
Two-Round MPC without Round Collapsing Revisited –
Towards Efficient Malicious Protocols*

Huijia Lin1 and Tianren Liu†2

1University of Washington, Seattle, US
rachel@cs.washington.edu

2Peking University, Beijing, China
trl@pku.edu.cn

Abstract

Recent works have made exciting progress on the construction of round optimal, two-round,
Multi-Party Computation (MPC) protocols. However, most proposals so far are still complex
and inefficient.

In this work, we improve the simplicity and efficiency of two-round MPC in the setting
with dishonest majority and malicious security. Our protocols make use of the Random Oracle
(RO) and a generalization of the Oblivious Linear Evaluation (OLE) correlated randomness,
called tensor OLE, over a finite field F, and achieve the following:

• MPC for Boolean Circuits: Our two-round, maliciously secure MPC protocols for comput-
ing Boolean circuits, has overall (asymptotic) computational cost O(S · n3 · log |F|), where
S is the size of the circuit computed, n the number of parties, and F a field of characteristic
two. The protocols also make black-box calls to a Pseudo-Random Function (PRF).

• MPC for Arithmetic Branching Programs (ABPs): Our two-round, information theoretically
and maliciously secure protocols for computing ABPs over a general field F has overall
computational cost O(S1.5 · n3 · log |F|), where S is the size of ABP computed.

Both protocols achieve security levels inverse proportional to the size of the field |F|.
Our construction is built upon the simple two-round MPC protocols of [Lin-Liu-Wee TCC’20],

which are only semi-honest secure. Our main technical contribution lies in ensuring mali-
cious security using simple and lightweight checks, which incur only a constant overhead over
the complexity of the protocols by Lin, Liu, and Wee. In particular, in the case of computing
Boolean circuits, our malicious MPC protocols have the same complexity (up to a constant
overhead) as (insecurely) computing Yao’s garbled circuits in a distributed fashion.

Finally, as an additional contribution, we show how to efficiently generate tensor OLE cor-
relation in fields of characteristic two using OT.

*This article is an extended version of the paper to appear at CRYPTO 2022.
†The work was partially done when Liu was a postdoctoral researcher at University of Washington.

1

Contents

1 Introduction 3

2 Technical Overview 8
2.1 Multi-Party Randomized Encoding . 8
2.2 Semi-Malicious Effective-Degree-2 MPRE . 10
2.3 MPC for Effective-Degree-2 Functions . 13
2.4 Lift Security with Output Substitution . 16
2.5 Tensor OLE Correlated Randomness Generation from OT 17

3 Definitions 18
3.1 Secure Multi-Party Computation . 19
3.2 Multi-Party Randomized Encoding . 21

4 MPRE for Degree-3 Functions 24
4.1 Background: Semi-honest MPRE for Degree-3 Functions 24
4.2 CDS Encoding . 25
4.3 Semi-Malicious MPRE for Degree-3 Functions . 27

5 MPC Protocol for Effective-Degree-2 Functions 31
5.1 The Functionality F2MP+ Suffices for Effective-Degree-2 Function Evaluation 34
5.2 The Protocol Π2MP+ Implementing F2MP+ . 37

6 MPC for Degree-3 Function 49

7 From Degree 3 to P 49

8 Lifting Privacy to Security 52
8.1 To Security with Selective Abort via One-Time MAC 52
8.2 To Security with Unanimous Abort via an Extra Round 53
8.3 To Security with Unanimous Abort via Consensus MAC 54

9 Putting Pieces Together 56

A Implementation of OLE from OT 63
A.1 Semi-honest Tensor-OLE Correlation Generation . 64
A.2 Maliciously Secure Implement . 64

2

1 Introduction

Improving efficiency is a central theme in the design of cryptographic protocols. Two important
aspects are computational efficiency and round efficiency. In the context of secure Multi-Party Com-
putation (MPC) protocols, since the seminal works in the 80s [Yao82, GMW87, BGW88, CCD88],
remarkable improvements have been made on both fronts.

• In the past decade, innovative design and implementation improvements have drastically
reduced the computational cost of MPC, leading to efficient protocols more and more appli-
cable to practical situations (e.g., the SPDZ protocols [DPSZ12] and its followup works).

• Another long line of researches on minimizing the round complexity of MPC recently culmi-
nated at the construction of two-round MPC protocols based on the (minimal) assumption of
two-round Oblivious Transfer (OT) in the Common Reference String (CRS) model [BL18,
GS18]. Two rounds are optimal even for achieving only semi-honest security and with
trusted setups [FKN94, IK97].

However, so far, most two-round MPC protocols are complex and inefficient, especially those
achieving malicious security (even in correlated randomness and/or trusted setup model). En-
couraged by the efficiency improvement in the realm of many-round MPC in the past decade, this
work strives to improve the simplicity and efficiency of two-round MPC in the malicious setting
with dishonest majority. Existing techniques can be broadly classified as follows:

• Round Collapsing: Introduced by [GGHR14] and initially relying on strong primitives such as
indistinguishability obfuscation (iO) or witness encryption [GP15, CGP15, DKR15, GLS15],
the round collapsing approach was improved in [GS17, BL18, GS18, GIS18, BLPV18] to rely
on just malicious 2-round OT. The complexity of this approach stems from applying the gar-
bling technique (e.g., [Yao82, AIK04]) to the next step function of a many-round MPC protocol
to collapse the number of rounds to two. The non-black-box use of the underlying MPC pro-
tocol hurts both asymptotic and concrete efficiency.

• Using Generic Non-Interactive Zero Knowledge (NIZK): This approach starts with designing
two-round MPC that are semi-maliciously secure1, and then transform them to maliciously
secure ones by applying generic NIZK to detect deviation from the protocol specification.
Two round semi-malicious protocols can be built either via the above round collapsing ap-
proach or using primitives supporting homomorphic computation, such as, multi-key fully
homomorphic encryption [AJL+12, MW16, CM15, BP16, PS16, AJJM20] or homomorphic se-
cret sharing [BGI16, BGI17, BGI+18, BGMM20]. Using NIZK to prove about the execution of
the semi-malicious MPC protocols is inefficient and leads to non-black-box use of underly-
ing assumptions.

• MPC-in-the-Head [IKOS07, IPS08, IKSS21]: Another generic method for strengthening weak
security to strong security is the “MPC-in-the-head” transformations [IKOS07, IPS08]. The
recent work by [IKSS21] showed how to perform such transformations in just two rounds. To
obtain a two-round maliciously secure protocol, the transformation uses a two-round proto-
col with (enhanced) semi-honest security [GIS18, LLW20], to emulate the execution of another
two-round protocol that is maliciously secure in the honest majority setting [IKP10, Pas12].
The overall complexity is the (multiplicative) compound complexity of both protocols.

1These are protocols secure against corrupted parties who follow the protocol specification but may choose its input
and randomness arbitrarily.

3

We observe that existing designs of two-round malicious MPC all apply generic transformations
– using garbling or NIZK or MPC – to some underlying MPC, which often leads to non-black-box
constructions (with exceptions [GIS18, IKSS21]) and inefficient protocols. To improve the state-
of-affairs, we consider protocols that use the Random Oracle (RO) and simple correlated random-
ness that can be efficiently generated in an offline phase, and aim for either information theoretic
security or computational security with black-box use of simple cryptographic tools like Pseudo-
Random Functions (PRFs). As seen in the literature, both the random oracle and the online-offline
model are extremely successful settings for designing efficient cryptographic protocols.

Our Results: We present a ligitweight construction of 2-round malicious MPC protocols, using
RO and an enhanced version of the Oblivious Linear Evaluation (OLE) correlation, called tensor
OLE. The OLE correlation is the arithmetic generalization of the OT correlation over a finite field
F. It distributes to one party (a1, b1) and another (a2, b2) which are random elements in F subject
to satisfying the equation a1a2 = b1 + b2

2. The tensor OLE correlation further generalizes the OLE
correlation to higher dimension: For dimension k1 × k2,

P1 holds: a1 ∈ Fk1 , B1 ∈ Fk1×k2 , P2 holds: a2 ∈ Fk2 , B2 ∈ Fk1×k2

where a1,a2,B1,B2 are random, subject to a1a
ᵀ
2 = B1 + B2 .

In our protocols, we will use pairwise tensor OLE correlation, with only small constant dimension,
concretely 4× 4 and 1× 11. Such correlation can be generated efficiently in an offline phase using
off-the-shelf OLE protocols [BCGI18, CDI+19]. We also show how to efficiently generate tensor
OLE correlation for fields of characteristic two using OT, which in turn can be generated with
good concrete efficiency [IKNP03, BCG+19]. We can further rely on pseudorandom correlation,
which can be efficiently generated in using techniques described in [BCG+20].

Using tensor OLE correlation and RO, we obtain the following protocols, in the setting of static
corruption and security with abort.
MPC FOR BOOLEAN CIRCUITS: Our first result is a construction of efficient two-round maliciously
secure MPC protocols for general Boolean circuits. The protocols make use of RO and tensor OLE
over a finite field F of characteristic two, as well as black-box calls to a PRF. (Note that we choose
to not instantiate the PRF with RO, because the latter is used for a different purpose. To obtain
standard-model protocols, we will employ the random oracle heuristic to replace RO with a real-
life hash function. By separating PRF from RO, we reduce the use of heuristic.) When computing
an n-ary circuit C, the overall computational costs of all parties is O(|C| · n3 · logF). The security
level of the protocol is inverse proportional to the field size |F|−1; thus, log |F| can be viewed as
the effective security parameter. More formally,

Theorem 1.1 (MPC for Boolean Circuits, informal). Let F be a finite field of characteristic two. Let C
an n-ary Boolean circuit C : {0, 1}`1 × · · · × {0, 1}`n → {0, 1}`. Assume the existence of a PRF F with
security level 2−κ(λ) where λ is the seed length.

There exists a two-round MPC protocol Π that securely computes C, using RO and tensor OLE corre-
lated randomness, making black-box calls to the PRF, and achieving

• overall complexity O(Γ logF) for Γ := n3 · |C|, and

• ε-computational, malicious security with selective abort, against up to n − 1 corruption, where the
security level ε = O(Γ+n2·QRO)

|F| + O(n·|C|)
2κ(log |F|) , and QRO is the number of random oracle queries that the

adversary makes.
2When the field is GF(2), OLE correlation coincides with the OT correlation.

4

More specifically, parties in our protocols communicate in total O(Γ) elements in F, perform in
total O(Γ) arithmetic operations in F, use in total O(Γ) pairs of tensor OLE correlated randomness
of constant dimensions, and make in total O(Γ) random oracle calls and O(|C| · n) PRF calls.
In addition, we can enhance the protocol to have security with unanimous abort at the cost of
increasing the complexity by an additive poly(n, λ) overhead.

Our construction follows the technique in [BMR90, DI05, LPSY15] developed in the context
of constructing constant-round MPC. They showed that to securely computing a Boolean circuit
C, it suffices to securely compute Yao’s garbling of the circuit [Yao82]. Furthermore, the latter
can be computed by a degree three polynomial f over a finite filed F of characteristic 2 – we call
them the distributed-Yao polynomials. Therefore, designing 2-round protocols for general cir-
cuits boils down to designing 2-round protocols for computing the degree three distributed-Yao
polynomials. This is indeed the approach taken by [LLW20]; however, they achieve only semi-
honest security. In this work, we further achieve malicious security (see Lemma 1.3 below), and
like [LLW20], our protocols incur only constant overheads – their overall asymptotically complexity
is the same as the complexity of distributed-Yao polynomials.

We give slightly more detail on distributed-Yao polynomials. They compute Yao’s garbled
circuits in a special way: First, labels for a wire u has form `u,b = s

(1)
u,b‖ . . . ‖s

(n)
u,b , where s(i)

u,b ∈ F
is a PRF key sampled by party Pi. Next, the garbled table for a gate g with input wire u, v and
output wire o contains entries of the form `o,g(a,b) ⊕ (

⊕
i Y

(i)
u,a)⊕ (

⊕
i Y

(i)
v,b), where Y (i)

u,a and Y (i)
v,b are

pseudorandom one-time-pads generated via PRF using party Pi’s keys s(i)
u,a and s

(i)
v,b respectively

(evaluating on different inputs). Hence, the output label is hidden as long as one of the PRF keys
is hidden. These entries are additionally permuted using mask bits ku, kv which are additively
shared among all parties. The important point made by [BMR90, DI05, LPSY15] is that the PRF
evaluations can be done locally by each party, and given the PRF outputs as inputs to f , such a
garbled circuit can be computed in just degree 3 in F. Analyzing the distributed-Yao polynomial
for a circuit C reveals that it contains O(Γ) = O(|C| · n3) monomials over F. In comparison, our
MPC protocol implementingC has overall complexityO(|C|·n3 ·log |F|) incurring only a constant-
overhead over distributed-Yao.
MPC FOR ARITHMETIC BRANCHING PROGRAMS (ABPS): Using similar approach, we obtain ef-
ficient, two-round, MPC protocols for ABPs over field F. Here, we compute instead the dis-
tributed version of the degree three randomized encoding of Applebaum, Ishai, and Kushilevitz
(AIK) [AIK04] for ABPs. More precisely, for an ABP g, we shall compute the n-ary polynomial
f((x1, r1), · · · , (xn, rn)) = AIKg((x1, · · ·xn); Σi∈[n]ri), where the randomness used for comput-
ing the AIK encoding is additively shared among all n parties. We refer to this polynomial the
distributed-AIK polynomial. The complexity of the resulting MPC protocol is determined by
the number of monomials in this polynomial, which is O(Γ) = O(|g|1.5n2). However, different
from the case for circuits, our two-round protocols now incur a factor O(n) overhead. Constant-
overhead can be retained by adding one more round. More formally,

Theorem 1.2 (MPC for ABPs, informal). Let F be a finite field. Let g be an n-ary arithmetic branching
program over F, g : Fl1 × · · · × Fln → F. Denote by |g| the size of the matrix Mg(·) describing g s.t.
det(Mg(x)) = g(x) for any x.

There exists a two-round MPC protocol Π that securely computes f , using RO and tensor OLE corre-
lated randomness and achieving

• overall complexity O(Γ · n · log |F|) for Γ = |g|1.5n2 and

• ε-statistical, malicious security with abort, against up to n− 1 corruption where the statistical simu-

5

lation error is ε = O(Γ·n+n2QRO)
|F| and QRO is the number of random oracle queries that the adversary

makes.

Furthermore, there is a three-round protocol achieving the same as above, but with overall complexity O(Γ ·
log |F|).

More specifically, parties of the 3-round protocols communicate in total O(Γ) elements in F,
perform in total O(Γ) arithmetic operations in F, and use in total O(Γ) pairs of tensor OLE corre-
lated randomness of constant dimensions.
MPC FOR DEGREE THREE POLYNOMIALS: The key that enables above theorems is our construc-
tion of, two-round, MPC protocols for computing degree three polynomials over an (arbitrary)
sufficiently large finite field F. Importantly, the protocol has constant overhead – when comput-
ing polynomials with Γ monomials over F, our protocols have overall complexity O(Γ · log |F|).
Furthermore, the protocol makes only black-box use to the underlying field F.

In order to achieve constant overhead, we only require these protocols to achieve a weaker
malicious security, called security with output substitution. Intuitively, the protocol ensures the
usual privacy guarantee of honest parties inputs – that nothing about honest parties’ inputs are
revealed beyond the output y = f(x1, · · · ,xn). But the honest party may (unanimously) receive
incorrect output – the adversary always learn y, and can replace it with another output y′ of its
choice without honest parties noticing.

Lemma 1.3 (MPC for degree 3 polynomials, Informal). Let F be a finite field. Let f be an n-ary degree
three polynomial over F, f : F`1 × · · · × F`n → F`; denote by |f | the number of monomials in f .

There exists a two-round MPC protocol Π that securely computes f , using RO and tensor OLE corre-
lated randomness and achieving the following:

• overall complexity O(|f |), and

• ε-statistical, malicious security with output substitution, against up to n − 1 corruption, where the
statistical simulation error is ε = O(|f |+n2QRO)

|F| and QRO is the number of random oracle queries that
the adversary makes.

Our construction easily generalizes to computing constant degree polynomials with constant
overhead, which might be of independent interests.

Using the above protocols to compute the distributed-Yao or distributed-AIK polynomials
gives two-round protocols for circuits or ABPs respectively, but achieving only security with out-
put substitution. We complement this by presenting a generic transformation that enhances se-
curity with output substitution to security with abort. Essentially, the transformation computes
a related circuit (or ABP resp.) that computes not only the output, but also authenticates of the
output using each party’s private key (supplied as part of the input). Since security with output
substitution ensures the privacy of honest parties’ keys, the adversary can no longer substitute the
output without being detected. This transformation incurs only a small additive overhead in the
case of circuits, but a multiplicative overheadO(n) in the case of ABPs. That’s why our two-round
ABP protocols do not achieve constant overhead over the complexity of distributed-AIK. We show
a different transformation that uses one more round to recover constant overhead.
TENSOR OLE OVER GF(2λ) FROM OT: As a final contribution, we construct an efficient 4-round
protocol for generating the tensor OLE correlation over GF(2λ) using OT.

Theorem 1.4 (Tensor OLE over GF(2λ) from OT, Informal). There is a 4-round, statistically and ma-
liciously secure two party computation protocol for sampling tensor OLE correlations, in the OT hybrid
model.

6

Our protocol is simple and efficient; in particular, it does not use any generic 2PC techniques
such as garbling and zero-knowledge protocols. Thus, parties can run this efficient protocol to
generate tensor OLE correlations in an offline stage using OT, which in turn can be generated with
concrete efficiency [IKNP03, BCG+19].

Comparison with Prior Two-Round MPC As discussed before, prior 2-round MPC constructions
can be categorized into three types depending on their main technique: 1) round collapsing, 2)
using NIZK, and 3) MPC-in-the-head. Almost all protocols using round collapsing and all proto-
cols using NIZK make non-black-box use of underlying cryptographic primitive (e.g., MPC and
MKFHE etc.), and many of them have poor asymptotic efficiency (e.g., [BL18, GS18]). The only
black-box constructions are [GIS18, IKSS21], which as we discuss below are less efficient than our
protocols.

The construction of [GIS18] is in the OT correlation model and uses the round collapsing tech-
nique. To compute a Boolean circuit f , parties need to garble the next step functions of an in-
formation theoretically and maliciously secure MPC protocol Π for f making black-box calls to
OT (e.g. [IPS08]). Let CΠ be the circuit induced by Π with depth dΠ and size |CΠ|. The overall
communication complexity is at least (dΠ|CΠ|n2λ2), where λ is the security parameter. Since dΠ is
at least the depth d of f , and |CΠ| at least the size of f . This leads to a dependency on d · |f |, which
is worse than our complexity.

The construction of [IKSS21] following the MPC-in-the-head approach uses a two-round proto-
col with (enhanced) semi-honest security such as [GIS18, LLW20], to emulate the execution of an-
other two-round protocol that is maliciously secure in the honest majority setting [IKP10, Pas12].
Consider for instance, the complexity of [LLW20] is already Ω(|f |n3λ) and a loose lower bound of
the complexity of [IKP10] is Ω(Sn5λ). The overall complexity is at least Ω(Sn8λ2).

Effective-degree-2
semi-malicious MPRE

for degree-3 polynomials
Sec. 4

Maliciously secure w/ output substitution
MPC for effective-degree-2 functions

Sec. 5

Maliciously secure w/ output substitution
MPC for degree-3 polynomials

Sec. 6

IT MPC for NC1 MPC for P/poly

Final protocols
Sec. 9

+ Randomized Encoding
[IK00, IK02]

+ Distributed Yao
[BMR90, DI05]

Simple transformation
from security w/ output substitution

to security w/ unanimous abort
Sec. 8

All are secure against
up to n− 1 corruptions.

All use tensor-OLE
correlated randomness.

All MPC use RO.

Implementing
TOLE over GF(2λ)

from OT
Sec. A

Figure 1: Our roadmap

7

2 Technical Overview

Our construction follows the overall structure of the semi-honest 2-round MPC protocols of [LLW20],
which uses OLE correlated randomness. However, to make LLW maliciously secure, we face two
challenges:

Challenge 1: Design simple and efficient checks to detect malicious behaviours.

To beat previous works, we avoid any generic transformation, such as, using generic NIZK,
or even cryptographic operations. Our core protocol will be information-theoretic secure,
and only use black-box operations over the field. Thus the detection of malicious behaviours
can only rely on arithmetic methods.

Challenge 2: An adversary may lie about the correlated randomness it received. Such malicious
behavior can hardly be caught even if we allow generic NIZK proof. This is because no party
can write “using proper correlated randomness” as a NP-statement, and such statement
naturally involves at least 2 parties who jointly hold the correlated randomness.

To deal with these challenges, we use tensor OLE correlated randomness instead of the scalar
version, so that we have more room to play with arithmetic checks. We also use random oracle to
generate challenges in the Fiat-Shamir style, so that our arithmetic proofs become non-interactive.
We start with security with output substitution, and later transform to security with (unanimous)
abort.

In the rest of the overview, we will walk through our constructions. We follow the success-
ful paradigm of [IK00, IK02, ABT18, ABT19, LLW20]: reduce the task of securely computing a
function f to the task of securely computing a simpler function f̂ . Such reduction is captured by
a notion called MPRE. Sec. 2.1 revisits the definition of MPRE. Sec. 2.2 briefly presents our new
MPRE, which reduces the task of computing general functions to the task of computing so-called
“effective-degree-2” functions. Sec. 2.3 outlines 2-round malicious MPC protocols for computing
effective-degree-2 functions. Composing them yields a 2-round MPC for general functions, but
it only satisfies a weak notion of security. Sec. 2.4 outlines how to lift the security by a simple
transformation. Our new constructions of MPRE and MPC are based on tensor OLE correlated
randomness. In Sec. 2.5, we show how to generate such correlated randomness from OT. See
Fig. 1 for a summary of the technical components and their sections in the technical body.

2.1 Multi-Party Randomized Encoding

The notion of multi-party randomized encoding (MPRE) is introduced by Applebaum, Brakerski
and Tsabary [ABT18, ABT19]. In the correlated randomness model, for a n-party function f , an
MPRE of f consists of n preprocessing functions h1, . . . , hn, an encoding function f̂ , and a decod-
ing function Dec, such that,

Decode(f̂(h1(x1, r1, r
′
1), · · · , hn(xn, rn, r

′
n))) = f(x1, · · · ,xn) .

where the preprocessing function hi is computed locally by party Pi on its input xi, randomness
ri, and correlated randomness r′i. A semi-honest or malicious MPRE guarantees that to securely
compute f , it suffices to securely compute f̂ against semi-honest or malicious parties. That is,

8

the following canonical protocol computing f in the f̂ -hybrid world is semi-honestly (resp. mali-
ciously) secure. 3

The canonical protocol for MPRE Party Pi has input xi and correlated randomness r′i, samples
local randomness ri, computes x̂i = hi(xi, ri, r

′
i) and feeds x̂i to the funtionality Ff̂ comput-

ing f̂ , so that every party learns
ŷ := f̂(x̂1, . . . , x̂n) .

Then every party outputs y = Dec(ŷ).

In other words, MPRE is a non-interactive reduction between MPC tasks. Thanks to the compo-
sition of MPC protocols, MPRE schemes naturally composes: Given an MPRE for f as described
above, and another MPRE scheme for f̂ with preprocessing functions h′1, . . . , h

′
n, the encoding

function f̂ ′, their composition gives an MPRE for f with encoding function f̂ ′ and preprocessing
functions h′1 ◦ h1, · · · , h′n ◦ hn. As such, as demonstrated in [ABT18, ABT19, LLW20], MPRE en-
ables a modular approach for designing round-optimal MPC: To construct a round-optimal MPC
protocol Πf for computing f , the construction of [LLW20] proceeds in three steps:

• Step 1: Degree 3 MPRE for circuits. First, obtain a malicious MPRE for circuits, whose encod-
ing function g has degree 3. It turns out that the classical degree 3 (centralized) randomized
encoding, given by Yao’s garbled circuits, is such a MPRE, where no local preprocessing is
needed (i.e., hi is the identity function). This has been implicitly observed and leveraged in
many prior works, e.g., [BMR90, IK00, IK02, DI05, LLW20].

• Step 2: Effective degree 2 MPRE for degree 3 Polynomials. Then, design a MPRE of g whose
encoding function ĝ has degree 2. In this step, the preprocessing functions are non-trivial
and such MPRE is said to have effective degree 2.

• Step 3: 2-round MPC for degree 2 polynomials. Finally, design a round-optimal MPC protocol
Πĝ for computing ĝ.

Composing the MPRE schemes from the first two steps gives an MPRE for circuit f with encoding
function ĝ. The desired protocol Πf is then obtained by instantiating the ĝ-oracle in the canonical
protocol with Πĝ. Note that Πf has the same communication complexity and round complexity
as Πĝ. The contribution of [LLW20] lies in giving efficient instantiation of Step 2 and 3 in the
OLE correlated randomness model over a field F of characteristic 2, and their final protocol Πf

has complexity O(|f |n3 log |F|). The main drawback is that their protocols are only semi-honest
secure.

