
A quantum polynomial time search algorithm for

certain unsorted finite lists

Stéphane Lemieux
Department of Computer Science

MacEwan University, Edmonton, AB, T5J 4S2
lemieuxs5@macewan.ca

July 22, 2022

Abstract

Grover famously showed that any unsorted list, of finite size N ,
can be searched in O(

√
N) time via quantum computation. Bennett

et. al. demonstrated that any algorithm general enough to search
any finite unsorted list must take at least O(

√
N) time via quantum

computation. We demonstrate a quantum algorithm that can search
a proper subclass of finite, unsorted lists, of size N , in a time that is
polynomial in log(N). We demonstrate how it can be used to search the
keyspace of any block cipher that can be implemented on a quantum
computer with the keyspace in superpositon. In particular we give a
polynomial time attack on AES − 128, AES − 192 and AES − 256.

1 Introduction

Any unstructured, i.e. unsorted, finite list of length N can be searched
on a classical computer in O(N) time. In [3], Grover famously showed
that any finite unstructured list can be sorted via quantum computation in
O(

√
N) time. As well, Bennett, et. al. [1], showed that no algorithm that

can search any unsorted list of size N , can do so in o(
√
N) via quantum

computation. Taken together, the latter two results appear to completely
answer the question: How fast can one search a finite unstructured list via
quantum computation? However, neither result precludes the existence of
a faster search algorithm that is only successful on a proper, but useful,
subclass of lists.

In this work, we demonstrate a quantum algorithm that can successfully
search certain unsorted lists of size N in polynomial time in log N . The

1

algorithm requires O(log N) calls to an oracle similar to the one used by
Grover, followed by O(log N) multiplications by the exact diffusion matrix
that Grover uses, and finally O(log N) Hadamard (element-wise) products
of two separable N -state quantum systems.

We show that the subclass of searchable lists includes all permutations
of Bn, where Bn denotes the set of all binary strings of a length n. We
give a generalization that can be used to search the keyspace of any block
cipher, provided it can be implemented on a quantum computer with the
entire keyspace in superpositon. In particular we give a polynomial time
attack that successfully recovers the secret key of AES − 128, AES − 192
and AES − 256.

1.1 Format of the Paper

In Section 2, we introduce notation and revisit Grover’s algorithm as mo-
tivation for the rest of the paper.

In Section 3, we introduce a new search algorithm that takes as input,
any list of size N = 2N whose elements form a permutation of Bn, the set
of all binary strings of length n where n is an even positive integer.

In Section 4, we give a small example to demonstrate the algorithm of
Section 3.

In Section 5, we detail the adjustments to the algorithm of Section 3,
that allow it to accommodate a wider variety of lists.

In Section 6, we demonstrate that any block cipher, that can be per-
formed via quantum computing with the set of all secret keys in superposi-
tion, can be searched in polynomial time in the length of the key.

2 Notation and Summary of Grover’s Algorithm

We will represent a superposition of quantum states as∑
i

ai |Si⟩

Where the amplitudes ai are complex numbers such that Σi∥ai∥2 = 1
and each |Si⟩ is a basis state.

Algorithm 3.1 below, draws significantly from Grover’s, so we revisit it
first. Recall that Grover assumes we have an unstructured list L of size N
with a unique element w ∈ L whose position in L we wish to determine. L
will correspond to a superposition of quantum states, Σiai |Si⟩ such that w
is represented by some unique state Sv.

2

Grover initializes the quantum system to

N−1∑
i=0

1√
N

|Si⟩ .

He then executes the loop O(
√
N) times:

1. Apply an oracle that recognizes w and rotates the phase of the quan-
tum state by π radians so that its amplitude av is replaced by −av
and the amplitudes of all other quantum states are left unaltered.

2. Multiply the resulting system, as a column vector, by the diffusion
matrix D given by Dii = −1 + 2

N and Dij =
2
N for all i ̸= j.

