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ABSTRACT
In this work, we recover the private key material of the FrodoKEM
key exchange mechanism as submitted to the NIST Post Quan-
tum Cryptography (PQC) standardization process. The new mech-
anism that allows for this is a Rowhammer-assisted poisoning of
the FrodoKEM Key Generation (KeyGen) process. The Rowhammer
side-channel is a hardware-based security exploit that allows flip-
ping bits in DRAM by “hammering” rows of memory adjacent to
some target-victim memory location by repeated memory accesses.
Using Rowhammer, we induce the FrodoKEM software to output a
higher-error Public Key (PK), (A,B = AS + Ẽ), where the error Ẽ is
modified by Rowhammer.

Then, we perform a decryption failure attack, using a variety of
publicly-accessible supercomputing resources running on the order
of only 200,000 core-hours. We delicately attenuate the decryption
failure rate to ensure that the adversary’s attack succeeds practically,
but so honest users cannot easily detect the manipulation.

Achieving this public key “poisoning” requires an extreme en-
gineering effort, as FrodoKEM’s KeyGen runs on the order of 8
milliseconds. (Prior Rowhammer-assisted attacks against cryptog-
raphy require as long as 8 hours of persistent access.) In order
to handle this real-world timing condition, we require a wide va-
riety of prior and brand new, low-level engineering techniques,
including e.g. memory massaging algorithms – i.e. “Feng Shui” –
and a precisely-targeted performance degradation attack on the
extendable output function SHAKE.

We explore the applicability of our techniques to other lattice-
based KEMs in the NIST PQC Round 3 candidate-pool, e.g. Kyber,
Saber, etc, as well as the difficulties that arise in the various settings.

To conclude, we discuss various simple countermeasures to protect
implementations against this, and similar, attacks.

1 INTRODUCTION
In recent years, the possible emergence of a cryptographically rele-
vant quantum computer (CRQC), a device that exploits quantum-
mechanical phenomena to break cryptographic systems, has be-
come more of a reality. A substantial amount of research has
gone into the construction of such machines, resulting in increas-
ingly larger quantum computers. For example, in 2019, researchers
at Google announced an experimental realization of “quantum
supremacy” [5], the demonstration of a programmable quantum
device solving a problem that is infeasible for any conventional
computer. If fully realized, a CRQC would be capable of under-
mining the security of digital communications on the Internet and
elsewhere [1].

The only practical counter to this threat is the development and
deployment of quantum-resistant (or post-quantum) cryptography.
In 2016, the U.S. National Institute of Standards and Technology
(NIST) announced the beginning of its Post-QuantumCryptography
(PQC) standardization process [46] aimed to standardize quantum-
resistant public-key cryptographic algorithms. The conclusion of
Round 3 of this project is imminent, resulting in NIST announcing
its decisions for the first post-quantum public-key encryption / key
establishment mechanism (KEM) and digital signature standards.
The pool of candidate-algorithms in the NIST process has been
reduced from a large field of 69 submissions in 2017 to a small set of
Round 3 finalists and alternates. Among these remaining candidates,
lattice-based cryptography plays an especially prominent role, as 5
of the 7 finalists are lattice-based.
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Among the lattice-based constructions considered in the 3rd
Round, the FrodoKEM encryption protocol has the most mathemat-
ically conservative, security-conscious design. It is the only lattice
candidate that has no special algebraic structure but instead bases
its security on the plain Learning With Errors (LWE) problem [55].
In particular, FrodoKEM was recommended by the German Federal
Office for Information Security (BSI) [25] in 2020 as “suitable for
long-term confidentiality protection.”

Next, in addition to security against cryptanalysis, NIST has
also made clear throughout the standardization process that
PQC candidates also should be resilient against side-channel at-
tacks [9, 31, 48, 52, 53, 59, 64, 67]. While some side-channel attack
vectors can be defended against using constant-time coding tech-
niques, other actively-induced effects, such as Rowhammer induced
bit flips, cannot be as easily mitigated through careful coding prac-
tices. Relatively little is known about the resistance of current PQC
constructions to active side-channels like Rowhammer. There are
only two prior works investigating such attacks against NIST PQC
algorithms, and they examined only the case of digital signatures:
specifically, the LUOV and Dilithium signature schemes [32, 42].
In this work, we embark on the task of investigating the Rowham-
mer resilience of NIST’s post-quantum KEM candidates, focusing
foremost on FrodoKEM as a representative “hard target.”

Specifically, we ask the following main questions:
How resilient are PQC KEM constructions to Rowhammer attacks?
What would it take for an adversary to mount such attacks, and

what information can be extracted using them?

1.1 Our Contributions
We demonstrate the first end-to-end implementation of a successful
key recovery attack against FrodoKEM using Rowhammer. At a
high level, our attack works as follows. First, we use Rowhammer to
poison FrodoKEM’s KeyGen process. Then, we use a supercomputer
to extract private-keymaterial. Next, we synthesize this data using a
tailored key-recovery algorithm. Finally, any individual FrodoKEM-
encrypted session-key can be recovered in around 2 minutes on a
commodity laptop.

Our work demonstrates the near-term and high importance of
protecting lattice-based cryptography’s key generation processes
from active side-channel attacks. Especially, we highlight the sce-
nario of running a lattice KEM’s KeyGen in a cloud computing
environment, where an adversary will have access to a common,
shared-memory architecture on which honest users run KeyGen:
In such a setting, honest users are particularly vulnerable to our
line of attack and should aim to protect themselves with intention.

1.2 Overview of Our New Attack
The main ideas underlying our attack on FrodoKEM are as follows.
Decryption Failure Attacks. We begin with an observationmade
previously [35] that many lattice-based KEMs, including FrodoKEM,
have a non-zero decryption failure rate (DFR),1 and this may lead to
a security vulnerability. That is, validly encrypted ciphertexts may
occasionally fail to decrypt properly, and moreover, such failing

1This is not an inherent requirement. Our attack may also succeed against rigid lattice-
based KEMs with perfect correctness. We defer the details to the body of the paper.

ciphertexts reveal information about the secret key used in decryp-
tion. This has led to multiple decryption failure attacks and related
attack variants in the literature, beginning with Fluhrer’s attack on
Ring-LWE [21] with many improvements later (e.g. [7, 19, 20, 51])
targeting CPA-secure schemes. These attacks typically make adap-
tive decryption queries to the receiver of a KEM using carefully
crafted ciphertexts. They rely on information of whether a failure
occurred or not to gradually recover the secret key.
Protecting FrodoKEM Against Decryption Failures. Decryp-
tion failure attacks are mitigated in FrodoKEM and other NIST
PQC Round 3 KEMs by use of a Fujisaki-Okamoto (FO) trans-
form [24, 30, 57] that converts a base (IND- or OW-) CPA-secure
encryption scheme into a CCA-secure KEM. At a high level, an FO-
like transform samples the randomness used to construct a given
ciphertext by applying a hash function modeled as a random oracle
to its plaintext message. After decryption of a candidate-message,
the receiver (deterministically) recomputes a ciphertext encrypt-
ing that message and checks if this rederived ciphertext exactly
matches the initial ciphertext it received. This makes it impossible
for an adversary to craft arbitrary ciphertexts (or maul honestly-
constructed ciphertexts), as an overwhelming fraction of these will
fail the FO re-encryption check.

Therefore, an adversary against such FO-transformed CCA-
secure KEMs is forced to run the honest encryption procedure
to produce ciphertexts that will not be rejected outright. Indeed,
the parameters of KEM candidates in the 3rd round of the NIST
PQC process are chosen to balance the work of an adversary who
attempts a decryption failure type of attack and an adversary who
attempts a direct cryptanalytic attack on the mathematics of the
system.2

Failure-Boosting Attacks. Further works [8, 16, 17] have ex-
plored failure-boosting attacks against the CCA-secure forms of
NIST PQC candidate-KEMs. The idea here is that the receiver in a
real-world KEMwill perform only so many decryptions on behalf of
various senders attempting to establish a common session key. (The
NIST PQC Call For Proposals [44] sets an absolute upper limit of
264 decryptions.) If a random ciphertext fails to decrypt with proba-
bility (say) 2−128 or 2−256, it’s clearly highly unlikely that even 264

decryption-query attempts will yield a single failing ciphertext. But
an adversary can do better by querying the random oracle locally,
and generating a large list of candidate-ciphertexts to query for de-
cryption. For example, lattice-based ciphertexts with a higher-norm
or heavier weight in certain integer-coordinates are more likely
to fail to decrypt than a random ciphertext. A failure-boosting ad-
versary chooses a subset of the most-likely-to-fail ciphertexts, and
queries only on those. While the above description summarizes the
the current state-of-the-art for decryption failure attacks, modern
analyses show that the carefully-set parameters of NIST Round 3
KEMs prevent such lines of attack from succeeding in practice.
Intuition for Our Attack. This is where our new Rowhammer-
assisted attack comes in. The Rowhammer side-channel is a
hardware-based security exploit that allows flipping bits in DRAM
by “hammering” rows of memory adjacent to some target-victim
memory location by repeated memory accesses. Specifically,
2As an interesting historical note, CRYSTALS-Kyber-512 changed a certain binomial-
sampling parameter from 2 to 3 between the 2nd and 3rd Rounds of the NIST PQC
process explicitly to better balance the cost of these attacks.
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physically-adjacent memory cells interact electrically between
themselves, and when a sufficient charge builds up in a given capac-
itor, it may discharge into adjacent capacitors (where the adversary
does not have read/write permissions), causing their logical bits to
flip.

By targeting the locations in RAMwhere the LWE secret key and
error are stored during the key generation procedure, we can use
Rowhammer to flip some of the higher-order bits of the LWE secret
key material. This, in turn, means that the magnitude of certain
secret and error coordinates are far higher than would be naturally
generated by an honest run of the key generation algorithm. The
effect is that decryption failures become somewhat more likely
(although not somuch that honest users will perceive the difference)
– but for an adversary who knows precisely which bits were flipped,
obtaining decryption failures via the failure-boosting approach
becomes extremely more likely (e.g. 2−128 becomes ≈ 2−12).