Semi-Malicious MPRE Our construction improves upon [LLW20] to achieve malicious security.
Towards this, we introduce semi-malicious MPRE. As the name suggested, a MPRE of f is semi-
maliciously secure if its canonical protocol is semi-maliciously secure, i.e., against adversaries who
may choose arbitrary local randomness ri and correlated randomness r′i of corrupted parties, but
computes the preprocessing functions correctly. Equivalently, semi-malicious MPRE means the
following protocol is maliciously secure in the f̂ ◦ h-hybrid world.

3An equivalent definition of semi-honest MPRE can be found in [ABT18], in which it is just called “MPRE”. In
[ABT19], malicious MPRE is called “non-interactive reduction” and the canonical protocol of a MPRE is called “f̂ -
oracle-aided protocol”. Both [ABT18] and [ABT19] consider the honest majority setting, so they only require the canon-
ical protocol to be secure against a bounded number of corruptions.

9

The canonical protocol for semi-malicious MPRE Party Pi has input xi, samples local random-
ness ri, and receives r̂i, where (r̂1, . . . , r̂n) is the correlated randomness. Every Pi feeds
(xi, ri, r̂i) to an oracle computing f̂ ◦ h, so that every party learns

ŷ = (f̂ ◦ h)(x1, r1, r̂1, . . . ,xn, rn, r̂n) := f̂(h1(x1, r1, r̂1), . . . , hn(xn, rn, r̂n)) .

Then every party outputs y = Dec(ŷ).

Now, in order to construct 2-round malicious MPC protocol for general circuits, we modify the
second and third steps above to the following

• Step 2: Semi-malicious Effective degree 2 MPRE for degree 3 Polynomials. Design a semi-
malicious MPRE for any degree-3 function f , whose encoding function f̂ has degree 2;

• Step 3: 2-round MPC for effective degree 2 polynomials. Construct 2-round malicious MPC for
computing f̂ ◦ h, which is an effective-degree-2 function.

Composing the above two steps gives a round-optimal maliciously secure MPC protocol for de-
gree 3 functions (Lemma 1.3); using it to compute the degree 3 maliciously secure MPRE for circuit
f from Step 1 gives a round-optimal maliciously secure MPC protocol for f4 .

Next, we outline our instantiation for Step 2 in Sec. 2.2 and that for Step 3 in Sec. 2.3. The entire
roadmap is illustrated in Fig. 1.

2.2 Semi-Malicious Effective-Degree-2 MPRE

This section will outline the construction of semi-malicious effective-degree-2 MPRE for any degree-
3 function. We start by “canonicalizing” the degree-3 function. A degree-3 polynomial can always
be written as the sum of monomials

∑
t ctxt,1xt,2xt,3, where ct is the constant coefficient of the t-th

monomial. Let the party holding xt,j also sample random zt,j , then(
xt,1xt,2xt,3 + zt,1 + zt,2 + zz,3 for each t,

∑
t
ct(zt,1 + zt,2 + zz,3)

)
, (1)

is (the encoding function of) a malicious MPRE for
∑

t ctxt,1xt,2xt,3, as shown in [BGI+18, GIS18,
LLW20]. So it suffices to construct semi-malicious effective-degree-2 MPRE for (1). Here (1) is in
what we call canonical form: Every coordinate of f̂ either linear, or looks like x1x2x3 + z1 + z2 + z3.

As we are constructing semi-malicious MPRE, it is fine to construct MPRE for each coordinate
of (1) separately then simply concatenate them together. That is, it suffices to consider the complete
3-party functionality

3MultPlus((x1, z1), (x2, z2), (x3, z3)) := x1x2x3 + z1 + z2 + z3 .

3MultPlus has a semi-honest effective-degree-2 MPRE (Fig. 2), which will be recalled in Sec. 4.1.
For the overview, what matters is that

• This MPRE uses scalar OLE correlated randomness. That is, party P1 receives a1, b1 ∈ F,
party P2 receives a2, b2 such that a1, a2, b1, b2 are random subject to a1a2 = b1 + b2.

4The reader may have observed another approach: Combining Step 1 and 2 yields a semi-malicious MPRE for f ,
whose encoding function has degree 2; then compose it with Step 3 yields the desired protocol. The disadvantage of this
approach is that the communication complexity of the final MPC will depends on the complexity of the preprocessing
functions of Step 1.

10

Party P1 Party P2 Party P3

Input: x1, z1 x2, z2 x3, z3

Local Randomness: a4,1, a5,1 a4,2, a5,2 a3

Correlated Randomness: a1, b1 a2, b2

Output:
x1 − a1 (a3x1+a1x3

−a1a3−a4) (b1x3+b2x3+a5x1−a1a5+
a4x2−a2a4+z1+z2+z3

)

−1 x3 − a3 a2x3 − a5

−1 x2 − a2


where a4 := a4,1 + a4,3 and a5 := a5,2 + a5,3.

Figure 2: Semi-honest MPRE for 3MultPlus [LLW20]

• This MPRE has perfect semi-honest security.

Our roadmap requires a semi-malicious effective-degree-2 MPRE for 3MultPlus. Semi-malicious
security means the corrupted parties may arbitrarily choose their local randomness or modify the
correlated randomness they received.

In standard model, semi-malicious security is implied by perfect semi-honest security, because
conditional on any choice of corrupted parties’ local randomness, the adversary has no advantage.
But in the correlated randomness model, the semi-malicious adversary may lie about correlated
randomness.

• For example, say P1, P2 are corrupted. If they feed a1, b1, a2, b2 as correlated randomness
such that a1a2 = b1 + b2, then the privacy still follows from the perfect semi-honest security.
But if P1, P2 choose a1, b1, a2, b2 such that a1a2 6= b1 + b2, the privacy is lost (as we will show
in Sec. 4.2).

• For another example, say P1 is corrupted. If corrupted P1 does not modify the portion of
correlated randomness (a1, b2) it received, then the privacy still follows from the perfect
semi-honest security. But if P1 lies about (a1, b2), then with overwhelming probability a1a2 6=
b1 + b2, and the privacy is lost (as we will show in Sec. 4.2).

In either case, if honest P3 want to protect its privacy, it needs (and suffices) to ensure that a1a2 6=
b1 + b2.

Our solution against this privacy threat is called conditional disclosure of secrets (CDS) encoding.
Let party P3 locally sample a random mask s. CDS encoding is a sub-module (of the final MPRE)
that reveals s if and only if a1a2 6= b1 + b2. Then a candidate MPRE consists of two parts:

i) the semi-honest MPRE for 2MultPlus one-time padded by s;

ii) CDS encoding, which reveals s if and only if a1a2 = b1 + b2.

But the CDS encoding resolves P3’s privacy concern at a cost: The adversary will learn a linear
function in (a1, b1, a2, b2) if P3 is corrupted. To overcome it, we have to replace the scalar OLE
correlated randomness in the semi-honest MPRE by tensor OLE correlated randomness. That is, party
P1 receives vector a1, matrix B1; party P2 receives vector a2, matrix B2; such that a1,B1,a2,B2

are random subject to a1a
ᵀ
2 = B1 + Bᵀ

2. We abuse the notation and let a1, b1, a2, b2 denote the first
coordinate of a1,B1,a2,B2 respectively. Then a1, b1, a2, b2 are random subject to a1a2 = b1 + b2,
i.e., their distribution is scalar OLE correlated randomness.

The next candidate MPRE is made up of:

11

Party P1 Party P2 Party P3

Input: x1, z1 x2, z2 x3, z3

Local Randomness: a4,1, a5,1 a4,2, a5,2 a3

s1 s2 s3

Correlated Randomness: a1,B1 a2,B2

Output includes: [LLW20] MPRE
for 3MultPlus

+ s1 + s2 + s3

CDS Encoding
reveals s1 if

a1a
ᵀ
2 = B1 + Bᵀ

2

CDS Encoding
reveals s2 if

a1a
ᵀ
2 = B1 + Bᵀ

2

CDS Encoding
reveals s3 if

a1a
ᵀ
2 = B1 + Bᵀ

2

Figure 3: Semi-Malicious MPRE for 3MultPlus

i) the semi-honest MPRE for 2MultPlus one-time padded by s;

ii) CDS encoding, which reveals s if and only if a1a
ᵀ
2 = B1 + Bᵀ

2.

Additionally, CDS encoding will let the adversary learn a linear leakage function in (a1,B1,a2,B2)
if P3 is corrupted. But due to our careful design of CDS encoding, the leakage is one-time padded
by the remaining coordinates of a1,a2,B1,B2, so that no information about a1, b1, a2, b2 is re-
vealed.

So far we focus on the security concern of P3. Party P1, P2 have similar concern. So in the actual
semi-malicious MPRE for 3MultPlus (shown in Fig. 3), every party Pi locally sample random mask
si, The final MPRE consists of:

i) the semi-honest MPRE for 2MultPlus one-time padded by s1 + s2 + s3;

ii) (for each i ∈ {1, 2, 3}) CDS encoding that reveals si iff a1a
ᵀ
2 = B1 + Bᵀ

2.

Of course, the three instances of CDS encoding are carefully designed, so that their leakages jointly
reveal no information about a1, b1, a2, b2.

In the rest of the section, we explain how CDS encoding works. W.l.o.g., we assume the secret
mask is sampled by P3.

By our discussion so far, it seems that P3 has to sample a random matrix s3 in order to one-time
pad the [LLW20] MPRE. But as we will discover in the technical body, it is sufficient to one-time
pad only the top right coordinate of the [LLW20] MPRE. So s3 is a random scalar sampled by P3.

We start with a simpler task, P3 only want to verify if P1, P2 use legit tensor OLE correlation.
Here “legit” means in the support of the distribution. A simple encoding is to let P3 additionally
sample random vectors q1,q2, and the encoding outputs

p1 = 〈a1,q1〉, p2 = 〈a2,q2〉, p3 = 〈B1 + Bᵀ
2,q1q

ᵀ
2〉 . (2)

Then P3 can check whether p1p2 = p3. If a1a
ᵀ
2 = B1 +Bᵀ

2, then p1p2 = p3 always holds. Otherwise,
p1p2 6= p3 with overwhelming probability. Note that the encoding in (2) is of effective degree 2,
because P3 can locally compute q1q

ᵀ
2.

12

In the CDS encoding, party P3 additionally samples random r1, r2. The CDS encoding outputs

p1, p2, p3, and c :=

[
1 p2

p1 p3

] [
r1

r2

]
+

[
0
s3

]
.

If a1a
ᵀ
2 6= B1 + Bᵀ

2 then [1 p2
p1 p3] has full-rank with overwhelming probability, and c is one-time

padded by (r1, r2), thus no information about s is revealed. Otherwise when a1a
ᵀ
2 = B1 +Bᵀ

2, it is
easy to verify that 〈(−p1, 1), c〉 = s. Note that CDS encoding is of effective degree 2, because it is a
linear function in a1,a2,B1,B2, whose coefficient can be locally computed by P3.

If P3 is corrupted, the adversary chooses q1,q2 and learns p1, p2, p3 (defined by (2)) as leakage.
By enforcing some constraints on q1,q2 (will be discussed in the main body), the leakage will not
reveal any information about a1, b1, a2, b2.

2.3 MPC for Effective-Degree-2 Functions

Given an effective-degree-2 function g = f̂ ◦ h

g(x1, . . . ,xn) := f̂(h1(x1), . . . , hn(xn)) ,

we can assume w.l.o.g. that each coordinate of f̂ has the canonical form5

f̂t(x̂1, . . . , x̂n) = 2MultPlus((x1, z1︸ ︷︷ ︸
owned by Pit

), (x2, z2︸ ︷︷ ︸
owned by Pjt

)) = x1x2 + z1 + z2

where x1, z1 are two coordinates of x̂it and x2, z2 are two coordinates of x̂jt .
As presented by [LLW20], there is a 2-round semi-honest MPC protocol for 2MultPlus that uses

scalar OLE correlated randomness (Fig. 4). Via parallel repetition, it implies 2-round semi-honest
MPC for any effective-degree-2 functions that uses scalar OLE correlated randomness.

P1 has x1, z1
a1, b2

P2 has x2, z2
a1, b2

scalar OLE
correlated randomness

a1a2 = b1 + b2

Round 1

Round 2

Output

c1 := x1 + a1 c2 := x2 + a2

m1 := x1c2 + b1 + z1 m2 := x2c1 + b2 + z2

m1 +m2 − c1c2
which equals x1x2 + z1 + z2 in an honest execution

Figure 4: 2-round semi-honest MPC for 2MultPlus

Towards malicious security, the starting point is the observation that the protocol for 2MultPlus
in Fig. 4 is maliciously secure with output substitution. Security with output substitution means
the adversary, after learning the output y, may adaptively choose y′ so that all honest parties
(unanimously) output y′.

A natural idea is to compute all f̂t using parallel sessions of the protocol in Fig. 4. Each session
computes one coordinate. But parallelization does not meet the security requirement, because of
the following two issues:

5Sec. 2.2 outlines how to canonicalize f̂ . Formally, canonical form allows some coordinates to be linear instead of
2MultPlus. The linear coordinates are easier to handle. We ignore them in the overview.

13

Consistency. Say two coordinates of f̂ equal x1x2 + z1 + z2 and x1x3 + z′1 + z3 respectively, where
partyP1 owns x1, z1, z

′
1, partyP2 owns x2, z2, partyP3 owns x3, z3. We have to check whether

P1 feeds the same x1 to the two corresponding sessions.

Well-Formedness. We have to check whether Pi computes x̂i = hi(xi) correctly. Note that we can
also assume the preprocessing functions hi is a small arithmetic circuit that only contains
multiplication gates, because such property is satisfied by our MPRE.

To resolve the well formedness issue, we introduce a commit-and-prove-linear scheme which
uses vector OLE correlated randomness. It enables the sender to commit to a vector x, then later
prove L(x) = y for any linear function L.

Sender has
a,b

Receiver has
a′,b′

vector OLE
correlated randomness

a′ · a = b + b′

Commit to x

Prove L(x) = y Accept if
π + L(b′) = a′(L(c)− y)

c := x + a

π := L(b)

Figure 5: commit-and-prove-linear

As shown in Fig. 5, the scheme uses vector OLE correlated randomness between the sender
and the receiver. That is, the sender receives random vectors a,b, the receiver recovers random
a′,b′ subject to a′a = b + b′. To commit to a vector x, the sender simply sends c := x + a to the
receiver. Later, for any linear function L, the sender can prove L(x) = y by sending π := L(b) to
the receiver; and the receiver accepts the proof iff π + L(b′) = a′(L(c)− y). Such scheme has

Completeness An honest proof π := L(b) will always be accepted because

π + L(b′) = L(b) + L(b′) = a′ · L(a) = a′(L(c)− L(x)) = a′(L(c)− y) .

Statistical Soundness If L(x) 6= y, any proof will be reject with overwhelming probability due to
the randomness of a′.

Zero-knowledge No information about x, other than L(x), will be revealed to receiver, since the
receiver can predict π from c, L, y.

Reusability Given a commitment c, the sender can prove multiple adaptively chosen linear state-
ments L1(x) = y1, . . . , Lt(x) = yt about the underlying message x. The statistical soundness
error is O(t/|F|). No information about x other than L1(x), . . . , Lt(x) will be revealed.

Then, inspired by a linear PCP scheme from [BCI+13], the sender can generate zero-knowledge
proofs of more complex arithmetic statements. A particular interesting statement for ours is mul-
tiplication. Say the sender will commit to message x = (x1, x2, x3, . . .), and then prove x1x2 = x3

to the receiver. We design ProveProd sub-protocol for such demand:

1. In order to prove x1x2 = x3, the sender samples random g1, g2 and extends its message into

x = (x1, g1, x2, g2, x3, x1g2, x2g1, g1g2, . . .) .

The dimension of the correlated randomness should be extended correspondingly. The
sender commits to the extended x instead.

14

2. Random challenges q1, q2 are sampled.

3. The sender proves to the receiver that

〈(q1, 1), (x[1],x[2])
↑

(x1,g1)

〉 = p1, 〈(q2, 1), (x[3],x[4])
↑

(x2,g2)

〉 = p2,

〈(q1q2, q1, q2, 1), (x[5],x[6],x[7],x[8])
↑

(x3,x1g2,x2g1,g1g2)

〉 = p3 .

The receiver accepts if p1p2 = p3.

Similar to the discussion in our CDS encoding, if

x1
↓

x[1] ·

x2
↓

x[3] 6=

x3
↓

x[5], then p1p2 6= p3 with overwhelm-
ing probability due to the randomness of q1q2. No information about x1, x2, x3 are leaked if the
sender is proving a true statement, as the leakage p1, p2 are one-time padded by g1, g2, and p3 is
determined by p3 = p1p2.

If the random challenges q1, q2 are sampled by the receiver, the proof will have 1/|F| soundness
error. To make the proof non-interactive, the challenges can be sampled by the random oracle, so
that the soundness error becomes the number of adversary’s query to random oracle divided by
|F|.

So far we can prove multiplication relation for 3 values behind a commitment. This will re-
solve the concern of well-formedness. To resolve the concern of consistency, we need to prove
that values behind different commitments are the same. That is, say the sender will commit to
messages x1 = (x1, . . .), x2 = (x2, . . .), and want to convince the receiver that x1 = x2. We design
ProveSame sub-protocol for such proof:

1. In order to prove x1 = x2, the sender samples random g and extends its message into

x1 = (x1, g, . . .), x2 = (x2, g, . . .) .

The sender commits to the extended x1,x2 instead.

2. A random challenge q is sampled.

3. The sender proves to the receiver that

〈(q, 1), (x1[1],x1[2])
↑

(x1,g)

〉 = p1, 〈(q, 1), (x2[1],x2[2])
↑

(x2,g)

〉 = p2 .

The receiver accepts if p1 = p2.

Similarly, when

x1
↓

x1[1] 6=

x2
↓

x2[1], the probability p1 = p2 is no more than 1/|F|, due to the randomness
of challenge q. No information about x1, x2 are leaked if the sender is proving a true statement, as
the leakage p1 is one-time padded by g, and p2 is determined by p2 = p1.

Putting pieces together. We develop the natural idea of using parallel sessions of the protocol
for 2MultPlus. Each coordinate of f̂ will be computed by a modified version of the 2-round LLW
protocol for 2MultPlus (Fig. 4).

In the first round of the LLW protocol for 2MultPlus, party P1 sends c1 := x1 + a1, party P2

sends c2 := x2 + a2, where x1, x2 are their inputs, and a1, a2 are parts of the scalar OLE correlated
randomness. Here ci is essentially a commitment to xi.

15

a1 b1 a2 b2 scalar OLE correlated randomness
that is used by 2-round LLW MPC
computing 2MultPlus = x1x2 + z1 + z2

a1 B1 a2 B2

a b

a′ b′

vector OLE correlated randomness
that allows P1 to commit to (x1, g1)

and to prove a linear statement to P2

a b

a′ b′

vector OLE correlated randomness
that allows P2 to commit to (x2, g2)

and to prove a linear statement to P1

Figure 6: Multiple roles of a1,B1,a2,B2

In the modified LLW protocol for 2MultPlus, the two parties use 3 × 3 tensor OLE correlated
randomness. That is, party P1 receives a1 ∈ F3,B1 ∈ F3×3, party P2 receives a2 ∈ F3,B2 ∈ F3×3,
where a1,B1,a2,B2 are random subject to a1a

ᵀ
2 = B1 + Bᵀ

2.6 In the first round, P1 broadcasts

c1 := (x1, g1) + a1[1:2],

where a1[1:2] denotes the first two coordinates of a1. The choice of g1 will be discussed later.
Symmetrically, party P2 broadcasts c2 := (x2, g2) + a2[1:2]. The two commitments c1, c2 will have
multiple roles:

Compute 2MultPlus. Their first coordinates c1[1], c2[1] are of the same form as the first message in
the original LLW protocol. In the second round, P1, P2 will proceed with the original LLW
protocol by taking c1[1], c2[1] as the first round messages.

P1 proves consistency. Party P1 may need to prove that the same x1 is used across different ses-
sions. Note that c can be viewed as a commitment in the commit-and-prove-linear scheme.
P1 takes a1[1:2],B1[1:2, 3] and P2 takes a2[3],B2[3, 1:2] as the vector OLE correlated random-
ness (as shown in Fig. 6). Then the ProveSame sub-protocol can prove P1 is using a consistent
value. P1 sets g1 according to the sub-protocol.

P2 proves consistency. Symmetric to the above.

To resolve the well-formedness concern, every party has to prove that it honestly evaluates the
preprocessing function. Since the preprocessing function only has multiplication gates, a party
can prove well-formedness by using the ProveProd sub-protocol. (Together with ProveSame sub-
protocol. Because once a party proves x1x2 = x3 using ProveProd, it also need to prove that the
“x1” in ProveProd is the same the “x1” it uses in 2MultPlus sessions.)

2.4 Lift Security with Output Substitution

Security with output substitution is a weak notion of security. The adversary, after learning the
function output y, may adaptively choose y′ so that all honest parties (unanimously) output y′.
Once we constructed MPC for P/poly that is secure with output substitution against malicious
corruptions, we can lift its security to the standard notion of security with (unanimous) abort,

6Note the transpose of B2. This makes the equation remains unchanged upon exchanging subscripts.

16

with the help of consensus MAC, which is introduced in [ACGJ19] and will be discussed in Sec. 8.
We claim that the following protocol is secure with abort.

1. Party Pi has input xi, and samples MAC key ki.

2. Using a protocol that is secure with output substitution to compute

(y, σ) := f(x1, . . . , xn),Signk1,...,kn(f(x1, . . . , xn)) .

3. Party Pi outputs y if π is a valid signature on y w.r.t. key ki; aborts otherwise.

As the protocol suggested, consensus MAC has i) a signing algorithm Sign, which takes a mes-
sage, n keys, generates a signature; and ii) a verification algorithm Verify, which takes a message,
a signature and a key, outputs “accept” or “reject”.

In the protocol, the adversary, after learning (y, σ), may adaptively replace the output by
(y′, σ′) 6= (y, σ). In order to achieve security with unanimous abort, all honest parties should
reject (y′, σ′). This hints how to define consensus MAC: the adversary wins the following game
with negligible probability.

1. The adversary chooses the set of corrupted parties C ⊆ [n], and chooses key ki for each
corrupted party Pi ∈ C. Every honest party Pi /∈ C samples ki.

2. The adversary chooses message y and learns π = Signk1,...,kn(y).

3. The adversary adaptively chooses (y′, π′) 6= (y, π).

4. The adversary wins if Verifyki(y
′, π′)→ accept for some honest party Pi /∈ C.

Here is a simple consensus MAC scheme, whose security will be proven in Sec. 8. Party Pi
samples two random number ai, bi and let key ki := (ai, bi). The signature Signk1,...,kn(y) is the
degree-n polynomial π such that

π(0) = y, π(a1) = b1, . . . , π(an) = bn .

The verification accepts a message-signature pair (y, π) w.r.t. key ki = (ai, bi) if and only if π(0) = y
and π(ai) = bi.

2.5 Tensor OLE Correlated Randomness Generation from OT

We require tensor OLE correlated randomness over a large boolean extension field F = GF(2λ),
where λ is the security parameter. To generate OLE correlated randomness, it suffices to imple-
ment a protocol computing tensor OLE

TOLE((a,B),x) := axᵀ + B

or random tensor OLE, and later randomize the input-output tuple.
The starting point is a semi-honest protocol [Gil99]. Say the sender has vector a, matrix B; the

receiver has vector x and should learn Y = axᵀ +B. Note that axᵀ +B, as a function in x, is affine
over GF(2). That is, if we let subscript (2) denote bit representations, there exists a binary matrix
Ma such that (Y)(2) = (axᵀ + B)(2) = Ma · (x)(2) + (B)(2). Thus the receiver can learn Y from OT.

Such protocol is not secure against a malicious sender, who can choose an arbitrary M1 and let
the receiver learn (Y)(2) = M1 ·(x)(2) +(B)(2) . To detect malicious behaviour, the receiver samples

17

a random matrix Yshadow and let the sender learn Bshadow = axᵀ + Yshadow. Formally, the sender
learns

(Bshadow)(2) = M2 · (a)(2) + (Yshadow)(2)

from OT, where M2 = Mx if the receiver is honest. The receiver samples a random matrix H over
GF(2), sends H to the sender as a challenge, and asks the sender to guess H · (Y + Yshadow)(2).
Note that, if both parties are honest, H · (Y + Yshadow)(2) = H · (B + Bshadow)(2). If the sender is
corrupted,

H · (Y + Yshadow)(2) = H ·
(
M1 · (x)(2) + (B)(2) +Ma · (x)(2) + (Bshadow)(2)

)
= H · (M1 +Ma) · (x)(2) +H · (B + Bshadow)(2) .

Thus the sender will not be caught if and only if he can guess H · (M1 +Ma) · (x)(2) correctly. Let
H has λ rows and assume w.l.o.g. that the receiver samples x at random. Then the sender will be
caught will overwhelming probability if rank(M1 +Ma) ≥ λ. Because in such case, H · (M1 +Ma) ·
(x)(2) has large entropy conditioning on the sender’s knowledge.