Each application of the loop increases the amplitude av while simultane-
ously decreasing the amplitude of all other states. After O(

√
N) applications

of the loop, we are guaranteed that av ≥ 1√
2
. When the final step, measuring

the system, is executed the probability that Sv is returned is a2v ≥ 1
2 .

3 A Quantum Polynomial Time Search Algorithm

It helps to visualize Algorithm 3.1, at least initially, as applying only to lists
L that are permutations of Bn, where n is an even positive integer. Thus
L will have size N = 2n, with n even. We will broaden the application to
other lists later though we will never reach the full generality of Grover’s
Algorithm.

Algorithm 3.1

Step 1: Initialize n
2 Separable Systems The algorithm starts by

initializing n
2 separable quantum systems, each with superposition

Qj =

N−1∑
i=0

1√
N

|Sij⟩ , for j ∈ {0, 1, ...n
2
− 1}

To be clear, fixing j gives us a quantum system with N states. For each
system Qj , the state Svj will correspond to the position of w but there is no
entanglement between systems. I.e. Qi and Qj are separable for each i ̸= j.
This set up is analogous to distinct people running a search for the same
element w of the same list L, each using a separate quantum computer.

3

Step 2: Phase Shifts Algorithm,3.1 only requires one application of
an oracle to each system. Recall that Grover’s algorithm has an oracle that
recongnizes w and shifts the phase of its corresponding quantum state. Let
(w0w1 · · ·wn−1)2 be the binary representation of w. For each system Qj ,
we use a unique oracle Cj that recognizes the substring (w2jw2j+1)2. We
perform a phase shift of π radians replacing aij with −aij if the binary string
x ∈ L, corresponding to aij satisfies (w2jw2j+1)2 = (x2jx2j+1)2. Since L is
a permutation of all binary strings of length n, the oracle Cj will shift the
phase of exactly N

4 states. After the phase shifts, Qj will have

�
N
4 states of the form −1√

N
|Sij⟩ and

�
3N
4 states of the form 1√

N
|Sij⟩.

Step 3: Multiply by Grover’s Diffusion Matrix We multiply each
quantum system by Grover’s Diffusion Matrix, D, only once. The 3 : 1
ratio, of states without a phase shift to states with a phase shift, is a critical
property that allows us to limit the application of Grover’s loop to once per
system. We claim that after taking the product Q′

j = D×Qj , the resulting
system has the following form:

� Each state, of Qj , of the form 1√
N
|Sij⟩ will be replaced, in Q′

j , by the

state 0 |Sij⟩

� Each state, of Qj , of the form −1√
N
|Sij⟩ will be replaced, in Q′

j , by
2√
N
|Sij⟩

Proof: For each system Qj we define pj to be the proportion of states,
whose amplitude undergoes a phase shift. Then the number of states, whose
amplitude undergoes a phase shift is pjN , while (1 − pj)N do not. Then,
after taking the productsD×Qj , the states whose amplitude did not undergo
a phase shift will have new amplitude:

1√
N

(−1 +
2

N
) +

1√
N

((1− pj)N − 1)(
2

N
) +

−1√
N

(pjN)(
2

N
) =

1− 4pj√
N

Similarly, the states of Qj that did undergo a phase shift will have new
amplitude

−1√
N

(−1 +
2

N
) +

1√
N

((1− pj)N)(
2

N
) +

−1√
N

(pjN − 1)(
2

N
) =

3− 4pj√
N

Each two bit substring has four possible values: (00)2, (01)2, (10)2 and
(11)2, only one of which will result in a phase shift for a given Qj . Since

4

each of these substrings must appear equally often, in a permutation of Bn,
we must have pj = 0.25 and the result follows immediately. ⊡

We will consider the case where pj ̸= 0.25 later, but remark now that
performance degrades. This is the key compromise that Grover’s Algorithm
does not require.

Step 4: Take Hadamard (element-wise) Products The next step
is to take successive Hadammard products, denoted ⊙ as follows. See [5] for
details on Hadamard products.