While this constitutes the core intuition for our new attack, a
plethora of additional issues need to be considered to make this
approach feasible in the real world.
Rowhammer Timing. A first complication is that Rowhammer
bit-flipping requires a minimum window of time at least as long as
the electrical refresh rate of the DRAM device being targeted. On
typical devices, this is 64 milliseconds, yet FrodoKEM (the slowest
of the NIST lattice-based KEM candidates) runs in around 8 mil-
liseconds. We note that FrodoKEM and other NIST PQC KEMs also
compute a hash of the generated public key and publish this hash
with the associated algebraic material. In turn, this requires that
Rowhammer manipulation completes very shortly after (or before!)
the natural KeyGen computation completes. In other words, the
algebraic computation in the key generation process inherently
must last for at least 64 milliseconds for Rowhammer to work. To
overcome this challenge, we rely on an additional performance
degradation side-channel (to sufficiently delay the execution of the
FrodoKEM key generation procedure), so that our Rowhammer
attack can do its work.
Memory Profiling. But this step is not enough. A second concern
is that the Rowhammer is sensitive to the physical characteristics of
individual DRAM modules in the victim device, decided arbitrarily
due to process variation during manufacturing at a foundry. For any
given page of RAM, some bits will flip frequently when subjected to
hammering, and other bits will flip only very slowly. The solution
is to profile the target device (before the Lattice KEM algorithm
comes online), by hammering every position in the RAM up front,
to determine which bits on which pages are more likely to flip.
Memory Massaging. Given such knowledge of particularly
“flippy” locations in various pages of the victim DRAM device, we
now want to ensure that the FrodoKEM algorithm allocates its
memory in a specific manner – exactly aligning with the precise
bits of the FrodoKEM algebraic material that we want to manipulate.
The mechanism for doing so is “Feng Shui,” or memory massaging.
Here, we force the victim to allocate its memory in the exact pages
of DRAM that we want, by exploiting the low-level details of the
data structure underlying the allocation of Linux page frame caches.
Side Stepping Memory Bit Masks. Yet even this is not quite
enough. Our Rowhammer procedure physically flips bits in a one-
sided manner: from 0 to 1. There are two problems that can arise
with this construction. First, logical bits stored in DRAM are distinct

from the physical bits stored in DRAM. In particular, every time
the device is booted up, a random bit-mask is applied (akin to a
one-time pad). This pad will be consistent, but for N possible pads,
the attack succeeds with 1/𝑁 probability if the machine is reset
between profiling and the attack. The solution is to re-profile after
any restarts to ensure that the mask does not affect bit locations.
Second, 2’s complement signed representation dramatically reduces
the success probability. For each column, we want to place a single
256-bit flip. The value prior to the flip is equally probable to be
negative or positive. The consequence of this representation is that
a negative value being targeted to induce a 256-bit flip from 0 to
1 will be unsuccessful because the bit is already a 1. This means
that each column can be attacked with probability 2−1, and that
each of these locations is an independent probability. So our attack
succeeds with additional probability 2−𝑁 where N is the number
of columns that need to be poisoned, depending on the random
sampling of E in the key-generation process.

Generating Failing Ciphertexts. Now we have properly poi-
soned a FrodoKEM public key. Once the key material has been
poisoned, we next need to find sufficiently many failing ciphertexts.
For this purpose, we use supercomputing resources (described in
Section 5) to run an honest encryption procedure on over a tril-
lion distinct messages. Rather than requesting decryptions on this
many messages – which would be outside the bounds of an honest
receiver’s acceptable workload, and thus certainly detected and
rejected by a server – we use our knowledge of the hammered
positions to filter out ciphertexts that are unlikely to cause a de-
cryption failure. Specifically, we only keep ciphertexts that have
either a large positive or a large negative value in the targeted bit-
locations, thus maximizing the probability of failure. By asking that
only such ciphertexts be decrypted, we also significantly reduce
the probability of detection.

Key Recovery. To perform key recovery given the failing ci-
phertexts, we present and analyze the following simple algorithm:
(1) Construct a set of vectors from the failing ciphertexts gener-
ated in the previous stage, (2) Scale these vectors up by a constant
factor that depends on the FrodoKEM key distribution and on the
rowhammered locations, (3) Take the component-wise average of
these scaled-up vectors, (4) Round the resulting vector component-
wise to the nearest integer and output this as the candidate key.
Comparing our approachwith the lattice reduction approach of [15],
we find that incorporating the same number of failing ciphertexts
using the Toolkit from [15] yields an SVP instance with an estimated
hardness of 150 bikz (corresponding to a bit-security of approxi-
mately 40), which would not be solvable on a commodity laptop.
Further, even obtaining this 150-bikz SVP instance by incorporating
decryption failure information using the Toolkit of [15] (as opposed
to just computing the hardness estimates referenced above), was
too computationally intensive for us to run on a commodity lap-
top due to the large number of failing ciphertexts required in our
setting (the required large number of failing ciphertexts is due to
the fact that the decryption failure threshold is effectively lowered
in our attack, making failures more common, and resulting in less
information gained about the secret key from each failure). Thus,
for the current setting, our key recovery algorithm outlined above
is far more computationally efficient than the approach of [15].
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Attacking Session Keys. In our experiment, the attack described
thus far allowed us to recover 7/8 columns of the master secret
key. However, it is actually computationally hard to recover the
remaining bits of the master key. So, instead, we turn to recover
the session keys. We show a simple procedure that, when most of
the master secret key is known, can recover the full session key
by simply trying all possible values for the remaining bits of the
session key. We show that this incremental session key recovery
step can complete in only a couple minutes on a commodity laptop.

1.3 Attacker Model
Our attack relies on inducing bit flips during FrodoKEM’s key gen-
eration process. We assume the common threat model for Rowham-
mer attacks. In this model, the attacker and FrodoKEM’s key gener-
ation process run on the same physical hardware. This can occur
with mutually distrusting virtual machines running on the same
server, or when the attacker and victim run in two separate pro-
cesses under the same OS. This threat model is consistent with
the current body of literature on Rowhammer [68], as well as the
majority of microarchitectural attack papers [69].

Finally, given that FrodoKEM is a CCA-secure scheme, we also
assume that the attacker can induce the victim to decrypt honestly
generated ciphertexts of the attacker’s choice.

1.4 Artifacts and Current Status
Artifacts. For completeness, we provide our artifacts at this URL
(See Readme first): https://github.com/a-as-plus-e/FrodoFLIP
Current Status. After acceptance of this paper, NIST selected
Kyber as the initial post-quantum KEM [2]. Nonetheless, Frodo
remains a post-quantum recommendation of Germany’s BSI [25]
and the core, mathematical foundation underlying Kyber [47].

1.5 Paper Organization
The rest of this paper is organized as follows. First, in Section 2,
we review some necessary background and prior work as well
as notation and definitions. Then, in Sections 3 - 6, we dive into
the details of each component of our attack. Specifically, in Sec-
tion 3, we describe how decryption failures can be used to recover
a FrodoKEM secret key. Then, in Section 4, we describe how to use
a Rowhammer attack to enable creation of decryption failures in
FrodoKEM. In Section 5 we describe how to use a supercomputer to
find sufficiently many failing ciphertexts for our attack. Finally, in
Section 6, we conclude our attack by showing how we can recover
a FrodoKEM session-key. We then discuss how our techniques can
be extended to other lattice-based KEMs in Section 7 and possible
countermeasures in Section 8.

2 BACKGROUND
We now provide background on the FrodoKEM protocol as well as
on the Rowhammer attack that we use to break its security.

2.1 Notation
Weuse bold lower case letters to denote vectors, and bold upper case
letters to denote matrices. We use column notation for vectors, and
start indexing from 0. We denote by I𝑛 the 𝑛-dimensional identity
matrix and denote by x · y the inner product of vectors x, y of the

same dimension. In addition, we make use of Einstein notation to
delineate between rows and columns of a matrix (e.g. For a matrix
A, a𝑖 is the 𝑖𝑡ℎ row of the matrix, and a𝑗 is the 𝑗𝑡ℎ column of the
matrix). We denote by (x| |y) the concatenation of two column
vectors x, y, which is a column vector whose dimension is the sum
of the dimensions of x and y. Random variables—i.e. variables whose
values depend on outcomes of a random experiment—are denoted
with lowercase calligraphic letters e.g. a, b, e, while random vectors
are denoted with uppercase calligraphic letters e.g. C , X ,Z.

2.2 Statistics
Definition 1 (Univariate normal distribution). We denote by
N(𝜇, 𝜎2) the univariate normal (Gaussian) distribution with mean
𝜇, variance 𝜎2, and probability density function (pdf)

𝑥 ↦→ 1
𝜎
√

2𝜋
exp

(
−1

2

(𝑥 − 𝜇
𝜎

)2
)
.

Definition 2 (Multivariate normal distribution). Let 𝑑 ∈ Z, 𝝁 ∈ Z𝑑
and let Σ be a positive definite matrix of dimension 𝑑×𝑑 . We denote
by N(𝝁,Σ) the multivariate normal (Gaussian) distribution with
mean 𝝁, covariance Σ, and probability density function (pdf)

x ↦→ 1√︁
(2𝜋)𝑑 · det(Σ)

exp
(
−1

2
(x − 𝝁)Σ−1 (x − 𝝁)𝑇

)
.

Definition 3. The error function, denoted erf is defined as:

erf(𝑧) :=
2
√
𝜋

∫ 𝑧

0
exp(−𝑡2) 𝑑𝑡 .

erf(𝑧) is the probability that an 𝑥 sampled fromN(0, 1) falls in the
range [−𝑧, 𝑧].

2.3 FrodoKEM
Definition 4 (Public-key encryption scheme (PKE)). A public-key
encryption scheme is a tuple of algorithms (KeyGen, Enc, Dec):

• KeyGen() outputs (𝑝𝑘, 𝑠𝑘), where 𝑝𝑘 is the public key and
𝑠𝑘 is the secret key.
• Enc(𝑝𝑘, 𝜇) takes as input a public key 𝑝𝑘 and a message 𝜇

and outputs a ciphertext 𝑐 .
• Dec(𝑠𝑘, 𝑐) takes as input a secret key 𝑠𝑘 and a ciphertext 𝑐

and outputs a message 𝜇, or fails.

A public-key encryption scheme is correct if an honest in-order
execution of KeyGen, Enc, and Dec, results in Dec outputting the
same message that is input into Enc (with overwhelming probabil-
ity). The relevant notion of security for a public-key encryption
scheme in our discussion is IND-CPA. A public-key encryption
scheme is IND-CPA if any adversary cannot distinguish between ci-
phertexts of two adversarially-chosenmessages with non-negligible
advantage.

Definition 5 (Key Establishment Mechanism (KEM)). A key es-
tablishment mechanism (KEM) is a tuple of algorithms (KeyGen,
Enc, Dec):

• KeyGen() outputs (𝑝𝑘, 𝑠𝑘), where 𝑝𝑘 is the public key and
𝑠𝑘 is the secret key.
• Enc(𝑝𝑘) takes as input a public key 𝑝𝑘 and outputs (𝑐, 𝑘),

where 𝑐 is the ciphertext that encapsulates the shared ses-
sion key 𝑘 .

https://github.com/a-as-plus-e/FrodoFLIP
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• Dec(𝑠𝑘, 𝑐) takes as input a secret key 𝑠𝑘 and a ciphertext 𝑐 ,
and outputs a shared session key 𝑘 , or fails.

A key-encapsulation mechanism is correct if an honest in-order
execution of KeyGen, Enc, and Dec results in the same shared
session key output by Enc and Dec (with overwhelming probability).
Moreover, a KEM is IND-CCA if any adversary with access to a
decapsulation oracle, on input of a random challenge session key
and a challenge ciphertext, cannot distinguish between the case
when the session key is encapsulated in the ciphertext and the case
when the session key is independent and uniformly random, with
non-negligible advantage.