If rank(M1+Ma) < λ, say we give (M1+Ma)·(x)(2) to the corrupted sender, this may only help
the adversary. The corrupted sender can compute (B′)(2) = (M1 + Ma) · (x)(2) + (B)(2). (Honest
sender simply let B′ = B.) Note that

Y = axᵀ + B′ .

The sender and receiver output (a,B′), (x,Y) respectively.
Such a protocol is insecure, for two reasons.

• If the sender is corrupted, he additionally knows (M1 +Ma) · (x)(2), which is an at most λ-bit
leakage of x. If the receiver is corrupted, she additionally knows

H · (B + Bshadow)(2) := H · (M2 +Mb) · (a)(2),

which is an at most λ-bit leakage of a. The leakage can be removed by using randomness
extractor and left-over hash lemma.

• The corrupted sender (resp. receiver) can arbitrarily choose a,B (resp. x). To ensure ran-
domness, an additional re-randomization step is needed.

3 Definitions

For any positive integer n, let [n] := {1, 2, . . . , n}. Let GF(p) be the finite field of order p. A finite
field is typically denoted by F. For scalars v1, v2, . . . , vn ∈ F, the vector (v1, . . . , vn) ∈ Fn may also
be denoted by v1‖v2‖ . . . ‖vn. A vector is typically denoted by a boldface lowercase letter. For a
vector a, let a[i] denote its i-th entry, let a[i:i′] denote the sub-vector (a[i],a[i+1], . . . ,a[i′]). For two
vectors a,b of the same dimension, let 〈a,b〉 := aᵀb denote the inner product of a,b. A matrix is
typically denoted by a boldface capital letter. For a matrix M, let M[i, j] denote its entry across the
i-th row and the j-column; let M[i:i′, j] denote the vector (M[i, j],M[i+1, j], . . . ,M[i′, j]), which a
sub-vector of the j-th column of M; let M[i, j:j′] denote the vector (M[i, j],M[i, j+1], . . . ,M[i, j′]),
which a sub-vector of the i-th row of M.

Tensor OLE is a natural extension of scalar OLE and vector OLE. The sender has vector a,
matrix B; the receiver has vector b. After the interaction, the receiver learns abᵀ + B. Similarly,
we can define tensor OLE correlated randomness.

18

Definition 1. The `1 × `2 tensor OLE correlated randomness over field F is the distribution of
((a1,B1), (a2,B2)), where a1 ∈ F`1 ,B1 ∈ F`1×`2 ,a2 ∈ F`2 ,B2 ∈ F`2×`1 are uniformly random
subject to a1a

ᵀ
2 = B1 + B2.

The tensor OLE correlated randomness degenerates into vector OLE correlated randomness if
`2 = 1, and into scalar OLE correlated randomness if `1 = `2 = 1.

3.1 Secure Multi-Party Computation

Definition 2 (MPC Protocol with Broadcast and P2P Channels). An r-rounds MPC protocol Π
for a n-party function f : X1 × · · · × Xn → Y consists of n next-step algorithms (Nexti)i∈[n]. An
execution of Π with inputs (x1, . . . , xn) ∈ X1 × . . . × Xn and security parameter 1λ proceeds as
follows:

Randomness: Each party Pi samples local randomness ri ← Ri from its local randomness space
Ri. It initializes its state as st(0)

i = (xi, ri).

Round 1 ≤ j ≤ r: Every party Pi computes the next-round messages from its current state
(m

(j)
i ,m

(j)
i→1, · · · ,m

(j)
i→n) ← Nexti(1λ, st

(j−1)
i), broadcasts m(j)

i , and sends message m(j)
i→i′ to

party Pi′ for every i′ ∈ [n]. Party Pi receives message m(j)
i′ ,m

(j)
i′→i from party Pi′ , updates its

state as st(j)i = (st
(j−1)
i , (m

(j)
i′ ,m

(j)
i′→i)i′∈[n]).

Output: After r rounds, every party Pi computes yi ← Nexti(1λ, st
(r)
i), and outputs yi.

We also consider MPC protocol that relies on correlated randomness. There is a joint distribu-
tionD overR′1×· · ·×R′n. In the execution of the protocol, correlated randomness (r′1, . . . , r

′
n)← D

is sampled by the beginning of the protocol, and party Pi’s state is initialized as st(0)
i = (xi, ri, r

′
i).

The efficiency of the protocol is mainly measured by its communication complexity, includ-
ing the total length of messages sent in P2P channels and the total length of messages broadcast.
We also consider the correlated randomness complexity. Since we are going to use independent
samples of a 2-ary correlated randomness called OLE correlated randomness, the correlated ran-
domness complexity can be measured how many instances of OLE correlated randomness are
sampled.

Below, we suppress the appearance of the security parameter 1λ, which is assumed implicitly.

Common Output. We remark that the above definition assumes all parties get the same output
from the protocol. It can be generalized to the case where each party learns a different output.
From a protocol design point of view, it is without loss of generality to consider a common out-
put: To compute function f mapping x1, . . . , xn to different outputs y1, . . . , yn, every party Pi
can sample a one-time pad ki of appropriate length and jointly compute the augmented function
mapping (x1, k1), . . . , (xn, kn) to (y1 + k1, . . . , yn + kn), where ki’s and + should be defined ap-
propriately for the specific function f . For instance, if f is a Boolean computation, ki’s should be
random strings and + is XOR, and if f is an arithmetic computation over a finite field, ki’s should
be random vectors and + over the field.

Public Output Reconstruction. The output of a MPC protocol is publicly reconstructible if the
output of every party is only determined by broadcast messages. Public output reconstruction
naturally associate with common output, as it allows any party (or even a bystander) to learn the
outputs of all parties.

19

Model for Protocol Execution. The real execution ExecC,A,Z(1λ,Π) is defined by running the pro-
tocol Π with a non-uniform interactive Turing machineA (called the adversary), and an interactive
Turing machine Z (called the environment). We consider static corruption. The adversary A cor-
rupts a subset of the n parties, denoted by C ⊆ [n] at the beginning. The adversary A controls the
corrupted parties {Pi}i∈C and can communicate arbitrarily with the environment Z . We consider
malicious adversary A who can deviate from the protocol specification, while the honest parties
{Pi}i/∈C follow the protocol. The inputs of the honest parties are chosen by Z adaptively, and as
soon as an honest party produces an output, Z learns the output. The adversary is rushing: in
each round, it waits for all the messages from the honest parties before sending any message. The
output of the experiment is the output of the environment Z . We overload the notation to also use
ExecC,A,Z(1λ,Π) to denote the distribution of the output of the experiment.

Ideal Functionality F . The ideal functionality should be viewed as a trusted external party. It is
modeled as an interactive Turing machine that interacts with the parties and the adversary. For ex-
ample, the ideal functionality Ff receives an input xi from each party Pi, then sends f(x1, . . . , xn)
to all parties. We will define ideal functionality F who also interacts with the adversary according
to its code.

Assuming the ideal functionality F exists, there is a canonical protocol where everyone only
talks to F : All parties simply hand their inputs to F . The adversary may interacts with F if F has
any “backdoor interface”. Whenever F outputs a value to a party, the party immediately copies
this value to its own output tape. Such protocol, denoted by ΠF , is call the dummy protocol for
functionality F . And the parties in the dummy protocol are called dummy parties.

Ideal Execution and Simulation. The ideal execution of the protocol ΠF with a simulator S, and
environment Z is ExecC,S,Z(1λ,ΠF).

In this work, we will use the typical black-box and straight-line simulation, in which S interacts
with the real-world adversaryA, forwarding its communication with Z , and simulating messages
of honest parties of Π for A. Below, we detail on the ideal execution with such a simulator, and
denote it as IdealC,A,S,Z(1λ,F).

Z chooses inputs of honest dummy parties: For each i /∈ C, the input of honest dummy party Pi
running protocol ΠF is chosen adaptively by Z , and Π immediately sends the the input to
Z . And as soon as F outputs a value to an honest dummy party, the output is learnt by Z .

S simulates the real execution ExecC,A(1λ,Π) for A: The simulator S forwards all communica-
tion between A and Z , and simulates an execution of the protocol Π for A in the following
way. All messages that A sends corresponding to corrupted parties (in C) running Π are
received by S, and S simulates messages from the honest parties running Π for A.

S interacts with F : The simulator S interacts with ideal functionality F as the corrupted parties.
In particular, it chooses the input of every dummy corrupted party Pi for i ∈ C, and as
soon as F outputs a value to Pi, the output is learnt by S. In addition, depending on the
specification of F , it may directly communicate with S.

Output: The output of the experiment is the output of the environment Z .

We overload the notation to also use IdealC,A,S,Z(1λ,Π) to denote the distribution of the output of
the experiment.

Definition 3. Let F be a n-party functionality. Let Π be a MPC protocol. Protocol Π computa-
tionally (resp. statistically) securely implements F against malicious corruptions if for any non-

20

uniform poly-time (resp. unbounded) interactive Turing machineA, there exists an uniform poly-
time interactive Turing machine S, such that, for every non-uniform poly-time (resp. unbounded)
interactive machine Z ,∣∣∣∣Pr

[
ExecC,A,Z(1λ,Π)→ 1

]
− Pr

[
IdealC,A,S,Z(1λ,F)→ 1

]∣∣∣∣ ≤ negl(λ) .

Figure 7: The ideal functionalities Fabort
f and Fos

f capture the computation of function f with
different security guarantees

Input: On input ("Input", xi) from Pi. The functionality stores (Pi, xi), and sends (Pi,"Received")
to all parties.

Output: On input ("Output") from the adversary, the functionality computes y = f(x1, . . . , xn), and
sends ("Output", y) to the adversary.

Abort (only in Fabort
f): On input ("Output", 1abort) from the adversary, where 1abort ∈ {0, 1} is an indi-

cator bit, the functionality sends ("Output",⊥) to all parties if 1abort = 1, sends ("Output", y)
to all parties if 1abort = 0.

Output Substitution (only in Fos
f): On input ("Output", y′) from the adversary, the functionality

sends ("Output", y′) to all parties.

The ideal functionalityFabort
f captures the standard notion of “security with unanimous abort”.

Fos
f captures a weaker security, in which the adversary learns no extra information compare to

an honest execution, but the adversary can choose an incorrect (unanimous) output for all hon-
est parties. A similar security notion “privacy with knowledge of outputs (PKO)” is considered
by [IKP10], which allows the adversary to choose incorrect outputs for selected honest parties.

Sec. 8 shows a non-interactive reduction from Fos to Fabort. That is, given a protocol imple-
menting Fos

f ′ , where f ′ is induced from f and has similar complexity, there exists a protocol imple-
menting Fabort

f with the same communication and correlated randomness complexity. Therefore,
for a complexity class (e.g. P/poly) under which the reduction f 7→ f ′ is close, it suffices to con-
struct MPC protocols that is secure with output substitution.

3.2 Multi-Party Randomized Encoding

Let λ be the security parameter. All objects below implicitly depend on λ.
We begin by recalling the definition of randomized encoding. A function f is encoded by a

randomized function g, if the output of f (and nothing else) can be recovered from the output of
g.

Definition 4 (Randomized Encoding [AIK04]). Let f : X → Y be some function. The randomized
encoding of f is a function g : X × R → Ŷ , where R is the randomness space, Ŷ is the encoding
space. A randomized encoding should be both correct and private.

Correctness There is a decoding function Dec such that for all x ∈ X , r ∈ R, it holds that

Dec(g(x; r)) = f(x).

Privacy There exists an efficient randomized simulation algorithm S such that for any x ∈ X , the
distribution of S(f(x)) is identical to that of g(x; r). The privacy can be relaxed to statistical
privacy (resp. computational privacy), if the S(f(x)) and g(x; r) are statistically close (resp.
computational indistinguishable).

21

The task of computing a function f can be non-interactively reduced to the task of computing
its randomized encoding g. Given a protocol Πg for computing

(x1, r1), . . . , (xn, rn) 7→ g(x1, . . . , xn; r1 + · · ·+ rn),

it directly induces a protocol Πf for computing f : party Pi locally samples randomness ri; jointly
compute the encoding by executing protocol Πg; then every party locally decodes the output. It is
easy to show that Πf satisfies the same security notion as Πg.

The technique is generalized to multi-party randomized encoding (MPRE) in pursuit of round-
optimal semi-honest MPC protocols [ABT18]. The maliciously secure analog of MPRE is consider
in [ABT19]. We recall the definition of multi-party randomized encoding (MPRE). In addition, we
extend the definition to incorporate with correlated randomness and semi-malicious security.

Definition 5 (Multi-Party Randomized Encoding). Let f : X1 × · · · × Xn → Y be some n-party
function. A multi-party randomized encoding (MPRE) of f is specified by

• Local randomness spaceRi for i ∈ [n]. Correlated randomness spaceR′1× · · ·×R′n together
with a distribution D over it.

• Local preprocessing function hi : Xi ×Ri ×R′i → X̂i.
• Encoding function f̂ : X̂1 × · · · × X̂n → Ŷ .

• Decoding function Dec : Ŷ → Y .

Such that for any input (x1, . . . , xn), the encoding

ŷ := f̂
(
h1(x1, r1, r

′
1), . . . , hn(xn, rn, r

′
n)
)

(3)

represents y = f(x1, . . . , xn) in the following sense:

Correctness For any input (x1, . . . , xn) ∈ X1 × · · · × Xn, randomness (r1, . . . , rn) ∈ R1 × · · · × Rn
and correlated randomness (r′1, . . . , r

′
n) in the support of D, the corresponding encoding ŷ

defined by (3) satisfies that f(x1, . . . , xn) = Dec(ŷ).

Semi-Malicious Security We say MPRE is computationally (resp. statistically) semi-malicious se-
cure with output substitution, if the following canonical protocol computationally (resp. sta-
tistically) securely implements Fos

f :

• The protocol assumes ideal functionality Fos
f̂◦h

.

• On input xi, party Pi samples ri ← Ri locally, receives r′i where (r′1, . . . , r
′
n) is sampled

from D, then inputs (xi, ri, r
′
i) to the ideal functionality Fos

f̂◦h
. Note that a corrupted

party may adaptively modify its input of Fos
f̂◦h

.

• Upon receiving ŷ from Fos
f̂◦h

, party decodes y = Dec(ŷ), and outputs y.

Malicious Security We say MPRE is computationally (resp. statistically) malicious secure with
output substitution, if the following canonical protocol computationally (resp. statistically)
securely implements Fos

f :

• The protocol assumes ideal functionality Fos
f̂

.

• On input xi, party Pi samples ri ← Ri locally, receives r′i where (r′1, . . . , r
′
n) is sampled

from D, and locally computes x̂i = hi(xi, ri, r
′
i) then inputs x̂i to the ideal functionality

Fos
f̂

.

22

• Upon receiving ŷ from Fos
f̂

, party decodes y = Dec(ŷ), and outputs y.

We expand the definition of semi-malicious MPRE in more detail by describing the ideal world
and real world of the security game of the canonical protocol (Fig. 8). Apparently, the adversary
and the environment learn no information during the last two steps in the security game.

The Real Execution ExecC,A,Z(1λ,Π)

1. The adversary A receives the corrupted
parties’ portions of correlated randomness
{r′i}i∈C .

2. The environment Z chooses the input xi for
each honest party Pi /∈ C. Every hon-
est Pi samples local randomness ri, receives
his portion of correlated randomness r′i and
sends (xi, ri, r

′
i) to Fos

f̂◦h
.

3. A corrupted party Pi ∈ C may input any
(x̄i, r̄i, r̄

′
i) to Fos

f̂◦h
.

4. Fos
f̂◦h

sends the output ŷ to A. The adversary
A chooses and sends ŷ′ back.

5. Every honest party receives ŷ′ from Fos
f̂◦h

,
and output y′ = Dec(ŷ′) to Z .

The Ideal Execution IdealC,A,S,Z(1λ,Fos
f)

1. The simulator S receives the corrupted parties’
portions of correlated randomness {r′i}i∈C , and
forwards them to A.

2. The environment Z chooses the input xi for each
honest party Pi /∈ C. Every honest dummy Pi di-
rectly inputs xi to Fos

f .

3. Any corrupted party’s input to Fos
f̂◦h

is hijacked
by S. The simulator S extracts input xi for each
i ∈ C, and sends xi to Fos

f on behalf of dummy Pi.

4. Fos
f sends the output y to S, who generates and

sends ŷ to A. The adversary A chooses and sends
ŷ′ back to S, who sends y′ = Dec(ŷ′) to Fos

f .

5. Every honest dummy party receives y′ from Fos
f ,

and output y′ to Z .

Figure 8: The Security Game of Semi-Malicious MPRE.

Effective Degree. By definition, the task of computing f against malicious corruptions is reduced
to the task of computing f̂ , if MPRE is maliciously secure. To minimize the round complexity for
computing f̂ , the classical approach is to reduce the arithmetic degree of f̂ . The degree of f̂ is
called the effective degree of this MPRE.

Formally, let F be a finite field. Let(
f̂ : X̂1 × · · · × X̂n → Ŷ, h1, . . . , hn

)
be a MPRE for f , such that X̂1, . . . , X̂n, Ŷ are vector spaces over field F. The arithmetic degree of f̂
over F is called the effective degree of the MPRE.

Arithmetic Preprocessing. By definition, the task of computing f against malicious corruptions is
reduced to computing f̂ ◦h if MPRE is semi-maliciously secure. To minimize the round complexity
for computing f̂ ◦ h, besides reducing the degree of f̂ , we also need the preprocessing functions
h1, . . . , hn to be computable by poly-size arithmetic circuits.

Formally, let (f̂ , h1, . . . , hn) be a MPRE for f , who has low effective degree over a field F. The
MPRE has arithmetic preprocessing if its input spaces, local randomness spaces and correlated
randomness spaces are vector spaces over F, and the local preprocessing functions h1, . . . , hn are
computed by poly-size arithmetic circuits over F.

If a MPRE has effective degree 2 and arithmetic preprocessing over F, we say f̂ ◦g is an effective-
degree-2 function over F.

23

Definition 6 (Effective-Degree-2 Function). A function g : X1 × · · · × Xn → Y is of effective degree
2 over a field F, if X1, . . . ,Xn,Y are vector spaces over F and there exist

• hi : Xi → X̂i, an arithmetic circuit over F, for each i ≤ n.

• f̂ : X̂1 × · · · × X̂n → Y , a degree-2 arithmetic function over F.

such that for all (x1, . . . , xn) ∈ X1 × · · · × Xn,

f̂(h1(x1), . . . , hn(xn)) = g(x1, . . . , xn).

4 MPRE for Degree-3 Functions

Let λ be the security parameter. All objects implicitly depend on λ. Most objects in this section is
arithmetic over a finite field F = F(λ), such that |F| = Ω(2λ).

Canonical Form Polynomials. Before we construct MPRE for degree-3 functions, we observe that
it is w.l.o.g. to assume the degree-3 function f is of the following canonical form.

For any canonical degree-3 function f : F`1 ×· · ·×F`n → F`, there is an index set I ⊆ [`], such
that for each t ∈ [`],

• If t /∈ I, the t-th coordinate of f , denoted by ft, is of degree at most 2.

• If t ∈ I, then ft = x1x2x3 + z1 + z2 + z3 where xi, zi are from the same party.

More formally, let xi ∈ F`i denote the i-th input of f , then

ft(x1, . . . ,xn) = xit,1 [jt,1] · xit,2 [jt,2] · xit,3 [jt,3] + xit,1 [j′t,1] + xit,2 [j′t,2] + xit,3 [j′t,3]

for some it,1, it,2, it,3 ∈ [n] and jt,1, j′t,1 ∈ [`it,1], . . . , jt,3, j′t,3 ∈ [`it,3].

We assume w.l.o.g. that f is a canonical degree-3 function. It is known in the literature that
(e.g. shown by [BGI+18, GIS18, LLW20]) every degree-3 function f has a semi-honest MPRE whose
encoding function is canonical. The MPRE does not use correlated randomness, and is perfectly
secure, thus it is also semi-maliciously secure. The MPRE does not has preprocessing (preprocess-
ing functions are identity functions), thus semi-malicious security implies malicious security.

Moreover, such canonicalization does not increase complexity. Remind that the complexity
measure we care about is its total number of monomials mc(f). It is not difficult to show that
mc(f̂) = O(mc(f)), where f̂ is the encoding function of the MPRE for f we just discussed.

We will use the same canonicalization for degree-2 functions in Sec. 5.

4.1 Background: Semi-honest MPRE for Degree-3 Functions

Due to canonicalization, it is sufficient to consider the minimal complete function

3MultPlus
(

(x1, z1), (x2, z2), (x3, z3)
)

= x1x2x3 + z1 + z2 + z3.

It only involves three parties P1, P2, P3. Party Pi has input xi, zi ∈ F. The output can also be
presented as a F-modular branching program:

x1x2x3 + z1 + z2 + z3 = det

x1 z1 + z2 + z3

−1 x3

−1 x2


24

As shown by AIK, it has a degree-3 random encoding1 a1 a4

1
1

 ·
x1 z1 + z2 + z3

−1 x3

−1 x2

 ·
1 a3 a5

1 a2

1



=

x1 − a1

(
a3x1 + a1x3

− a1a3 − a4

) (
a1a2x3 + a5x1 − a1a5 +

a4x2 − a2a4 + z1 + z2 + z3

)
−1 x3 − a3 a2x3 − a5

−1 x2 − a2

 ,
where a1, . . . , a5 ∈ F are the randomness of the encoding.

Notice that the randomized encoding only has one degree-3 monomial term a1a2x3 (high-
lighted by a box). Assume a1, a2 are sampled from scalar OLE correlated randomness, that is,
a1, b1, a2, b2 ∈ F are randomly sampled conditioning on a1a2 = b1 + b2, then a1a2x3 = (b1 + b2)x3

becomes degree-2. This observation is formalized by [LLW20], there is an effective-degree-2 semi-
honest MPRE for 3MultPlus using OLE correlated randomness, as presented in Fig. 9.

Figure 9: The Effective-Degree-2 Semi-Honest MPRE for 3MultPlus

Input: Pi has xi, zi ∈ F.

Local Randomness: P1 samples a4,1 ∈ F; P2 samples a5,2 ∈ F; P3 samples a3, a4,3, a5,3 ∈ F.

Correlated Randomness: a1, b1, a2, b2 ∈ F are randomly sampled under constraint a1a2 = b1 + b2. P1

receives (a1, b1). P2 receives (a2, b2). P3 has no correlated randomness.

Preprocessing: None. I.e., the preprocessing functions are identity functions.

Encoding Function: Outputs the following matrix

̂3MultPlus
((

(x1,z1),a4,1,(a1,b1)
)
,
(

(x2,z2),a5,2,(a2,b2)
)
,
(

(x3,z3),(a3,a4,3,a5,3),⊥
))

=x1 − a1

(
a3x1 + a1x3

− a1a3 − a4

) (
b1x3 + b2x3 + a5x1 − a1a5 +
a4x2 − a2a4 + z1 + z2 + z3

)
−1 x3 − a3 a2x3 − a5

−1 x2 − a2

 , (4)

where a4 := a4,1 + a4,3 and a5 := a5,2 + a5,3.

Decoding Function: Outputs the determinant of the encoding.

4.2 CDS Encoding

We observe that the MPRE presented in Fig. 9 is not semi-maliciously secure. Semi-malicious
security does not follow automatically from perfect semi-honest security because of the correlated
randomness. Party P1 or P2 can locally modify its portion of the correlated randomness. For
example, if corrupted P1 replaces b1 by b1 + 1, the decoding will output x1x2x3 +x3 + z1 + z2 + z3.
Similarly, if P1 replaces a1 by a1 + 1, the decoding will output x1x2x3 − a2x3 + z1 + z2 + z3. In
either case, privacy is lost.

To prevent such attacks, we will invent a tool called conditional disclosure of secret (CDS) encod-
ing, which reveals a secret only if a1, a2, b1, b2 satisfy the OLE relation a1a2 = b1 + b2.

We start with protecting P3’s privacy, the cases of protecting P1 or P2 are similar. Party P1 has
a1, b1 ∈ F. Party P2 has a2, b2 ∈ F. Party P3 has a secret s ∈ F. We would like to construct a CDS
encoding that achieves three goals:

25

Figure 10: CDS Encoding

The outer MPRE specifies 3 parties, denoted by P1, P2, P3

Input: Party P3 receives as input s ∈ F. Party P1 receives random a1 ∈ F2,B1 ∈ F2×2. Party P2

receives random a2 ∈ F2,B2 ∈ F2×2. (a1,a2,B1,B2) is supposed to be sampled from tensor-
OLE correlated randomness.

Randomness: In addition, P3 samples q1, q2, r1, r2 ∈ F.

Preprocessing: P3 locally computes r1q1, r2q2, q1q2, r2q1, r2q1q2.