� H1 = Q′
0 ⊙Q′

1 and

� Hi = Hi−1 ⊙Q′
i, for i ∈ {2, 3, . . . , n2 − 1}

We demonstrate that in the final system H = Hn
2
−1, the state corre-

sponding to the position of w in L will be the only state with non-zero
amplitude.

Proof
For each j ∈ {0, 1, . . . , n2 − 1}, the amplitude of the quantum state in

each Qj that corresponds to w, will undergo the phase shift because it will
be recongnized by each oracle Cj . Consequently, the corresponding state in
each Q′

j will be non-zero, (2√
N
), and thus the amplitude of the Hadamard

product of these states will be non-zero. In contrast, for each x ∈ L, x ̸= w
implies that in at least one Qj , the amplitude of the state that corresponds
to x will not undergo a phase shift. Consequently this amplitude will be 0
in Q′

j . When the amplitudes of the states that correspond to x, in each Qj

are multipied together, the resulting product must also be 0. ⊡
Step 5: Measure the System The final step then is to measure the

quantum system H which has only a single non-zero amplitude which cor-
responds to the index of w in L as desired.

4 Small Example

For extra clarity, we walk through a small example where N = 24 = 16.
Suppose L is the following permutation of B4 and also suppose that

we are looking for the position of w = (0111)2. For the remainder of the
example, we will highlight the position of w in L and in each quantum
system to make the explanation easier to follow.

L = {(0110)2, (0010)2, (1100)2, (1110)2, (0000)2, (0011)2, (1101)2, (1001)2,

(1111)2, (0100)2, (1011)2, (1010)2, (0111)2, (0101)2, (0001)2, (1000)2}

5

Note that we do not want the algorithm to return (0111)2 but rather its
position in L. The quantum states are indexed from 0, which corresponds
to |0000⟩, to 15, which corresponds to |1111⟩. The element w is then in
position 12 which corresponds to |1100⟩. Thus we expect the algorithm to
measure |1100⟩ and return (1100)2 in the final step.

Step 1: Initialize Qj

We initialize Q0 and Q1 as

Q0 = (
1

4
|0000⟩+ 1

4
|0001⟩+ 1

4
|0010⟩+ 1

4
|0011⟩+

1

4
|0100⟩+ 1

4
|0101⟩+ 1

4
|0110⟩+ 1

4
|0111⟩+

1

4
|1000⟩+ 1

4
|1001⟩+ 1

4
|1010⟩+ 1

4
|1011⟩+

1

4
|1100⟩+ 1

4
|1101⟩+ 1

4
|1110⟩+ 1

4
|1111⟩)

Q1 = (
1

4
|0000⟩+ 1

4
|0001⟩+ 1

4
|0010⟩+ 1

4
|0011⟩+

1

4
|0100⟩+ 1

4
|0101⟩+ 1

4
|0110⟩+ 1

4
|0111⟩+

1

4
|1000⟩+ 1

4
|1001⟩+ 1

4
|1010⟩+ 1

4
|1011⟩+

1

4
|1100⟩+ 1

4
|1101⟩+ 1

4
|1110⟩+ 1

4
|1111⟩)

Step 2: Apply Phase Shifts
We chose w = (0111)2 so the oracle C0 will run through L and shift the

phase of the amplitude of any state in Q0 that corresponds to an element in
L that begins with (01)2 the first two bits of w. These states are positions
0, 9, 12, and 13. Likewise, the oracle C1 will run through L and shift the
phase of the amplitude of any state in Q1 that corresponds to an element in
L that ends with (11)2, the last two bits of w. These states are the positions
5, 8, 10, and 12. After applying the oracles we have:

Q0 = (
−1

4
|0000⟩+ 1

4
|0001⟩+ 1

4
|0010⟩+ 1

4
|0011⟩+

1

4
|0100⟩+ 1

4
|0101⟩+ 1

4
|0110⟩+ 1

4
|0111⟩+

1

4
|1000⟩+ −1

4
|1001⟩+ 1

4
|1010⟩+ 1

4
|1011⟩+

6

−1

4
|1100⟩+ −1

4
|1101⟩+ 1

4
|1110⟩+ 1

4
|1111⟩)

