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Abstract. Searchable Encryption schemes provide secure search over
encrypted databases while allowing admitted information leakages. Gen-
erally, the leakages can be categorized into access and volume pattern.
In most existing SE schemes, these leakages are caused by practical de-
signs but are considered an acceptable price to achieve high search ef-
ficiency. Recent attacks have shown that such leakages could be easily
exploited to retrieve the underlying keywords for search queries. Under
the umbrella of attacking SE, we design a new Volume and Access Pat-
tern Leakage-Abuse Attack (VAL-Attack) that improves the matching
technique of LEAP (CCS ’21) and exploits both the access and volume

patterns. Our proposed attack only leverages leaked documents and the
keywords present in those documents as auxiliary knowledge and can
effectively retrieve document and keyword matches from leaked data.
Furthermore, the recovery performs without false positives. We further
compare VAL-Attack with two recent well-defined attacks on several real-
world datasets to highlight the effectiveness of our attack and present the
performance under popular countermeasures.

Keywords: Searchable Encryption · Access pattern · Volume pattern ·
Leakage · Attack

1 Introduction

In practice, to protect data security and user privacy (e.g., under GDPR), data
owners may choose to encrypt their data before outsourcing to a third-party
cloud service provider. Encrypting the data enhances privacy and gives the own-
ers the feeling that their data is stored safely. However, this encryption relatively
restricts the searching ability. Song et al. [34] proposed a Searchable Encryption
(SE) scheme to preserve the search functionality over outsourced and encrypted
data. In the scheme, the keywords of files are encrypted, and when a client wants
to query a keyword, it encrypts the keyword as a token and sends it to the server.
The server then searches the files with the token corresponding to the query, and
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afterwards, it returns the matching files. Since the seminal SE scheme, many re-
search works have been presented in the literature, with symmetrical [7, 9, 10, 13]
and asymmetrical encryption [1, 5, 36, 38]. Nowadays, SE schemes have been de-
ployed in many real-world applications such as ShadowCrypt [17] and Mimesis
Aegis [23].

Leakage. In an SE scheme, an operational interaction is usually defined as a
client sending a query to the server and the server responding to the query with
the matching files. Nevertheless, this interaction could be eavesdropped on by
an attacker. The messages could be intercepted because they are sent over an
unprotected channel, or the attacker is the cloud service provider itself, who
stores and accesses all the search requests and responses. The attacker may
choose to match the query with a keyword such that he can comprehend what
information is present on the server. The query and response here are what we
may call leakage. In this work, we consider two main types of leakage patterns:
the access pattern, the response from the server to a query, and the search

pattern, which is the frequency a query is sent to the server. Besides these types,
we also consider the volume pattern as leakage. This pattern is seen as the size
of the stored documents on the server. The leakage patterns can be divided into
four levels, by Cash et al. [8]. In this work, we consider our leakage level to be
L2, which equals the fully-revealed occurrence pattern, together with the volume
pattern to create a new attack on the SE scheme. Note that a formal definition
of the leakages is given in Section 3.1.
Attacks on SE. There exist various attacks on SE that work and perform
differently. Most of these attacks take the leaked files as auxiliary knowledge.
Islam et al. [18] presented the foundation for several attacks on SE schemes. They
stated that, with sufficient auxiliary knowledge, one could create a co-occurrence
matrix for both the leakage and the knowledge so that it can easily map queries
to the keywords based on the lowest distance. Cash et al. [8] later proposed an
attack where the query can be matched to a particular keyword based on the
total occurrence in the leaked files. These attacks with knowledge about some
documents are known as passive attacks with pre-knowledge. Blackstone et al. [4]
developed a SubgraphVL attack that provides a relatively high query recovery
rate even with a small subset of the leaked documents. The attack matches
keywords based on unique document volumes as if it is the response pattern.
Ning et al. [28] later designed the LEAP attack. LEAP combines the existing
techniques, such as co-occurrence and the unique number of occurrences, to
match the leaked files to server files and the known keywords to queries based
on unique occurrences in the matched files. It makes good use of the unique
count from the Count attack [8], a co-occurrence matrix from the IKK attack
[18] (although LEAP inverts it to a document co-occurrence matrix) and finally,
unique patterns to match keywords and files. Note that we give related work and
general comparison in Section 6.
Limitations. The works in [4, 8, 18, 28] explain their leakage-abusing methods,
but they only abuse a single leakage pattern, while multiple are leaked in SE
schemes. Besides the leakage patterns, the state-of-the-art LEAP attack abuses
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the access pattern but does not exploit its matching techniques to the full
extent. In addition to extending their attack, a combination of leakage can be
used to match more documents and queries.

We aim to address the issue of matching keywords by exploiting both the
access pattern and volume pattern. The following question arises naturally:
Could we match queries and documents in a passive attack by exploiting the
volume and access patterns to capture a high recovery rate against popular de-
fences?
Contributions. We answer the above research question by designing an attack
that matches leaked files and keywords. Our attack expands the matching tech-
niques from the LEAP attack [28] and exploits the volume pattern to match
more documents. The attack improves the LEAP attack by fully exploring the
leakage information and combining the uniqueness of document volume to match
more files. These matches can then be used to extract keyword matches. All the
matches found are correct, as we argue that false positives are not valuable in
real-world attacks.
• Besides exploiting the access pattern, we also abuse volume pattern leak-
age. We match documents based on a unique combination of volume and number
of keywords with both leakage patterns. We can match almost all leaked docu-
ments to server documents using this approach.
• We match keywords using their occurrence pattern in matched files.
• Besides matching keywords in matched files, we use all leaked documents for
unique keyword occurrence, expanding the keyword matching technique from
the LEAP attack. We do this to get the maximum amount of keyword matches
from the unique occurrence pattern.
• We run our attack against three different datasets to test the performance,
where we see that the results are outstanding as we match almost all leaked
documents and a considerable amount of leaked keywords. Finally, we compare
our attack to the existing state-of-the-art LEAP and SubgraphVL attacks. Our
attack performs great in revealing files and underlying keywords. In particular,
it surpasses the LEAP attack, revealing significantly more leaked files and key-
words. VAL-Attack recovers almost 98% of the known files and above 93% of the
keyword matches available to the attacker once the leakage percentage reaches
5%. When 10% of the Enron database is leaked, which is 3,010 files with 4,962
keywords, we match 2,950 files and 4,909 queries, respectively, corresponding
to 98% and 99%. VAL-Attack can still compromise encrypted information, e.g.,
over 90% recovery (with 10% leakage) under volume hiding in Enron and Lucene,
even under several popular countermeasures. We note that our proposed attack
is vulnerable to a combination of padding and volume hiding.