FrodoKEM is an IND-CCA key-encapusulation mechanism.
FrodoKEM is constructed as a Fujisaki-Okamoto transform of
FrodoPKE, an IND-CPA public-key encryption scheme whose secu-
rity is based on the hardness of Learning with Errors. Learning with
Errors was first defined and studied as the basis for a public-key
cryptosystem by Regev in [55]. Lindner and Peikert later in [38]
showed a more efficient public-key encryption scheme based on
the hardness of Learning with Errors. FrodoPKE is an instantiation
of Lindner and Peikert’s construction. We give the definitions of
Learning with Errors, both the search and decision variants, below.
We note that the definitions we state here are of so-called normal-
form Learning with Errors introduced in [41], which shows that
normal-form Learning with Errors is at least as hard as Learning
with Errors as originally defined by Regev in [55].

Definition 6 (LWE distribution). The LWE distribution is
parametrized by positive integers (𝑚,𝑛, 𝑞) and an error distribu-
tion 𝜒 over Z. The LWE distribution is sampled by sampling a
uniformly random A← Z𝑚×𝑛𝑞 , s← 𝜒𝑛 , e← 𝜒𝑚 , and outputting
(A, b B As + e mod 𝑞).

Definition 7 (The Search-LWE Problem). Given (A, b) drawn from
the LWE distribution, search-LWE problem asks to find s in the
support of 𝜒𝑛 such that e B b−As is in the support of 𝜒𝑚 modulo
𝑞.

Definition 8 (The Decision-LWE Problem). The decision-LWE
problem asks to distinguish between the LWE distribution and the
uniform distribution over (Z𝑚×𝑛𝑞 ,Z𝑚𝑞 ).

It’s been shown (e.g. in [55]) that there is a reduction from search-
LWE to decision-LWE.

We give a high-level description of FrodoPKE in algorithms 1,
2, and 3, where we omit details about (pseudo)random generation
using symmetric primitives, sampling from the error distribution
𝜒 , and bit-level representations. We point readers to the Frodo
specification [3] for details. In the following, 𝑛,�̄�, 𝑛, 𝐵, and 𝑞 are
integer parameters. Specifically, for Frodo640, 𝑛 = 640, �̄� = 𝑛 =

8, 𝐵 = 2, and 𝑞 = 32768.
We now describe the 𝐸𝑛𝑐𝑜𝑑𝑒 and 𝐷𝑒𝑐𝑜𝑑𝑒 functions to complete

our description of FrodoPKE. The 𝐸𝑛𝑐𝑜𝑑𝑒 function encodes an inte-
ger 𝑘 such that 0 ≤ 𝑘 < 2𝐵 ≤ 𝑞 as an element in Z𝑞 :

𝐸𝑛𝑐𝑜𝑑𝑒 (𝑘) B 𝑘 · 𝑞/2𝐵 .
In Frodo, 𝑞 is a power of 2, and therefore 𝑞/2𝐵 is an integer. The
𝐷𝑒𝑐𝑜𝑑𝑒 function extracts a 𝐵-bit integer from an element of Z𝑞 :

𝐷𝑒𝑐𝑜𝑑𝑒 (𝑘) B ⌊𝑐 · 2𝐵/𝑞⌉ mod 2𝐵 .

Algorithm 1 FrodoPKE.Keygen()
1: A← Z𝑛×𝑛𝑞 , S← 𝜒𝑛×�̄� , E← 𝜒𝑛×�̄�

2: B = AS + E mod 𝑞

3: return (𝑝𝑘 = (A,B), 𝑠𝑘 = S)

Algorithm 2 FrodoPKE.Enc(𝑝𝑘, 𝜇)
1: A,B = 𝑝𝑘

2: S′, E′ ← 𝜒�̄�×𝑛

3: E′′ ← 𝜒�̄�×�̄�

4: B′ = S′A + E′

5: V = S′B + E′′

6: (C1,C2) = (B′,V + 𝐸𝑛𝑐𝑜𝑑𝑒 (𝜇))
7: return 𝑐 = (C1,C2)

Algorithm 3 FrodoPKE.Dec(𝑠𝑘, 𝜇)
1: S = 𝑠𝑘

2: (C1,C2) = 𝑐

3: M = C2 − C1S
4: return 𝜇 = 𝐷𝑒𝑐𝑜𝑑𝑒 (M)

We extend the domain of 𝐸𝑛𝑐𝑜𝑑𝑒 and 𝐷𝑒𝑐𝑜𝑑𝑒 to vectors and matri-
ces by entry-wise application. The 𝐸𝑛𝑐𝑜𝑑𝑒 and 𝐷𝑒𝑐𝑜𝑑𝑒 functions
have an error-correcting property stated in [3, Lemma 2.18]. We
re-state the result below.

Lemma 1. Let 𝑞 = 2𝐷 , 𝐵 ≤ 𝐷 . Then 𝐷𝑒𝑐𝑜𝑑𝑒 (𝐸𝑛𝑐𝑜𝑑𝑒 (𝑘) + 𝑒) = 𝑘

for any 𝑘, 𝑒 ∈ Z such that 0 ≤ 𝑘 < 2𝐵 and −𝑞/2𝐵+1 ≤ 𝑒 < 𝑞/2𝐵+1.

The correctness of FrodoPKE follows because the decryption
computes

M = C2 − C1S

= 𝐸𝑛𝑐𝑜𝑑𝑒 (𝜇) + S′E − E′S + E′′.

Let E′′′ = S′E − E′S + E′′. By Lemma 1, if the entries of E′′′ are
sufficiently small, we have that 𝐷𝑒𝑐𝑜𝑑𝑒 (M) = 𝜇. A lower bound
on the probability of this event can be computed explicitly using
Frodo’s parameter search script in Frodo submission available at
[45]. Conversely, if an entry in the decoding error E′′′ exceeds
the decoding threshold [−𝑞/2𝐵+1, 𝑞/2𝐵+1), a decoding failure will
occur in the corresponding entry of 𝜇.

Given an IND-CPA public-key encryption scheme such as
FrodoPKE above, a generic Fujisaki-Okamoto transform can be
applied to obtain an IND-CCA key-encapsulation mechanism. We
give a high-level description of the Fujisaki-Okamoto transform
used by FrodoKEM in algorithms 4, 5, and 6, where 𝐻 is a crypto-
graphic hash function (e.g. SHAKE) modeled as a random oracle.

For our attack, we consider Frodo640, the NIST level 1 (as hard
as brute-force search on AES-128) parameter set of FrodoKEM. For
Frodo640, the parameters are as follows: 𝑛 = 640, 𝑛 = �̄� = 8, 𝑞 =

215, 𝐵 = 2. Therefore, the shared session key is decoded from an
8 × 8 matrix and the decoding threshold is [−4096, 4096).
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Algorithm 4 FrodoKEM.KeyGen()
1: (𝑝𝑘, 𝑠𝑘) ← FrodoPKE.KeyGen()
2: return (𝑝𝑘, (𝑝𝑘, 𝑠𝑘))

Algorithm 5 FrodoKEM.Enc(𝑝𝑘)

1: 𝜇 ← {0, 1}ℓ
2: 𝑟 ← 𝐻 (𝜇)
3: 𝑐 ← FrodoPKE.Enc(𝑝𝑘, 𝜇; 𝑟 )
4: return (𝑐, 𝜇)

Algorithm 6 FrodoKEM.Dec((𝑝𝑘, 𝑠𝑘), 𝑐)
1: 𝜇 ← FrodoPKE.Dec(𝑠𝑘, 𝑐)
2: 𝑟 ← 𝐻 (𝜇)
3: 𝑐 ′ ← FrodoKEM.Enc(𝑝𝑘, 𝜇; 𝑟 )
4: if 𝑐 ′ = 𝑐 then
5: return 𝜇

6: else
7: Decapsulation fails.

2.4 The Rowhammer Bug
Rowhammer is a phenomenon wherein repeated accesses to a row
in DRAM can induce bit flips in the neighboring rows [34, 43]. This
is because activations of the row’s wordline cause the capacitors
storing bit values in neighboring rows to discharge slightly due
to parasitic current. If this occurs a sufficient number of times to
drop the voltage below the “charged" threshold before the DRAM
refreshes, which typically occurs every 64ms, the logical value of
the bit flips. The row that is repeatedly activated, or “hammered" is
called the “aggressor row," while the rows containing the induced
bit flips are “victim" rows.
Double-Sided Rowhammering. In order to use Rowhammer to
intentionally flip inaccessible bits, it is more effective if the attacker
repeatedly triggers accesses to memory values both above and below
the victim rows within the same bank. If the victim row contains
bits susceptible to Rowhammer, this memory access pattern is far
more likely to induce bit flips than single sided hammering.
Repeatability of Flips. A crucial property of Rowhammer for
building attacks is that Rowhammer-induced bit flips are repeatable.
This means that a bit that flips at any given point in time is likely
to flip again in the future when hammered, and similarly bits that
do not flip after being hammered are unlikely to flip upon further
hammering. While roughly half of flippable bits can flip in the 1-to-
0 direction, and the other half in the opposite direction, any given
bit can only possibly flip in one direction per boot. This means
that an adversary can “profile" a given machine prior to an attack
by hammering memory and building a map of where the flippable
bits are and what directions they flip. This precision allows us
to accurately poison the FrodoKEM key in a fairly deterministic
manner.
Rowhammer History. Amultitude of works from both academia
and industry have helped Rowhammer evolve from its concep-
tion as a theoretical attack to a realistic attack vector with serious

implications. After Kim et al. [34] first uncovered the Rowham-
mer phenomenon, researchers primarily focused on how to use
Rowhammer for privilege escalation attacks and obtaining arbi-
trary read/writes [10, 22, 27, 37, 56, 58, 65, 66, 68]. Rowhammer
attacks from the browser [18, 29], over the network [39, 63], and
against ECC memory [14] soon followed, along with new ham-
mering patterns[23, 33, 40] enabling Rowhammer against DDR4
memory.
Cryptographic Applications of Rowhammer. In addition to
compromising standard isolation primitives, Rowhammer-induced
bit flips were also used to break the security of cryptographic primi-
tives. More specifically, Razavi et al. [54] demonstrate howRowham-
mer can be used to break RSA signature validation, while Mus et al.
[42] demonstrate an attack on the LUOV signature scheme. Finally,
Kwong et al. [37] show how to use Rowhammer-induced bit flips to
directly read bits from memory, allowing for the recovery of RSA
keys directly from the target’s address space.

3 DECRYPTION FAILURE ATTACK ON
ROWHAMMER-POISONED FRODOKEM

In this section, we assume the reader has familiarity with decryp-
tion failure attacks (see Section 1.2) and Rowhammer attacks (see
Section 2.4). It will also be helpful for the reader to reference Sec-
tion 1.2 for an overview of our attack and our high-level strategy
of combining a decryption failure and Rowhammer attack.