Encoding Function: Define q1 = (q1, 1),q2 = (q2, 1). The functionality outputs p1 = 〈a1,q1〉, p2 =
〈a2,q2〉, p3 = 〈B1 + Bᵀ

2 ,q1q
ᵀ
2〉 and

c =

[
1 〈a2,q2〉

〈a1,q1〉 〈B1 + Bᵀ
2 ,q1q

ᵀ
2〉

]
·
[
r1

r2

]
+

[
0
s

]
Decoding Function: Check if p1p2 = p3. If so, output 〈c, (−p1, 1)〉. Otherwise, output ⊥.

• To disclose s if a1a2 = b1 + b2.

• To hide s if a1a2 6= b1 + b2.

• To reveal nothing about a1, a2, b1, b2 except whether a1a2 = b1 + b2.

• The encoding function is quadratic.

We stress that the CDS encoding we are going to build is not a MPRE for any function, since it
does not follow the same syntax. For example, the security of CDS encoding will rely on the fact
that (a1, a2, b1, b2) is sampled from OLE correlated randomness. The CDS encoding will be used
as a sub-module of the semi-maliciously secure MPRE in Sec. 4.3, where CDS encoding is carefully
aligned with the rest of the MPRE.

It turns out that, towards building CDS encoding, we need to replace scalar OLE correlated
randomness with tensor OLE correlated randomness. Let P1 receive random a1 ∈ F2, B1 ∈ F2×2

and let P2 receive random a2 ∈ F2,B2 ∈ F2×2, such that a1a
ᵀ
1 = B1 + Bᵀ

2. Party P1, P2 use the
first coordinates of the tensor-OLE correlated randomness as the original scalar OLE correlated
randomness. That is, let (a1, b1, a2, b2) := (a1[1],B1[1],a2[1],B2[1]). The remaining coordinates
will be used to hide a1, b1, a2, b2.

The CDS encoding is formally described in Fig. 10. As we emphasized, CDS encoding is not a
MPRE. For correctness, the secret s can be decoded if a1a

ᵀ
1 = B1 + Bᵀ

2. For privacy, the encoding
can be simulated given the corrupted parties’ input and the following information:

• The secret s if a1a
ᵀ
1 = B1 + Bᵀ

2.

• p1 = 〈a1,q1〉, p2 = 〈a2,q2〉, p3 = 〈B1+Bᵀ
2,q1q

ᵀ
2〉, where q1 = (q1, 1),q2 = (q2, 1) are sampled

by party P3. (If the adversary corrupts P3, it can adaptively choose q1, q2.)

Let us convey some intuitions why the three goals of CDS encoding in Fig. 10 are achieved.

• For disclosing s: If (a1,a2,B1,B2) is in the support of tensor-OLE correlated randomness,
then p1p2 = p3, thus the matrix [1 p2

p1 p3] is not full-rank. The secret s can still be recovered
from c.

26

• For hiding s: If a1a2 6= b1 + b2, it means (a1,a2,B1,B2) is not tensor-OLE correlation. Then
p1p2 6= p3 with high probability due to the randomness of q1, q2. Since matrix [1 p2

p1 p3] is full-
rank, the secret s is perfectly masked by (r1, r2).

• The encoding also leaks information about a1,B1,a2,B2, but as we will show, a1, b1, a2, b2
remain hidden. p1, p2 are one-time padded by a1[2],a2[2]. We leave the analysis of p3 to the
next section.

• The encoding function outputs p1 = 〈a1,q1〉, p2 = 〈a2,q2〉,

p3 = 〈B1 + Bᵀ
2, [

q1q2 q1
q2 1]〉, c =

[
r1 + 〈a2, [

r2q2
r2]〉

〈a1, [
r1q1
r1]〉+ 〈B1 + Bᵀ

2, [
r2q1q2 r2q1
r2q2 r2]〉

]
has degree 2 after r1q1, r2q2, q1q2, r2q1, r2q1q2 are locally computed by P3.

4.3 Semi-Malicious MPRE for Degree-3 Functions

Based on the CDS encoding (Fig. 10) we discussed in Sec. 4.2, we construct a semi-maliciously
secure MPRE (Fig. 11) for canonical degree-3 functions. The MPRE has effective degree 2.

The idea is simple: Three parties P ′1, P
′
2, P

′
3 need to compute x1x2x3 + z1 + z2 + z3. Every party

P ′i samples a random mask si, one-time pads the output by si, and reveals si if and only if P ′1 and
P ′2 use legit OLE correlated randomness. The last operation is allowed by our CDS encoding.

Lemma 4.1. Fig. 11 presents a semi-maliciously secure MPRE for degree-3 function f , whose effective
degree is 2.

The rest of the section is going to prove this lemma.

Effective Degree. For each t /∈ I, the part of encoding corresponding to ft is clearly of degree
≤ 2. For each t ∈ I, the matrix Mt is a degree-2 function, the corresponding CDS encodings has
effective degree 2, as we have analyzed in Sec. 4.2. Note that the preprocessing is very simple:
Preprocessing only need to compute monomials of degree at most 3.

Efficiency Analysis. For each t /∈ I, the term ft is preserved in f̂ . There is no complexity blow-up,
and it requires no computation in the preprocessing.

For each t ∈ I, the term ft corresponds to consumption of a 4× 4 OLE correlated randomness,
O(1) monomials in f̂ , and requires preprocessing. As we just noticed in the discussion about
effective degree, the required preprocessing is very simple. The corresponding preprocessing

• consists of O(1) multiplication gates;

• the outcome of the preprocessing is only used by O(1) monomials of f̂ . (Because ft corre-
sponds to only O(1) monomials in f̂ .)

These properties will improve the efficiency of the MPC protocol in Sec. 5.1.

Correctness. For each t /∈ I, ft is correctly computed by the encoding function.

27

Figure 11: The Semi-Malicious MPRE For Degree-3 Functions

Function Input: Pi has xi ∈ F`i

Function: A canonical degree-3 function f . By definition, there exists an index set I. For each t 6∈ I,
the degree of ft is at most 2. For each t ∈ I, ft equals xit,1 [jt,1] · xit,2 [jt,2] · xit,3 [jt,3] + xit,1 [j′t,1] +
xit,2 [j′t,2] + xit,3 [j′t,3] for some it,1, it,2, it,3 ∈ [n] and jt,i, j′t,i ∈ [`i].
As long as t is clear in the context, we refer to Pit,1 , Pit,2 , Pit,3 as P ′1, P ′2, P ′3 resp. and refer to
xit,1 [jt,1],xit,2 [jt,2],xit,3 [jt,3],xit,1 [j′t,1],xit,2 [j′t,2],xit,3 [j′t,3] as x1, x2, x3, z1, z2, z3 resp.

Randomness: For each t ∈ I, P ′1 samples st,1, at,4,1 ∈ F, P ′2 samples st,2, at,5,2 ∈ F, P ′3 samples
st,3, at,3, at,4,3, at,5,3 ∈ F. They also sample additional randomness according to the sub-module
of CDS encoding (Fig. 10).
We will omit t in subscript, if there is no confusion.

Correlated Randomness: For each t ∈ I, P ′1 receives at,1 ∈ F4,Bt,1 ∈ F4×4, P ′2 receives at,2 ∈
F4,Bt,2 ∈ F4×4 where (at,1,at,2,Bt,1,Bt,2) is sampled from 4 × 4 tensor OLE correlated ran-
domness.
We will omit t from the subscript, if there is no confusion.

Preprocessing: Required by the sub-module of CDS encoding (Fig. 10).

Encoding Function: For each t /∈ I, output ft.
For each t ∈ I, output

Mt = ̂3MultPlus
((

(x1, z1 + s1), a4,1, (a1, b1)
)
,(

(x2, z2 + s2), a5,2, (a2, b2)
)
,
(
(x3, z3 + s3), (a3, a4,3, a5,3),⊥

))
where a1 := a1[1], a2 := a2[1], b1 := B1[1, 1], b2 := B2[1, 1].
P ′1, P

′
2, P

′
1 use CDS encoding to disclose s1, conditioning on[

a1[1]
a1[3]

] [
a2[1]
a2[3]

]ᵀ
=

[
B1[1, 1] B1[1, 3]
B1[3, 1] B1[3, 3]

]
+

[
B2[1, 1] B2[1, 3]
B2[3, 1] B2[3, 3]

]ᵀ
P ′1, P

′
2, P

′
2 use CDS encoding to disclose s2, conditioning on[

a1[1]
a1[4]

] [
a2[1]
a2[4]

]ᵀ
=

[
B1[1, 1] B1[1, 4]
B1[4, 1] B1[4, 4]

]
+

[
B2[1, 1] B2[1, 4]
B2[4, 1] B2[4, 4]

]ᵀ
P ′1, P

′
2, P

′
3 use CDS encoding to disclose s3, conditioning on[

a1[1]
a1[2]

] [
a2[1]
a2[2]

]ᵀ
=

[
B1[1, 1] B1[1, 2]
B1[2, 1] B1[2, 2]

]
+

[
B2[1, 1] B2[1, 2]
B2[2, 1] B2[2, 2]

]ᵀ
Decoding Function: For each t /∈ I, output ft.

For each t ∈ I, decode the CDS encoding to recover s1, s2, s3. If s1, s2, s3 are recovered, output
detMt − s1 − s2 − s3. Otherwise, output ⊥.

28

For each t ∈ I, since b1 + b2 = a1a2 holds,

detMt = det

1 a1 a4

1
1

 ·
x1

(
z1 + z2 + z3 +
s1 + s2 + s3

)
−1 x3

−1 x2

 ·
1 a3 a5

1 a2

1



= det

x1

(
z1 + z2 + z3 +
s1 + s2 + s3

)
−1 x3

−1 x2


= x1x2x3 + z1 + z2 + z3 + s1 + s2 + s3.

(5)

Thus detM−s1−s2−s3 equals ft, as long as the decoding function of the CDS encoding correctly
recovers s1, s2, s3.

Correctness of the CDS encoding. Since a1a
ᵀ
2 = B1 + Bᵀ

2, then

p3 = 〈B1 + Bᵀ
2,q1q

ᵀ
2〉 = 〈a1a

ᵀ
2,q1q

ᵀ
2〉 = 〈a1,q1〉 · 〈a2,q2〉 = p1p2 .

The check is passed and CDS encoding outputs[
−p1

1

]ᵀ
· c =

[
−p1

1

]ᵀ
·
[

1 p2

p1 p3

]
︸ ︷︷ ︸

zero

·
[
r1

r2

]
+

[
−p1

1

]ᵀ
·
[
0
s

]
= s .

Semi-Malicious Security. For each corrupted party Pi ∈ C, the adversary chooses the input xi,
randomness, and correlated randomness that Pi input to the ideal functionality Fos

f̂◦h
. From them,

the simulator extracts xi as the input of Pi in the ideal execution.
Upon receiving the output of f , the simulator need to simulate the encoding. For each t /∈ I,

the corresponding part of the encoding can be trivially simulated, as it equals ft. For each t ∈ I,
the simulator need to simulate matrixMt and the encoding produced by CDS encoding, as follows:

• If P ′1 is corrupted, the simulator can compute Mt[1, 1] = x1 − a1, since both x1, a1 are chosen
by the adversary and are known to the simulator. Otherwise, simulate Mt[1, 1] as uniform
random, because it is one-time padded by a1. In either case, Mt[1, 1] can be simulated.

Similarly Mt[2, 2] and Mt[3, 3] can be simulated.

• If both P ′1 and P ′3 are corrupted, the simulator can compute Mt[1, 2]. Otherwise, simulate
Mt[1, 2] as uniform random, because it is one-time padded by a4,1 or a4,3.

Similarly Mt[2, 3] can be simulated.

• The encoding generated by the CDS encoding will be simulated by a sub-simulator, which
will be described later. For each i ∈ {1, 2, 3}, the sub-simulator simulates the CDS encoding
involving P ′1, P

′
2, P

′
i that discloses si conditioning on[

a1[1]
a1[i′]

] [
a2[1]
a2[i′]

]ᵀ
=

[
B1[1, 1] B1[1, i′]
B1[i′, 1] B1[i′, i′]

]
+

[
B2[1, 1] B2[1, i′]
B2[i′, 1] B2[i′, i′]

]ᵀ
(6)

where i′ := i+ 1. The sub-simulator is interactive, it asks the simulator for some additional
information.

29

– If P ′1 (resp. P ′2) is not corrupted, the sub-simulator may choose q ∈ F, and ask the
simulator for q · a1[1] + a1[i′] (resp. q · a2[1] + a2[i′]). The simulator simulates it as
uniform random, since it is one-time padded by a1[i′] (resp. a2[i′]).

– If P ′i is not corrupted and condition (6) is satisfied, the sub-simulator may ask the sim-
ulator for si. In such case, the simulator simulates si as uniform random. Here “con-
dition (6) is satisfied” means either the adversary does not tamper with the correlated
randomness, or the adversary corrupts both P1, P2 and knows (6) holds after tamper-
ing.

• The adversary may tamper with the correlated randomness.

If after the tampering, for some honest P ′i , the condition (6) is not satisfied, the simulator can
simulate Mt[1, 3] as uniform random, because it is one-time padded by si.

Otherwise, each of si is revealed, either because P ′i is corrupted, or because the condition (6)
is satisfied and si is simulated under sub-simulator’s request. The condition (6) implies that
a1a2 = b1 + b2 after tampering. The simulator also knows ft = x1x2x3 + z1 + z2 + z3. In such
case the simulator can computes Mt[1, 3], which is uniquely determined by (5).

Sub-simulator The CDS encoding is presented in Fig. 10. Let P1, P2, P3 denotes the three parties
specified by the outer MPRE. We just enumerate the simulation by the set of corrupted parties. As
we mentioned, the sub-simulator can choose qi ∈ F and ask for 〈ai, qi‖1〉, the sub-simulator can
also ask for s if the condition is satisfied.

• The case P1, P2, P3 are all corrupted: Trivial simulation.

• The case nobody is corrupted: Sample q1, q2 at random. Ask the outer simulator for p1 =
〈a1,q1〉, p2 = 〈a2,q2〉, where q1,q2 are defined as qk = qk‖1. Compute p3 = p1p2. Simulate
c as uniform random, since it is one-time padded by r1‖r2.

• The case P3 is corrupted: q1, q2 are chosen by the adversary. Ask the outer simulator for
p1 = 〈a1,q1〉, p2 = 〈a2,q2〉. Compute p3 = p1p2. Simulate c as uniform random, since it is
one-time padded by r1‖r2.

• The case P1, P3 are corrupted: q1, q2 are chosen by the adversary. The corrupted P1 can
replace a1,B1 by a′1,B

′
1. Compute p1 = 〈a′1,q1〉. Ask the outer simulator for p2 = 〈a2,q2〉.

Computed p3 from

p3 = 〈B′1 + Bᵀ
2,q1q

ᵀ
2〉 = 〈B1 + Bᵀ

2,q1q
ᵀ
2〉+ 〈B′1 −B1,q1q

ᵀ
2〉

= 〈a1,q1〉 · p2 + 〈B′1 −B1,q1q
ᵀ
2〉. (7)

Note that the simulator knows a1,B1,a
′
1,B

′
1. Compute c = [1 p2

p1 p3][r1r2] + [0
s], since r1, r2, s

are all chosen by the adversary.

• The case P1, P2 are corrupted: The corrupted P1 can replace a1,B1 by a′1,B
′
1. The corrupted

P2 can replace a2,B2 by a′2,B
′
2.

If a′1(a′2)ᵀ = B′1 + (B′2)ᵀ, the sub-simulator can ask the outer simulator for s. Simulation
becomes easy because the simulator knows all private information of P3.

If a′1(a′2)ᵀ 6= B′1 + (B′2)ᵀ, sample q1, q2 at random, and compute p1 = 〈a′1,q1〉, p2 = 〈a′2,q2〉,
p3 = 〈B′1 + (B′2)ᵀ,q1q

ᵀ
2〉. Then p1p2 6= p3 with overwhelming probability due to the random-

ness of q1, q2. Simulate c as uniform random, since it is one-time padded by r1‖r2.

30

• The case P1 is corrupted: The corrupted P1 can replace a1,B1 by a′1,B
′
1. Sample q1, q2 at

random, ask the outer simulator for p2 = 〈a2,q2〉. Compute p1 = 〈a1,q1〉, and compute
p3 = 〈B′1 + Bᵀ

2,q1q
ᵀ
2〉 from Equation (7).

If (a′1,B
′
1) = (a1,B1), the sub-simulator can ask the outer simulator for s. Then sample

random r1, r2 and compute c = [1 p2
p1 p3][r1r2] + [0

s].

If (a′1,B
′
1) 6= (a1,B1), then a′1a

ᵀ
2 6= B′1 + Bᵀ

2 with overwhelming probability due to the
randomness of a2, then consequently p1p2 6= p3 with overwhelming probability due to the
randomness of q1, q2. The sub-simulator simulates c as uniform random, since it is one-time
padded by r1‖r2.

5 MPC Protocol for Effective-Degree-2 Functions

In this section, we construct a 2-round MPC protocol for computing an effective-degree-2 func-
tion g. The protocol securely implement Fos

g against malicious corruptions. It tolerates n − 1
corruptions, uses random oracle, and consumes tensor-OLE correlated randomness.

A protocol consuming correlated randomness can be equivalent stated as an online-offline
protocol. The offline phase uses the FOLEcor (which will be implemented in Sec. A) to prepare
tensor-OLE correlated randomness, and the online phase uses FRO and has only 2 rounds.

Canonical Form. Before we construct MPC protocols for effective-degree-2 functions, we observe
that it is w.l.o.g. to assume the effective-degree-2 function g has the following properties.

• By definition, an effective-degree-2 function g : F`1 ×· · ·×F`n → F` can be decomposed into
a degree-2 function f̂ : Fˆ̀

1 × · · · × Fˆ̀
n → F` and preprocessing functions h1 : F`1 → Fˆ̀

1 , . . . ,

hn : F`n → Fˆ̀
n such that g := f ◦ h.

• We assume f̂ is a canonical degree-2 function. That is, there is there is an index set I ⊆ [`],
such that for each t ∈ [`],

– If t /∈ I, the t-th coordinate of f , denoted by ft, is a linear function.

– If t ∈ I,
ft(x1, . . . ,xn) := xit [ι1] · xjt [ι2] + xit [ι3] + xjt [ι4]

for some it, jt ∈ [n] and ι1, ι2 ∈ [`it], ι3, ι4 ∈ [`jt].
As long as t is clear from the context, we refer to Pit ,xit [ι1],xjt [ι2], Pjt ,xit [ι3],xjt [ι4] as
Pi, vi, zi, Pj , vj , zj , respectively. With such aliases, ft := vivj + zi + zj .

Similar to our discussion about canonical degree-3 functions in Sec. 4, assuming f̂ has canon-
ical form will increase the monomial complexity of f̂ by at most a constant factor.

• We assume that the circuit computing hi only has multiplication gates, because the prepro-
cessing function of our effective-degree-2 MPRE only has multiplication gates.

We assume that hi output its input in the first `t output coordinates, each of the later output
coordinate is the product of two previous output coordinates. For each t ≤ `i, hi(xi)[t] :=
xi[t]. For each `i < t ≤ ˆ̀

i, there exists some t1, t2 < t such that

hi(xi)[t] := hi(xi)[t1] · hi(xi)[t2] .

Our assumptions on hi will not increase its circuit size.

31

Remark: It is easy to extend our construction to cover general arithmetic preprocessing functions.
Proving addition is even simpler than multiplication.

Protocol Computing 2MultPlus. Define function 2MultPlus to capture the degree-2 terms in
canonical degree-2 functions.

2MultPlus : ((v1, z1), (v2, z2)) 7→ v1v2 + z1 + z2.

Lin et al. [LLW20] present a semi-honest 2-round MPC protocol Π2MultPlus computing 2MultPlus
(Fig. 12), using (scalar) OLE correlated randomness.

Figure 12: MPC Protocol Π2MultPlus

Input: Party P1 has v1, z1 ∈ F. Party P2 has v2, z2 ∈ F.

Correlated Randomness: Sample a1, a2, b1, b2 ∈ F such that a1a2 = b1 + b2. Party P1 receives a1, b1.
Party P2 receives a2, b2.

Round 1: Party P1 broadcasts c1 := v1 + a1. Party P2 broadcasts c2 := v2 + a2.

Round 2: Party P1 broadcasts m1 := v1c2 + b1 + z1. Party P2 broadcasts m2 := v2c1 + b2 + z2.

Output: Output m1 +m2 − c1c2.
Note that in an honest execution,

m1 +m2 − c1c2 = v1c2
↑

v2+a2

+ b1 + z1 + v2c1
↑

v1+a1

+ b2 + z2 − c1c2
↑

(v1+a1)(v2+a2)

= v1v2 + z1 + z2 + b1 + b2 − a1a2

= v1v2 + z1 + z2 .

It is not hard to show that protocol Π2MultPlus is actually maliciously secure with output substi-
tution. Thus a natural approach is to use parallel sessions of the protocol to compute all degree-2
terms in g. Each session of Π2MultPlus computes one coordinate of f̂ . This natural approach faces
two challenges:

Consistency. Say two coordinates of f̂ equal vivj + zi + zj and vivk + z′i + z′k respectively. We have
to ensure that Pi feeds the same vi to the two corresponding sessions.

Well-Formedness. We have to ensure that Pi evaluates the local preprocessing function x̂i =
hi(xi) correctly.

Inspired by the protocol Π2MultPlus and the security concerns of the natural approach, we con-
struct a maliciously secure protocol (Fig. 14) for computing effective-degree-2 functions. To for-
malize the construction, we define the enhanced 2MultPlus functionality F2MP+ (Fig. 13), which
offers four commands:

Input command captures the first round of Π2MultPlus.

2MultPlus command captures the second round of Π2MultPlus.

ProveSame command deals with the consistency concern. Via this command, a party can prove
that he feeds the same value in two different sessions.

ProveProd command deals with the well-formedness concern. Via this command, a party can
prove that the value he fed in a session equals the product of the values he fed in two other
sessions. (Recall that we assume the preprocessing circuit only has multiplication gates.)

32

Figure 13: The enhanced 2MultPlus functionality F2MP+ .

The functionality is initialized with a field F and n parties P1, · · · , Pn, where a subset C ⊂ [n] of
parties are corrupted by an adversary. All variables and computations below are in F, unless specified
otherwise.

The functionality offers 4 kinds of command, Input, ProveProd, ProveSame and 2MultPlus. Input
command and 2MultPlus command take a session id sid = (2MP, {i, j}, seqnum) as a part of the input.
In the session, Pi, Pj jointly computes the 2MultPlus function. ProveProd command takes a session id
sid = (Pf, i, j, seqnum) as a part of the input. In the session, Pi proves an argument to Pj .

These commands must be executed in a given order. A party can invoke Input or ProveProd com-
mand only before it invokes any ProveSame command. A party can invoke 2MultPlus command only
after both parties in the session have invoked Input command.

Input: Party Pi commits to its input in session sid = (2MP, {i, j}, seqnum).
On input ("Input", sid, (var, v)) from Pi, where var is a variable name, and v ∈ F. The function-
ality

• Stores (sid, Pi, (var, v))

• Broadcasts (sid, Pi, var,"Received") to all parties.

and ignore future Input command with same sid from Pi.

ProveProd: Party Pi proves to Pj that var equals the product of var1 and var2, in session sid =
(Pf, i, j, seqnum).
On input ("ProveProd", sid, (var1, v1), (var2, v2), (var3, v3)) from Pi, if Pi ∈ C, the functionality
additionally receives 1rej ∈ {0, 1} from the adversary. The functionality

• Stores (sid, Pi, (var1, v1)), (sid, Pi, (var2, v2)), (sid, Pi, (var3, v3)).

• Broadcasts (sid, Pi, var, var2, var3,"Received") to all parties.

• Sends (sid, Pi, var1, var2, var3, acc) to the other participant Pj , if v1v2 = v3 and 1rej = 0.
Otherwise sends (sid, Pi, var1, var2, var3, rej) to Pj .

and ignore future ProveProd command with same sid from Pi.

ProveSame: On input ("ProveSame", (var, u)) from Pi. If Pi ∈ C, the functionality asked the adver-
sary to additionally provides an indicator vector 1rej ∈ {0, 1}n.
For every party Pj , retrieve all entries (sid`, Pi, (var, v`)) corresponding to sessions between Pi, Pj
(i.e., sid` contains Pi, Pj). Send (Pi, var, rej) to Pj if there exists v` 6= u or if Pi ∈ C and 1rej[j] = 1.
Otherwise, send (P, var, acc) to Pj .
The functionality ignores further "ProveSame" messages for var from P .
This means P proves that it used the same value for var in different sessions. All parties receiving acc are
guaranteed to have received commitments to the same value.

2MultPlus: On input ("2MultPlus", sid = (2MP, {i, j}, seqnum), zi) from Pi and input
("2MultPlus", sid, zj) from Pj , the functionality retrieves (sid, Pi, (?, vi)) and (sid, Pj , (?, vj))
(ignore if no such entries exist), computes y = vivj + zi + zj , and sends ("Output", sid, y) to the
adversary.
Then, on input ("Output", sid, y′) from the adversary, the functionality broadcasts
("Output", sid, y′) to all parties. A passive adversary always lets y′ = y.
This means Pi and Pj can compute 2MultPlus using inputs vi, vj that they committed to in the same
session sid.