2 Preliminaries

2.1 Searchable Encryption

In a general SE scheme, a user encrypts her data and uploads the encrypted
data to a server. After uploading the data, the user can send a query containing
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an encrypted keyword to the server, and the server will then respond with the
corresponding data. We assume the server is honest-but-curious, meaning that it
will follow the protocol but will try to retrieve as much information as possible.
The scheme. At a high level, an SE scheme consists of three polynomial-time
algorithms: Enc,QueryGen and Search [13, 15, 21, 24, 27]. Definition 1 shows
the algorithms in more detail. The client runs the algorithm Enc and encrypts
the plaintext documents and the corresponding keywords before uploading them
to the server. Enc outputs an encrypted database EDB, which is sent to the
server. QueryGen, run by the user, requires a keyword and outputs a query
token that can be sent to the server. The function Search is a deterministic
algorithm that is executed by the server. A query q is sent to the server; the server
takes the encrypted database EDB and returns the corresponding identifiers of
the files EDB(q). After it has retrieved the file identifiers, the user has to do
another interaction with the server to retrieve the actual files.

Definition 1. Searchable Encryption

– Enc(K,F ): the encryption algorithm takes a master key K and a document
set F = {F1, ..., Fn} as input and outputs the encrypted database EDB :=
{Enck(F1), ..., EncK(Fn)};

– QueryGen(w): the query generation algorithm takes a keyword w as input
and outputs a query token q.

– Search(q, EDB): the search algorithm takes a query q and the encrypted
database EDB as input and outputs a subset of the encrypted database EDB,
whose plaintext contains the keyword corresponding to the query q.

Leakage. A query and the server response are considered the access pattern.
The documents passed over the channel have their volume; this information is
considered the volume pattern. In Section 3.1, we will explain the leakage in
more detail.

2.2 Notation

In the VAL-Attack, we have m′ keywords (w) and m queries (q), and n′ leaked-
documents and n server documents, denoted as di and edi, respectively; for a
single document, similarly for wi and qi. Note wi may not be the underlying
keyword for query qi, equal for di and edi. The notations are given in Table 1.
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Table 1: Notation Summary

F Plaintext document set, F = {d1, ..., dn} F ′ Leaked document set, F ′ = {d1, ..., dn′}

E Server document set, E = {ed1, ..., edn} W Keyword universe, W = {w1, ..., wm}

W ′ Leaked keyword set, W ′ = {w1, ..., wm′} Q Query set, Q = {q1, ..., qm}

A m′ × n′ matrix of leaked documents B m× n matrix of server documents

M ′ n′ × n′ co-occurrence matrix of F ′ M n× n co-occurrence matrix of E

vi Volume (bit size) of document i |di| Number of keywords in document i

C Set of matched documents R Set of matched queries

3 Models

In an ideal situation, there is no information leaked from the encrypted database,
the queries sent, or the database setup. Unfortunately, such a scheme is not prac-
tical in real life as it costs substantial performance overheads [16]. The attacker
and the leakage are two concerns in SE schemes, and we will discuss them both
in the following sections, as they can vary in different aspects.

3.1 Leakage Model

Leakage is what we define as information that is (unintentionally) shared with
the outer world. In our model, the attacker can intercept everything sent from
and to the server. The attacker can intercept a query that a user sends to the
server and the response from the server. It then knows which document identifiers
correspond to which query. This query → document identifier response is what
we call the access pattern. The leakage is defined as [4]:

Definition 2 (access pattern). The function access pattern (AP) = (APk,t)k,t∈N :
F (k)×W t(k) → [2[n]]t, such that APk,t(D,w1, ..., wt) = D(w1), ..., D(wt).

As discussed earlier, we assume the leakage level is L2 [8], where the attacker
does not know the frequency or the position of the queried keywords in the
document response.

The volume pattern is leakage that tells the size of the document. It is
relevant to all response leaking encryption schemes [6, 9, 11, 13, 20, 21] and
ORAM-based SE schemes [26]. The leakage is defined formally as follows [4]:

Definition 3 (volume pattern). The function volume pattern (Vol) = (V olk,t)k,t∈N :
F (k)×W t(k) → Nt, such that V olk,t(D,w1, ..., wn) = ((|d|w)d∈D(w1), ..., (|d|w)d∈D(wn)),
Where | · |w represents the volume in bytes.
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Figure 1: Technical Framework of Existing Attacks

3.2 Attack Model

The attacker in SE schemes can be a malicious server that stores encrypted data.
Since the server is honest-but-curious [4], it will follow the encryption protocol
but wants to learn as much as possible. Therefore, the attacker is passive but
still eager to learn about the content present on the server. Our attacker has ac-
cess to some leaked plaintext documents, keeps track of the access and volume

pattern and tries to reveal the underlying server data. Figure 1 shows a visu-
alization of our attack model. We assume that the attacker has access to all the
queries and responses used in the SE scheme. This number of queries is realistic
because if one waits long enough, all the queries and results will eventually be
sent over the user-server channel. The technical framework delineates the LEAP,
SubgraphVL and our designed attack.