Given the above background, we begin by highlighting an im-
portant difference between our attack and a traditional decryption
failure attack [7, 8, 16, 17, 19–21, 51]: In a traditional decryption
failure attack, the failing ciphertexts contain a significant amount of
information on the secret key, so that only a few thousand failures
are required for a full key recovery. Because our effective failure
threshold is so much lower, the failing ciphertexts generated using
our Rowhammer-altered public key contain less information. The
failure event occurs orders of magnitude more often for randomly
generated ciphertexts, and in turn, the fraction of secret keys that
are consistent with a single failure event is far higher. This induces
a trade-off in which we require significantly more failing cipher-
texts to gain enough information to recover the key, but require
less computation overall, since it is much easier to find failing ci-
phertexts. It is important to quantify this trade-off, as it informs
which specific bits of the public key to target with Rowhammer.
First, we will analyze the effects of Rowhammer on the decryption
failure rate, which gives us an estimate for the total amount of work
required to generate a single failing ciphertext.

3.1 Decryption Failure Rate Analysis
The decoding error in Frodo640 is an 8 × 8 matrix

E′′′ = S′E − E′S + E′′. (1)

The decoded message, which is also an 8 × 8 matrix, is correct in
each of its entries if the corresponding entry in E′′′ mod 𝑞 is in the
interval [−4096, 4096). Otherwise, the decoded entry is incorrect.

Consider the entry 𝑒 ′′′
𝑖, 𝑗

at position (𝑖, 𝑗) of E′′′. Let s′
𝑖
and e′

𝑖
be

the 𝑖-rows of S′ and E′ respectively, and e𝑗 and s𝑗 be the 𝑗-columns
of E and S respectively. Then,

𝑒 ′′′𝑖, 𝑗 = s′𝑖 · e
𝑗 − e′𝑖 · s

𝑗 + 𝑒 ′′𝑖, 𝑗 .
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Let 𝜒 be the error distribution in Frodo. If key generation is executed
correctly, e𝑗 is sampled from 𝜒𝑛 . However, due to row-hammering,
the true distribution of e𝑗 is 𝜒 ′ × 𝜒𝑛−1, where 𝜒 ′ is defined as
follows. Let 𝑝𝜒 : Z→ R be the density function of 𝜒 . Then, 𝑝𝜒′ is
defined by

𝑝𝜒′ (𝑥) =


𝑝𝜒 (𝑥) if − 12 ≤ 𝑥 < 0
𝑝𝜒 (𝑥 − 256) if 256 ≤ 𝑥 < 269
0 otherwise

.

For Frodo640, the support of 𝑝𝜒 is {−12, . . . 12} whereas the sup-
port of 𝑝𝜒′ is {−12,−11, . . . ,−1, 256, 257, . . . , 268}. The reference
implementation of FrodoKEM uses 16-bit integers. Here, we are
targeting an attack that only requires that one bit flip per column
of E, since requiring more bit flips can reduce the success of the
Rowhammer attack. By forcing the eighth-order bit of an entry to
1, the Rowhammer attack effectively adds 256 to any positive value
and leaves negative values unchanged. Thus explaining the distri-
bution of 𝜒 ′ shown above. Indeed, this analysis can be repeated
for other orders of bits. We also consider the failure probabilities
for a sixth-order (64) bit Rowhammer and a seventh-order (128) bit
Rowhammer.

With e𝑗 sampled from 𝜒 ′ × 𝜒𝑛−1, an honest encapsulation has
decoding error distributed as

𝑒 ′′′𝑖, 𝑗 ∼ 𝜒 · 𝜒 ′ + (𝜒 · 𝜒)⊛ (2𝑛−1) + 𝜒, (2)

where the notations are as follows. If 𝜒1 and 𝜒2 are two distribu-
tions, then 𝜒1 · 𝜒2 is the distribution of the product of 2 independent
random variables having distributions 𝜒1 and 𝜒2 respectively. More-
over, 𝜒1+𝜒2 is the convolution of 𝜒1 and 𝜒2, which is the distribution
of the sum of 2 independent random variables having distributions
𝜒1 and 𝜒2 respectively. Finally, 𝜒⊛𝑘1 B 𝜒1 + 𝜒1 + · · · + 𝜒1︸                ︷︷                ︸

𝑘 times

. Con-

cretely, by explicitly computing the distribution in equation (2),
we have that such 𝑒 ′′′

𝑖, 𝑗
causes decryption failure with probability

approximately 2−27.8 (2−113.2 for a 64-bit Rowhammer, and 2−76 for
a 128-bit Rowhammer).

For our adversarial attack, s′
𝑖
is not honestly sampled from 𝜒𝑛 .

Instead, we filter the output of the random oracle and select only
the values s′

𝑖
that have ±12 in the same coordinate where 𝜒 ′ is in e𝑗 .

Let 𝜏 be the distribution with probability 1/2 at 12 and −12. Then,
our adversarial 𝑒 ′′′

𝑖, 𝑗
has the distribution

𝑒 ′′′𝑖, 𝑗 ∼ 𝜏 · 𝜒
′ + (𝜒 · 𝜒)⊛ (2𝑛−1) + 𝜒.

Concretely, such 𝑒 ′′′
𝑖, 𝑗

exceeds the decoding threshold of Frodo640
with probability approximately 2−13 (2−98.7 for a 64-bit Rowham-
mer, and 2−61 for a 128-bit Rowhammer). To obtain one such s′

𝑖
,

the expected number of calls to the random oracle is 215. If there
are 𝑐 target columns of E, since there are 8 rows of S′, the expected
number of calls per target column is 215/(8𝑐). In our experiment,
𝑐 = 7.

We note that there is a large variation in decryption failure rates
conditioned on whether 𝜒 ′ is negative. The decryption failure rates
conditioned on 𝜒 ′ being negative are negligible. Therefore, the
decryption failure rates calculated above are negligibly different
from decryption failure rates conditioned on 𝜒 ′ being positive. So

we can mount our attack to recover e𝑗 and s𝑗 with probability
Pr[𝜒 ′ > 0] = Pr[𝜒 ≥ 0].

Next we will describe our key recovery procedure, and analyze
the number of failing ciphertexts necessary for recovering (each
column of) the secret.

3.2 FrodoKEM Key recovery
Each failing entry of the error matrix in (1) gives rise to a linear
inequality involving a column from each of S, E, a row from each
of S′, E′, and the matching coordinate from E′′. Let 𝑒 ′′′

𝑖, 𝑗
be a failing

entry of the error matrix. Assuming we exceed the failure threshold
𝑡 in the positive direction, we obtain the following linear inequality

𝑒 ′′′𝑖, 𝑗 = s′𝑖 · e
𝑗 + 𝑒 ′′𝑖, 𝑗 − e′𝑖 · s

𝑗 ≥ 𝑡

(s′𝑖 ∥ − e′𝑖 ) · (e
𝑗 ∥s𝑗 ) ≥ 𝑡 − 𝑒 ′′𝑖, 𝑗

Let us first consider a standard decryption failure attack with
adjusted failure threshold (𝑡 − 𝑒 ′′

𝑖, 𝑗
). In this attack, the adversary

generates honestly distributed ciphertexts by running the encryp-
tion algorithm (this is enforced in practice by the Fujisaki-Okamoto
transform) and queries them to the decryption oracle. The attacker
then collects all the ciphertexts that led to decryption failure. We
will first show how to perform key recovery in the above setting.
We will then explain why our Rowhammer attack essentially re-
duces to a standard decryption failure attack with a further adjusted
failure threshold (𝑡 ′ − 𝑒 ′′

𝑖, 𝑗
), where 𝑡 ′ = 𝑡 − 12 · 𝑒𝑖, 𝑗 , and one fewer

dimension.
In the above attack, S′ and E′ that produce failing ciphertexts

are correlated with E and S respectively. Given a set of failing ci-
phertexts, there are various ways to use the correlation between
the failing ciphertexts and the LWE secrets to learn information
about the LWE secret. For example, D’Anvers et al. [16] use the cor-
relation to calculate explicit posterior probabilities for the values of
the secrets. These then allow them to calculate revised distributions
of the secret with a smaller variance.

The posterior probabilities calculated as in D’Anvers et al. [16]
are difficult to analyze. We therefore instead consider the distribu-
tion of failing ciphertexts as in [15]. This distribution is parametrized
by the LWE secret itself, which is, of course, unknown. We then use
our supply of failing ciphertexts–which constitute random samples
from this distribution–to learn the hidden parameters. Specifically,
as observed in [15], failing ciphertexts can be decomposed into a
single component, a, distributed as a truncated, univariate Gauss-
ian in the direction of the secret, and components distributed as
independent Gaussians in the directions orthogonal to the secret.

Note that for FrodoKEM, the secret and error distributions are
discrete approximations of spherical Gaussian distributions. How-
ever as we will elaborate on below, the distribution of the failing
ciphertexts can be very well approximated as a (continuous) spher-
ical multivariate Gaussian distribution with known variance and
unknown mean (where the mean depends on the LWE secret). We
can thus reframe the key recovery problem as the problem of es-
timating the mean of a multivariate Gaussian distribution with a
known covariance matrix, given samples from that distribution.
Modeling Failing Ciphertexts More formally, let us assume that
s, e, s′, e′, and 𝑒 ′′ are as above, are all drawn coordinate-wise from
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a Gaussian distribution with zero mean and covariance 𝜎2
𝑠𝑒 . We

omit the explicit row and column coordinates to reduce notational
clutter, as the following holds regardless of the location of the failing
coordinate in E′′′. Then, let us assume the norm of (e∥s) is exactly
ℓ =
√
𝑛𝜎𝑠𝑒 , where 𝑛 is the dimension of (e∥s). This assumption is

rather innocuous due to the high concentration of the norm of a
Gaussian vector. As (s′∥ − e′) is the part of the failing ciphertext
that induces the failure condition, we can condition its distribution
on the learned linear inequality

(s′∥ − e′) ∼ N (0, 𝜎2
𝑠𝑒 I𝑛) | (e∥s) · (s′∥ − e′) ≥ 𝑡 − 𝑒 ′′

After conditioning, (s′∥−e′) decomposes into (s′∥−e′) = a
ℓ (e∥s) +

W ′whereW ′ is a random vector distributed as a Gaussian of covari-
ance 𝜎2

𝑠𝑒Π⊥(e∥s) (i.e. independent noise in all directions orthogonal
to the secret) and a is a random variable that is independent of W ′

and follows a distribution that we denote N ≥𝑡/ℓ𝜎𝑠𝑒 —the univariate
Gaussian of variance 𝜎2

𝑠𝑒 conditioned on a ≥ (𝑡 − 𝑒 ′′)/ℓ .
In essence, each failing ciphertext gives a draw from the decom-

posed distribution. If we scale each sample by ℓ
a , we can simulate

draws from the distribution

D := (e∥s) +W ′′

where W ′′ = ℓ
a W ′. However, we do not know the value of a for a

given failing ciphertext. Instead, we will instead make use of the
following heuristic. We know that a ≥ (𝑡 − 𝑒 ′′)/ℓ . Thus, we fix
𝛼 = (𝑡 − 𝑒 ′′)/ℓ for a, which introduces additional noise into the
distribution of W ′′. If we substitute 𝛼 for the true mean of a in the
calculation of the variance, we obtain

Ex←N≥𝑡/ℓ𝜎𝑠𝑒

[((𝑡 − 𝑒 ′′)/ℓ − x )2]

This quantity can be shown to be ≤ 𝜎2
𝑠𝑒 for any (𝑡 − 𝑒 ′′)/ℓ ≥ 0. As

such, we assume the additional noise is also a Gaussian with mean
0 and variance 𝜎2

𝑠𝑒 .
Thus, we approximate the total noise W ′′ as a zero-centered

multivariate Gaussian with a coordinate-wise variance of at most

(ℓ/a)2 = (ℓ2/(𝑡 − 𝑒 ′′))2𝜎2
𝑠𝑒 = 𝑛2𝜎6

𝑠𝑒/(𝑡 − 𝑒 ′′)2 .