Q1 = (
1

4
|0000⟩+ 1

4
|0001⟩+ 1

4
|0010⟩+ 1

4
|0011⟩+

1

4
|0100⟩+ −1

4
|0101⟩+ 1

4
|0110⟩+ 1

4
|0111⟩+

−1

4
|1000⟩+ 1

4
|1001⟩+ −1

4
|1010⟩+ 1

4
|1011⟩+

−1

4
|1100⟩+ 1

4
|1101⟩+ 1

4
|1110⟩+ 1

4
|1111⟩)

Step 3: Multiply by Diffusion Matrix D
The diffusion matrix is:

D =

-7/8 1/8 1/8 . . . 1/8
1/8 -7/8 1/8 . . . 1/8
...

...
... . . .

...
1/8 1/8 1/8 . . . -7/8

And the resulting Q′

0 = D ×Q0 is

Q′
0 = (

1

2
|0000⟩+ 0 |0001⟩+ 0 |0010⟩+ 0 |0011⟩+

0 |0100⟩+ 0 |0101⟩+ 0 |0110⟩+ 0 |0111⟩+

0 |1000⟩+ 1

2
|1001⟩+ 0 |1010⟩+ 0 |1011⟩+

1

2
|1100⟩+ 1

2
|1101⟩+ 0 |1110⟩+ 0 |1111⟩)

Similarly the resulting Q′
1 = D ×Q1 is

Q′
1 = (0 |0000⟩+ 0 |0001⟩+ 0 |0010⟩+ 0 |0011⟩+

0 |0100⟩+ 1

2
|0101⟩+ 0 |0110⟩+ 0 |0111⟩+

1

2
|1000⟩+ 0 |1001⟩+ 1

2
|1010⟩+ 0 |1011⟩+

1

2
|1100⟩+ 0 |1101⟩+ 0 |1110⟩+ 0 |1111⟩)

7

Step 4: Take Hadamard Products For this small example H1 =
Q′

1 × Q′
2 is the only Hadamard product necessary. After normalizing, we

get:

H1 = (0 |0000⟩+ 0 |0001⟩+ 0 |0010⟩+ 0 |0011⟩+

0 |0100⟩+ 0 |0101⟩+ 0 |0110⟩+ 0 |0111⟩+

0 |1000⟩+ 0 |1001⟩+ 0 |1010⟩+ 0 |1011⟩+

1 |1100⟩+ 0 |1101⟩+ 0 |1110⟩+ 0 |1111⟩)

Step 5: Measure the Resulting System
Measuring H1 will return the index 1100, as desired.

5 Searchable Lists

As noted in the introduction, Algorithm 3.1 runs faster than Grover’s but
cannot be used on all finite lists. In the previous sections we demonstrated
that it can be used on lists which are permutations of the Bn, for any
even positive integer n. In this section we look at other lists on which
our Algorithm 3.1 can be applied, with probability of success at least 0.5.
Modifications to the list L, may be necessary first. In particular we may
need to embed L in a large list with more favourable properties. We allow
this as long as we can still retrieve the index of w in the original list.

Definition 1 (Searchable List) Suppose L is a list and w is an element
of L. If Algorithm 3.1 is effective at searching for the position of w in L
with probability of success at least 0.5 then we will call L a searchable list
with respect to w or simply a searchable list if the context is clear.

As the definition suggests, some lists may be searchable for with respect
to some elements but not others. We will investigate this later, but suffice
to say that the suitability depends on the probabilities pj which are specific
to the choice of w.

5.1 Case 1: Searchable Lists

A list of L of length N , consisting of binary strings, is searchable with
respect to element w if the following sufficient but not necessary properties
are satisfied.

1. Even Power Property: N = 2n for some even positive integer n

8

2. Proportion Property: Recall from step 3 of Algorithm 3.1, for w
we define pj to be the portion of the elements of L whose 2jth and
2j + 1th bits match (w2jw2j+1)2. We require that pj = 0.25 for each
j ∈ {0, 1, . . . , n2 − 1}.