The attacker in our model has access to some unencrypted files stored on the
server. This access can be feasible because of a security breach at the setup phase
of the scheme, where the adversary can access the revealed files. Another scenario
is if a user wants to transfer all of his e-mails from his unencrypted mail storage
to an SE storage server. The server can now access all the original mail files, but
new documents will come as new e-mails arrive. Therefore, the adversary has
partial knowledge about the encrypted data present on the server. The attacker
has no access to any existing query to keyword matches and only knows the
keywords present in the leaked files. With this information, the attacker wants to
match as many encrypted document identifiers to leaked documents and queries
to keywords such that he can understand what content is stored on the server.
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The passive attacker is less potent than an active attacker, who can upload
documents, with chosen keywords, to the server to match queries to keywords
[37]. Furthermore, the attacker has no access to the encryption or decryption
oracle. Because the attacker relies on the access and volume pattern coun-
termeasures that hide these patterns will reduce the attack performance.

4 The Proposed Attack

4.1 Main Idea

At a high level, our attack is built from the LEAP attack [28] by elevating
the keyword matching metric to increase the number of keyword matches. Fur-
thermore, each document is labelled with its document volume and number of
keywords, and VAL-attack matches using the uniqueness of this label, improv-
ing the recovery rate. We first extend the matching technique from LEAP. The
approach does not consist of only checking within the matched documents but
also keeping track of the occurrence in the unmatched files. This method results
in more recovered keywords for the improvement of LEAP that provides a way
to match rows that do not uniquely occur in the matched files. We expand the
attack by exploiting the volume pattern since the document size is also leaked
from response leaking encryption schemes, as described in Section 3.1. We can
extend the comprehensive attack by matching documents based on the volume

pattern. Our new attack fully explores the leakage information and matches al-
most all leaked documents. We increase the keyword matches with the maximal
file matches to provide excellent performance.

4.2 Leaked Knowledge

The server stores all the documents in the scheme. There are a total of n plaintext
files denoted as the set F = {d1, ..., dn}, with in total m keywords, denoted as
the set W = {w1, ..., wm}. We assume the attacker can access:
• The total number of leaked files (i.e. plaintext files) is n′ with in total m′

keywords. Suppose F ′ = {d1, ..., dn′} is the set of documents known to the
attacker and W ′ = {w1, ..., wm′} is the corresponding set of keywords that are
contained in F ′. Note that n′ ≤ n and m′ ≤ m.
• The set of encrypted files, denoted as, E = {ed1, ..., edn} and corresponding
query tokens, Q = {q1, ..., qm} with underlying keyword set W .
• The volume of each server observed document or leaked file is denoted as vx
for document dx or server document edx. The number of keywords or tokens is
represented as the size of the document |dx| or |edx| for the same documents,
respectively.

The attacker can construct an m′ × n′ binary matrix A, representing the
leaked documents and their corresponding keywords. A[dx][wy] = 1 iff. keyword
wy occurs in document dx. The dot product of A is denoted as the symmetric
n′ ×n′ matrix M ′, whose entry is the number of keywords that are contained in
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both document dx and document dy. We give an example of the matrices with
known documents in Figure 6 (Appendix A).

After observing the server’s files and query tokens, the attacker can construct
an m × n binary matrix B, representing the encrypted files and related query
tokens. B[edx][qy] = 1 iff. query qy retrieved document edx. The dot product of
B is denoted as the symmetric n × n matrix M , whose entry is the number of
query tokens that retrieve files edx and edy from the server. We give an example
of the matrices with observed encrypted documents in Figure 7 (Appendix A).

4.3 Our Design

The basis of the attack is to recursively find row and column mappings between
the two created matrices, A and B, where a row mapping represents the under-
lying keyword of a query sent to the server, and a column mapping indicates
the match between a server document identifier and a leaked plaintext file. Note
that each leaked document is still present on the server, meaning that n′ ≤ n
and there is a matching column in B for each column in A. Similarly to the
rows, each known keyword corresponds to a query, so m′ ≤ m as we could know
all the keywords, but we do not know for sure. In theory, there is a correct row
mapping for each row in A to a row in B. The goal of the VAL-Attack is to find
as many correct mappings as possible.

We divide the process of finding as many matches as possible into several
steps. The first step is to prepare the matrices for the rest of the process. The
algorithm then maps columns based on unique column-sum, as they used in the
Count attack [8], but instead of using it on keywords, we try to match docu-
ments here. Another step is matching documents based on unique volume and
the number of keywords or tokens. As this combination can be a unique pattern,
we can match many documents in this step. The matrices M and M ′ are used
to match documents based on co-occurrence. Eventually, we can pair keywords
on unique occurrences in the matched documents when several documents are
matched. This technique is used in the Count attack [8], but we ’simulate’ our
own 100% knowledge here. With the matched keywords, we can find more docu-
ments, as these will give unique rows in matrices A and B that can be matched.
We will introduce these functions in detail in the following paragraphs.
Initialization. First, we initialize the algorithm by creating two empty dictio-
naries, to which we eventually add the correct matches. We create one dictionary
for documents and the other for the matched keywords, C (for column) and R
(for row). Next, as we want to find unique rows in the matrices A and B, we
must extend matrix A. It could be possible that not all underlying keywords are
known beforehand, in which case n′ < n, and we have to extend matrix A to
find equal columns. Therefore we extend matrix A to an m×n′ matrix that has
the first m′ rows equal to the original matrix A and the following m−m′ rows
of all 0s. See Figure 10 (Appendix A) for an example. The set {wm′+1, ..., wm}
represents the keywords that do not appear in the leaked document set F ′.
Number of keywords. Now that the number of rows in A and B are equal, we
can find unique column-sums to match documents. This unique sum indicates
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that a document has a unique number of keywords and can thus be matched
based on this unique factor. Similar to the technique in the Count attack [8],
we sum the columns, here representing the keywords in A and B. The unique
columns in B can be matched to columns in A, as they have to be unique in
A as well. If a columnj-sum of B is unique and columnj′ -sum of A exists, we
can match documents edj and dj′ because they have the same unique number
of keywords.