Recovering the secret can be performed by obtaining enough failing
ciphertexts to estimate the mean of D.

To estimate the mean, we can simply draw sufficient samples
from D, take their average, and round coordinate-wise to the near-
est integer. After averaging𝑚 failing ciphertexts, we obtain a sample
from the distribution

D ′ := (e∥s) +W ′′(𝑚) ,

where the error W ′′(𝑚) is again a Gaussian and the variance of each
coordinate is at most 𝑛2𝜎6

𝑠𝑒/(𝑡2𝑚). Note here that after averaging,
the effects of individual 𝑒 ′′ on D ′ can be ignored as 𝑒 ′′ is zero-
centered. For the key recovery to succeed, we require the magnitude
of each error coordinate to be less than 0.5. Thus, for a given value
of𝑚, the success probability of the attack is

𝑃 (Success) = 𝑃 ( |w ′′(𝑚)𝑖 | < 0.5 ∀ 𝑖)
= 𝑃 ( |w ′′(𝑚)𝑖 | < 0.5)𝑛

= (1 − 2 · 𝑃 (w ′′(𝑚)𝑖 < −0.5))𝑛

=

(
−erf

(
−0.5 · 𝑡

√
𝑚

√
2 · 𝑛𝜎3

𝑠𝑒

))𝑛
(3)

Given a target success probability, we then solve for𝑚 numeri-
cally. Note that it is certainly possible to compute a more accurate
value for a numerically, and use it in the calculation of the mean
of D ′. In a practical attack scenario, both 𝛼 = (𝑡 − 𝑒 ′′)/ℓ and E[a]
should be used to calculate the candidate secret, as the specific
values of the true secret (e.g. if it has a higher than expected norm)
can affect the number of failing ciphertexts required when using the
heuristic value for a. Using the heuristic for estimation of success
probability is preferred, as it is more conservative (i.e. a smaller a
results in a larger variance for W ′′).
Comparison with the ‘Hint’ framework of [15] We note that
decryption failure attacks can also be handled by the DBDD and
’hint’ framework of [15], where a single failing ciphertext is viewed
as a full dimensional approximate hint on the LWE secret/error.
In general, integrating full dimensional approximate hints in the
framework of [15] requires explicit inversion of matrices defined
over the rationals, which is computationally prohibitive. Due to
this, Dachman-Soled et al. provided a lightweight version of their
framework, which allows one to estimate the concrete hardness
of performing a lattice reduction-based attack in the decryption
failure setting. However, the lightweight version is not suitable for
our purposes here since we are interested in a full key recovery,
not just hardness estimation. We attempted to use the full hints
framework of [15] since the matrices that needed to be inverted
were all diagonal. Therefore, integrating a single full dimensional
approximate hint could be performed reasonably quickly. However,
as discussed previously, our attack requires significantly more fail-
ing ciphertexts than a traditional decryption failure attack (on the
order of 217 failing ciphertexts see Figure 1). This additional factor
resulted in the computational cost of using the full framework be-
ing untenable. An improved implementation, using parallelism or
accelerators would be required to be competitive with our simple
average-then-round approach.

3.3 Attack Modifications for Rowhammer
Assisted Failures

Wenext explainwhy our Rowhammer-assisted attack can be viewed
as a standard decryption failure attack with a lower threshold and
one fewer dimension. More precisely, the exact Rowhammer pat-
tern alters the effective decryption failure threshold. In our attack,
one coordinate—𝑒𝑖, 𝑗—in each column of E is increased by 256. To
increase the chances of failure, we also search for 12s in the corre-
sponding coordinates of S′. This lowers the failure threshold for the
remaining coordinates by 12 · (256 + 𝑒𝑖, 𝑗 ), where 𝑒𝑖, 𝑗 is the original,
unhammered value of 𝑒𝑖, 𝑗 . We denote this new, smaller threshold
as 𝑡 ′ = 𝑡 − 12 · 𝑒𝑖, 𝑗 = 𝑡 − 12 · (256 + 𝑒𝑖, 𝑗 ).
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Figure 1: Probability of recovering a single column of the
Frodo-640 secret (Equation 3), for given numbers of failing
ciphertexts. Each line denotes a different (adjusted) threshold
𝑡 ′ corresponding to rowhammer bit position.

Note that since we fix one coordinate of s′, the distribution of
that coordinate does not depend on the LWE secret as described
in the decomposition given in 3.2. As such, we simply ignore that
coordinate when performing the averaging, thereby reducing the
dimension by one. To calculate the proper value for 𝑡 ′ − 𝑒 ′′

𝑖, 𝑗
, we

must guess this value in advance for each column. As the error
distribution for Frodo-640 has 25 possible values, we simply try all
values for 𝑒𝑖, 𝑗 , and check our recovered key using the LWE equa-
tions. The same failing ciphertexts can be used for each candidate
value of 𝑡 ′, so only the averaging step (which is computationally
trivial) needs to be run 25 times. See Figure 1 for the relationship
between the failure threshold 𝑡 ′ − 𝑒 ′′

𝑖, 𝑗
, and the number of failing

ciphertexts𝑚 required to mount our attack with various success
probabilities. Approximately 100𝑘 failing ciphertexts are required
to succeed with probability close to 1 for a 256-bit rowhammered
column. Note that flipping the 512-bit of an entry in E results in a
completely unrecoverable secret, as decryption failure is virtually
guaranteed assuming the same filtering behavior.

3.4 Total Attack Cost
We present the cost of the attack in the total number of ciphertexts
(both succeeding and failing) needed to recover a single column
of the secret key. We combine the prior analysis in 3.1 and 3.2
for 64, 128, and 256-bit rowhammers to produce the graph seen
in Figure 2. From this, we can conclude that it is indeed best to
target the 256-bit position with the rowhammer. The total number
of ciphertexts we require to generate under failure-boosting to
succeed with probability close to 1 is 239 for the 256-bit rowhammer,
compared to 286 for the 128-bit rowhammer.

4 POISONING HOBBITS: ROWHAMMERING A
FRODOKEM PUBLIC KEY

As outlined above, the main idea of our attack is to “poison"
FrodoKEM’s public key generation using Rowhammer. More specif-
ically, we aim to flip specific bits inside the error term E computed
during FrodoKEM’s public key generation, obtaining a public key
with a higher error. For FrodoKEM-640, the error term is an array
of 640 x 8 values where each value is 2 bytes. Each of the values
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Figure 2: Total number of ciphertexts during failure-boosting
(not decryption queries) required to recover a single column
of the Frodo-640 secret, for (adjusted) thresholds 𝑡 ′ corre-
sponding to rowhammer bit position.

in the error matrix E has about an equal likely chance to be ei-
ther positive or negative. By adding values to known locations in
each of the matrix’s columns, an attacker can increase the key’s
decryption failure rate. Finally, using the knowledge of flipped bit
positions, the attacker can feasibly find a large number of failing
ciphertexts, thereby enabling cryptanalytic attacks on FrodoKEM
and ultimately recovering the secret key.
A Balancing Act. While the above description is conceptually
simple, we note that to extract the secret key in practice, a delicate
balance of Rowhammer-induced bit flips is required to execute our
attack. More specifically, too many high-order bit flips in the error
term boosts the decryption failure rate to an excessive rate, causing
failures to be prevalent for both the attacker and honest users. This
will alert the target to the possibility that they are under attack,
causing them to retire the poisoned key. On the other hand, too few
bit flips will cause the decryption failure to be too low, giving the
attacker only a slight advantage over honest decryption failures.
This will result in an infeasible amount of computation to determine
the key exchanged by the KEM.

4.1 Experimental Setup
Unless noted otherwise, we performed all of our experiments us-
ing a desktop containing a 3.4 GHz i7-4770 CPU and two Sam-
sung DDR3 4 GiB 1333 MHz non-ECC DIMMs (part number
M378B5273CH0-CH9). Out machine was running a fully updated
Ubuntu 20.04. To simplify the attack, we disabled the machine’s
address-space layout randomization (ASLR). We note that ASLR
was breached on numerous prior occasions [13, 26, 28, 62] making
this assumption not overly-restrictive.

The victim process is the FrodoKEM reference code, compiled
using the reference optimization level and Shake-128 flags. Addi-
tional code was added to FrodoKEM to output files for the public
key, secret key, and error matrix. These files were used for confirm-
ing the results of the attack. We took care to add these additional
lines of code only after the attack was complete, to not artificially
increase the window of opportunity for the Rowhammer attack.

4.2 Determining Useful Bit Flip Locations
Prior to mounting a Rowhammer attack, we must first determine
which bits inside FrodoKEM’s error matrix E are useful for the at-
tacker to flip. To that aim, we used code provided in the FrodoKEM
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submission package in order to examine how specific combina-
tions of bit flips affect the decryption failure rate. As shown in
Figure 1, we found that flipping bit 8, henceforth called a 256-bit
flip because it adds 28 = 256 to the value, in one value per column
increased the decryption failure rate to about 2-27, compared to
a failure rate of 2-138.7 mentioned in Frodo-640’s specification [3].
This achieves a nice balance of minimizing the number of required
bit flips, while still raising the decryption failure rate enough to
ensure the feasibility of our attack.

Given that there are 8 columns, the attack then requires a total
of 8 256-bit flips in order to fully recover the secret key. Without
all 8 flips, parts of the secret key must be recovered through a form
of brute force search.