The above properties are sufficient for Algorithm 3.1 to be effective. As
mentioned, we make no claim that these properties are necessary, only that
they are sufficient. It also follows immediately that for any permutation
of Bn and for any string w ∈ Bn the above properties hold as long as
n is even. Finally we note that L need not contain all of Bn. We can
substitute random binary strings of length n, as long as the proportion
property remains satisfied.

We now explore the cases where list L, with element w, can be embedded
in a searchable list in such a way that our Algorithm 3.1 can be used to
efficiently deduce the index of w in L with probability at least 0.5.

5.2 Case 2: n is Odd:

Suppose L is a list of length N = 2n, where n is an odd integer and w is an
element of L for which the proportion property is satisfied in the following
respect:

For each of the following 2-bit substrings

{(w1w2)2, (w3w4)2, . . . , (wn−2wn−1)2},

we have pj = 0.25 and (w0)2 = (x0)2 for exactly 1
2 of the elements x ∈ L.

Here, pj is re-indexed so that p0 refers to (w1w2)2, p1 refers to (w3w4)2, etc.
We proposed two general ways to deal with this setup.

1. Option 1 is to ignore the most significant bit of each string, and run
Algorithm 3.1 with the oracles restricted to

{(w1w2)2, (w3w4)2, . . . , (wn−2wn−1)2}.

If we do, there will be exactly two states ofH with non-zero amplitude,
either of which can be returned upon measuring in Step 5, one of which
corresponds to w. However, the indicies of the two states with non-
zero amplitude will differ by exaclty 2n−1, so we only have to run the
algorithm once.

2. Option 2 is to embed L in a list L′ of size 2n+1. We do so by making
two copies of L. We append each x in the first copy of L, to 0 and in

9

the second copy to 1. We then run Algoirthm 3.1 and search for 0w.
This is equivalent to taking the tensor product of a single extra qubit
and the n-qubit system we normally initialize.

5.3 Case 3: 2n−1 < N < 2n:

Given the possible transformation from Case 2, we can assume n is even.
We also assume that L satisfies the proportion property with respect to w.

In this case we build a new list L′ by including a sufficient number of
uniformly random binary strings to ensure that L′ has size 2n. The chance
that we add one or more copies of w to L′ is less than 0.5 since L is larger
than 2n−1. Let A be the event that w is unique in L′, and A′ denote its
complement. Let B be the event that measuring the final system returns
the correct index for w. Then

p(B) = p(B | A)p(A) + p(B | A′)p(A′).

p(B | A)p(A) > 1(0.5) = 0.5 and p(B | A′)p(A′) > 0 so the Algorithm
3.1 will return the correct index with probability > 0.5. Furthermore, if
Algorithm 3.1 returns the wrong index, it will be clearly larger than N , so
we will know to repeat the experiment.

It is worth noting that if we add uniformly generated binary strings we
are not guaranteed that the proportion property will be preserved though
the deviation from 0.25 of any pj should be minute. We deal with this case
in the next subsection.

5.4 Case 4: Proportion Property Fails

We begin by noting that if the deviations of the pj from 0.25 are small enough
then we may not need to make any correction at all. The first lemma below
shows that if such a deviation is small enough, relative to the size of N , then
the amplitude of the state corresponding to w will be less than 1 but still
greater than 1√

2
so the probability of the algorithm being successful will still

be at least 0.5.
The second point we make is that for the cryptoanalytic applications

we discuss in later sections, we will not need to worry that the proportion
property may not be satisfied because if this were the case, the encryption
algorithm would likely fall to a statistical attack. For this reason, great
care is taken in the design of cryptographic algorithms to ensure that such
statistical attacks are not effective.

10

To be balanced in our exposition, the third point we make is that if any
proportion pj deviates form 0.25 by too much, the list may be unusable for
the chosen w. For example, if pj > 0.5 then the amplitudes that undergo
phase shift in Step 2 of Algorithm 3.1 will be smaller in magnitude, after
multiplication by D, than those that did not undergo a phase shift.