Volume and keyword pattern. The next step is matching documents based
on volume and keyword pattern. If there is a server document edj with a unique
combination of volume vj and number of tokens |edj | and there is a document
dj′ with the same combination, we can match document edj to dj′ . However, if
multiple server documents have the same pattern, we need to check for unique
columns with the already matched keywords between these files. Initially, we
will have no matched keywords, but we will rerun this step later in the process.
Figure 2 shows a concrete example, and Algorithm 1 describes our method.

Figure 2: Document matching on volume and number of keywords. Given multi-
ple candidates, match on a unique column with the already matched keywords.

(a) Multiple documents with the same pattern of volume and number of key-
words/tokens.

Leaked files · · · d4 d6 d8 · · · dn′

Volume · · · 120 120 120 · · · 120

#Keywords · · · 15 15 15 · · · 18

Server files · · · ed6 ed9 ed10 · · · edn

Volume · · · 120 120 120 · · · 150

#Tokens · · · 20 15 15 · · · 15

(b) With the already matched keywords, create unique columns to match documents.
Here d6 and ed8 can be matched, as well as d9 and ed15.



ACR d4 d6 d8 d9

w2 1 0 1 1

w3 1 1 1 0

w5 0 0 0 1

...
...

...
...

wt 1 1 1 0





BCR ed8 ed9 ed10 ed15

q1 0 1 1 1

q3 1 1 1 0

q15 0 0 0 1

...
...

...
...

qt 1 1 1 0



Co-occurrence. When having some matched documents, we can use the co-
occurrence matrices M and M ′ to find other document matches. For an un-
matched server document edx, we can try an unmatched leaked document dy.
If Mx,k and M ′

y,k′ are equal for each matched document pair (edk, dk′) and no
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Algorithm 1 matchByVolume

Input: R,A (m× n′), B (m× n)

1: C′ ← {}
2: patterns ← {(vj , |edj |) with volume vj and #tokens |edj | of document edj}
3: for p ∈ patterns do
4: enc docs ← [edj with pattern p]
5: if |enc docs| = 1 then
6: edj ← enc docs[0]
7: C′[edj ] ← dj′ with pattern p
8: else if |R| > 0 then
9: docs ← [dj′ with pattern p]
10: BCR ← enc docs columns and R rows of B
11: ACR ← docs columns and R rows of A
12: for columnj ∈ BCR that is unique do
13: C′[edj ] ← dj′ with columnj ∈ ACR

14: return C′

other document dy′ has the same results, then we have a new document match
between edx and dy. The algorithm for this step is shown in Algorithm 2.

Algorithm 2 coOccurrence

Input: C,M (n× n),M (n′ × n), A (m× n′), B (m× n)

1: while C is increasing do
2: for each dj′ ̸∈ C do
3: sumj′ ← columnj′ -sum of A
4: candidates ← [edj ̸∈ C where columnj-sum of B = sumj′ ]
5: for edj ∈ candidates do
6: for (edk, dk′) ∈ C do

7: if Mj,k ̸= M
′

j′,k′ then
8: candidates ← candidates \ edj
9: if |candidates| = 1 then
10: edj ← candidates[0]
11: C[edj ] ← dj′

12: return C

Keyword matching. We match keywords using the matched documents. To
this end, we create matrices Bc and Ac by taking the columns of matched doc-
uments from matrices B and A. Note that these columns will be rearranged to
the order of the matched documents, such that column Bcj is equal to column
Acj′ for document match (edj , dj′). Matrices Bc and Ac are shaped m × t and
m′ × t, respectively, for t matched documents. We give the algorithm for this
segment in Algorithm 3 and a simple example in Figure 8 (Appendix A).

A row in the matrices indicates in which documents a query or keyword
appears. If a rowi in Bc is unique, rowi is also unique in B, similar to Ac and
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Algorithm 3 matchKeywords

Input: C,A (m× n′), B (m× n)

1: R ← {}
2: Bc ← C columns of B
3: Ac ← C columns of A
4: for rowi ∈ Bc do
5: if rowi is unique in Bc then
6: if rowi′ ∈ Ac = rowi then
7: R[qi] ← wi′

8: else ▷ Match based on occurrence in (server) files
9: docs ← [i′ ∈ Ac where Ac[i

′] = rowi]
10: e docs ← [j ∈ Bc where Bc[j] = rowi]
11: Bx ← sum of rows in B[e docs], sort descending
12: Ax ← sum of rows in A[docs], sort descending
13: if Ax[1] < Ax[0] > Bx[1] then
14: ix ← index of Bx[0] ∈ e docs
15: jx ← index of Ax[0] ∈ docs
16: R[qix ] ← wjx

17: return R

A. Hence, for rowi in Bc, that is unique, and if there is an equal rowj in Ac, we
can conclude that the underlying keyword of qi is wj .

Nevertheless, if rowi is not unique in Bc, we can still try to match the keyword
to a query. A keyword can occur more often in the unmatched documents than
their query candidates; thus, they will not be valid candidates. We create a list
Bx with for each similar rowi in Bc the sum of rowi in B; similar for list Ax,
with rowi in Ac and the sum of rowi in A. Next, if the highest value of Ax,
which is Axj , is higher than the second-highest value of Ax and Bx, referred to
as Axj′ and Bxi′ , respectively, we can conclude that keyword wj corresponds to
the highest value of Bx, i.e. Bxj

, which means that wj matches with qj . We put
an example in Figure 3 (Appendix A).