33

Figure 14: Protocol Computing Effective-Degree-2 Functions

First Round Party Pi locally preprocesses x̂i = hi(xi). Let "X-i-t" be the variable name of x̂i[t]. Party
Pi then uses the commands in F2MP+ to

Commit to Inputs: For every j 6= i and for each output coordinate of f̂ that is of the form
x̂i[t]x̂j [t

′′] + x̂i[t
′] + x̂j [t

′′′]. Let sid = (2MP, {i, j}, seqnum) be the session id for computing
this coordinate. Party Pi calls(

"Input", sid, ("X-i-t", x̂i[t])
)

to commit to x̂i[t] under this session.

Prove Well-Formedness: For every j 6= i, Pi prove to Pj that x̂i is honestly computed, by calling
the following for each t ∈ Ji,j that t ≥ `i,(

"ProveProd", (Pf, i, j, t), ("X-i-t1", x̂i[t1]), ("X-i-t2", x̂i[t2]), ("X-i-t", x̂i[t])
)

where t1, t2 < t are the corresponding indexes that x̂[t] := x̂[t1] · x̂[t2].

Prove Consistency: For each t ≤ ˆ̀
i, Pi calls(
"ProveSame", ("X-i-t", x̂i[t])

)
.

Second Round If party Pi receives any rej from F2MP+ , indicating an invalid proof, Pi will broadcast
⊥ and abort.
If all proofs are accepted, Pi proceeds with the computation of f̂ . For every j 6= i and for each
output coordinate of f̂ that is of the form x̂i[t]x̂j [t

′′]+x̂i[t
′]+x̂j [t

′′′]. Let sid = (2MP, {i, j}, seqnum)
be the session id for computing this coordinate. Pi calls(

"2MultPlus", sid, ("X-i-t′", x̂i[t
′])
)
,

which let F2MP+ broadcast the outcome to all parties.

Output Party Pi aborts if any party has broadcasted ⊥.
Otherwise, Pi outputs the outcomes from "2MultPlus" command. Namely, for each coordinate
of f̂ , there is a corresponding session id sid. Upon receiving ("Output", sid, y) from F2MP+ , Pi
sets y be that coordinate of the output.

5.1 The Functionality F2MP+ Suffices for Effective-Degree-2 Function Evaluation

Lemma 5.1. For any effective-degree-2 function g, there is a 2-round MPC protocol that securely imple-
ments Fos

g against malicious corruptions. The protocol uses random oracle, and tensor-OLE correlated
randomness.

Proof Overview. The 2-round protocol computing g is built upon the protocol Π2MP+ in Sec. 5.2
that implements F2MP+ . Roughly speaking, the protocol works as follows.

First Round On input xi, party Pi locally computes x̂i = hi(xi).

For each output coordinate of f̂ that is of the form vivj+zi+zj , party Pi commits to vi (which
is an coordinate of x̂i) using Input command.

Pi uses ProveProd, ProveSame command to convince others that i) x̂i is well-formed, i.e.,
x̂i = hi(xi); ii) the values it commits to each Input command are consistent w.r.t. x̂i.

Second Round Party Pi receives and verifies the proofs from others. If Pi rejects a proof, it will

34

broadcast ⊥ and abort7.

Otherwise if Pi accepts all proofs, it uses 2MultPlus command to compute and broadcast
each output coordinate of f̂ .

Output Pi aborts, if any party broadcasts ⊥. Otherwise, output the outputs of the "2MultPlus"
commands (one per output coordinate of g).

It is easy to verify correctness when all parties act honestly.
The malicious security entails two properties: (1) The adversary should not learn extra in-

formation beyond the output of g. (2) All honest parties obtain the same output, which may be
dictated by the adversary.

The second property follows from public output reconstruction. Every honest party derives
its output depending only on messages sent via the broadcast channel.

The first property because if the adversary violates well-formedness or consistency, the hon-
est parties will abort since they detect it from ProveProd or ProveSame command. And if the
adversary obeys well-formedness and consistency, it will only learn the output of g.

Proof. By definition and by our w.l.o.g. assumptions on g : F`1 × · · · × F`n → F` there exist
f̂ , h1, . . . , hn, such that

• g := f ◦ h. That is, g(x1, . . . ,xn) = f̂(h1(x1), . . . , hn(xn)) for any x1, . . . ,xn.

• f̂ : Fˆ̀
1 × · · · × Fˆ̀

n → F` is a degree-2 arithmetic function over the field F. Each output
coordinate of f̂ is of the canonical form

vivj + zi + zj ,

where vi, zi come from hi(xi), vj , zj come from hj(xj), for some i, j.

• hi : F`i → Fˆ̀
i is an arithmetic circuit over F. For each t ≤ ˆ̀

i,

hi(xi)[t] :=

{
xi[t], if t ≤ `i
hi(xi)[t1] · hi(xi)[t2], if t > `i, for some t1, t2 < t

For efficiency optimization, we define the sub-circuit of hi which Pj “cares about”. Party Pj
want Pi to prove the t-th coordinate hi(x)[t] is honestly computed only if hi(x)[t] is used in 2Mult-
Plus session between Pi and Pj . Denote the sub-circuit computing these coordinates of hi(x) by
Ji,j , which is a subset of wires of the preprocessing function hi. Formally, Ji,j is recursively de-
fined as

• For each output coordinate of f̂ between Pi and Pj of form vivj + zi + zj , say vi := hi(xi)[t],
then t ∈ Ji,j .

• For each t ∈ Ji,j that t > `i, say hi(xi)[t] := hi(xi)[t1] · hi(xi)[t2], then t1, t2 ∈ Ji,j .

As we have discussed in the overview, the correctness is easy to verify. The security proof is
simplified by the fact that every honest party’s output is determined by broadcasted messages.

The simulator works as follows: The corrupted parties invoke the commands of F2MP+ many
times in the first round. In the ideal world, all these calls are captured by the simulator.

7Technically, “abort” means the party stops sending messages, and outputs a default value in the end. Thus if all
honest parties unanimously abort, they obtain the same output.

35

• For each corrupted party Pi, the simulator first focuses on the "ProveSame" commands.
Define vector x̂i by collecting values from all calls to "ProveSame". Let xi := x̂i[1:`i] be the
first `i coordinates of x̂i. The simulator feeds xi to the ideal functionality Fos

g . That is, xi is
the extracted input of Pi.

• The honest parties will only prove valid statements in the first round. Thus every corre-
sponding outcome from F2MP+ is always acc, which is easily simulatable.

• The simulator can predict which honest party will broadcast ⊥. An honest party Pj will not
broadcast ⊥ if and only if

– For every corrupted party Pi, x̂i agrees with hi(xi) on all coordinates in Ji,j .
– Every corrupted party Pi, in every session between Pi and Pj , always uses consistent

mapping from variable names to values. In particular, whenever Pi uses "Input"
command, if the variable name is "X-i-t" then the value must be x̂i[t]. (Combining
with the previous condition, this value must equal to hi(xi)[t].)

– Pi never turns on any abort bit that is relevant to Pj .

In short, if and only if all corrupted parties have behaved honestly in the interaction with
Pj .

Since the simulator has feed an extracted input for each corrupted party, it receives output y
from the ideal functionality Fos

g .

• The simulator has identified which honest party is going to broadcast ⊥. Simulation regard-
ing these parties requires no extra work.

• For the rest of uncorrupted parties, thanks to the corrupted parties, who have behaved
(mostly) honestly in the first round, simulation is possible given y.

Concretely, say the s-th coordinate of f̂ is supposed to be x̂i[t]x̂j [t
′′] + x̂i[t

′] + x̂j [t
′′′], party

Pi is corrupted, Pj is uncorrupted. If Pj did not abort in the first round, party Pi must have
behaved honestly so far, namely, Pi computes x̂i[t] = hi(xi)[t] and feeds x̂i[t] in the first
round.

The corrupted Pi may choose an arbitrary z∗ in the second round by feeding(
"2MultPlus", sid, z∗

)
where sid is the corresponding session id. In the real world, the adversary will receive(

"Output", sid, x̂i[t]x̂j [t
′′] + z∗ + x̂j [t

′′′]
)

from F2MP+ . In the ideal world, the simulator knows y[s] = x̂i[t]x̂j [t
′′] + x̂i[t

′] + x̂j [t
′′′], thus

it can perfectly simulate the outcome by sending(
"Output", sid,y[s]− x̂[t′] + z∗

)
to the adversary.

In the real world, the output of every honest party is determined by the broadcasted mes-
sages. Thus the simulator can predict the output of honest parties in the real world, then feed this
predicted output to Fos

g as the substitution output.

36

Efficiency Analysis. F2MP+ is securely implemented by the protocol in Sec. 5.2, in which

• Each Input command consumes a 3 × 3 OLE correlated randomness, and broadcasts O(1)
field elements.

• Each ProveProd command consumes a 1 × 11 OLE correlated randomness, and broadcasts
O(1) field elements.

• Each ProveSame command broadcasts O(1) field elements, and sends O(1) field elements
per each relevant Input/ProveProd command. Notice that the later can be absorbed by the
communication complexity of Input/ProveProd.

• Each MultPlus2 command broadcasts O(1) field elements.

The MPC protocol in this section is built upon F2MP+ .

• Each (degree-2) monomial in f̂ requires O(1) Input/MultPlus2 commands.

• Each gate in the preprocessing function requires the owner party to call ProveProd command
at most n times.

• Each wire (i.e. gate or input wire) in the preprocessing function requires a ProveSame com-
mand.

Thus, if we let mc(f̂) denote the number of monomials in f̂ , let cs(hi) denote the circuit size (i.e.,
input length plus the number of gates) of hi, the MPC protocol for effective-degree-2 functions
in this section consumes O(mc(f̂) + n ·

∑
i cs(hi)) instances of OLE correlated randomness, sends

O(n ·
∑

i cs(hi)) field elements and broadcasts O(mc(f̂) + n ·
∑

i cs(hi)) field elements.
Additional efficiency improvement follows from a nice property of the effective-degree-2 MPRE

in Sec. 4.3. The only computation need in preprocessing is to multiplying three inputs together,
and the outcome is only used by O(1) monomials in f̂ . Therefore, when the MPC protocol in this
section is computing the MPRE from Sec. 4.3, the efficiency analysis can be improved to

• Each gate in the preprocessing function requires the owner party to call ProveProd command
at most O(1) times. (Because the owner party need to prove the gate is correctly evaluated
to only O(1) parties.)

The MPC protocol uses O(mc(f̂) +
∑

i cs(hi)) instances of OLE correlated randomness, sends
O(
∑

i cs(hi)) field elements in P2P channels and broadcasts O(mc(f̂) +
∑

i cs(hi)) field elements.

Statistical Security Loss. As shown in Sec. 5.2, the total security loss is O(
mc(f̂)+

∑
i cs(hi)+n2·QRO

|F|),
where QRO is the number of random oracle queries that the adversary makes.

5.2 The Protocol Π2MP+ Implementing F2MP+

We now describe a protocol Π2MP+ for implementingF2MP+ using tensor-OLE correlated random-
ness and a random oracle. We will describe the protocol in pieces, starting with the offline phase
setting up the correlated randomness and then moving on to sub-protocols in the online phase,
each sub-protocol implements one command in F2MP+ .

We assume that every honest party only execute the sub-protocols in a given order: All in-
stances of Input/ProveProd sub-protocol first, then ProveSame, then 2MultPlus. This matches the
order in F2MP+ . The Exceptional Cases in the sub-protocol description is for enforcing order.

37

The Protocol Π2MP+ , Offline Phase

Initialization: All parties are initialized with a finite field F and the number of parties n. All variables
and computations below are in F, unless specified otherwise.

Offline Phase: Every pair of parties Pi, Pj , for every computation session sid = (2MP, {i, j}, seqnum)
they will participate in together, jointly query FOLEcor with ("Gen", (i, j, 3, 3, seqnum)) to obtain
3 × 3 OLE correlated randomness. Party Pi gets random ai ∈ F3, Bi ∈ F3×3, party Pj gets
random aj ∈ F3, Bj ∈ F3×3, such that, aia

ᵀ
j = Bi + Bᵀ

j .
Every pair of parties Pi, Pj , for every proof session sid = (Pf, i, j, seqnum) they will participate in
together, jointly query FOLEcor with ("Gen", (i, j, 11, 1, seqnum)) to obtain 11 × 1 OLE correlated
randomness. Party Pi gets random ai,bi ∈ F11, party Pj gets random aj ∈ F, bj ∈ F11, such
that, ai · aj = bi + bj .
This can be done in the offline phase, as long as Pi, Pj know an upper bound on the number of sessions
they will participate in.

Initialize Data Structure: Each party Pi prepares the following data structure for the online phase:

• Set Si,session will contain information for every computation session sid Pi participates in,
including the OLE correlated randomness (a,B), the input variable var and value v, that is,
Si,session = {(sid, (a,B), (var, v))}sid. Initially, only a,B are set, other values are uninitialized.

• Set Si,prover will contain information for every proof session sid Pi participates in as the
prover, including the OLE correlated randomness (a,b), the input variables var1, var2, var3

and their values v1, v2, v3, that is, Si,prover = {(sid, (a,b), (var1, v1), (var2, v2), (var3, v3))}sid.
Initially, only a,b are set, other values are uninitialized.

• Set Si,verifier will contain information for every proof session sid Pi participates in as the
verifier, which is the OLE correlated randomness (a,b), that is, Si,verifier = {(sid, (a,b))}sid.

• Set Si,guard is initialized empty and will store, for every variable var that Pi uses, its value v
and a random scalar gi,var, that is Si,guard = {(var, gi,var)}var.

• Set Si,sent is initialized empty and will store, all messages that Pi broadcasts in the online
phase.

The Protocol Π2MP+ , Online Phase, Input Commands

Party Pi, on ("Input", sid = (2MP, {i, j}, seqnum), (var, v)) does the following.

Exceptional Cases: Pi examines the set Si,sent of messages it has broadcast so far, and ignores the input
if

1. a message of form ("Input", sid, ?, ?) has been broadcast, or

2. a message of form ("ProveSame", var, ?, ?) has been broadcast.

Else, Pi records (var, v) for sid in set Si,session, and proceeds to the next steps.

To commit to value v of variable var, Pi does the following:

• Retrieve a from Si,session using sid.

• Find entry (var, gi,var) in set Si,guard. If no such entry is found, sample gi,var ← F and add
(var, gi,var) to the set. gi,var is referred to as the guard for var.

• To commit to v, Pi sends an OTP ciphertext of (v‖gi,var) using a[1:2] as the pad, that is,

broadcast
(
"Input", sid, var, c = (v + a[1], gi,var + a[2])

)
.

38

The Protocol Π2MP+ , Online Phase, ProveProd Commands

Party Pi, on ("ProveProd", sid = (Pf, i, j, seqnum), (var1, v1), (var2, v2), (var3, v3)) does the following.

Exceptional Cases: Pi examines the set Si,sent of messages it has broadcast so far, ignores the input if

1. a message of form ("ProveProd", sid, ?, ?, ?) has been broadcast, or

2. a message of form ("ProveSame", X, ?, ?) has been broadcast, for any X ∈ {var1, var2, var3}.

Else, Pi proceeds to the next steps.

Prover’s Message If v1v2 6= v3, send

to Pj
(
"ProveProd", sid, var1, var2, var3, ⊥

)
.

Otherwise if v1v2 = v3, the prover Pi does the following:

• Find entry (X, gi,X) in set Si,guard for each X ∈ {var1, var2, var3}. If no such entry is found,
sample gi,X ← F and add (X, gi,X) to the set.

• Retrieve a,b from Si,prover using sid. Sample g1, g2 ← F and compute an OTP ciphertext
c := (v1‖gi,var1‖v2‖gi,var2‖v3‖gi,var3‖g1‖g2‖v1g2‖g1v2‖g1g2) + a.

• Query the random oracle with the generated OTP, (q1, q2) ← RO(sid, c). q1, q2 determine three
linear functions, represented by q1‖1, q2‖1 and q1q2‖q1‖q2‖1. Compute p1 = 〈q1‖1, v1‖g1〉,
p2 = 〈q2‖1, v2‖g2〉, prepare

π1 = 〈q1‖1,b[1]‖b[7]〉, π2 = 〈q2‖1,b[3]‖b[8]〉, π3 = 〈q1q2‖q1‖q2‖1,b[5]‖b[9:11]〉
as the proofs of p1 = 〈q1‖1, v1‖g1〉, p2 = 〈q2‖1, v2‖g2〉, p1p2 = 〈q1q2‖q1‖q2‖1, v3‖v1g2‖g1v2‖g1g2〉
respectively, and

broadcast
(
"ProveProd", sid, var1, var2, var3, c, q1, q2, p1, p2, π1, π2, π3

)
.

Verifier’s Decision: Pj decides to accept or reject as follows:

• Retrieve a′,b′ from Si,verifier using sid.

• Reject upon receiving ("ProveProd", sid, var1, var2, var3,⊥).

• Upon receiving ("ProveProd", sid, var1, var2, var3, c, q1, q2, p1, p2, π1, π2, π3), verify that q1, q2

are evaluated correctly as (q1, q2)← RO(sid, c). Check if

π1 + 〈q1‖1,b′[1]‖b′[7]〉 = a′ ·
(
〈q1‖1, c[1]‖c[7]〉 − p1

)
,

π2 + 〈q2‖1,b′[3]‖b′[8]〉 = a′ ·
(
〈q2‖1, c[3]‖c[8]〉 − p2

)
,

π3 + 〈q1q2‖q1‖q2‖1,b′[5]‖b′[9:11]〉 = a′ ·
(
〈q1q2‖q1‖q2‖1, c[5]‖c[9:11]〉 − p1p2

)
.

Pj accepts if all the checks pass.
Note that, an honest proof is accepted because a′a = b + b′ and

π1
↑

〈q1‖1,b[1]‖b[7]〉

+ 〈q1‖1,b′[1]‖b′[7]〉 = a′ · 〈q1‖1,a[1]‖a[7]〉
= a′ ·

(
〈q1‖1, c[1]‖c[7]〉 − 〈q1‖1, v1‖g1〉

)
= a′ ·

(
〈q1‖1, c[1]‖c[7]〉 − p1

)
,

〈q1q2‖q1‖q2‖1,b[5]‖b[9:11]〉
↓
π3 + 〈q1q2‖q1‖q2‖1,b′[5]‖b′[9:11]〉 = a′ · 〈q1q2‖q1‖q2‖1,a[5]‖a[9:11]〉
= a′ ·

(
〈q1q2‖q1‖q2‖1, c[5]‖c[9:11]〉 − 〈q1q2‖q1‖q2‖1, v3‖v1g2‖g1v2‖g1g2〉︸ ︷︷ ︸

= 〈q1q2‖q1‖q2‖1, v1v2‖v1g2‖g1v2‖g1g2〉

= 〈q1‖1, v1‖g1〉 · 〈q2‖2, v2‖g2〉
= p1p2

)
.

39

The Protocol Π2MP+ , Online Phase, ProveSame Command

Party Pi, on input ("ProveSame", var, u), does the following.

Exceptional Case: Ignore the input if Pi has broadcast a message of form ("ProveSame", var, ?, ?).

Prover’s Message: To prove to every other party that it has committed to consistent values for var, Pi
does the following:

• Pi prepares a linear function, represented by q‖1, by querying the random oracle with the set
Si,sent of commitments it has broadcast so far q ← RO(Pi, var, Si,sent). It broadcasts the output of
the linear function on input (u‖gi,var), that is,

broadcast ("ProveSame", var, q, h = 〈q‖1, u‖gi,var〉) .
• For each Pj 6= Pi, party Pi enumerates over all previous commands, and sends

to Pj
(
"ProveSame-0", var, ⊥

)
if there is any ("Input", sid` = (2MP, {i, j}, seqnum), (var, v`)) that v` 6= u or any ("ProveProd",
sid` = (Pf, i, j, seqnum), (var`,1, v`,1), (var`,2, v`,2), (var`,3, v`,3)) that var`,t = var and v`,t 6= u.
Otherwise,

– For each previous command ("Input", sid` = (2MP, {i, j}, seqnum), (var, v`)) (satisfying v` =
u), party Pi retrieves the OLE correlated randomness (a,B) used in sid` from Si,session and
sends Pj

to Pj
(
"ProveSame-1", sid`, π = 〈q‖1,B[1:2, 3]〉

)
as a proof that the committed value in session sid` is consistent.

– For each previous command ("ProveProd", sid` = (Pf, i, j, seqnum), (var`,1, v`,1), (var`,2, v`,2),
(var`,3, v`,3)) that var`,t = var (and satisfies v`,t = u), party Pi retrieves the OLE correlated
randomness (a,b) used in sid` from Si,prover and sends

to Pj
(
"ProveSame-2", sid`, t, π = 〈q‖1,b[2t− 1 : 2t]〉

)
.

Verifier’s Decision: Each Pj 6= Pi decides to accept or reject as follows:

• Upon receiving the "ProveSame"message, Pj collects the set S of messages Pi broadcast before
the "ProveSame" message, and verifies that the linear function q‖1 is evaluated correctly as
q = RO(Pi, var, Si,sent).

• Upon receiving ("ProveSame-3", var,⊥), Pj rejects.

• Upon receiving ("ProveSame-1", sid`, π), Pj retrieves the tensor-OLE correlated randomness
(a′,B′) used in sid` from Sj,session, and the commitment ("Input", sid`, var, c) it received from
Pi before, and check if

π + 〈q‖1, B′[3, 1:2]〉 = a′[3] · (〈q‖1, c〉 − h) .

Note that an honest proof is accepted because
π
↑
〈q‖1, B[1:2,3]〉

+ 〈q‖1, B′[3, 1:2]〉 = 〈q‖1, a[1:2] · a′[3]〉 = (〈q‖1, c
↑

(u‖gi,var)+a[1:2]

〉 − h
↑
〈q‖1, u‖gi,var〉

) · a′[3] (8)

• Upon receiving ("ProveSame-2", sid`, t, π), Pj retrieves the vector-OLE correlated randomness
(a′,b′) used in sid` from Sj,verifier, and the commitment c it received from Pi before, and check if

π + 〈q‖1, b′[2t− 1 : 2t]〉 = a′ · (〈q‖1, c[2t− 1 : 2t]〉 − h) .

Note that an honest proof is accepted because
π
↑
〈q‖1, b[2t−1:2t]〉

+ 〈q‖1, b′[2t− 1 : 2t]〉 = 〈q‖1, a[2t− 1 : 2t] · a′〉 = (〈q‖1, c〉 − a′ · h
↑

〈q‖1, u‖gi,var〉

) (9)

Pj accept, if all checks pass.

40

The Protocol Π2MP+ , Online Phase, 2MultPlus Commands

Party Pi and Pj on input ("2MultPlus", sid = (2MP, {i, j}, seqnum), zi) and ("2Multplus", sid, zj)
respectively, do the following.

Pi’s message: Pi retrieves information of session sid, including (sid, (ai,Bi), ?, vi) from Si,session and the
commitment ("Input", sid, ?, cj) that Pj has broadcast before,

broadcasts ("2MultPlus", sid,mi = vicj [1] + Bi[1, 1] + zi).

Pj ’s message: Similarly, Pj retrieves (sid, (aj ,Bj), ?, vj) and ("Input", sid, ?, ci),
broadcasts ("2MultPlus", sid,mj = vjci[1] + Bj [1, 1] + zj).

Public output reconstruction: Every party Pk for k ∈ [n], upon receiving the broadcast "2MultPlus"
messages, retrieves the commitment ("Input", sid, ?, ci) from Pi and ("Input", sid, ?, cj) from
Pj , and outputs

("Output", sid,mi +mj − ci[1] · cj [1]) .

Note that the output is correct if Pi and Pj are honest as
mi +mj − ci[1] · cj [1]

= vi · cj [1]
↑

vj+aj [1]

+ Bi[1, 1] + zi + vj · ci[1]
↑

vi+ai[1]

+ Bj [1, 1] + zj − cj [1]
↑

vj+aj [1]

· ci[1]
↑

vi+ai[1]

= vivj + zi + zj + Bi[1, 1] + Bj [1, 1]− ai[1] · aj [1]

= vivj + zi + zj

The functionality F2MP+ is securely implemented by the above protocol. In the rest of the
section, we explicitly present the simulator and prove the simulation correctness.

Data Structure: For each corrupted Pi ∈ C, the simulator prepares the following data structure,
which is of the similar structure as the honest parties’ private storage.

• Set Si,session will contain information for every computation session sid Pi participates in,
including the OLE correlation (a,B), the input variable var and plain text w ∈ F2, that is,
Si,session = {(sid, (a,B), var,w)}sid. Initially, only a,B are set, other values are uninitialized.