However, if the deviation from 0.25 is limited to a small number of pj
and it is predictable which pj will deviate significantly from 0.25, then it is
possible to simply omit the corresponding Q′

j ’s from Step 4, of Algorithm
3.1, where we take the Hadamard products. For each Q′j we omit, the
probability of selecting the correct w from L will decrease by a factor of
4. For example in the small example above, if we omit Q0, then measuring
the final system will return any one of the 4 non-zero amplitudes of Q′

1,
each with equal probability. As long as the number of Q′j that need to be
left out, does not increase as N increases, we will have a lower bound on
the probability of selecting the correct final state and we can simply repeat
Algorithm 3.1 enough times to ensure the probability of success is greater
than 0.5.

The fourth and final point we make is that the embedding lemma de-
scribed below, may itself be time consuming: so much so that the embedding
process, combined with algorithm 3.1 may offer no speed improvement over
Grover’s Algorithm.

We now return to the case where one or more of the proportions pj ,
deviates from 0.25 by some value −0.25 ≪ ϵj ≪ 0.25. Then the states in
Q′

j , that did not undergo a phase shift in Step 2, will have small but non-zero
amplitudes. Then, even if w is unique, the final state corresponding to w in
H will not have amplitude 1. However, we need to show that if the ϵj ’s are
small enough then the amplitude of the state in H that corresponds to w is
at least 1√

2
. First we start by comparing the magnitude of the amplitude of

the state that corresponds to w with the next largest magnitude of amplitude
in the final system.

Lemma 1 The magnitude of the amplitude of the state corresponding to w
in H and the next largest amplitude will be at least

2−ϵj
ϵj

.

Proof
The states in Q′

j that did not undergo a phase shift will have amplitude

1− 4(0.25± ϵj)√
N

=
±ϵj√
N

11

and states that did undergo a phase shift will have amplitude

1− 4(0.25± ϵj)√
N

=
2± ϵj√

N
.

For any x ∈ L such that x ̸= w, there exists at least one j ∈ {0, 1, . . . , n2 −1}
such that the substring x2jx2j+1 will not induce a phase shift from oracle
Cj . Since w will always induce phase shifts, the amplitude in the final state
of H corresponding to x will be smaller than the amplitude of the final state
corresponding to w buy a factor of at least:

2±ϵj√
N

±ϵj√
N

=
2± ϵj
±ϵj

≥ 2− ϵj
ϵj

⊡

Lemma 2 Suppose the maximum amplitude, in H, other than the the am-
plitude corresponding to w is a. Then the amplitude corresponding to w is
at least a

2−ϵj
ϵj

. If ϵj < 2√
N+1

, then the amplitude corresponding to w is at

least 1√
2
.

Proof The amplitude of each state in H that does not correspond to the
position of w will be at most a. Thus the sum of the square amplitudes that
do not correspond to w is at most (N − 1)a2. The square of the amplitude
that does correspond to w is

(a
2− ϵj
ϵj

)2 > (a
2− 2√

N+1
2√
N+1

)2 = a2(N − 1)2.

Since these two values must sum to 1 the result holds. ⊡
Of course assuming that all other amplitudes in H will be a is does

not lead to the best possible restriction of ej , but the previous result does
show that if we can get each pj close enough to 0.25, then Algorithm 3.1
will work with probability at least 0.5. The next result shows that we can
always embed a list L, for which 0 < pj < 0.5, in a larger list L′ such that if
pj ̸= 0.25, then the resulting proportion p′j is as close to 0.25 as we require.

Lemma 3 Suppose L is a list of size N = 2n, where n is even. Suppose also
that we are searching for w in L and at least one pj ̸= 0.25. We can embed
L in a list L′ of size N ′ = 2n+2k such that the corresponding proportion will
be p′j =

2k−1
2k (0.25) + 1

2k (pj).