Figure 3: Example of matching keywords in matched documents. Query q3 has a
unique row and therefore matches with keyword w1. Queries q1, q2 and keywords
w2, wm′ have the same row. However, keyword wm′ occurs more often in A than
w2 and query q2 in B. Therefore q1 matches with wm′ .



Bc ed3 ed2 ··· edt

q1 1 1 · · · 0
q2 1 1 · · · 0
q3 1 0 · · · 1
...

...
...

. . .
...

qm 0 1 · · · 0





Sum in B

q1 9
q2 7
q3 −
...

...
qm −





Ac d1 d2 ··· dt

w1 1 0 · · · 1
w2 1 1 · · · 0
w3 0 0 · · · 1
...

...
...

. . .
...

wm′ 1 1 · · · 0





Sum in A

w1 −
w2 7
w3 −
...

...
wm′ 8


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Keyword order in documents. We aim to find more documents based on
unique columns given the query and keyword mappings. First, we create matrices
Br and Ar with the rows from the matched keywords in R. Br and Ar are
submatrices of B and A, respectively, with rearranged row order. Br and Ar are
shaped t× n and t× n′, respectively, for t matched files. Note that we show an
example in Figure 9 (Appendix A). If any columnj of Br is unique and there
exists an equal columnj′ in Ar, we know that edj is a match with dj′ .

The next step is to set the rows of the matched keywords to 0 in B and A.
Then, similar to before, we use the technique from the Count attack [8]; we sum
the updated columns in A and B and try to match the unique columns in B to
columns in A. If a columnj-sum of B is unique and an equal columnj′ -sum in A
exists, we can match document edj and dj′ .

The complete algorithm of our VAL-attack is in Algorithm 4, Appendix B.

4.4 Countermeasure Discussions

Some countermeasures have been proposed to mitigate leakage-abuse attacks
[8, 12, 18, 32]. The main approaches are padding and obfuscation. Below, we
have some discussions on the countermeasures.

The IKK attack [18] and the Count attack [8] discussed a padding counter-
measure, where they proposed a technique to add fake document identifiers to
a query response. These false positives could then later be removed by the user.
This technique is also called Hiding the Access Pattern [22].

The LEAP attack [28] crucially relies on the number of keywords per doc-
ument, and if the scheme adds fake query tokens to documents on the server,
they will not be able to match with their known documents. However, they also
proposed a technique that describes a modified attack that is better resistant to
padding. This technique, which is also used in the Count attack [8], makes use of
a window to match keywords. But this will give false positives and thus reduce
the performance of the attack.

The SubgraphVL attack [4] depends on the volume of each document. Volume-
hiding techniques from Kamara et al. [19] reduce the attack’s performance, but
it is not clear if they completely mitigate the attack.

A padding technique that will make all documents of the same size, i.e.
adding padding characters, will reduce the uniqueness in matching based on
the volume of a document. If the padding technique can be extended such that
false positives are added to the access pattern, we have no unique factor in
matching documents based on the number of keywords per file. Therefore, a
combination of the two may decrease the performance of the VAL-Attack.

5 Evaluation

We set up the experiments to run the proposed attack to evaluate the perfor-
mance. Furthermore, we compare the file and query recovery of the VAL-Attack
with the results from the LEAP [28] and SubgraphVL attack [4]. We notice that
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the LEAP attack is not resistant to the test countermeasures, and Blackstone
et al. [4] argue for their SubgraphVL attack that it is not clear whether volume-
hiding constructions may mitigate the attack altogether. From this perspective,
we only discuss the performance of VAL-Attack against countermeasures in Sec-
tion 5.3. It would be an interesting problem to test the countermeasures on the
LEAP and SubgraphVL attacks, but that is orthogonal to the focus of this work.

5.1 Experimental Setup

We used the Enron dataset [35] to run our comparison experiments. We leveraged
the sent mail folder from each of the 150 users from this dataset, resulting in
30,109 e-mails from the Enron corporation. The second dataset we used is the
Lucene mailing list [2]; we specifically chose the ”java-user” mailing list from the
Lucene project for 2002-2011. This dataset contains 50,667 documents. Finally,
we did the tests on a collection of Wikipedia articles. We extracted plaintext
documents from Wikipedia in April 2022 using a simple wiki dump4 and used
the tool from David Shapiro [33] to extract plaintext data, resulting in 204,737
files. The proposed attack requires matrices of size n × n; therefore, we limited
the number of Wikipedia files to 50,000. We used Python 3.9 to implement
the experiments and run them on machines with different computing powers to
improve running speed.

To properly leverage those data from the datasets for the experiments, we
first extracted the information of the Enron and Lucene e-mail content. The
title’s keywords, the names of the recipients or other information present in the
e-mail header were not used for queries. NLTK corpus [3] in Python is used
to get a list of English vocabulary and stopwords. We removed the stopwords
with that tool and stemmed the remaining words using Porter Stemmer [30].
We further selected the most frequent keywords to build the keyword set for
each document. For each dataset, we extracted 5,000 words as the keyword set
W . Within the Lucene e-mails, we removed the unsubscribe signature because
it appears in every e-mail.

The server files (n) and keywords (m) are all files from the dataset and 5,000
keywords, respectively. The leakage percentage determines the number of files
(m′) known to the user. The attacker only knows the keywords (n′) leaked with
these known documents. The server files and queries construct a matrix B of
size m×n; while the matrix A of size m′×n′ is constructed with the leaked files.
We took the dot product for both matrices and created the matrices M and M ′,
respectively. Note that the source code to simulate the attack and obtain our
results is available here: https://github.com/StevenL98/VAL-Attack.

Because our attack does not create false positives, the accuracy of the re-
trieved files and keywords is always 100%. Therefore, we calculated the percent-
age of files and keywords retrieved from the total leaked files and keywords.
Each experiment is run 20 times to calculate an average over the simulations.

