr = t2r − 4pr and tr
is the trace of Frobenius of E/Fpr .

embedding The ratio ϕ(r)/e, where r | n is the order of the prime order
subgroup and e is the multiplicative order of q (mod r).

class number Upper bound [Dav80] and lower bound [Col85] on the class
number of the endomorphism algebra of E.

small prime

order

prime l The ratio ϕ(n)/m where m is the multiplicative order of l
(mod n).

division pol. prime l The factorization of the l-th division polynomial.
volcano prime l The depth and the degree of the l-volcano.
isogeny

extension

prime l i1, i2, i2/i1 where i1, i2 are the smallest integers such that
there exists a Fpi1 -rational l-isogeny and l+1 Fpi2 -rational
l-isogenies from E.

trace fact. int r A factorization of the trace of Frobenius of E/Fpr .
isogeny

neighbors

prime l A number of roots of Φl(j(E), x) where Φl is the l-th mod-
ular polynomial.

q torsion Torsion order of E′(Q) where E′ is is given by the same
equation y2 = x3 + ax+ b.

hamming x int k A number of points on E with the Hamming weight of the
x-coordinate equal to k.

square 4p-1 The factorization of square-free parts of 4p− 1 and 4n− 1
where n is the order of the generator point of E

pow distance The distances of n to the nearest power of 2 and multiples
of 32 and 64.

multiples x int k The x-coordinate of 1
kG.

x962 inv. The value r = a3

b2 .
brainpool

overlap

a160 − b−160 where a160 are the s − 160 rightmost bits of
a and b−160 are the s− 160 leftmost bits of b.

weierstrass The parameters a, b.
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