4.3 Profiling Memory
Prior to starting the Rowhammer attack itself, we must profile
the machine’s memory in order to locate the physical locations of
pages containing bits susceptible to Rowhammer. We accomplished
this using the memory massaging techniques described by Kwong
et al. [37]. More specifically, the method of [37] involves exploit-
ing Linux’s buddy allocator to obtain 2 MB of contiguous memory
regions required for precise double-sided Rowhammering. Unfor-
tunately, following the disclosure of [37], modern Linux versions
restrict access to the /proc/pagetypeinfo file used by [37] to root
users. While this does required us to use elevated privileges to run
our attack, a concurrent work by Tobah et al. [65] demonstrated
how to perform the same attack on the allocator by using the world
readable /proc/buddyinfo file, avoiding the use of root privileges.

After attacking the allocator to obtain tuples of memory locations
for double-sided rowhammering, we iteratively hammer each pair
of aggressor rows and then check the victim row for bit flips. Since
bit flips are repeatable, we store the map of which bit flips were
within each page so that we can select which pages are best to use
for the attack.
Filtering Candidate Pages. For FrodoKEM-640, the error matrix
has dimensions 640 x 8 of 2 bytes values, resulting in the matrix
spanning 2.5 pages of size 4 KiB. Therefore, the error matrix can
either be spread across 3 or 4 pages, depending on whether the
array’s page offset is past 0x800. Because of this, there must be
multiple columns containing a 256-bit flip per page to satisfy all 8
required flips. Additionally, the first and last page storing the error
matrix also store other nearby variables in the program; on our
victim, this ended up being the S matrix and the array for storing
randomness, respectively. While it may be possible to tolerate bit
flips in 𝑆 , we only considered pages containing no flips in these
locations.

When choosing which 3 pages to use for our attack, we also
must filter out both pages that have insufficient bit flips in the de-
sired locations, and pages that have too many bit flips in undesired
locations. Firstly, we filter out all sets of pages that don’t provide
exactly one 256-bit flip in at least 7 of the 8 columns. Otherwise,
the Rowhammer attack will not increase the decryption failure rate
enough for our attack to succeed. Equally important is that the
pages do not exhibit bit flips during the attack in locations that will
increase the decryption failure rate to be too high. For our attack,
this means that any bit flips in bit positions 9 through 15, hence-
forth referred to as high-order bit flips, are not allowed. This is

because increase in the error term will be very large in magnitude,
and have an overly strong affect on the decryption failure rate.
Additionally, only a small number of bits in positions 5 through 7
can be tolerated, since they will also have a substantial effect on
the decryption failure rate, albeit less than the higher order bit flips.
All other lower bits have an insignificant effect on the decryption
failure rate.

Bit Suppression. With regards to requiring a bit to not flip, this
can be accomplished by either choosing a page that doesn’t contain
a bit flip in that location, or by suppressing the undesired bit flip.
As noted by Cojocar et al. [14], stripe patterns, where the bits above
and below a given bit are the opposite value (i.e. 0-1-0 and 1-0-1
configurations), are the most likely to yield bit flips, while uniform
patterns ( i.e. 0-0-0 or 1-1-1) are unlikely to result in bit flips. Since
bits can only ever flip in one direction, this means that we can use
1-1-1 patterns to suppress any 1-to-0 bit flip, and 0-0-0 patterns to
suppress 0-to-1 bit flips.

By using the appropriate uniform patterns in the positions where
the undesired bit flips are located, we significantly reduce the
chance that those bit flips occur during the Rowhammer attack. We
used this technique to suppress 117 bit flips in the chosen pages,
leaving only 4 bits that could not be suppressed.

We note that not all undesired bit flips need to be suppressed,
as there is a 50% chance that the randomly chosen value in E of
the bit will already be the value that the bit can flip to. This means
that for each unsuppressed bit flip, the probability of the attack
succeeding decreases by a factor of 2. For example, if 3 bits cannot
be suppressed, the attack succeeds 1 out of every 8 attempts.

4.4 Allocating Pages to Victim Process
After profiling the memory, the attacker must force the FrodoKEM
victim to allocate its memory in a way that stores the secret term
E in the attacker’s chosen pages. This is accomplished through ex-
ploiting the Linux page frame cache in a technique termed "Frame
Feng Shui" [37]. The Linux page frame cache stores frames in a
first-in-last-out data structure, and returns the most recently deal-
located page when receiving a request for a page frame. Therefore,
if FrodoKEM allocates a predictable number of frames before the
target E, the target can be forced into a page of our choice.

First, multiple 4 KiB junk pages are allocated using mmap and
the MAP-POPULATE flag to fill the bottom of the page frame cache.
The number of junk pages is determined by how many pages the
victim process allocates before allocating the target value. Next, the
attacker chooses pages from the profiling phase that contain vul-
nerable bits in the correct positions. The attacker then deallocates
the selected page frames using munmap, putting them at the top of
the page frame stack. Immediately after this, the attacker unmaps
all of the previously mapped junk pages, putting these pages on top
of the selected pages in the stack. Finally, the the attacker induces
the victim process to run its key generation process, during which
the FrodoKEM process requests memory to store 𝐸, and the buddy
allocator returns the pages chosen by the attacker. We used Frame
Feng Shui against the FrodoKEM-640 scheme with a total of 297
junk pages to land the E error matrix into the selected pages.
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4.5 Performance Degradation
Now that the attacker has forced the victim FrodoKEM to allocate
the selected pages for the error matrix, and the spatial precision of
the bits is sufficient, we must now ensure that the temporal preci-
sion of the bit flips is sufficient. That is, the attacker must flip the
bits within a precise window during the execution of the FrodoKEM
key generation. By examining the source of the reference code, we
identified that the bit flips must occur after the generation of 𝐸 by
sampling the Gaussian in the crypto_kem_keypair function, and
before 𝐸 is added to 𝐴𝑆 in the frodo_mul_add_as_plus_e func-
tion. In our setup, this window takes roughly 8ms, whereas we
empirically found that we required 1300 ms to reliably succeed
with the Rowhammer attack. To bridge this gap, we conducted a
performance degradation attack against FrodoKEM.

A performance degradation attack [4] functions by rapidly forc-
ing the most frequently executed FrodoKEM instructions to be
evicted from the cache, which causes the CPU’s pipeline to be
flushed in a machine clear upon detecting the invalid tag in the
L1i cache. This can result in dramatic decreases in performance if
it occurs frequently enough. To evict the cacheline, we used the
CLFLUSH instruction, available on x86 machines to all unprivileged
users, to completely evict cachelines from the cache hierarchy.
Choosing a Cacheline. We statically analyzed the FrodoKEM
victim’s binary to find the most frequently executed cache line of
code, and found that the usage of Shake-128 involves a tight loop
that executes the store64 instruction, resulting in 880992 calls to
store64 within the execution window.

This makes store64 the optimal choice for performance degra-
dation, so we implemented our performance degradation attack
by running FrodoKEM-640 on a single core, with performance
degraders running on both the sibling core and 2 other virtual
cores, including the core running FrodoKEM-640. Without any
performance degradation, the time hammering window is 8.2 ms.
With performance degradation on only the sibling core, this can
be increased to around 663 ms. With additional cores running the
degrade code, this reached about 1300 ms. Using the performance
degradation code with multiple cores, this allowed for sufficient
time to complete the Rowhammer attack within the alotted window.

4.6 Results
For the attack against FrodoKEM-640, the page offset of the error
matrix E was 0x9b0, meaning that it spanned a total of 4 pages. To
prevent hammering any of the shared values on the first page, only
the last 3 pages were targeted for the rowhammer attack. Using the
criteria listed above, we found 3 pages that satisfy 7 of the 8 256-bit
flips. Therefore, additional steps are required at the end for full key
recovery. Also, bits in 4 matrix locations were found that could not
be suppressed. Thus, accounting for the 7 256-bit locations that
must be positive for the flip and the 4 locations that could not be
suppressed, the attack succeeded 1 out of every 211 attempts.

5 SEARCHING FOR FAILING CIPHERTEXTS
WITH A SUPERCOMPUTER

In the construction of the poisoned public key, we intentionally
keep the failure rate for honestly generated ciphertexts low so that
the attack may persist for the duration of a generated key without

the victim identifying the issue. This has the effect that finding a
failing honestly generated ciphertext is still exceedingly rare. In
the key established in Section 4, the failure rate of honestly gener-
ated ciphertexts is approximately 1:2,700,000. In order to generate
approximately 100k failing ciphertexts per column, that would
necessitate the creation of over 1 trillion connection requests. Al-
ternatively, the adversary could generate ciphertexts that are likely
to fail, but that would fail the Fujisaki-Okamoto transform.

To meet these constraints, our attack is predicated on a setup
phase to generate honest ciphertexts that are likely to fail based
on the profiled machine and the targeted columns. We use the A
matrix from the public key, and then iterate on the random seed
that initializes 𝜇 as input to the Frodo.Encode function. Ordinarily,
𝜇 is initialized by a randomly sampled 16-byte seed, and thus there
are 2128 potential seeds. The encode function continues as specified
until the S′ matrix is generated. The superset of the rows and
columns targeted by Rowhammer are checked to determine if they
have high values (i.e. -12 or +12) that would make them candidates
to potentially fail to decode. These candidate ciphertexts are saved
to attempt decoding. For the poisoned key established in section 4,
otherwise honestly generated ciphertexts (i.e. those that pass the
FO transform) pass this filter at a ratio of approximately 1:1175.

For our proof-of-concept attack, all candidate ciphertexts are
passed as input to the Frodo.Decode function. Ciphertexts that fail
are saved to a file including the 𝜇 seed to generate the ciphertext, the
S′, E′ and E′′ matrices, and the ciphertext itself. The attacker would
have access to all of these aspects of the ciphertext in a distributed
attack. The components are concatenated to files named for the
row/column pair where the high value in the S′ matrix is located
(e.g. ‘mu-4-8.csv’). This helps to identify the likely column that
created the failing condition, which aids the key-recovery process.
So, we only consideredmatrices that had a single±12 in the checked
locations.

To expedite the profiling stage we leveraged resources from
two supercomputer clusters — namely Pittsburgh Supercomput-
ing Center (PSC) [12] and Open Science Grid (OSG) [49, 60]. Total
ciphertext generation took 237,806 hours, distributed as follows:
104,856 core-hours on OSG through the Open Science Pool, and
132,950 core-hours on the Bridges-2 Regular Memory nodes from
PSC. For PSC, the modified Frodo-KEM encode and decode func-
tions were compiled directly on each compute node. For OSG, the
modified code was compiled in a container for each compute node.
Jobs were launched with an incrementing seed to generate 150
million ciphertexts per seed. The start seed was shifted 28 bits
to the left and stored in 𝜇 as the start of the search. Each job pro-
duced approximately 128 thousand ciphertexts that passed the filter,
from which approximately 20 ciphertexts failed to decrypt. In total
665,343 failing ciphertexts were used to recover 7 of the 8 columns,
necessitating 1.53 billion decryption requests—less than 10% of the
absolute maximum 264 decryption queries identified by NIST to
prevent failure attacks.