4 https://dumps.wikimedia.org/simplewiki/20220401/

simplewiki-20220401-pages-meta-current.xml.bz2

https://github.com/StevenL98/VAL-Attack
https://dumps.wikimedia.org/simplewiki/20220401/simplewiki-20220401-pages-meta-current.xml.bz2
https://dumps.wikimedia.org/simplewiki/20220401/simplewiki-20220401-pages-meta-current.xml.bz2
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We chosen 0.1%, 0.5%, 1%, 5%, 10%, 30% as leakage percentages. The lower
percentages are chosen to compare with the results from the LEAP attack [28],
and the maximum of 30% is chosen because of the stagnation in query recovery.

5.2 Experimental Results

The results tested with the different datasets are given in Figures 4a and 4b,
which show the number and percentage of files and keywords recovered by our
attack. The solid line is the average recovery in those plots, and the shades are
the error rate over the 20 runs.

We can see that the VAL-attack recovers almost 98% of the known files and
above 93% of the keywords available to the attacker once the leakage percentage
reaches 5%. These percentages are based on the leaked documents. When 10%
of the Enron database is leaked, which is 3,010 files with 4,962 keywords, we can
match 2,950 files and 4,909 queries, corresponding to 98% and 99%, respectively.
The Lucene dataset is more extensive than Enron, and therefore we have more
files available for each leakage percentage. One may see that we can recover
around 99% of the leaked files and a rising number of queries, starting from
40% of the available keyword set. The Wikipedia dataset does not consist of
e-mails but rather lengthy article texts. We reveal fewer files than the e-mail
datasets, but we recover just below 90% of the leaked files, and from 1% leakage,
we recover more available keywords than the other datasets. This difference is
probably because of the number of keywords per file since the most frequent
keywords are chosen.

With the technique we proposed, one can match leaked documents to server
documents for almost all leaked documents. Next, the algorithm will compute
the underlying keywords to the queries. It is up to the attacker to allow false
positives and improve the number of (possible) correctly matched keywords, but
we decided not to include it.
Comparison. We compare the performance of VAL-Attack to two attacks with
the Enron dataset. One is the LEAP attack [28] (which is our cornerstone),
while the other is the SubgraphVL attack [4] (as they use the volume pattern
as leakage). We divide the comparison into two parts: the first is for recovering
files, and the second is for queries recovery.

As shown in Figure 5, we recover more files than the LEAP attack, and the
gap in files recovered expands as the leakage percentage increases, see Figure 5a.i.
The difference in the percentage of files recovered is stable, as VAL-Attack re-
covers about eight percentage points more files than the LEAP attack, see Fig-
ure 5a.ii. The comparison outcome for recovered queries can be seen in Figure 5b.
We can see that the recovered queries do not show a significant difference with
the LEAP attack as that attack performs outstandingly in query recovery. The
most significant difference is around 5% leakage, where VAL-Attack retrieves
around 100 queries more than the LEAP attack, which could influence a real-
world application. Compared to the SubgraphVL, we see in Figure 5b.ii that the
combination of the access pattern and the volume pattern is a considerable
improvement; we reveal about 60 percentage points more of the available queries.
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Figure 4: Results for VAL-Attack, with the actual number and the percentage of
recovered files and queries for different leakage percentages.

(a) Exact number and relative percentage of recovered files

(a.i) #Files recovered (a.ii) %Files recovered

(b) Exact number and relative percentage of recovered queries

(b.i) #Queries recovered (b.ii) %Queries recovered

5.3 Countermeasure Performance

As discussed in Section 4.4, there are several options for countermeasures against
attacks on SE schemes. Moreover, since our attack exploits both the access and

volume pattern, countermeasures must mitigate both leakage patterns. The
former can be mitigated by padding the server result, while the latter may be
handled using volume-hiding techniques. However, these approaches may come
with impractical side effects. Padding the server response requires more work on
the client-side to filter out the false positives. This padding can cause storage
and reading problems because the user has to wait for the program to filter out
the correct results. The volume-hiding technique [19] may easily yield significant
storage overhead and could therefore not be practical in reality. Luckily, Patel
et al. [29] illustrated how to reduce this side effect whilst mitigating the attack.
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Figure 5: Comparison of VAL-Attack

(a) Comparison with LEAP [28] based on the number and percentages of files recovered

(a.i) #Files recovered (a.ii) %Files recovered

(b) Comparison with LEAP [28] and SubgraphVL [4] based on the number and per-
centages of queries recovered

(b.i) #Queries recovered (b.ii) %Queries recovered

It is possible to mitigate our attack theoretically by using a combination
of padding and volume hiding. We tested the VAL-attack’s performance with
padding, volume hiding and further a combination, but we did not examine by
obfuscation due to hardware limitations.

We padded the server data using the technique described by Cash et al. [8].
Each query returned a multiplication of 500 server files, so if the original query
returned 600 files, the server now returned 1,000. Padding is done by adding
documents to the server response that to done contain the underlying keyword.
These documents can then later be filtered by the client, but will obfuscate the
client’s observation. We took the näıve approach from Kamara et al. [19] for
volume hiding, where we padded each document to the same volume. By adding
empty bytes to a document, it will grow in size. If done properly, all files will
eventually have the same size that can not be distinguished from the actual size.

We ran the countermeasure experiments on the Enron and the Lucene dataset.
We did not perform the test on the Wikipedia dataset, but we can predict that
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the countermeasures may affect the attack performance. We predict that a single
countermeasure will not entirely reduce the attack effectiveness, but a combina-
tion may do.

Because of the exploitation of the two leakage patterns, we see in Table 2
that our attack can still recover files and underlying keywords against only a
single countermeasure. Under a combination of padding and volume hiding, our
attack cannot reveal any leaked file or keyword.