12

Proof We concatenate the 2k-bit string (00 . . . 00)2 to each binary string
x ∈ L. For every 2k-bit string not equal to (00 . . . 00)2, we concatenate the
string with a uniformly random n-bit string. We repeat this process N times
until there are a total of N ′ = 2n+2k, including the original list.

For example, if k = 1, we concatenate (00)2 to each x ∈ L and then
concatenate each of (01)2, (10)2, and (11)2 to a separate list of N uniformly
generate binary strings of length N . So we end up with 4N binary strings
of length n+ 2.

In the above example, we are searching for (00w0w1 . . . wn−1)2 which is
unique in L′ if w is unique L. Furthermore, for L′, p′0 = 0.25, and for each
j ∈ {1, 2, . . . n2 }, p

′
j =

3
4(0.25) +

1
4pj which is closer to 0.25 than pj was. ⊡

6 Cryptanalytic Applications: Block Ciphers

The problem we address in this section is as follows: Suppose we have a
block cipher scheme, public or private key,

E : Bn′ ×Bn → Bn, via E(k,m) = c,

where k is the secret key, m is the plaintext message, and c is the encrypted
ciphertext. Suppose we also have a small number of plaintext, ciphertext
pairs (mi, ci) which were all encrypted via the same secret key k. We would
like to determine the secret key k.

The key space need not be the same size as the message space but we
will begin with the case where n′ = n.

For any fixed key, k, the mapping E(k, ·) : M → C is necessarily a
bijective map between the message space and the ciphertext space. However,
if instead we fix the plaintext message m then the mapping E(·,m) : K → C
need not be injective. However, can assume that there is no bias in favour of
key-collisions of the form E(k1,m) = E(k2,m) occuring more or less likely
than we would expect by random chance, for the same reason we can assume
the proportion property will be satified. This makes it possible to determine
the probability, for a fixed message m, whether or not a chosen key k1 will
have any other key k2 that collides with it on encryption of m. We will
discuss this further after detailing the following search algorithm to recover
k.

Shor [4] demonstrates that, to solve the discrete logarithm problem, we
can form the following quantum system in superposition:

13

1

P − 1

P−2∑
a=0

P−2∑
b=0

|a, b, gax−b(mod P)⟩

We can think of the above system as being the encryption of x as
gax−b(mod P), where a, b is the secret key. From this perspective, the
set system is set up with every possible secret key in superposition, and the
corresponding encryption of the same message x appended. We include this
as an illustrative example for Algorithm 7.1.

As perhaps the quintessential example, we note that [2] already tested
the resilience of AES to exhaustive search via Grover’s algorithm. We
demonstrate a similar procedure to testing AES with Algorithm 7.1 below.

Algorithm 7.1

Step 1 Initialize n
2 systems, ∀j ∈ {0, 1, . . . , n2 − 1}, as follows:

Qj =
1√
2n

2n−1∑
k=0

|k,E(k,m0)⟩

Step 2 Use oracles Cj based on ciphertext c0 on each appropriate 2-
qubit pair in E(k,m0) to determine which amplitudes should incur a phase
shift of π radians.

Step 3 For each system Qj , multiply the amplitudes by Grover’s diffu-
sion matrix D.

Step 4 For each system Q′
j that results from Step 3, take successive

Hadamard products as before.
Step 5 Measure the Resulting System.

We now show that the probability that the above Agorithm 7.1 returns
the appropriate key is at least 1

2 by separately considering the cases where
there are no key collisions, exactly one key collision and more than one key
collisions.

Case1: No Key Collisions for (k1,m0)
Consider the key k1 that we are searching for as fixed. If we encrypt

E(k1,m0) = c0, we wish to know the probability that there are is other key
k2 such that E(k1,m0) = E(k2,m0).

We proceed by noting that for each key ki, we can consider E(ki, ·) to
be a permutation of Bn and hence an element of the symmetric group on
N = 2n elements, which we will label Sym(N). Note that |Sym(N)| = N !