6 COMPLETING THE ATTACK: SESSION-KEY
RECOVERY

If the full master secret key is unable to be recovered, it is still pos-
sible to recover encapsulated session keys from honestly generated
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Algorithm 7 SessionKeyBF(SExp, 𝑝𝑘, 𝑐𝑜𝑙, 𝑐𝑡 = (𝑐𝑡1, 𝑐𝑡2))
1: C1 := FrodoKEM.unpack(ct1)
2: C2 := FrodoKEM.unpack(ct2)
3: Compute M′ = C2 − C1 · SExp
4: 𝜇 ′ := FrodoKEM.Decode(M′)
5: for 𝑖 := 0→ 216 do
6: Insert(𝜇 ′, 𝑐𝑜𝑙, 𝑖) ⊲ Insert 𝑖 into 𝑐𝑜𝑙 ’s bit positions in 𝜇 ′.
7: 𝑐𝑡 ′, 𝑠𝑠 := FrodoKEM.Encaps(𝑝𝑘, 𝜇 ′)
8: if 𝑐𝑡 ′ = 𝑐𝑡 then return 𝑠𝑠

9: return FAIL

Figure 3: Session key brute-force algorithm given the experi-
mentally derived secret and missing column index.

ciphertexts. The recovery procedure is enabled by the limited num-
ber of bits present in the message 𝜇. Due to the Fujisaki-Okamoto
transform, encapsulation is deterministic given the value of 𝜇. If we
can determine the value of 𝜇, we can easily recover the session key.

In FrodoKEM.Decaps [3], 𝜇 is decoded from an 8x8 message
matrixM, which is computed from an honestly generated ciphertext
and the secret key. As we are unable to compute M due to our lack of
the full secret key, instead we compute M′ by filling in the missing
columns of the secret key with 0’s in the computation of M. Note
that M′ = M except in the missing columns. For Frodo-640, the
most significant 2 bits of each entry of M are extracted to produce
𝜇 in FrodoKEM.Decode (resulting in a message size of 128 bits).
Thus, for every missing column of the secret key, we must brute-
force 16 bits of 𝜇. To check correctness, we simply pass each 𝜇 ′ to a
modified version of FrodoKEM.Encaps that accepts 𝜇 as a parameter
rather than sampling it at random. The deterministic nature of the
encryption ensures that the output ciphertext, will be equal to the
intercepted ciphertext from the victim when we pass in the correct
value for 𝜇.

The total cost of the session key recovery is 216·missingcols times
the cost of FrodoKEM.Encaps. In our attack, we managed to recover
7/8 of the columns of the secret key, and only needed to brute-
force 16 bits. This procedure takes at most a couple of minutes on a
commodity laptop. In a scenario where super computers are enlisted
for this brute-force search in the online phase of the attack, more
missing columns could be tolerated at the discretion of the attacker.
Sessions could be captured in the meantime for later decryption
once the brute-force completes.

7 ATTACKING OTHER NIST LATTICE KEMS
While we only experimentally demonstrated an attack against
FrodoKEM, we believe that similar attacks are theoretically possible
on other latice-based KEMs; however, there are various reasons
these attacks may be more difficult in practice.

In this section we will look at the other lattice KEMs in the NIST
PQC Round 3 candidate pool: Kyber, Saber, NTRU, sNTRUprime,
and NTRU-LPRime. In all these cases, the strategy is similar: We
note that decapsulation failures occur with high probability when
the product between a noise vector chosen during key generation

and a second noise vector chosen during encapsulation is large.
The strategy is then to:

(1) Introduce known additional noise during key generation
using Rowhammer techniques, producing a "poisoned key"

(2) Use knowledge of the additional noise to select valid ci-
phertexts that are likely (but not too likely) to produce a
decapsulation failure when the honest party attempts to
decrypt them using the "poisoned" key.

(3) Accumulate information about the unknown parts of the
private key by observing which of the ciphertexts are and
are not successfully decapsulated.

In order to accomplish step 1, it is likely that one would need to
do performance degradation similar to what was done to FrodoKEM
in our experiments. For Kyber and Saber, we identify places in the
code where the SHAKE function is used between the time when
noise is sampled and when it is used. Cryptographic random num-
ber generation is also done in sNTRUprime and NTRU-LPRime in a
location that appears similarly useful. However, the reference imple-
mentation of each uses AES instead of SHAKE as the core primitive.
Since AES has native hardware support, it is likely harder to do
performance degradation against the reference implementation of
NTRUprime. If the cryptographic random number generation could
be performance degraded, sNTRUprime seems like a better candi-
date for attack than NTRU-LPRime, because in the latter case, the
random number generator is called only once, while in the former
case it is called repeatedly.

An additional difficulty arises when trying to adapt the attack
to NTRU. In that case, the fact that algebraic operations switch
between the rings Z𝑞 [𝑥]/(𝑥𝑛 − 1) and Z𝑞 [𝑥]/((𝑥𝑛 − 1)/(𝑥 − 1))
means that any rowhammering which fails to preserve the sum
mod 𝑞 of the coefficients of a polynomial will cause decryption to
fail with overwhelming probability for all ciphertexts. This makes
it very likely that any attack will be detected, and means that
decryption failures will give no information about the private key.
It is unclear how to design an attack which avoids this issue.

With regard to step 2, the filtering step, there is an additional
quantitatve challenge compared to our attack on FrodoKEM. In
the case of FrodoKEM, we were able to Rowhammer a single bit
per column of E. This was possible because the parameters of the
attack could be set so that a decryption failure only occurred with
significant probability when one of 56 locations in the ciphertext
noise attained a maximal value. Since this only happened with low
probability for an honestly generated ciphertext, filtering was possi-
ble. In all the other KEMs, each position in the key generation noise
multiplies more positions in the ciphertext noise, and the cipher-
text noise distribution has the maximum value occur much more
frequently. As a result we expect that attacking any of the other
schemes will require a somewhat higher density of rowhammerable
bits. The filtering criterion in this case would require the products
of several coefficients of the ciphertext noise with the rowham-
mered coefficients to be large and to have the same sign. We give
more details on the methods that would need to be employed to
attack the other schemes in Appendix A.
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8 POSSIBLE COUNTERMEASURES
As described, our attack shows that Frodo is vulnerable against a
real-world Rowhammer attack. This justifies further study of the
Rowhammer security of any post-quantum protocols that will come
out of the NIST standardization process. As such countermeasures
are critical, we wish to highlight a few possible ones up front.

8.1 Rowhammer Defenses
There is a rich literature surrounding Rowhammer defenses, both
proposed and deployed, that attempt to mitigate the Rowhammer
bug. Despite these efforts, researchers have managed to circumvent
all practically deployed mitigations and empirically demonstrate bit
flips against them. Even so, a combination of such countermeasures
to provide “defense in depth" may dramatically increase the effort
required to mount a Rowhammer attack.
Hardware Defenses. The two hardware defenses deployed in
practice are Error Correcting Code (ECC) memory and the Targeted
RowRefresh (TRR)mitigation. ECCmemory, most commonly found
on server machines, aims to correct bit flips when they are detected
upon reading from memory. The memory controller stores addi-
tional “control bits" that act as a checksum, enabling bit correction
and detection up to a certain threshold of errors. While the ECC
mechanism was designed to mitigate errors due to cosmic rays, it
also inadvertently assists in mitigating Rowhammer bit flips. [14]
defeated ECC with Rowhammer, however, by causing a sufficient
number of bit flips within an ECC word such that the mechanism
can no longer even detect that a bit flip has occurred.

TRR is a hardware defense implemented in DDR4 that was long
touted to be a panacea for Rowhammer. It uses counters to keep
track of how many times each row in memory is accessed, and
once the counter reaches a specified threshold, TRR automatically
refreshes the nearby rows. If this threshold is below the minimum
number of hammering attempts required for a Rowhammer attack,
then this mitigation refreshes victim bits before they are hammered
enough to flip. While this seems to be a perfect defense in theory,
[23] were able to bypass TRR and flip bits on DDR4 due to limita-
tions imposed by constraints in the hardware. In particular, TRR
can only track accesses to a small number of rows at a time, and
attackers can bypass it by hammering many rows at once.

Most recently, [40] addressed the shortcomings of TRR by propos-
ing a scheme that tracks rows optimally, given a limited number
of counters and additional refresh commands. While they demon-
strate that their algorithm achieves the best trade-off between these
parameters, it still suffers from the inherent limit to how many row
counters can be supported by the hardware.
Software Defenses. While no software level defenses against
Rowhammer have seen widespread adoption, researchers have
proposed mitigations with claims of low overhead and complete
Rowhammer protection. [6] aim to backport the same principles
behind TRR to DDR3. They use performance counters to determine
which rows are accessed most frequently, and then refresh those
rows before a bit flip occurs.

Brasser et al. [11] aim to protect the kernel from user level
Rowhammer attacks by physically separating the kernel memory on
the DIMM from user memory. [36] go a step further and physically
isolate all data rows in memory from each other.

8.2 Defenses Specific to our Attack
We also present practical countermeasures derived from unique
insights gleaned from our end-to-end attack against FrodoKEM.
Hardware Accelerated Cryptography. As demonstrated in
Section 4, having a sufficiently long time window to rowhammer
is critical to the success of the attack. To extend the length of
this window all the way from 8ms to 1300ms, we relied on a per-
formance degradation attack against the SHAKE hash function,
wherein we rapidly flushed a cacheline containing frequently exe-
cuted FrodoKEM code. The effectiveness of the performance degra-
dation is highly dependent upon how many calls FrodoKEM makes
to the flushed cacheline – the one containing store64 in this case.

If, however, FrodoKEM were to use hardware accelerated cryp-
tographic instructions in place of its in-software hash function
implementation, the opportunity for the attacker to conduct a per-
formance degradation attack would be greatly diminished. This is
because the tight inner loop that calls store64 within Shake would
instead be replaced, for example, by just a few instructions from
Intel’s AES-New Instructions (AES-NI) instruction set. We thus
observe that hardware accelerated cryptographic functions seem
to be more resilient against performance degradation attacks.
Algorithmic Defenses. In addition, there are two potential algo-
rithmic defenses to our attack. The first is to limit the surface of the
performance degradation through proper sequencing of operations,
even when not using AES-NI. The main idea is to not perform any
expensive operations between the time when S and E are sampled
and when B is generated. For example, one could use SHAKE to
expand out A before S and E are generated (like in Kyber and Saber)
and move the SHAKE calls used to generate the randomness for
S and E before the actual sampling (like in FrodoKem and Saber).
Ordering the operations in this manner significantly reduces the
window for performance degradation, and therefore our attack.

The second defense is to guard the key generation process. One
way to do this is to regenerate A, S, and E from randomness and
compute B again. If the two B are not equivalent, then abort key
generation. For the Rowhammer attack to pass this check, the entire
attack must succeed twice in a row, for potentially different pages
of memory. In addition, to ensure the equality of the B matrices,
the Rowhammer attack must flip exactly the same bits each time.
It is highly unlikely, however, that the attacker would be able to
find another set of pages that also exhibits the exact same bit flips
under hammering as the original set.