• Set Si,prover will contain information for every proof session sid Pi participates in as the
prover, including the OLE correlation (a,b), the input variables var1, var2, var3 and the plain
text w ∈ F11, that is, Si,prover = {(sid, (a,b), var1, var2, var3,w)}sid. Initially, only a,b are set,
other values are uninitialized.

• Set Si,verifier will contain information for every proof session sid Pi participates in as the veri-
fier, which is the OLE correlation (a,b), that is, Si,verifier = {(sid, (a,b))}sid.

Note that, the simulator knows any corrupted party’s portion of correlated randomness, as they can be
extracted from the adversary’s view in the offline phase.

The simulator also keeps a record Si,sent of all the broadcast messages from Pi. For each cor-
rupted Pi ∈ C, all broadcast messages are recorded. For each uncorrupted Pi /∈ C, all simulated
broadcast messages are recorded.

Input command. Upon the input command, the party broadcasts the one-time pad of a party-
generated vector. The one-time pad key comes from tensor-OLE correlation, which is known to
the simulator. Thus the simulation is simple: To simulate an honest party, its message is a random
string. To extract from a corrupt party, the simulator decrypts the one-time pad, stores the plain
text for later use, and extracts the effective ideal functionality call since it is written in the plain
text. Formally, the simulator works as follows:

41

Extract from corrupted party’s messages When a corrupted party Pi ∈ C broadcasts a message
("Input", sid, var, c), the session id sid = ({i, j}, seqnum) and the variable name var are
revealed in plain.

The simulator retrieves OLE correlation a ∈ F3,B ∈ F3×3 from Si,session, recovers the under-
lying message w = c− a[1:2], updates (sid, Pi, var,w) in Si,session and extracts command(

"Input", sid, (var, w[1])
)
.

Simulate honest party’s messages When the functionality sends message (sid, P, var,"Received")
for P /∈ C. The simulator samples random c ∈ F2 and simulates the corresponding broadcast
message from P as (

"Input", sid, var, c
)
.

The simulation works since c in the real world is an one-time pad.

ProveProd command. The prover Pi want to convince the verifier Pj that the input variables
(var1, v1), (var2, v2), (var3, v3) satisfies that v1v2 = v3. Such proof is enabled by the ProveProd
command, which consists of two components.

• commit-and-prove-linear: The prover Pi broadcasts an OTP, which serves as the commit-
ment of a vector w = (v1, gi,var1 , v2, gi,var2 , v3, gi,var3 , . . .). As an OTP, this message is easy to
simulate.

• Linear PCP: The OTP allows Pi to securely reveal any linear function on w to the verifier
Pj . Therefore, linear PCP allows the Pi to prove any arithmetic condition of w. The proof
requires w to be appended by some Pi-generated elements.

Extract from corrupted party’s messages When corruptedPi ∈ C broadcasts ("ProveProd", sid,
var1, var2, var3, c, q1, q2, p1, p2, π1, π2, π3), the simulator retrieves (a,b) from set Si,prover, com-
putes the underlying plain text w := c−a, replaces the entry with (sid, (a,b), var1, var2, var3,w)
in the set, and extracts command

("ProveProd", sid, (var1,w[1]), (var2,w[3]), (var3,w[5])).

To decide the value of 1rej, the simulator tests the following.

1. Check if (q1, q2) are evaluated correctly as (q1, q2)← RO(sid, c).

2. Check if p1 = 〈q1‖1, w[1]‖w[7]
↑

should be v1‖g1

〉, p2 = 〈q2‖1, w[3]‖w[8]
↑

should be v2‖g2

〉,

and p1p2 = 〈q1q2‖q1‖q2‖1, w[5]‖w[9:11]
↑

should be v3‖v1g2‖g1v2‖g1g2

〉.

3. Check if π1 = 〈q1‖1, b[1]‖b[7]〉, π2 = 〈q2‖1, b[3]‖b[8]〉,
and π3 = 〈q1q2‖q1‖q2‖1, b[5]‖b[9:11]〉.

4. Check if w[1] · w[3] = w[5]. Note that w[1],w[3],w[5] are the extracted values of vari-
ables var1, var2, var3 respectively.

42

If one of the first three checks fails, the simulator feed 1rej = 1 when the functionality asks for
additional input. If all checks pass, the simulator feed 1rej = 0 when the functionality asks
for additional input. If the first three checks all pass, but the last check fails, the simulator
gives up.

We verify the simulation case by case.

• One of the first three tests fails. We prove that the honest verifier will reject in such case, thus
setting 1rej = 1 is the right simulation. If the 1st check fails, the verifier can directly detect it.
If the 2nd check fails, the prover is trying to prove a false linear condition on the committed
vector w, which will be caught by the verifier with overwhelming probability. If the 2nd
check passes but the 3rd check fails, the prover is trying to prove a correctly linear condition
using a wrong proof, which will be rejected with overwhelming probability.

• All checks pass. By similar argument, the verifier will accept in such case. Since w[1] ·w[3] =
w[5], and 1rej is set to 0, the verifier will receive acc in the ideal world as well. Note that
w[1],w[3],w[5] are the extracted values of variables var1, var2, var3 respectively.

• The first three checks all pass, but the last check fails. By similar argument, the verifier will accept
in such case. But the verifier will receives rej in the ideal world despite the value of 1rej,
because the last check fails. We have to prove that such case happens with only negligible
probability.

In particular, we are going to bound the probability that the first two checks pass but the last check
fails. The second check passes requires that

〈q1‖1, w[1]
↑

extracted value of var1

‖w[7]〉 · 〈q2‖1, w[3]
↑

extracted value of var2

‖w[8]〉 = 〈q1q2‖q1‖q2‖1, w[5]
↑

extracted value of var3

‖w[9:11]〉

which can be rewritten as a quadratic polynomial on (q1, q2) being 0

(w[5]−w[1]w[3]) · q1q2 + (w[9]−w[1]w[8]) · q1 +

(w[10]−w[7]w[3]) · q2 + (w[11]−w[7]w[8]) = 0. (10)

If w[5] 6= w[1]w[3], the quadratic polynomial is non-zero, thus (10) is not satisfied with over-
whelming probability as long as q1, q2 are randomly sampled by the random oracle.

The above analysis works if the adversary does not queries the random oracle before Pi broad-
casts the message. In order to bound the probability the simulator gives up, we have to show that
querying the random oracle beforehand will not benefit the adversary dramatically. Thus we need
a stronger statement here:

The adversary cannot find tuple (sid,w,a) such that the other party in session sid
is not corrupted, (a,b) is Pi’s portion of OLE correlated randomness under session sid,
and Equation (10) holds for (q1, q2) = RO(sid, c = w + a).

The proof of the statement goes as follows. Since the adversary has no control on a if the other
party in session sid is honest, we can assume w.l.o.g. that a has been generated by the OLE correla-
tion generation protocol FOLEcor before the adversary queries RO(sid, ?). Whenever the adversary
queries RO(sid, c), the corresponding plain text w is determined by w = c − a. Thus due to the
randomness of (q1, q2) ← RO(sid, c), Equation (10) holds with probability O(1

|F|). Thus the adver-
sary finds such (sid,w,a) with negligible probability, as long as it only queries the random oracle
polynomial number of times.

43

Simulate honest party’s messages When the functionality sends message (sid, P, var, rej) to Pj ∈
C on behalf of honest P , the simulator simulates P ’s messages as

("ProveProd", sid,⊥).

The simulation works because an honest party will never try to prove a false statement.

When the functionality sends message (sid, P, var, acc) to Pj ∈ C on behalf of honest P , the
simulator samples c ← F11, computes (q1, q2) ← RO(sid, c), samples p1, p2 ← F. Then the
simulator retrieves a′,b′ from Sj,verifier, and simulates P ’s message as(

"ProveProd", sid, var1, var2, var3, c, q1, q2, p1, p2, π1, π2, π3

)
.

where π1, π2, π3 are computed from

π1 + 〈q1‖1,b′[1]‖b′[7]〉 = a′
(
〈q1‖1, c[1]‖c[7]〉 − p1

)
,

π2 + 〈q2‖1,b′[3]‖b′[8]〉 = a′
(
〈q2‖1, c[3]‖c[8]〉 − p2

)
,

π3 + 〈q1q2‖q1‖q2‖1,b′[5]‖b′[9:11]〉 = a′
(
〈q1q2‖q1‖q2‖1, c[5]‖c[9:11]〉 − p1p2

)
.

The simulation works, because in the real world, c, q1, q2 are one-time padded by a, g1, g2 respec-
tively, and π1, π2, π3 satisfy the above equations.

ProveSame command. Say party Pi has (var, v) as its input variable. Party Pi samples a random
guard gvar ∈ F, such that in every session sid in which var is involved, Pi will commit to a vector
containing v, gvar using the commit-and-prove-linear mechanism.

Upon the ProveSame command, Pi queries the random oracle q ← RO(Pi, var, Si,sent) to get
a random challenge q ∈ F. It uses the commit-and-prove-linear mechanism to reveal qv + gvar

on every session. Assume that corrupt Pi committed to inconsistent v′, g′ in some session, then
qv′+g′ 6= qv+gvar with overwhelming probability due to the randomness of q, thus the corruption
will be detected.

For example, if var is involved in a proof session sid = (i, j, seqnum). The two active par-
ties Pi, Pj jointly hold vector-OLE correlated randomness. Party Pi receives ai,bi, party Pj re-
ceives aj ,bj , such that ai · aj = bi + bj . Upon the ProveProd command, Pi sends the OTP
c = (. . . , v, gvar, . . .) + a as the commitment of a vector containing v, gvar.

Similarly, if var is involved in a computation session sid = ({i, j}, seqnum). The two active
parties Pi, Pj jointly hold tensor-OLE correlated randomness. Party Pi receives ai,Bi, party Pj
receives aj ,Bj , such that aia

ᵀ
j = Bi + Bᵀ

j . The ProveSame command critically relies on a vector-
OLE correlated randomness embed inside the tensor-OLE correlated randomness. In particular,
the correlated randomness consists of ai[1:2],Bi[1:2, 3] hold by Pi and aj [3],Bj [3, 1:2] hold by Pj .
They jointly form a vector-OLE correlation as

ai[1:2] · aj [3] = Bi[1:2, 3] + Bj [3, 1:2].

Upon the Input command, Pi sends the OTP c = (v, gvar) + ai[1:2] as the commitment of (v, gvar).
In either case, the commitment allows Pi to later reveal a linear function on (v, gvar) to Pj .

Extract from corrupted party’s messages When ("ProveSame", var, q, h) is broadcast by a cor-
rupted party Pi ∈ C. W.l.o.g. we assume q is evaluated correctly as q ← RO(Pi, var, Si,sent).
The simulator calls command

("ProveSame", var, v),

and feed indicator vector 1rej ∈ {0, 1}n to the functionality as additional input. The simulator
extracts v and 1rej as follows.

44

• Initialize 1rej as all zeros. Start with v being uninitialized.

• Upon Pi sends ("ProveSame-0", var,⊥) to Pj , set 1rej[j] = 1.

• For every (sid, (a,B), var,w) in set Si,session that has the same variable var, say Pj is the
other party in the session, party Pi also sends ("ProveSame-1", sid, π) to Pj . (Other-
wise Pj will reject, and the simulator can correctly simulate it by setting 1rej[j] = 1.)
The simulator checks if q ·w[1] + w[2] = h and π = 〈q‖1, B[1:2, 3]〉.

– If either check fails, Pj will reject the proof, thus the simulator should set 1rej[j] = 1.
Note that the simulator can predict whether the message will cause rejection. Pj will accept
if both checks pass, and will reject with overwhelming probability if either check fails.

– If both checks pass, and v is not initialized yet, the simulator sets v ← w[1].
Note that the simulator had extracted w[1] as value of var from Pi’s previous broadcast
message in computation session sid.

– If both checks pass, and v = w[1], the simulator does nothing.
– If both checks pass, and v 6= w[1], the simulator gives up.

• For every (sid, (a,b), var1, var2, var3,w) in Si,prover and t ∈ {1, 2, 3} such that vart = var,
say Pj is the other party in the session, party Pi also sends ("ProveSame-2", sid, t, π)
to Pj . (Otherwise Pj will reject, and the simulator can correctly simulate it by setting
1rej[j] = 1.)
Check if q ·w[2t− 1] + w[2t] = h and π = 〈q‖1, b[2t− 1 : 2t]〉.

– If either check fails, Pj will reject the proof, thus the simulator should set 1rej[j] = 1.
Note that the simulator can predict whether the message will cause rejection. Pj will accept
if both checks pass, and will reject with overwhelming probability if either check fails.

– If both checks pass, and v is not initialized yet, the simulator sets v ← w[2t− 1].
Note that the simulator had extracted w[2t−1] as value of var from Pi’s previous broadcast
message in proof session sid.

– If both checks pass, and v = w[2t− 1], the simulator does nothing.
– If both checks pass, and v 6= w[2t− 1], the simulator gives up.

• If v is still not initialized, set v ← 0.

In short, the simulator works as follows. For every proof sent by the corrupted Pi – either
("ProveSame-1", sid, π) or ("ProveSame-2", sid, t, π) – the simulator can predict whether
the proof will be accepted or not. If not, correct simulation is as easy as setting a bit in the
indicator vector 1rej to be one. If the proof will be accepted, then the simulator recalls the
extracted value of var in the corresponding session, stores it in v, and extracts command

("ProveSame", var, v)

to claim that v is the right value of var.

The only problem is that, there may be another proof from Pi that will also be accepted, but
the extracted value of var in the corresponding session is different from v. In such case, the
simulator gives up.

As long as the simulator does not give up, Pi must have used the same value for all appear-
ance of variable var in the interaction with all accepting parties.

45

To complete the argument, we need to show that the simulator gives up with negligible prob-
ability. Intuitively, if Pi commits to v1‖g1 in one session and commits to v2‖g2 in another, then
〈q‖1, v1‖g1〉 = 〈q‖1, v2‖g2〉 with overwhelming probability if q is randomly sampled. But if q is
sampled by the random oracle, we need to additionally argue that Pi cannot choose v1, g1, v2, g2

depending on the output of the random oracle. We formalize this Fiat-Shamir arguing by showing
a stronger statement:

The adversary cannot find a tuple (Pi, var, Si,sent, q) consisting of a party Pi ∈ C, a
set of messages Si,sent, a variable var, and q = RO(Pi, var, Si,sent), such that by defined
a set {(v`‖g`)}` containing

• (v`‖g`) = c − a for each exists ("Input", sid, var, c) ∈ Si,sent, such that the other
party in session sid is not corrupted, and (a,B) is Pi’s portion of tensor-OLE cor-
relation in the session.

• (v`‖g`) = c[2t− 1 : 2t]− a[2t− 1 : 2t] for each t ∈ {1, 2, 3} and ("ProveSum", sid,
var1, var2, var3, c, . . .) ∈ Si,sent such that the other party in session sid is not cor-
rupted, vart = var and (a,b) is Pi’s portion of vector-OLE correlation in the ses-
sion.

The linear mapping q‖1 has a collision on the set {(v`‖g`)}`. That is, 〈q‖1, v`‖g`〉 =
〈q‖1, v`′‖g`′〉 for distinct (v`‖g`), (v`′‖g`′) in the set.

The proof of the above statement goes as follows. Since the adversary has no control on a if the
other party in session sid is honest, we can assume w.l.o.g. that a has been generated by FOLEcor
for every session occurs in Si,sent, before the adversary queries RO(Pi, var, Si,sent).

Whenever the adversary queries RO(Pi, var, Si,sent), the corresponding set {(v`‖g`)}` is deter-
mined before the query. Thus due to the randomness of q, there is no collision with overwhelming
probability by birthday bound, as long as Si,sent contains polynomially many messages. Thus the
adversary finds such tuple (Pi, var, Si,sent, q) with negligible probability, as long as it only queries
the random oracle polynomially many times.
REMARK: A TIGHTER SECURITY ANALYSIS. Simulation for ProveSame command will be the secu-
rity level bottleneck, thus we provide a careful and tighter analysis here.

Say the corrupted party Pi, has committed to the values var in sessions with Pj for mj times.
That is, Pi has committed to vj,`‖gj,` in a session with Pj for each ` ≤ mj .

In the current analysis, the simulator will give up if there exists (j, `) 6= (j′, `′) such that
〈q‖1, vj,`‖gj,`〉 = 〈q‖1, vj′,`′‖gj′,`′〉 and vj,` 6= vj′,`′ . Therefore, the error probability isO((m1+···+mn)2

|F|),
if q randomly chosen. If the adversary repeatedly asks RO to provide tRO different q’s for the vari-
able name var, the error probability will grow proportionally to O((m1+···+mn)2

|F| · tRO).8 We can
improve the simulation and remove the dependence on m1 + · · ·+mn from the error probability.

The current simulator gives up too easily. For example, say the corrupt party chooses distinct
vj,1, vj,2, vj,3. Then on the rare event

〈q‖1, vj,1‖gj,1〉 = 〈q‖1, vj,2‖gj,2〉 6= 〈q‖1, vj,3‖gj,3〉,

the simulator will give up because the corrupted Pi manage to mislead Pj into believing vj,1 = vj,2.
But the simulator does not need to give up on this event. Pj will correctly reject the proof anyway
since it detects vj,2 6= vj,3.

A better and still sufficient set of criteria for giving up, is the following:
8If we assume w.l.o.g. that the adversary uses one of the RO outcomes it queried. Otherwise tRO should be replace

by tRO + 1.

46

• Criterion 1: For each j, if vj,1, . . . , vj,`j are not all equal and

〈q‖1, vj,1‖gj,1〉 = 〈q‖1, vj,2‖gj,2〉 = · · · = 〈q‖1, vj,`‖gj,`〉 ,

then the simulator should give up.

• Criterion 2: If there exists j 6= j′ such that vj,1 6= vj′,1

〈q‖1, vj,1‖gj,1〉 = 〈q‖1, vj′,1‖gj′,1〉 ,

then the simulator should give up.

When both criteria are not met, the simulator can safely extract v = vj,1 as the value of var, for any
j s.t. 〈q‖1, vj,1‖gj,1〉 = h.

For a randomly sampled q, for each j, criterion 1 is met with probability at most 1
|F| , since

there exists at most one value of q satisfying the equation. Criterion 1 is met with probability
O(n

2

|F|), by birthday bound. Overall, each adversary’s query to RO(Pi, var, ?) may increase the

error probability by O(n
2

|F|). The total error probability, caused by ProdSame command on var, is

O(n
2

|F| · tRO).

Simulate honest party’s messages When the functionality sends (Pi, var, ?) to all corrupted par-
ties on behalf of an uncorrupted Pi, the simulator computes q ← RO(Pi, var, Si,sent), samples
a random h ∈ F, and simulates Pi’s broadcast message as(

"ProveSame", var, q, h
)
.

In the real world, h is also uniform because it is one-time padded by gi,var.

If the functionality sends (Pi, var, rej) to a corrupted Pj , simulate Pi’s message to Pj as

("ProveSame", var,⊥).

Note that, this correctly simulates the honest party’s message, because an honest party never try to
forge a proof.

Otherwise, if the functionality sends (Pi, var, acc) to a corrupted Pj , the simulator queries
q ← RO(Pi, var, Si,sent).

• For every (sid, Pi, var, c) ∈ Si,sent such that Pj is the other party in session sid, the sim-
ulator retrieves Pj ’s portion of tensor-OLE correlation (a′,B′) used in session sid from
Sj,session, and simulates Pi’s message as

("ProveSame-1", sid, π)

where π is uniquely determined by (8).

• For every (sid, Pi, var1, var2, var3, c, . . .) ∈ Si,sent and t ∈ {1, 2, 3} such that Pj is the
other party in session sid and vart = var, the simulator retrieves Pj ’s portion of vector-
OLE correlation (a′,b′) used in session sid from Sj,session, and simulates Pi’s message
as

("ProveSame-2", sid, t, π)

where π is uniquely determined by (9).

47

Note that, this correctly simulates the honest party’s message. Because once an honest party sends a
proof, the proof must be correct.

2MultPlus command. Because we are considering the security with output substitution, and be-
cause the output of 2MultPlus is publicly reconstructable, it is sufficient to show that the honest
parties’ messages can be simulated. No matter what the corrupted parties output, the simula-
tor can extract the output due to public output reconstruction, and simulate it using the output
substitution ability.

Extract from void As we are concerning the security with output substitution, the simulator au-
tomatically extracts command

("2MultPlus", sid, zi = 0)

on behalf of corrupted Pi, for every computation session sid that Pi participates in.

Simulate honest party’s messages When the functionality sends ("Output", sid, y) to the adver-
sary. Say the session id sid = ({i, j}, seqnum). The simulator retrieves Pi’s broadcast mes-
sage ("Input", ?, ?, ci) from Si,session, and Pj ’s broadcast message ("Input", ?, ?, cj) from
Sj,session. The simulation depends on whether Pi and/or Pj is corrupted.

• If both Pi, Pj are uncorrupted, samples random mi,mj ∈ F such that mi + mj = ci[1] ·
cj [1] + y, simulates their messages as

("2MultPlus", sid,mi), ("2MultPlus", sid,mj).

• If one of Pi, Pj is uncorrupted. W.l.o.g., assume Pi is uncorrupted and Pj is corrupted.
The simulator retrieves (sid, (a,B), ?,w) from Sj,session, and simulates Pi’s message as

("2MultPlus", sid,mi),

where mi is determined by

mi = ci[1] · cj [1] + y − (wj [1]cj [1] + Bj [1, 1])︸ ︷︷ ︸
honest Pj ’s message on zj = 0

.

• If both Pi, Pj are corrupted, there is no need to simulate honest party’s message.

Output Substitution No matter what messages are sent by the corrupted parties, the simulator
can easily compute substitution output, due to public output reconstruction.

• If one of Pi, Pj is corrupted, w.l.o.g., assume Pj is corrupted. Pj is allowed to adaptively
broadcast

("2MultPlus", sid,mj)

after receiving all honest parties’ messages. By doing so, the adversary rewrite the
output of this session as y′ = mi +mj − ci[1] · cj [1].

• If both Pi, Pj are corrupted, Pi, Pj are allowed to adaptively broadcast

("2MultPlus", sid,mi), ("2MultPlus", sid,mj).

after receiving all honest parties’ messages. By doing so, the adversary rewrite the
output of this session as y′ = mi +mj − ci[1] · cj [1].

48

Statistical Security Loss. The total security loss is the sum of: (a) the probability that the simulator
gives up; (b) the soundness error of the commit-and-prove-linear mechanism.

Each time commit-and-prove-linear mechanism is used to prove a false statement, there is an
1
|F| soundness error. Notice that in our protocol, every instance of OLE correlated randomness is
used by O(1) commitment, and only O(1) statements will be proved regarding each commitment.
Thus the total soundness error is no more than O(the number of OLE correlated randomness instances

|F|).
As we have analyzed, each adversary’s query to RO(Pi, var, ?) may increase the probability

of giving up by at most O(n
2

|F|). Similarly, each adversary’s query to RO(sid, ?) may increase the
giving up probability by at most O(1

|F|). In total, the probability that the simulator gives up is no

more than O(n
2

|F| · QRO), where QRO is the number of random oracle queries that the adversary
makes.

6 MPC for Degree-3 Function

Lemma 6.1. For any degree-3 n-party function f : F`1 × · · · × F`n → F`, there is a 2-round statistically
maliciously secure MPC protocol that implements Fos

f , using tensor-OLE correlated randomness. The

security level is poly(λ)
|F| if `, `1, . . . , `n, n are at most polynomial in λ.

Proof. The lemma follows from the composition of two results:

• For any degree-3 function f , there is an effective-degree-2 semi-malicious MPRE that has
arithmetic preprocessing and uses tensor-OLE correlated randomness (Lemma 4.1).

• For any effective-degree-2 function g, Fos
g is implemented by a 2-round maliciously secure

MPC protocol using tensor-OLE correlated randomness (Lemma 5.1),

The composition comes from the definition of the semi-malicious secure MPRE (Def. 5).

Efficiency Analysis. Let mc(f) denote the total number of monomials in f .
As we constructed and analyzed in Sec. 4.3, every degree-3 function f has a semi-malicious

MPRE (f̂ , h1, . . . , hn) whose complexity isO(mc(f)). In more detail, its encoding function satisfies
mc(f̂) = O(mc(f)), its preprocessing functions satisfy cs(h1) + · · · + cs(hn) = O(mc(f)), and it
consumes O(mc(f)) instances of 4× 4 OLE correlated randomness,

As we analyzed in Sec. 5.1, there is a MPC protocol securely implementing Fos
f̂◦h

that consumes
O(mc(f)) instances of constant-size OLE correlated randomness, sends O(mc(f)) field elements
in P2P channels, and broadcasts O(mc(f)) field elements.

Composing them together, there is a MPC protocol securely implementing Fos
f against mali-

cious corruptions, whose total communication complexity is O(mc(f)) field elements. The proto-
col also consumes O(mc(f)) instances of constant-size OLE correlated randomness,

Statistical Security Loss. The total security loss is O(mc(f)+n2·QRO

|F|), where QRO is the number of
random oracle queries that the adversary makes.