14

but only N of those elements correspond to encryption keys. The message
m0, has N possible images, via Sym(N). Thus, by the orbit stabalizer
theorem, we must have that exactly 1

N of the elements of Sym(N) that map
m0 to c0. So the probability that a particular key k2 does not encrypt m0

to c0 is 1 − 1
N . By extension, the probability than no other key ki, i ̸= 1

encrypts m0 to c0 is:

(1− 1

N
)N−1 ≈ 1

e
× 1

1− 1
N

≈ 1

e

The approximations are appropriate but N is generally of the size 2128 to
2256 is current cryptographic protocols.

Case 2: Exactly One Key Collision
We also want to consider the probability that there is exactly one other

key k2 such that E(k1,m0) = E(k2,m0). If this case occurs, then the algo-
rithm will still return the correct key with probabitity 0.5. The probability,
of exactly one collision is the binomial distribution term with N − 1 choice,
probability 1

N that each key collides, and probability 1 − 1
N that each key

does not collide. This gives(
N − 1

1

)
(
1

N
)(1− 1

N
)N−2 ≈ (1− 1

N
)N−1 ≈ 1

e
.

Case 3: More than One Key Collisions By the law of total proba-
bility, the probability that there are more than one collisions is 1− 2

e .

Even if there are more than one key collisions, the probability that al-
gorithm 7.1 correctly returns k1, is some q > 0. Thus the probability that
the search algorithm returns the correct key k is at least:

1

e
(1) +

1

e
(
1

2
) + (1− 2

e
)q >

3

2
(
1

e
) >

1

2
.

It will be left to future work to apply Algorithm 7.1 to specific encryption
algorithms.

It remains to deal with cases where the the keyspace differs in size from
the plaintext space. If the keyspace is smaller than the message space it
should not pose any problem to Algorithm 7.1 and the chances of a key-
collision are greatly reduced.

If the keyspace is larger, as for example AES has message sapce 2128 and
can run with keyspaces of size 2128, 2192, and 2256, we simply encrypt more

15

than one message block with each key and concatenate them. For example,
for either 192, and 256-bit AES, we initialize the systems as follows:

Qj =
1√
2n

2n−1∑
k=0

|k,E(k,m0)E(k,m1)⟩ .

The rest of Algorithm 7.1 will be as before. The probability of key
collisions for 256 -bit AES will be the same as for 128-bit and will be almost
0 for 128-bit AES.

7 Conclusion

We have shown that the search Algorithm 3.1 runs faster than Grover’s
Algorithm but only accepts as input a smaller subclass of unsorted finite
lists. However, the subclass of searchable lists is broad enough to include the
keyspace, plaintext space and ciphertext space of block ciphers. It remains
for future work to demonstrate which encryption algorithms, public and
private key, are susceptible to the quantum cryptanaltyic attack we have
presented, but note that AES falls to such an attack.

References

[1] Bennett, C.H.; Bernstein, E.; Brassard, G.; Vazi-
rani, U. “Strengths and weaknesses of quantum com-
puting”, Siam Journal on computing, 26, No. 5.
https://doi.org/10.1137/S009753979630093

[2] Bonnetain, X.; Naya-Plasencia, M.; Schrottenloher, A.,
“Quantum Security Analysis of AES”, IACR Trans-
actions on Symmetric Cryptology, 2019(2), 55–93.
https://doi.org/10.13154/tosc.v2019.i2.55-93

[3] Grover, L.K. “A fast quantum mechanical algorithm for
database search”, Proceedings of the twenty-eighth annual ACM
symposium on theory of computing 1996, 212-219

[4] Shor, Peter W. “Polynomial-Time algorithms for prime fac-
torization and discrete logarithms on a quantum computer”,
SIAM Review 41 No. 2 (1999), 303-332

16

[5] Zhao, L., Zhao, Z., Rebentrost, P., Fitzsimons, J. “Compil-
ing basic linear algebra subroutines for quantum computers”,
Quantum Machine intelligence (2021) 3:21, https:
doi.org/10.1007/s42484-021-00048-8

17