Storing the error matrix E (Frodo overwrites E with B for effi-
ciency) for the duration of the computation of the public key is
another possible way to enforce the integrity of key generation.
Then, if any value in E (or perhaps its distribution) is abnormal,
recompute the public key from scratch. This has the downside of po-
tentially alerting the attacker to the re-keying process, and enabling
them to try to rowhammer the new key.
Active Defenses. Another line of defense would be to maintain an
active state during the online phase to detect an attack in progress.
An adversary needs to send a vast number of filtered ciphertexts
to mount a successful key recovery attempt. A potential victim
could check the distribution of received ciphertexts during the
decapsulation process. Indeed, during the re-encryption check, the
victim would be able to see the values of the randomness used
during encapsulation (at least where decapsulationwould ordinarily
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be successful). If the distribution of incoming ciphertexts is skewed
towards large values (e.g. ±12), then it is reasonable to assume that
the victim is under attack. One must be careful in how to respond
to this attack, however. If the decision is to simply re-key when an
attack is detected, this leads to an easy Denial of Service attack (an
attacker can perform the same filtering procedure to intentionally
trigger the detector). On the other hand, if the response is to discard
the received ciphertexts that contain such large values then this
can lead to discarding communication from honest users.

Also, while this countermeasure would make our attack harder,
it would not make it very much harder – if the intensity of the
rowhammering is modestly increased, the attacker can make the
decryption failure on random ciphertexts sufficiently high as to
not require ciphertexts to come from an unusual distribution. This
would, however, result in a significantly higher decryption failure
rate for honest parties, making the attack easier to detect.
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A ADDITIONAL ATTACKS AGAINST OTHER
NIST LATTICE KEMS

In this appendix we give additional details concerning how a hy-
pothetical Rowhammer attack against each of Kyber, Saber, NTRU-
prime and NTRU might work.

A.1 Attacking Kyber
Similar to Frodo, Kyber is an IND-CCA key-capsulation mechanism
constructed as a Fujisaki-Okamoto transform of an IND-CPA en-
cryption scheme based on Module-Learning with Error. We defer to
Kyber submission available at [45] for details. The design of Kyber
follows the same paradigm as Frodo except that Kyber works with
polynomials in the ring 𝑅 B Z[𝑥]/(𝑥256 + 1) and prime modulus
𝑞 = 3329. The decoding error in Kyber is

e𝑇 r + 𝑒2 + 𝑐𝑣 − s𝑇 (e1 + c𝑢 ),

where e, r, s, e1, and c𝑢 are vectors of polynomials in the ring 𝑅,
and 𝑒2 and 𝑐𝑣 are single polynomials. The correctness condition of
Kyber places a bound on the magnitude of each coefficient of the
polynomial expression above. Here, s and e are the secret key and
error, analogous to S and E in FrodoPKE. The vectors of polynomi-
als r and e1 and the polynomial 𝑒2 are sampled during encryption.
The terms c𝑢 and 𝑐𝑣 correspond to additional decoding errors intro-
duced by Kyber’s compression and decompression of the ciphertext.
Compression encodes an element of Z𝑞 using fewer than log2 (𝑞)
bits and decompression extracts an element of Z𝑞 from fewer than
log2 (𝑞) bits.

We note that each polynomial 𝑝 ∈ 𝑅 defines a module endomor-
phism of𝑅 as multiplication by 𝑝 , which has a matrix representation
given a fixed basis of 𝑅 (e.g. the standard basis {1, 𝑥, 𝑥2, . . . }). There-
fore, the decoding error above could be read as a matrix expression
similar to Frodo decoding error. So our framework applies. In a
similar fashion to our attack on Frodo, row-hammering could po-
tentially induce a change in the distribution of e or s. Combining
with a malicious distribution of r or e1, the adversary could then
obtain an abnormally large decryption rate that could lead to a
successful (partial) key recovery.

A.2 Attacking Saber
Saber is based on Module Learning with Rounding (M-LWR). The
main differences between Saber and FrodoKEM are:

• The matrix A ∈ Z𝑛ℓ×𝑛ℓ𝑞 is structured so that it can be repre-
sented as an ℓ × ℓ matrix of polynomials of degree 𝑛 − 1 in
Z[𝑥]𝑞/(𝑥𝑛 + 1) for M-LWR.

• Rather than adding error vector e, sampled explicitly from
some distribution, to As to produce b, b is generated by
rounding As.

As a result, a Rowhammer adversary can only hammer s or b. In
the reference implementation of Saber, there are a number of calls to
SHAKE-128 that may be used for performance degradation similar
to what we did with FrodoKEM. While these calls are prior to the
generation of s or b, they can effectively be used to Rowhammer b,
sincewhen b is generated, partial sums are added to a 0 vector which
is initialized before the SHAKE-128 calls. We therefore expect the 0
vector can be Rowhammered resulting in a constant value being
added to certain coefficients of b. We did not identify a similarly
promising strategy for rowhammering s.

A.3 Attacking NTRU-LPRime
NTRU-LPRime is similar in construction to FrodoKEM, Kyber and
Saber, but based on Ring Learning With Rounding (R-LWR). It
uses the polynomial ring Z[𝑥]/(𝑥𝑝 − 𝑥 − 1) where 𝑝 is an inert
prime. In NTRU-LPRime’s notation, the polynomial G is analogous
to A in FrodoKEM, the polynomial a is analogous to FrodoKEM’s
S. Like Saber, NTRU-LPRime uses rounding instead of an explicit
error analogous to FrodoKEM’s E. In NTRU-LPRime’s notation
A = RoundaG is analogous to FrodoKEM’s 𝐵.

The reference implementation of NTRU-LPRime uses AES in-
stead of SHAKE. It seems harder to do performance degradation
on AES, since AES has hardware support. If NTRU-LPRime is im-
plemented with other primitives that are more susceptible to per-
formance degradation or if there is a sufficient performance degra-
dation against AES (in hardware), it appears possible to mount a
similar decryption failure attack in a very straightforward way. In
principle, 𝑎 or 𝐴 (in NTRU-LPRime’s notation) are possible targets
for Rowhammering.

However, in NTRU-LPRime’s reference implementation, 𝑎 is
stored in the private key in a compressedway, whichmeans that any
large coefficients in 𝑎 would create a mismatch between the public
and private key and cause decryption to fail with overwhelming
probability. Also, in the sampling procedure for 𝑎, the calls to AES
precede the generation of the coefficients which would be the target
for Rowhammering. (A similar situation occurs with the polynomial

https://doi.org/10.1109/CSIE.2009.950
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𝑓 in Streamlined NTRU Prime.) Attacking 𝐴 looks a little more
promising. Rowhammering must occur before the hash of a slightly
compressed encoding of𝐴 as part of the private key. An AES-based
random number generator is called in this window, but it only
generates 256 bits of output which might not be a large enough
target for performance degradation.

A.4 Attacking NTRU
The design of NTRU is significantly different from that of Frodo,
Kyber, and Saber. However, for the purpose of our presentation, it
suffices to only consider the correctness condition of NTRU. The
correctness condition of NTRU requires that each coefficient of the
following polynomial is in the range [−𝑞/2, 𝑞/2):

3 · r · g + f · Lift(m)) mod (𝑥𝑛 − 1), (4)

where each term is a polynomial having degree at most 𝑛 − 2. Here,
(f, g) is the secret sampled during key generation and (r,m) is
sampled during encapsulation. Decapsulation, if successful, recov-
ers (r,m) and outputs the shared session key 𝐻 (r,m). Lift is an
injection that maps each m to a polynomial in Z[𝑥] such that

Lift(m) mod (3, (𝑥𝑛 − 1)/(𝑥 − 1)) = m.

Again, we may consider (4) as a matrix expression and apply our
framework. We could potentially row-hammer (f, g) and mali-
ciously select (r,m) to try to induce larger decryption failure rate.
However, difficulty arises. Algebraic operations in NTRU switch be-
tween different polynomial moduli, 𝑥𝑛−1, 𝑥−1, and (𝑥𝑛−1)/(𝑥−1).
Row-hammering must ensure the algebraic constraint that g ≡ 0
(mod (𝑞, 𝑥 − 1)) and f is invertible mod (𝑞, (𝑥𝑛 − 1)/(𝑥 − 1)). Oth-
erwise, the result of key generation will cause high failure probabil-
ity over all ciphertexts and is unusable. On the other hand, because
r and m can be selected arbitrarily (subject to some algebraic con-
straints), we may not need to compute many hashes as in Frodo to
find a potentially good ciphertext to query for decryption.

A.5 Attacking Streamlined NTRU Prime
Streamlined NTRU Prime has much similarity in its design to NTRU
but uses a different polynomial ring Z[𝑥]/(𝑥𝑝 − 𝑥 − 1) where 𝑝 is
a prime. Key generation of streamlined NTRU Prime samples two
secret polynomials 𝑓 and 𝑔 with ternary coefficients, i.e. coefficients
in {−1, 0, 1}. Encapsulation samples a random polynomial 𝑟 with
ternary coefficients such that exactly𝑤 coefficients are non-zero,
where 𝑤 is a parameter of the scheme. For correctness, stream-
lined NTRU Prime requires that each coefficient of the following
polynomial is in the range (−𝑞/2, 𝑞/2):

𝑔 · 𝑟 + 3 · 𝑓 · 𝑒 mod (𝑥𝑝 − 𝑥 − 1),
where 𝑒 is a polynomial with ternary coefficients corresponding to
error introduced by a certain rounding operation. Decapsulation,
if successful, recovers 𝑟 and outputs the hash of 𝑟 (concatenated
with other public inputs) as shared session key. If row-hammering
induces the polynomial 𝑔 or 𝑓 to have malformed coefficients, the
adversary could then potentially mount a decryption failure attack
with knowledge of many tuples (𝑟, 𝑒) that cause the expression
above to exceed the threshold.

The reference implementation of streamlined NTRU Prime uses
AES instead of SHAKE, and it seems harder to do performance

degradation on AES. If Streamlined NTRU Prime is implemented
with other primitives that are more susceptible to performance
degradation (or if there is a sufficient performance degradation
against AES), it appears theoretically possible to mount a similar
decryption failure attack to our attack on Frodo. Moreover, similar
to the case of NTRU, since the polynomial 𝑟 can selected arbitrarily
without any call to a random oracle, generating a candidate failing
ciphertextmay requiremuch less computation. The Rowhammering
phase of such an attackwould need to target𝑔 rather than 𝑓 , because
𝑓 is stored in the secret key in a compressed form that assumes all
the coefficients are small enough to be stored in 2 bits. Also, in the
sampling procedure for 𝑓 , unlike the sampling procedure for 𝑔, the
calls to AES precede the generation of the coefficients which would
be the target for Rowhammering.
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