Table 2: Performance of VAL-Attack with countermeasures
Dataset Enron Lucene

Counter-
measure

Padding Volume
Hiding

Padding &
Volume
Hiding

Padding Volume
Hiding

Padding &
Volume
Hiding

F
il
e
s

0.1% 25 (83.7%) 27 (89.5%) 0 (0%) 45 (88.9%) 10 (28.4%) 0 (0%)
0.5% 103 (68.4%) 137 (90.7%) 0 (0%) 191 (75.3%) 95 (37.4%) 0 (0%)
1% 208 (69.0%) 274 (90.9%) 0 (0%) 381 (75.3%) 147 (28.9%) 0 (0%)
5% 1,114 (74.0%) 1,365 (90.7%) 0 (0%) 2332 (92.0%) 2452 (96.8%) 0 (0%)
10% 1,910 (63,4%) 2,736 (90.9%) 0 (0%) 4,073 (80.4%) 4,891 (96.5%) 0 (0%)
30% 5,358 (59.0%) 8,219 (91.0%) 0 (0%) 10,343 (68.0%) -2 0 (0%)

Q
u
e
ri
e
s

0.1% 94 (10.4%) 172 (14.8%) 0 (0%) 377 (27.7%) 153 (10.6%) 0 (0%)
0.5% 433 (18.1%) 1,059 (43.3%) 0 (0%) 724 (25.3%) 663 (22.8%) 0 (0%)
1% 414 (12.8%) 1,836 (56.3%) 0 (0%) 556 (15.3%) 748 (20.5%) 0 (0%)
5% 53 (1.1%) 4,290 (89.9%) 0 (0%) 87 (1.8%) 4,659 (95.2%) 0 (0%)
10% 11 (0.2%) 4,890 (98.4%) 0 (0%) 33 (0.7%) 4,872 (97.6%) 0 (0%)
30% 1 (0.0%) 4,993 (99.9%) 0 (0%) 10 (0.2%) -2 0 (0%)

2 Did not run due to hardware limitations

Table 2 is read as follows: The number below the countermeasure is the
exact number of retrieved files or queries, with the relative percentage between
brackets. So for 0.1% leakage under the padding countermeasure, we revealed,
on average, 25 files, which was 83.7% of the leaked files. Each experiment ran 20
times. Due to runtime and hardware limitations, we did not run the experiment
with 30% leakage on the Lucene dataset. However, since we have the results for
10% leakage and the results for the Enron dataset, we can predict the outcome
for 30%. Similar to the Enron dataset, the recovered data in Lucene increases
as the leakage percentage grows. Therefore, we predict that 30% leakage results
in the Lucene dataset is a bit higher than the 10% leakage.

5.4 Discussion on Experiments

We chose specific parameters in the experiments and only compared our attack
with two popular attacks [4, 28]. We give more discussions below.

Parameters. We used 5,000 high selectivity keywords, i.e. keywords that
occur the most in the dataset. This number is chosen because a practical SE
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application will probably not have just a few search terms in a real-world sce-
nario. Other attacks [4, 8, 18] have experimented with only 150 query tokens
and 500 keywords, and we argue that this may not be realistic. Our attack is
able to recover almost all underlying keywords for an experiment with 500 key-
words because the number of files is still equal, but a slight variation in keyword
occurrence.

We cut the number of Wikipedia files to 50,000. We did this to better present
the comparison with the Enron and Lucene datasets. The attack may also take
longer to run when all Wikipedia files are considered. The results will also differ
as the number of files leaked increases similarly. The percentage of files recovered
will probably be the same because of keyword distribution among the files.

If we ran the experiments with a higher leakage percentage, the attack would
eventually recover more files, as more are available, but we would not recover
more keywords. As with 30% leakage, we see that we have recovered all 5,000
keywords.

Our attack performs without false positives. And we did so because they
would not improve the performance, and an attacker cannot better understand
the data if he cannot rely on it. If we allowed the attack to return false positives,
we would have 5,000 matches for underlying keywords, of which not all are
correct. The attack performance will not change since we will only measure the
correct matches, which we already did.

Attack comparison. In Figure 5a, we only compared our attack with the
LEAP attack rather than the SubgraphVL attack. We did so because the latter
does not reveal encrypted files and thus cannot be compared. If we choose to
compare the attack to ours, we would have to rebuild their attack using their
strategy, which is out of the scope of this work.

We used the Enron dataset to compare the VAL-Attack to the LEAP and
the SubgraphVL. In their work [4, 28], they used the Enron dataset to show their
performance. If we used the Lucene or Wikipedia dataset instead to present the
comparison, we would have no foundation in the literature to support our claim.
A comparison of all the datasets would still show that our attack surpasses the
attacks since, in theory, we exploit more.

We discussed other attacks, like the IKK and the Count attack, but we did
not compare their performance with ours. While these attacks exploit the same
leakage, we could still consider them. However, since LEAP is considered the
most state-of-the-art attack and it has already been compared with the other
attacks in [28], we thus only have to compare the LEAP attack here. Accordingly,
a comparison with all attacks would not affect the results and conclusion of this
paper.

6 Related Work

The Count attack [8] uses the number of files returned for the query as their
matching technique; The SubgraphVL [4] matches keywords based on unique
document volumes as if it is the response pattern, and the LEAP attack [28] uses
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techniques from previous attacks to match leaked documents and keywords with
high accuracy. Besides the attacks that exploit similar leakage to our proposed
attack, we may also review those attacks that do not. An attack that leverages
similar documents as auxiliary knowledge, called Shadow Nemesis, was proposed
by Pouliot et al. [31]. They created a weighted graph matching problem in the
attack and solved it using Path or Umeyama. Damie et al. [14] presented the
Score attack, requiring similar documents, and they matched based on the fre-
quency of keywords in the server and auxiliary documents. Both attacks use
co-occurrence matrices to reveal underlying keywords. The Search attack by Liu
et al. [25] matches based on the search pattern, i.e. the frequency pattern of
queries sent to the server. Table 3 briefly compares the attacks based on leakage,
auxiliary knowledge, false positives and exploiting techniques. The reviewed at-
tacks described above are not mainly relevant to our proposed attack; thus, we
did not put them in the comparison in Section 5.