7 From Degree 3 to P

In the literature of round-efficient MPC, it is well-known that degree-3 functions are complete
for arithmetic NC1 w.r.t. information-theoretic security, and are complete for P/poly w.r.t. com-

49

putational security, since there exist efficient information-theoretic (resp. computational) non-
interactive reductions from P/poly (resp. NC1) to degree-3 functions.

The information-theoretic version of Yao’s Garbled circuits [Yao86, IK02] can be viewed as a
degree-3 randomized encoding for any boolean circuit. The complexity of information-theoretic
Yao is exponential in the circuit depth. Thus the reduction is only efficient for NC1.

Extension to arithmetic branching programs (ABPs). The technique is extend to arithmetic NC1

circuits by considering their equivalent modular branching program. Every arithmetic NC1 circuit
has a degree-3 randomized encoding over the same field [IK00, IK02]. Say an arithmetic NC1

function f can be computed by an arithmetic branching program, given by a matrix Mf where
every entry is a linear function in x, such that, for every x, det(Mf (x)) = f(x). Let ` be the size of
the matrix. The tasking of computing f can be reduced to computing a degree-3 function f̂ who
has O(n2`1.5) monomials.

By composition, we obtain 2-round MPC protocols for arithmetic NC1. The protocol uses
tensor OLE correlated randomness and RO, and is maliciously secure with output substitution.

Extension to circuits based on black-box PRF. Starting from Yao’s garbled circuits, we can get a
maliciously secure MPRE for P/poly with effective degree 3 that makes black-box use of a PRF F,
using the techniques introduced in [DI05, BMR90]. For simplicity, consider garbling a single gate
g with input wire u, v and output wire o. For each input/output wire j, each party Pi samples a
pair of seeds s(i)

j,0, s
(i)
j,1 ∈ F corresponding the wire having value 0 or 1; the two labels for wire j is

then set to `j,x = s
(1)
j,x‖ . . . ‖s

(n)
j,x .

To hide the labels of the output wire o, each party locally expands their seeds through F, and
hide label `o,g(a,b) using the XOR of PRF outputs from all parties. For instance,

`o,g(a,b) ⊕ FMP(u, o, d, `u,a)⊕ FMP(v, o, d′, `u,b)

where d, d′ are set so that the same PRF output is never reused, and FMP denotes the multi-party
version of PRF

FMP(j, j′, d, `j,x) :=
⊕
i∈[n]

F(i, j, j′, d, `j,x[i]) .

These table entries are further randomly permuted using mask bits ku, kv which are additively
shared among all parties. The computed encoding is secure as long as one party remains uncor-
rupted. The computation makes black-box use of the PRF and has effective degree 3 after local
evaluation of PRF.

To rigorously present distributed Yao in Fig. 15, we formalize the notations for a boolean cir-
cuit. A boolean circuit is specified by a directed acyclic graph (V, E). Each vertex denotes a wire
in the circuit.

• For any j ∈ V , let xj denote the wire value of the j-th wire.

• Let Vi denote the set of the input wires owned by Pi. Let Vin :=
⋃
i Vi denote the set of all the

input wires.

• Any wire j 6∈ Vin is the output of a gate gj . Let uj , vj denotes the input wires of the gate, then
(uj , j), (vj , j) ∈ E . In the real execution, xj := gj(xuj , xvj).

• Let Vout denote the set of all the output wires.

50

Figure 15: Distributed Yao as a Malicious MPRE

Let F := GF(2λ).

Input: Pi has xj ∈ {0, 1} for each j ∈ Vi.

Local Randomness: Party Pi samples a bit k(i)
j ∈ {0, 1} for each j /∈ Vout, and samples seeds s(i)

j,0, s
(i)
j,1 ∈

F for each j ∈ V .

Correlated Randomness: None.

Preprocessing: For each (u, j) ∈ E , party Pi computes ŝ
(i)
u,j,x,b = F(i, u, j, b, s

(i)
j,x) for x, b ∈ {0, 1}. That

is,

hi

((
xj , kj

)
j∈Vi

,
(
k

(i)
j , s

(i)
j,0, s

(i)
j,1

)
j∈V

)
:=
((
xj , kj

)
j∈Vi

,
(
k

(i)
j , s

(i)
j,0, s

(i)
j,1)
)
j∈V ,(

F(i, u, j, 0, s
(i)
j,0),F(i, u, j, 1, s

(i)
j,0),F(i, u, j, 0, s

(i)
j,1),F(i, u, j, 1, s

(i)
j,1)
)

(u,j)∈E

)
.

Encoding Function: Define mask bit kj :=
⊕

i∈[n] k
(i)
j for each j /∈ Vout and kj := 0 for each

j ∈ Vout. Define label `j,x := s
(1)
j,x‖ . . . ‖s

(n)
j,x for each j ∈ V . Define ŝu,j,x,b :=

⊕
i∈[n] ŝ

(i)
u,j,x,b =

FMP(u, j, b, `j,x), for each (u, j) ∈ E .
The encoding consists of three parts

• Garbled input: For each j ∈ Vin, the encoding contains
x̄j := xj ⊕ kj , `j := `j,x̄j

.

• Garbled gate table: For each j /∈ Vin, let u, v be the input wires of gj , the encoding contains

wj,b1,b2 := ŝuj ,j,b1⊕kuj
,b2⊕ŝvj ,j,b2⊕kvj ,b1⊕(kj⊕gj(b1⊕kuj

, b2⊕kvj)‖`j,kj⊕gj(b1⊕kuj
,b2⊕kvj))

for b1, b2 ∈ {0, 1}.
• Output masks: For each j ∈ Vout, the encoding contains kj .

Decoding Function: For each j /∈ Vin, compute
x̄j‖`j = wj,x̄uj

,x̄vj
⊕ FMP(uj , j, x̄vj , `uj

)⊕ FMP(vj , j, x̄uj
, `vj).

Output x̄j for each j ∈ Vout. (Note that kj = 0.)

We measure the complexity of the encoding function by number of monomials and degree.
The bottleneck is `j,kj⊕gj(b1⊕kuj ,b2⊕kvj) with either measure. W.l.o.g., assume gj is AND gate (i.e.,
multiplication). Then

`j,kj⊕gj(b1⊕kuj ,b2⊕kvj) = (`j,1 − `j,0)(kj + (b1 + kuj)(b2 + kvj)) + `j,0 . (11)

Note that `j,1, `j,0, kj , kuj , kvj are linear, and each of them has O(n) monomials. Thus (11) is of
degree 3 and has O(n3) monomials.

The works of [DI05, BMR90, LPSY15] showed that even if some malicious parties use wrong
PRF outputs as their preprocessed inputs, as long as there is one honest party, the privacy of the
computed garbled circuit remain.

By composition, we obtain 2-round MPC protocols for P/poly that is maliciously secure with
output substitution, using FRO and tensor OLE correlated randomness.

Remark on boolean inputs. The distributed Yao (Fig. 15) can be viewed as an effective-degree-
3 MPRE over a large boolean extension field F := GF(2λ). Its inputs and randomness are field
elements. While the input bit xj and the additive share of mask bit k(i)

j are supposed to be chosen

51

or sampled from {0, 1}. What if a malicious party chooses xj /∈ {0, 1}? There are two answers to
this challenge.

• Particularly for distributed Yao, choosing non-boolean input xj does not give the adversary
any advantage.

• Potentially, there may exist a MPRE whose security holds only when a corrupted party
chooses boolean inputs (or randomness). In such case, we can enforce the corrupted party
to choose boolean input x ∈ {0, 1}, by relying on our MPC protocol for effective-degree-2
function (Sec. 5). Recall that, our protocol checks if the preprocessed input is well-formed,
and aborts the computation otherwise. To ensure x ∈ {0, 1}, the protocol additionally checks
if x · x = x. Such check is enabled by the ProveProd command.

8 Lifting Privacy to Security

Sec. 7 constructs 2-round MPC protocol implementingFos
f for any function f in P/poly (resp. NC1).

In words, it achieves computational (resp. statistical) security with output substitution, against up
to n−1 malicious corruptions. In this section, we will lift it to security with selective or unanimous
abort.

The most natural approach is MAC, which makes the protocol secure with selective abort [IKP10].
Such a protocol is vulnerable to selective abort attack. An adversary can let any subset of honest
parties abort, by only substituting the corresponding signatures. To prevent selective abort attacks,
we introduce a new tool called consensus MAC, in which all honest parties will abort unanimously.

8.1 To Security with Selective Abort via One-Time MAC

A MAC scheme consists of a key generation algorithm KeyGen, a signature algorithm Sign and
a verification algorithm Verify. Given a one-time secure MAC scheme (KeyGen,Sign,Verify), as
shown by [IKP10], the task of computing f securely with selective abort can be non-interactively
reduced to the task of computing the following function securely with output substitution:

g((x1, k1), . . . , (xn, kn)) = (y,Sign(y, k1), . . . ,Sign(y, kn)) ,

where y := f(x1, . . . , xn). The reduction is presented in Fig. 16.

Figure 16: Lift security with output substitution to security with selective abort

Let (KeyGen,Sign,Verify) be a MAC scheme. Define n-party function g as
g((x1, k1), . . . , (xn, kn)) = (y, σ1, . . . , σn), where y = f(x1, . . . , xn) and σi = Sign(y, ki).

Input: Upon input xi, party Pi additionally samples ki ← KeyGen(1λ).

Compute: Party Pi inputs xi, ki to Fos
g . The functionality sends y, σ1, . . . , σn to all parties.

Verify & Output: Party Pi aborts if Verify(ki, y, σi)→ "reject". Otherwise, Pi outputs y.

For arithmetic branching programs (ABPs). W.l.o.g., consider an ABP f that only outputs one
number. That is

f(x1, . . . , xn) = detMf (x1, . . . , xn),

where the mapping (x1, . . . , xn) 7→Mf (x1, . . . , xn) is affine over a given field F.

52

To minimize the complexity of the reduction, we use the simplest one-time MAC. The MAC
key k = (a, b) consists of two randomly sampled field elements a, b ∈ F. The signature algorithm
is Sign(y, k = (a, b)) = ay + b. Then computing f with selective abort is reduced to computing g
with output substitution, where

g((x1, k1 = (a1, b1)), . . . , (xn, kn = (an, bn)))

:= (f(x1, . . . , xn), a1 · f(x1, . . . , xn) + b1, . . . , an · f(x1, . . . , xn) + bn) .

Each ABP in f is transferred into n+ 1 ABPs. Each of them looks like

ai · f(x1, . . . , xn) + bi = det


Mf (x1, . . . , xn)

bi

ai−1


which is only O(1) additively larger than f . Overall, the reduction causes an O(n) multiplicative
blow-up.

For circuits. For a circuitC, our secure with output substitution protocol computes the distributed
Yao ofC. An one-time MAC was already embed inside distributed Yao, thus the protocol becomes
secure with selective abort for free.

Recall that in distributed Yao (Fig. 15), for each output wire j ∈ Vout, the decoding function
learns the output value xj together with the corresponding label `j,xj = s

(1)
j,xj
‖ . . . ‖s(n)

j,xj
∈ Fn.

Currently, the decoding function simply discards the label. A better strategy is to consider
s

(i)
j,xj

as a MAC signature. An honest party will not be fooled because the adversary know nothing

about s(i)
j,1−xj .

8.2 To Security with Unanimous Abort via an Extra Round

Since we have round-preserving cheap (resp. free) reduction to security with selective abort for
ABPs (resp. circuits), we automatically achieves security with unanimous abort with an additional
round. In this section, we will show an alternative reduction achieving security with unanimous
abort for ABPs, that uses an extra round and and only introduces a constant overhead.

Similarly, we consider an ABP f . In the first two round, compute y = f(x1, . . . , xn) together
with Sign(y, k), where Sign is one-time MAC and the MAC key k is additively shared among
all parties. In the last round, open the MAC key so that everyone can verify. This reduction is
presented in Fig. 17.

Lemma 8.1. The protocol in Fig. 17 implements Fabort
f .

Proof. Since k := k1 + · · ·+ kn is hidden when the adversary chooses substitution output (y′, σ′) 6=
(y, σ), the verification Verify(k, y, σ) rejects with overwhelming probability.

By instantiating the MAC scheme by one-time MAC, the task of computing f with unanimous
abort is reduced to computing g with output substitution (using one less round), where

g((x1, k1 = (a1, b1)), . . . , (xn, kn = (an, bn))) :=
(
f(x1, . . . , xn), (

∑
i ai) · f(x1, . . . , xn) + (

∑
i bi)

)
.

53

Figure 17: Lift security with output substitution to security with unanimous abort

Defines n-party function g such that: g((x1, k1), . . . , (xn, kn)) = (y, σ) where y = f(x1, . . . , xn) and
σ = Sign(y, k1 + · · ·+ kn).

Input: Upon input xi, party Pi additionally samples ki ← KeyGen(1λ).

Compute: Party Pi inputs xi, ki to Fos
g . The functionality sends y, σ to all parties.

Commit: In parallel to the computation of g, party Pi publicly commits to ki.

Open: After the computation of g, party Pi opens ki.

Verify & Output: Party Pi aborts if Verify(k1 + · · ·+ kn, y, σi)→ "reject". Otherwise, Pi outputs y.

g’s second output term looks like

∑
i ai · f(x1, . . . , xn) +

∑
i bi = det


Mf (x1, . . . , xn)

∑
i bi

∑
i ai−1


,

which is as complex as f (assuming w.l.o.g. that Mf has at least n monomials). Thus g only has a
constant overhead compared with f .

8.3 To Security with Unanimous Abort via Consensus MAC

Consensus MAC9 is designed for lifting security with output substitution. It allow signing a mes-
sage using a collection of keys k1, . . . , kn, such that a forged signature conflicts every single key
ki with high probability. For the purpose of constructing MPC, public key is unnecessary, and
one-time security is sufficient.

Definition 7 ([ACGJ19]). A consensus MAC scheme is a tuple (KeyGen,Sign,Verify) of three
polynomial-time algorithms

• KeyGen is a randomized algorithm, on input 1λ, outputs a key k ∈ K, where K denotes the
key space.

• Sign is a deterministic algorithm, on input a message m ∈ M and keys k1, . . . , kn, output a
signature σ. HereM denotes the message space.

• Verify on input a key k, a message m, a signature σ, output "accept" or "reject".

that satisfies correctness and one-time consensus security.
Correctness: For any message m, sample keys ki ← KeyGen(1λ), and compute the signature σ ←
Sign(m, k1, . . . , kn), then

∀i ∈ [n],Verify(ki,m, σ)→ "accept"

with overwhelming probability.
One-time Consensus Security: Any polynomial-time adversary wins the following security game
with negligible probability.

9The consensus MAC is the One-Time Multi-Key MAC introduced in [ACGJ19].

54

• The adversary chooses a message m, a set of corrupted parties C ⊆ [n], keys ki for each
corrupted i ∈ C, and sends them to the challenger.

• The challenger samples ki ← KeyGen(1λ) for each honest i /∈ C, computes the signature
σ ← Sign(m, k1, . . . , kn), and sends σ to the adversary.

• The adversary outputs m′, σ′.

• The adversary wins if (m′, σ′) 6= (m,σ), and Verify(ki,m
′, σ′)→ "accept" for some i /∈ C.

An example of consensus MAC scheme that only signs one field element is presented in
Sec. 2.4. Here we present another consensus MAC scheme (Fig. 18) that supports long message.
In the scheme, i-th party’s key consists of a field element ai and a function hi that maps the mes-
sage to a field element. As we are going to show, it suffices to sample hi from a 2-universal hash
function family. To sign a message m, first compute bi ← hi(m) for all i, the signature σ is the
degree-(n− 1) polynomial that σ(ai) = bi.

Say the adversary is given message m and signature σ, and want to generate (m′, σ′) 6= (m,σ)
such that the i-th party will accept (m′, σ′) with good probability. The i-th party computes b′ ←
hi(m

′) and check if σ′(ai) = b′.

• If m′ 6= m, since the adversary has no information about b′, the check fails with overwhelm-
ing probability.

• If m′ = m, then b′ = σ(ai). That is, the check passes if and only if σ′(ai) = σ(ai). The two
polynomial σ′, σ agree on at most n−1 points. Since the adversary has almost no knowledge
about ai, with overwhelming probability, ai is not among the points where σ′, σ agree.

As every honest party will abort with overwhelming probability, the honest parties will abort
unanimously.

Figure 18: Consensus MAC Scheme

Initialize: On input 1λ, decide a field F such that |F| ≥ 2λ.

KeyGen: Sample a random a ∈ F, and sample h : M → F from a 2-universal hash function family
(e.g., a random affine function). Output k = (a, h).

Sign: On input a message m ∈ M and keys k1, . . . , kn. Compute bi ← hi(m). If there exist distinct i, j
such that ai = aj , output ⊥. Otherwise, compute the unique degree-(n − 1) polynomial σ such
that σ(ai) = bi for all i ∈ [n], and output σ.

Verify: On input a key k = (a, h), a message m, a signature σ. Compute b← k(m). Output "accept"
if σ(a) = b.

Lemma 8.2. The scheme in Fig. 18 is a secure consensus MAC scheme.

Proof. The correctness is straight-forward. Sign only outputs ⊥ upon a collision, which happens
with probability n2/|F| if the keys are randomly sampled.

For security, consider any adversary. As defined in the security game:

• The adversary chooses a message m, a set of corrupted parties C ⊆ [n], keys ki = (ai, hi) for
each corrupted i ∈ C, and sends them to the challenger.

55

• The challenger samples ki = (ai, hi) for each honest i /∈ C, computes σ ← Sign(m, k1, . . . , kn),
and sends σ to the adversary.

• The adversary outputs m′, σ′.

The adversary’s winning probability is negligible:

• Case I, m′ = m,σ′ = σ: In such case, by definition, the adversary never wins.

• Case II, m′ = m,σ = ⊥: For each honest party Pi, denote bi ← hi(m). In such case, the
adversary learns no information about bi for every i /∈ C. Therefore, the probability an
honest Pi accepts the signature σ′ is no more than 1/|F|.

• Case III, m′ = m,σ′ 6= σ: For each honest party Pi, denote bi ← hi(m). An honest Pi accepts
only if σ′(ai) = bi = σ(ai). For each i /∈ C, the adversary knows no information about ai
other than that ai /∈ {aj}j∈C . The two polynomials σ′, σ agree on at most n − 1 points. Due
to the randomness of ai conditioning on the adversary’s view,

Pr[σ′(ai) = σ(ai)] ≤
n− 1

|F| − |C|
.

• Case IV, m′ 6= m: For each honest party Pi, denote b′i ← hi(m
′). Due to the 2-universal

hashing hi, the adversary knows no information about b′i for every i /∈ C. Therefore, the
probability an honest Pi accepts the signature σ′ is no more than 1/|F|.

Given consensus MAC scheme, lifting security with output substitution to security with (unan-
imous) abort becomes easy. Every party Pi additionally sample a signature key ki. They jointly
compute y = f(x1, . . . , xn) together with the signature, using the secure with output substitution
protocol for P/poly. Then every party can verify the output. By the security of consensus MAC, all
honest parties will abort unanimously if the adversary substitute the output and/or the signature.

Figure 19: Lift security with output substitution to security with unanimous abort

Let (KeyGen,Sign,Verify) be a consensus MAC scheme. Defines n-party function g such that: the i-th
input of g consists of f ’s i-th input and a MAC key ki; the output of g consists of y = f(x1, . . . , xn) and
σ = Sign(y, k1, . . . , kn).

Input: Upon input xi, party Pi additionally samples ki ← KeyGen(1λ).

Compute: Party Pi inputs xi, ki to Fos
g . The functionality sends y, σ to all parties.

Verify & Output: Party Pi aborts if Verify(ki, y, σ)→ "reject". Otherwise, Pi outputs y.

Lemma 8.3. The protocol in Fig. 19 implements Fabort
f .

Proof. Every honest party will abort with overwhelming probability if the adversary replace the
output by (y′, σ′) 6= (y, σ). This is guaranteed by the consensus MAC scheme.

9 Putting Pieces Together

In this section, we put components built in previous sections together to form the full MPC proto-
cols for computing Boolean circuits, and describe its complexity. We also analyze the complexity

56

of the protocols for computing ABPs. Here, the complexity of a MPC protocol refers to the number
of field elements in the communication, and the number of constant-size OLE correlated random-
ness used.

Recall that in Sec. 6, we showed that for any degree-3 function f , there is a 2-round MPC
protocol that is maliciously secure with output substitution. The complexity of the protocol is
O(mc(f)), where mc(f) denotes the total number of monomials in f . The security level of the
protocol is O(mc(f)+n2·QRO

|F|), where QRO is the number of random oracle queries that the adversary
makes.

MPC protocols for circuits. Let f be a function that is computed by a Boolean circuit of ` gates.
By composing with the reduction from P/poly to degree-3 in Sec. 7, the tasking of computing f
can be reduced to computing a degree-3 function f̂ such that mc(f̂) = O(n3`). Therefore, there is a
2-round MPC protocol that is maliciously secure with output substitution. The complexity of the
protocol isO(n3`). The protocol makes black-bow calls to PRF. If the PRF function is also modeled
as a random oracle, the statistical security level is O(n

3`+n2·QRO
|F|).

Combining with the lifting in Sec. 8, there are, as shown in Fig. 20,

• A 3-round MPC protocol that is maliciously secure with unanimous abort and has the same
complexity.

• A 2-round MPC protocol that is maliciously secure with selective abort and has the same
complexity.

• A 2-round MPC protocol that is maliciously secure with unanimous abort and has an addi-
tive polynomial growth on the complexity.

`-size ABP `-gate circuit
complexity statistical security complexity

2-round, security
w/ output substitution

O(n2`1.5) O(n
2`1.5+n2·QRO

|F|) O(n3`)

3-round, security
w/ unanimous abort

2-round, security
w/ selective abort

O(n3`1.5) O(n
3`1.5+n2·QRO

|F|)

2-round, security
w/ unanimous abort

poly(n, `) O(poly(n,`)+n2·QRO

|F|) O(n3`) + poly(n, λ)

Complexity is measure by the number of field elements communicated.

Figure 20: The final MPC protocols

The full protocols for Boolean circuits For completeness, we unfold the 2-round MPC protocol
secure with unanimous abort for circuits below. Let f ∈ P/poly be the function to evaluate.

Input and correlated randomness Party Pi receives input xi and its portion of correlated ran-
domness r′i. The correctness randomness contains two parts r′i = (r′i

MPRE, r′i
MPC), the former

will be consumed by our effective-degree-2 MPRE and the latter will be consumed by our
2-round MPC for computing effective-degree-2 functions.

57

Authenticate the output Let (KeyGen,Sign,Verify) be the consensus MAC scheme constructed in
Sec. 8. Define fauth as

fauth((x1, k1), . . . , (xn, kn)) =
(
f(x1, . . . , xn),Sign(f(x1, . . . , xn), k1, . . . , kn)

)
Party Pi samples key ki ← KeyGen. And let x′i := (xi, ki). This step corresponds to the
reduction in Sec. 8 that reduces the task of securely computing f with unanimous abort to
securely computing fauth with output substitution.

Distributed Yao Let fdYao, hdYao
1 , . . . , hdYao

n ,DecdYao be the distributed-Yao MPRE for fauth. Party
Pi samples the randomness rdYao

i and computes x′′i = hdYao
i (x′i, r

dYao
i), where the preprocess-

ing hdYao
i evaluates a PRF function.

This step corresponds to the reduction in Sec. 7 that reduces securely computing fauth (with
output substitution) to securely computing the degree-3 function fdYao (with output substi-
tution).

Canonicalization of degree-3 function As shown by [BGI+18, GIS18, LLW20], there is a MPRE
f can, hcan

1 , . . . , hcan
n ,Deccan for fdYao, whose encoding function f can is a canonical degree-3

function as defined in Sec. 4. Party Pi samples the randomness rcan
i , and computes x′′′i =

hcan
i (x′′i , r

can
i) = (x′′i , r

can
i).

Effective-degree-2 MPRE for canonical degree-3 functions Let f̂ , h1, . . . , hn,Dec be the semi-malicious
effective-degree-2 MPRE for f can, constructed in Sec. 4. Party Pi samples local randomness
rMPRE
i and holds correlated randomness r′i

MPRE.

This step corresponds to the reduction in Sec. 4 that reduces securely computing f can to
securely computing an effective degree-2 function f̂ ◦ h.

2-round MPC for effective-degree-2 functions Use the MPC protocols for computing effective-
degree-2 functions constructed in Sec. 5 to evaluate

ŷ = f̂(hi(x
′′′
1 , r

MPRE
1 , r′1

MPRE), . . . , hn(x′′′n , r
MPRE
n , r′n

MPRE)) .

In the protocol execution, Pi uses input (x′′′i , r
MPRE
i , r′i

MPRE), and correlated randomness
r′i

MPC. At the end of the protocol execution, Pi obtains ŷ.

Decode and verify Party Pi decodes ŷ

(y, σ)← DecdYao(Deccan(Dec(ŷ))) ,

It aborts if Verify(ki, y, σ)→ "reject", otherwise outputs y.