Table 3: Comparison on Different Attacks. The lower part are those passive
attacks with pre-known data compared with VAL-Attack. Documents in the
auxiliary data column refers to leaked document knowledge, queries refers to
leaked underlying keywords for query tokens, and similar refers to the use of
similar documents instead of leaked documents.

Attack Leakage Auxiliary data False
positives

Exploited
information

IKK [18] Access pattern Documents,
queries

✓ Co-occurrence

Shadow Nemesis [31] Access pattern Similar ✓ Co-occurrence

Score [14] Access pattern Similar, queries ✓ Co-occurrence

Search14 [25] Search pattern Search frequency ✓ Query frequency

ZKP [37] (active) Access pattern All keywords ✗ -

Count [8] Access pattern Documents ✓ Co-occurrence,
length

SubgraphVL [4] Volume pattern Documents ✓ Volume, length

LEAP [28] Access pattern Documents ✗ Co-occurrence,
length

VAL-Attack Access,
volume pattern

Documents ✗ Volume, length,
co-occurrence
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7 Conclusion

We proposed the VAL-attack to improve the matching technique from the LEAP
attack, leveraging the leakage from the access pattern and the volume pat-

tern which is a combination that has not been exploited before. We showed that
our attack provides excellent performance, and we compared it to the LEAP at-
tack and the subgraphVL attack. The number of matched files is with more
remarkable improvement than the number of queries recovered compared to the
LEAP attack. The attack recovers around 98% of the leaked documents and
above 90% for query recovery with very low leakage. Since the proposed attack
uses both the document size and the response per query, it requires strong (and
combined) countermeasures and thus, is more harmful than existing attacks.
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A Examples of Matrices

Figure 6: Matrix A and M ′ Example


A d1 d2 ··· dn′

w1 1 1 · · · 1
w2 0 1 · · · 0
...

...
...

. . .
...

wm′ 1 0 · · · 1




M′ d1 d2 ··· dn′

d1 5 2 · · · 3
d2 2 6 · · · 0
...

...
...

. . .
...

dn′ 3 0 · · · 10



Figure 7: Matrix B and M Example


B ed1 ed2 ··· edn

q1 0 1 · · · 1
q2 0 0 · · · 1
...

...
...

. . .
...

qm 1 1 · · · 0




M ed1 ed2 ··· edn

ed1 4 3 · · · 1
ed2 3 9 · · · 2
...

...
...

. . .
...

edn 1 2 · · · 9


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Figure 8: Matrix Ac and Bc Example



Bc ed3 ed2 ··· edt

q1 1 0 · · · 1
q2 1 1 · · · 0
q3 1 0 · · · 1
...

...
...

. . .
...

qm 0 1 · · · 0





Ac d1 d2 ··· dt

w1 1 0 · · · 1
w2 1 1 · · · 0
w3 0 0 · · · 1
...

...
...

. . .
...

wm 1 1 · · · 0


Figure 9: Matrix Ar and Br Example



Br ed1 ed2 ··· edn

q3 0 0 · · · 1
q5 1 1 · · · 0
q2 0 0 · · · 0
...

...
...

. . .
...

qt 1 1 · · · 0





Ar d1 d2 ··· dn′

w1 1 0 · · · 1
w2 0 0 · · · 1
w3 1 0 · · · 1
...

...
...

. . .
...

wt 1 1 · · · 0


Figure 10: An Example of Extended Matrix A



A d1 d2 ··· dn′

w1 1 1 · · · 1
w2 0 1 · · · 0
...

...
...

. . .
...

wm′ 1 0 · · · 1
wm′+1 0 0 · · · 0

...
...

...
. . .

...
wm 0 0 · · · 0



B VAL-Attack Algorithm
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Algorithm 4 VAL-Attack

Input: A (m′ × n′), B (m× n), M ′ (n′ × n′),M (n× n)

1: C = R ← {} ▷ Initialization
2: A ← A where rows extended with 0’s (m x n’)
3: vectorA = vectorB ← [ ] ▷ Match documents with unique #keywords
4: for j ∈ [n] do
5: vectorB [j] ← sum of column Bj

6: for j′ ∈ [n′] do
7: vectorA[j

′] ← sum of column Aj′

8: for vectorBj ∈ vectorB that is unique do
9: if vectorAj′ == vectorBj then
10: C[edj ] ← dj′

11: C ← C ∪ matchByVolume(R,A,B) ▷ Match documents with unique volume
12: C ← C ∪ coOccurrence(C,M,M ′, A,B) ▷ Match docs with co-occurrence
13: C ← C ∪ matchByVolume(R,A,B)
14: while R or C is increasing do
15: R ← R ∪ matchKeywords(C,A,B) ▷ Match keywords in matched docs
16: Br ← R rows of B ▷ Match documents with unique keyword order
17: Ar ← R rows of A
18: for columnj ∈ Br that is unique do
19: if columnj′ ∈ Ar == columnj then
20: C[edj ] ← dj′

21: C ← C ∪ matchByVolume(R,A,B)
22: row Bj ← 0 if qj ∈ R ▷ Match documents with unique #keywords
23: row Aj′ ← 0 if kj′ ∈ R
24: for j ∈ [n] where edj ̸∈ C do
25: vectorB [j] ← sum of column Bj

26: for j′ ∈ [n′] where dj′ ̸∈ C do
27: vectorA[j

′] ← sum of column Aj′

28: for vectorBj ∈ vectorB that is unique and edj ̸∈ C do
29: if vectorA′

j
== vectorBj and dj′ ̸∈ C then

30: C[edj ] ← dj′

31: C ← C ∪ coOccurrence(C,M,M ′, A,B) ▷ Match docs with co-occurrence

32: return R, C
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