MPC for arithmetic branching programs. Let f be an arithmetic NC1 function that is computed
by an arithmetic branching program of size `, where ` is the size of the matrix Mf such that
detMf (x) = f(x). By composing with the reduction from NC1 to degree-3 in Sec. 7, the tasking
of computing f can be reduced to computing a degree-3 function f̂ such that mc(f̂) = O(n2`1.5).
Therefore, there is a 2-round MPC protocol that is maliciously secure with output substitution.
The complexity of the protocol is O(n2`1.5) and the security level is O(n

2`1.5+n2·QRO
|F|).

Combining with the lifting in Sec. 8, there are, as shown in Fig. 20,

• A 3-round MPC protocol that is maliciously secure with unanimous abort and has the same
complexity and security level.

58

• A 2-round MPC protocol that is maliciously secure with selective abort and has an O(n)
blow-up on the complexity and security level.

• A 2-round MPC protocol that is maliciously secure with unanimous abort and has a polyno-
mial blow-up on the complexity and security level.

The full protocol for computing ABPs is the same as the above protocol for Boolean circuits, except
that distributed-Yao is replaced with distributed-AIK.

Acknowledgement

We thank Antigoni Polychroniadou for being our shepherd and her help, and the anonymous
Crypto reviewers for their helpful comments and suggestions. We thank Hoeteck Wee for being
part of the initial discussion and his suggestion of directions. Finally, we thank Stefano Tessaro for
his comments.

Huijia Lin and Tianren Liu were supported by NSF grants CNS-1936825 (CAREER), CNS-
2026774, a JP Morgan AI research Award, a Cisco research award, and a Simons Collaboration on
the Theory of Algorithmic Fairness. In addition, Tianren Liu was supported by NSFC excellent
young scientists fund program.

References

[ABT18] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation
in two rounds. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I,
volume 11239 of LNCS, pages 152–174. Springer, Heidelberg, November 2018.

[ABT19] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is complete for the
round-complexity of malicious MPC. In Yuval Ishai and Vincent Rijmen, editors, EU-
ROCRYPT 2019, Part II, volume 11477 of LNCS, pages 504–531. Springer, Heidelberg,
May 2019.

[ACGJ19] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two
round information-theoretic MPC with malicious security. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 532–561.
Springer, Heidelberg, May 2019.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
FOCS, pages 166–175. IEEE Computer Society Press, October 2004.

[AJJM20] Prabhanjan Ananth, Abhishek Jain, Zhengzhong Jin, and Giulio Malavolta. Multi-
key fully-homomorphic encryption in the plain model. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 28–57. Springer,
Heidelberg, November 2020.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In David Pointcheval and Thomas Jo-
hansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501. Springer,
Heidelberg, April 2012.

59

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 489–518. Springer, Heidelberg, August 2019.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators from ring-LPN. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS, pages
387–416. Springer, Heidelberg, August 2020.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, edi-
tors, ACM CCS 2018, pages 896–912. ACM Press, October 2018.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In Amit Sahai, editor,
TCC 2013, volume 7785 of LNCS, pages 315–333. Springer, Heidelberg, March 2013.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak,
François-Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited. In Phillip Ro-
gaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 1–20. Springer, Heidelberg,
August 2011.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM
Press, October 2016.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Opti-
mizing rounds, communication, and computation. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages
163–193. Springer, Heidelberg, April / May 2017.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations of
homomorphic secret sharing. In Anna R. Karlin, editor, ITCS 2018, volume 94, pages
21:1–21:21. LIPIcs, January 2018.

[BGMM20] James Bartusek, Sanjam Garg, Daniel Masny, and Pratyay Mukherjee. Reusable two-
round MPC from DDH. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II, volume 12551 of LNCS, pages 320–348. Springer, Heidelberg, November 2020.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th
ACM STOC, pages 1–10. ACM Press, May 1988.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532.
Springer, Heidelberg, April / May 2018.

[BLPV18] Fabrice Benhamouda, Huijia Lin, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Two-round adaptively secure multiparty computation from

60

standard assumptions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part I, volume 11239 of LNCS, pages 175–205. Springer, Heidelberg, November 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May
1990.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE with
short ciphertexts. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 190–213. Springer, Heidelberg, August 2016.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally se-
cure protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May
1988.

[CDI+19] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail
Ostrovsky, and Vinod Vaikuntanathan. Reusable non-interactive secure computation.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, vol-
ume 11694 of LNCS, pages 462–488. Springer, Heidelberg, August 2019.

[CGP15] Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure two-
party computation from indistinguishability obfuscation. In Yevgeniy Dodis and Jes-
per Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 557–585.
Springer, Heidelberg, March 2015.

[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE
from learning with errors. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 630–656. Springer, Heidelberg,
August 2015.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 378–394. Springer, Heidelberg, August 2005.

[DKR15] Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively secure, univer-
sally composable, multiparty computation in constant rounds. In Yevgeniy Dodis and
Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages 586–613.
Springer, Heidelberg, March 2015.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer,
Heidelberg, August 2012.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In 26th ACM STOC, pages 554–563. ACM Press, May 1994.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, vol-
ume 8349 of LNCS, pages 74–94. Springer, Heidelberg, February 2014.

[Gil99] Niv Gilboa. Two party RSA key generation. In Michael J. Wiener, editor, CRYPTO’99,
volume 1666 of LNCS, pages 116–129. Springer, Heidelberg, August 1999.

61

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC:
Information-theoretic and black-box. In Amos Beimel and Stefan Dziembowski, ed-
itors, TCC 2018, Part I, volume 11239 of LNCS, pages 123–151. Springer, Heidelberg,
November 2018.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, edi-
tors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer, Heidelberg,
August 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all NP-statements
in zero-knowledge, and a methodology of cryptographic protocol design. In An-
drew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 171–185. Springer,
Heidelberg, August 1987.

[GP15] Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from
indistinguishability obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 614–637. Springer, Heidelberg, March
2015.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC
from bilinear maps. In Chris Umans, editor, 58th FOCS, pages 588–599. IEEE Com-
puter Society Press, October 2017.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg,
April / May 2018.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseu-
dorandom generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[IK97] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with ap-
plications. In Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997,
Ramat-Gan, Israel, June 17-19, 1997, Proceedings, pages 174–184. IEEE Computer Soci-
ety, 1997.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–304.
IEEE Computer Society Press, November 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz,
Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo,
editors, ICALP 2002, volume 2380 of LNCS, pages 244–256. Springer, Heidelberg, July
2002.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

62

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In David S. Johnson and Uriel Feige, editors,
39th ACM STOC, pages 21–30. ACM Press, June 2007.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
577–594. Springer, Heidelberg, August 2010.

[IKSS21] Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan. On the
round complexity of black-box secure MPC. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 214–243, Virtual Event, August
2021. Springer, Heidelberg.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on obliv-
ious transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 572–591. Springer, Heidelberg, August 2008.

[LLW20] Huijia Lin, Tianren Liu, and Hoeteck Wee. Information-theoretic 2-round MPC with-
out round collapsing: Adaptive security, and more. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages 502–531. Springer,
Heidelberg, November 2020.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant
round multi-party computation combining BMR and SPDZ. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
319–338. Springer, Heidelberg, August 2015.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidelberg, May 2016.

[Pas12] Anat Paskin-Cherniavsky. Secure computation with minimal interaction. PhD thesis,
Computer Science Department, Technion, Haifa, Israel, 2012. advised by Yuval Ishai
and Eyal Kushilevitz.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 217–
238. Springer, Heidelberg, October / November 2016.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Implementation of OLE from OT

In this section, we present a protocol for generation of tensor OLE correlated randomness (Fig. 21).
The protocol is secure against malicious adversary, and is based on OT and commitment.

63

We first present a semi-honest protocol in Sec. A.1 using OT. The security is lifted to malicious
security in Sec. A.2. The lift causes a constant-factor overhead on the communication complexity.

The dimension of tensor OLE correlated randomness is symmetric. A pair of parties get a,b ∈
Fk respectively and the additive sharing of abᵀ. It is easy to generalized the problem so that a,b
may have different lengths.

We let the field F be GF(2λ), where λ is the security parameter. It is easy to generalized the
protocol for any boolean extension field.

Figure 21: The TOLE Correlation Functionality FOLEcor

Parameter: A finite field F and the number of parties n. A subset C ⊆ [n] of parties are corrupted by
the adversary.

Generate: Upon Pi sends ("Gen", sid = (i, j, k, seqnum)) and Pj sends ("Gen", sid = (i, j, k, seqnum)),
where session id sid consists of two participants Pi, Pj , the dimension ki × kj , and a sequence
number seqnum.
The functionality samples random ai ∈ Fk,aj ∈ Fk,Bi ∈ Fk×k,Bj ∈ Fk×k, such that aia

ᵀ
j =

Bi + Bᵀ
j , and stores (sid,ai,aj ,Bi,Bj) if no entry was previous stored under session id sid.

If i ∈ C, the functionality sends (sid,ai,Bi) to the adversary. If j ∈ C, the functionality sends
(sid,aj ,Bj) to the adversary. In either case, the functionality waits the adversary to abort the
protocol.
If the adversary does not abort the protocol, the functionality sends (sid,ai,Bi) to Pi, sends
(sid,aj ,Bj) to Pj .

A.1 Semi-honest Tensor-OLE Correlation Generation

Alice samples random a ∈ Fk1 , C ∈ Fk1×k2 . Bob samples random b ∈ Fk2 . It suffices to let Bob
learn D = abᵀ −C.

Note that, the mapping from b to D = abᵀ−C affine over GF(2). Let (a)(2) ∈ GF(2)k1λ denotes
the bit representation of a, let (C)(2) ∈ GF(2)k1k2λ denotes the bit representation of C. Similarly
define (b)(2) and (D)(2). Then D = abᵀ −C if and only if

(D)(2) = Ma · (b)(2) − (C)(2) , (12)

where Ma ∈ GF(2)k1k2λ×k2λ is a bit matrix determined by a. Therefore, using Oblivious Transfer,
Alice inputs Ma,C, Bob inputs b, then Bob learns D.

Such protocol is not maliciously secure, because corrupted Alice might input a maliciously
generated matrix instead of Ma.

A.2 Maliciously Secure Implement

The protocol is sketched in Sec. 2.5. Alice samples a,C1. Bob samples b,D2. Alice and Bob learn
C2,D1 respectively from FOT such that

(D1)(2) = Ma · (b)(2) − (C1)(2) , (C2)(2) = Mb · (a)(2) − (D2)(2) .

Say Alice is corrupted. She inputs M∗ into FOT instead, so that Bob actually learns D1 that

(D1)(2) = M∗ · (b)(2) − (C1)(2).

64

To detect if Alice is misbehaving, Bob samples random H ∈ GF(2)λ×`1`2λ, challenges Alice
with H . On receiving Alice’s answer v, Bob checks if v = H · (D1 −D2)(2). Say M∗ = Ma + ∆,
then

(D1 −D2)(2) = (Ma + ∆) · (b)(2) − (C1)(2) −
(
Mb · (a)(2) − (C2)(2)

)
= ∆ · (b)(2) − (C1 −C2)(2). (13)

H · (D1 −D2)(2) = H ·∆ · (b)(2) −H · (C1 −C2)(2). (14)

Alice meets Bob’s challenge if and only if she guesses H ·∆ · (b)(2) correctly. Since b is completely
random and is hidden from Alice, she succeeds with probability 2− rank(H∆). Her chance depends
on the rank of ∆,

• If ∆ has high rank, say, rank(∆) ≥ λ, then with overwhelming probability, H∆ also has high
rank. So Alice will be caught with overwhelming probability.

• If ∆ has low rank, say rank(∆) < λ, then Alice might be lucky enough to guess H ·∆ · (b)(2).

• Note that, if Alice is honest, then ∆ is the zero matrix. In such case, she can always guess
H ·∆ · (b)(2) correctly.

If rank(∆) < λ, Alice has a non-negligible of guessing H · ∆ · (b)(2) correctly. Moreover, if Alice
guesses it correctly, she learns H ·∆ · (b)(2) as a leakage.

If Bob is corrupted, it still holds that abᵀ = C1 +D1. Corrupted Bob may inputM∗∗ = Mb+∆′

into FOT so that Alice learns C2 that

(C2)(2) = M∗∗ · (a)(2) − (D2)(2) .

Later, the honest Alice will answer Bob’s challenge with v := H · (C1 −C2)(2). Since

v := H · (C1 −C2)(2) = −H∆′ · (a)(2) −H · (D1 −D2)(2) ,

Bob will learn H∆′ · (a)(2) as a leakage of a.
We use extraction to remove any leakage. Alice samples a random matrix E and computes E·a.

By Leftover Hash Lemma, if the random matrix E is of proper dimension, E · a is independent
from the leakage H∆′ · (a)(2), for most choice of E.

Symmetrically, Bob samples a random matrix F can computes F ·b. By Leftover Hash Lemma,
F · b is independent from the leakage H ·∆ · (b)(2).

Alice and Bob exchange E,F, and compute (a′,C′), (b′,D′) respectively

a′ = E · a , C′ = E ·C1 · Fᵀ , b′ = F · b , D′ = E ·D1 · Fᵀ .

It is easy to verify that a′b′ᵀ = C′ + D′.
Up to this point, Alice and Bob jointly generate the arithmetic analog of random OT. It satisfies

the first of the following properties but not the second:

• (a′ is hidden from Bob.) If Alice is honest, a′ is uniformly random conditioning on Bob’s
knowledge.

• (a′ is not chosen by Alice.) If Bob is honest, a′ is uniformly random.

65

For many purposes (e.g. the commit-and-prove-linear mechanism in Fig. 5), the first property is
already sufficient. But lacking the second property is fatal for our protocol (). To enforce uniform
randomness, Alice and Bob have to jointly toss the coins.

More precisely, Alice samples a random vector s and sends it to Bob, then Bob computes
b′′ = b′ + s. As long as one of Alice and Bob is honest, the distribution of b′′ will be uniform.
Similarly, Bob samples r,R at random and sends them to Alice. They compute (a′′,C′′), (b′′,D′′)
respectively

a′′ = a′ + r , C′′ = a′′sᵀ + C′ + R , b′′ = b′ + s , D′′ = D′ + rb′
ᵀ −R ,

so that
a′′b′′

ᵀ
= a′′sᵀ + a′b′

ᵀ
+ rb′

ᵀ
= a′′sᵀ + C′ + R︸ ︷︷ ︸

=C′′

+D′ + rb′
ᵀ −R︸ ︷︷ ︸

=D′′

.

To prevent corrupted Alice (resp. Bob) to choose s (resp. r,R) adaptively, s (resp. r,R) should be
committed by the beginning.

Figure 22: Tensor-OLE Correlated Randomness Generation Protocol

Generate Alice samples a← F`1 , C1 ← F`1×`2 . Bob samples b← F`2 , D2 ← F`1×`2 .
Alice computes Ma ∈ GF(2)`1`2λ×`2λ, lets Bob learn D1 from FOT such that

(D1)(2) := Ma · (b)(2) − (C1)(2).

Bob computes Mb ∈ GF(2)`1`2λ×`1λ, lets Alice learn C2 from FOT such that

(C2)(2) := Mb · (a)(2) − (D2)(2).

Test Bob samples H ← GF(2)2λ×`1`2λ and sends H . Alice computes

v := −H · (C1 −C2)(2) ,

and sends v to Bob. Bob aborts if v 6= H · (D1 −D2)(2).

Extract Alice (resp. Bob) samples and commits E← Fk1×`1 (resp. F← Fk2×`2) at the beginning of the
protocol. They open E,F to each other. Alice computes a′,C′, Bob computes b′,D′, such that

a′ := E · a , b′ := F · b ,
C′ := E ·C1 · Fᵀ , D′ := E ·D1 · Fᵀ .

Randomize Alice samples and commits s ← Fk2 at the beginning of the protocol. Bob samples and
commits r ← Fk1 , R ← Fk1×k2 at the beginning of the protocol. They open s, r,R. Alice com-
putes a′′,C′′, Bob computes b′′,D′′, such that

a′′ := a′ + r , b′′ := b′ + s ,

C′′ := C′ + a′′sᵀ + R , D′′ := D′ + rb′
ᵀ −R .

Alice outputs a′′,C′′. Bob outputs b′′,D′′.

Lemma A.1. The protocol in Fig. 22 securely implements FOLEcor in Fig. 21 if letting `1 = k1 + 4,
`2 = k2 + 3. The security level is O(2−λ).

Assuming 2-round OT, the protocol in Fig. 22 takes 4 rounds.

66

Generation. In the first round, Alice inputs a to FOT. In the second round, Bob inputs Mb,D2 to
FOT, and Alice gets C2.

In the first round, Bob inputs b to FOT. In the second round, Alice inputs Ma,C1 to FOT,
and Bob gets D1.

Test. In the third round, Bob sends H . In the last round, Alice sends v.

Extraction and Randomization. In the first round, Alice (resp. Bob) commits E, s (resp. F, r,R).
In the last round, Alice (resp. Bob) opens E, s (resp. F, r,R).

Moreover, it can be easily optimized to 3-round by the following modification, because v is a linear
function of H if Alice is honest.

Test. In the second round, Bob inputs H to FOT. In the last round, Alice inputs her strategy to
FOT so that Bob gets v.

The 3-round version is at least as secure as the 4-round version. From the security perspective,
the only difference is that the 3-round version imposes more restriction on corrupted Alice. In the
3-round version, H is hidden from Alice and v has to be a linear function of H . So it suffices to
prove the security with abort of the 4-round version.

Proof of Lemma A.1. The earlier discussion has shown the correctness and the semi-honest security
of the protocol. For the malicious security with abort, we start with the simpler case when Bob is
corrupted.

Simulation when Bob is corrupted:

• Receive (b′′,D′′) from the ideal functionality.

• In the first round: Get b,F, r,R. Set b′ = Fb. Set s = b′′ − b′. Set D′ = D′′ − rb′ᵀ + R.
Sample random E. Sample random D1 conditioning on D′ = ED1F

ᵀ.

• In the second round: Disclose D1. Get M∗∗,D2.

• In the third round: Get H . Let ∆′ = M∗∗ − Mb. Give up if H∆′ · (x)(2),E · x are not
independent for random x← F`1 .

• In the last round: Set v = −H∆′ · (a)(2) − H · (D1 − D2)(2) for random a ∈ F`1 . Disclose
v,E, s.

In both the simulation and the real execution, s,E,D1 are independent and uniformly random.
In the simulation, this is partially because (b′′,D′′) is uniform. In the real execution, D1 is uniform
because it is one-time padded by C1.

The simulator correctly simulates v (or equivalently, the leakageH∆′ ·(a)(2)) only ifH∆′ ·(x)(2)

is independent from E · x for random x← F`1 . Otherwise the simulator gives up.
By Leftover Hash Lemma [HILL99, BDK+11], for random (E,x), the distribution (E,E · x)

conditioning on the leakage H∆′ · (x)(2) is 2−(`1−2−k1)λ/2-close to uniform. If we set `1 = k1 + 4,
the statistical distance is no more than 2−λ. Moreover, since everything is linear over GF(2), the
statistical distance is either 0 or ≥ 1/2. Thus for most E (with probability ≥ 1 − 2−λ+1), E · x and
∆ · (x)(2) are independent. In other words, the probability that the simulator gives up is no more
than 2−λ+1.

67

Then we analyze the harder case when Alice is corrupted. The corrupted Alice may choose
M∗ = Ma + ∆ so that Bob gets D1

(D1)(2) = M∗ · (b)(2) − (D1)(2) = (abᵀ)(2) + ∆ · (b)(2) − (D1)(2) .

Define L as (L)(2) = ∆ · (b)2, then C1 = abᵀ + L−D1.
To pass the test, Alice has to guess H∆ · (b)2, which equals H(L)(2), correctly. Consider the

case rank(H∆) = rank ∆. In such case, guessing H(L)(2) is equivalent to guessing L. If Alice
guesses L and observes Bob not aborting, she learns L as a leakage. Since we have

abᵀ = (C1 − L) + D1 ,

the simulator can take C1 − L as Alice’s “effective C1”.

Simulation when Alice is corrupted:

• Receive (a′′,C′′) from the ideal functionality.

• In the first round: Get a,E, s.

• In the second round: Simulate C2 as uniform. Get M∗,C1.

• In the third round: Simulates H as uniform. Let ∆ = M∗ −Ma.

Do one of the following depending on the rank of ∆ and H∆:

– If rank ∆ ≥ λ and rank(H∆) ≥ λ, send ⊥ to the ideal functionality10.

– If rank ∆ ≥ λ and rank(H∆) < λ, give up.

– If rank ∆ < λ and rank(H∆) 6= rank ∆, give up.

– If rank ∆ < λ and rank(H∆) = rank ∆, continue.

• In the last round: Sample random F. Give up if ∆ · (y)(2),F · y are not independent for
random y← F`2 .

Sample random b← F`2 and set the leakage L as (L)(2) = ∆ · (b)2.

Set r = a′′ −E · a. Set R = C′′ − a′′sᵀ −E(C1 − L)Fᵀ.

Disclose F, r,R. Receive v. Send ⊥ to the ideal functionality if

v 6= H ·
(
(C1 − L)(2) − (C2)(2)

)
.

In both the simulation and the real execution, C2, H,F, r,R are independent and uniformly
random.

The simulator gives up with probability O(2−λ). The simulator gives up only if one of the
following events happens

• rank ∆ ≥ λ and rank(H∆) < λ,

• rank ∆ < λ and rank(H∆) 6= rank ∆,

• rank ∆ < λ and ∆ · (y)(2),F · y are not independent for random y← F`2 .

10The simulation stops after sending ⊥ to the ideal functionality. A correlated randomness generation protocol has
no private input, so there is nothing to hide if the protocol is aborted.

68

The probability of the first event is bounded by Lemma A.3. The probability of the second event
is bounded by Lemma A.2. The probability of the third event is bounded by the Leftover Hash
Lemma, as long as `2 = k2 + 3.

If rank(H∆) ≥ λ, Alice will be caught with probability at least 1 − 2−λ in the real execution.
The simulation, in such case, let Bob abort. The corresponding security loss is O(2−λ).

Finally, consider the case if rank(H∆) = rank ∆ < λ and ∆ · (y)(2),F · y are independent for
random y ← F`2 . The leakage is L simulated correctly, because in the real execution (L)(2) :=
∆ · (b)2 is independent from F · b.

The proof uses the following two auxiliary lemmas.

Lemma A.2. For any matrix ∆ ∈ GF(2)`1×`2 such that rank ∆ ≤ λ, sample a random matrix H ←
GF(2)2λ×`1 , then

Pr
[
rank(H∆) = rank ∆

]
≥ 1− 2−λ.

Proof. Let span(∆), span(H∆) denote the column space of ∆ and H∆.
The matrix H∆ has the same rank as ∆ if and only if span(∆) is as large as span(H∆). Notice

that y 7→ Hy is a surjection from span(∆) to span(H∆). The mapping is a bijection if the null
space contains only the zero vector. Due to the randomness of H , any non-zero vector falls into
the null space with probability 2−2λ. The proof concludes with the union bound.

Pr
[
rank(H∆) = rank ∆

]
= Pr

[
y 7→ Hy is a bijection from span(∆) to span(H∆)

]
= Pr

[
∀v ∈ span(∆),v 6= 0 =⇒ Hv 6= 0

]
≥ 1−

∑
v∈span(∆)

Pr
[
v 6= 0 and Hv = 0

]
≥ 1− 2λ2−2λ = 1− 2−λ

Lemma A.3. For any matrix ∆ ∈ GF(2)`1×`2 such that rank ∆ ≥ λ, sample a random matrix H ←
GF(2)2λ×`1 , then

Pr
[
rank(H∆) ≥ λ

]
≥ 1− 2−λ.

Proof. It suffices to consider the hardest case when rank ∆ = λ. The hardest case is proved by
Lemma A.2.

69

	Introduction
	Technical Overview
	Multi-Party Randomized Encoding
	Semi-Malicious Effective-Degree-2 MPRE
	MPC for Effective-Degree-2 Functions
	Lift Security with Output Substitution
	Tensor OLE Correlated Randomness Generation from OT

	Definitions
	Secure Multi-Party Computation
	Multi-Party Randomized Encoding

	MPRE for Degree-3 Functions
	Background: Semi-honest MPRE for Degree-3 Functions
	CDS Encoding
	Semi-Malicious MPRE for Degree-3 Functions

	MPC Protocol for Effective-Degree-2 Functions
	The Functionality F2MP+ Suffices for Effective-Degree-2 Function Evaluation
	The Protocol 2MP+ Implementing F2MP+

	MPC for Degree-3 Function
	From Degree 3 to P
	Lifting Privacy to Security
	To Security with Selective Abort via One-Time MAC
	To Security with Unanimous Abort via an Extra Round
	To Security with Unanimous Abort via Consensus MAC

	Putting Pieces Together
	Implementation of OLE from OT
	Semi-honest Tensor-OLE Correlation Generation
	Maliciously Secure Implement

