
Big Brother Is Watching You:
A Closer Look At Backdoor Construction

Anubhab Baksi1, Arghya Bhattacharjee2, Jakub Breier3, Takanori Isobe4, and Mridul Nandi2

1 Nanyang Technological University, Singapore

2 Indian Statistical Institute, Kolkata, India

3 Silicon Austria Labs, Graz, Austria

4 University of Hyogo, Kobe, Japan

anubhab001@e.ntu.edu.sg, bhattacharjeearghya29@gmail.com, jbreier@jbreier.com,
takanori.isobe@ai.u-hyogo.ac.jp, mridul.nandi@gmail.com

Abstract. With the advent of Malicious (Peyrin and Wang, Crypto’20), the question of a cipher
with an intentional weakness which is only known to its designer has gained its momentum. In
their work, the authors discuss how an otherwise secure cipher can be broken by its designer with
the help of a secret backdoor (which is not known to the user/attacker). The contribution of
Malicious is to propose a cipher-level construction with a backdoor, where it is computationally
infeasible to retrieve the backdoor entry despite knowing how the mechanism works.

In this work, we revisit the work by Peyrin and Wang in a greater depth. We discuss the relevant
aspects with more clarity, thereby addressing some of the important issues connected to a backdoor
construction. The main contribution, however, comes as a new proof-of-concept block cipher
with an innate backdoor, named ZUGZWANG. Unlike Malicious, which needs new/experimental
concepts like partially non-linear layer; our cipher entirely relies on concepts which are well-
established for decades (such as, using an one-way function as a Feistel cipher’s state-update),
and also offers quite a few advantages over Malicious (easy to visualise, succeeds with probability
1, and so on). Having known the secret backdoor entry, one can recover the secret key with only 1
plaintext query to our cipher; but it is secure otherwise. As the icing on the cake, we show the
provable security claims for our cipher.

Keywords: backdoor · hash function · xof · block cipher · feistel · low-mc · malicious · low-mc-m
· provable security · prp · white-box

1 Introduction

One of the problems that comes with designing a cipher is to gain the collective trust of the
community. The cipher must satisfy certain security requirement with sufficient margin to
prevent a malicious attacker (who has the full knowledge of the cipher specification) to get
information secured by the cipher under a secret key. At the same time, it is also essential
that the cipher designer will fail to retrieve the data secured by the cipher under a secret key.
Stated in other words, the designers of a cipher have to convince the rest of the community
that the cipher does not have a hidden vulnerability that evades known cryptanalytic methods
(thus, it is known only to the designers). As we have seen, this is not always the situation.
Case in point, it has long been speculated that the SIMON and SPECK [3] family of block ciphers
have some form of hidden backdoor (see [19] or Schneier’s blog5 among other sources), which

5https://www.schneier.com/blog/archives/2018/04/two_nsa_algorit.html.

https://www.schneier.com/blog/archives/2018/04/two_nsa_algorit.html

2

are only known to the designers6. Despite years of speculation, the presence of any backdoor is
not determined.

Amidst such situation, it is not surprising that the cryptographic community will take
interest in the prospect of designing a cipher with an implanted backdoor. We have recently seen
this happening in the Crypto’20/Eprint’20 paper [19] where the designers take an otherwise
secure cipher family and implant a backdoor in it. They present their contribution in the form
of a framework, named, “Malicious”. It works by querying the cipher with a chosen tweak
difference on a variant of the LOWMC [1] family of ciphers (this tweak difference is secret and
known only by the cipher designer). Ultimately, this tweak difference propagates through the
cipher in such a way that the resulting ciphertext difference allows the cipher designer to
retrieve the secret key (the secret key is chosen by, and only known to the user) with a certain
probability. They also describe a Malicious based tweakable block cipher, named “LOWMC-M”.

1.1 Contribution

A big part of the inspiration of our work goes to the Crypto’20 paper by Peyrin and Wang [19].
More precisely, we take a deeper look at the Malicious framework (and its instance LOWMC-M),
and improve the state-of-the-art in a number of ways.

To begin with, we show a provably secure construction of backdoor that improves from
LOWMC-M [19]. Our method of the backdoor construction relies entirely on pre-existing notions
of security, which are well-known/well-analysed for decades. This starkly contrasts with the
new/experimental construction of Malicious, that relies on lesser studied concepts such as
partially non-linear layer. Apart from that, our backdoor requires only 1 plaintext query (works
with probability 1), unlike the LOWMC-M that requires a number of chosen (plaintext, tweak)
queries. We do not need any tweak, and the overall idea is generic – it can be implemented atop
virtually any encryption and hash algorithm7. Thus, making it possible to have a backdoor
without any tweak and not tied to LOWMC [1].

The coverage/contribution of our paper does not end there. We ask several relevant questions,
which have not been answered yet. We argue that no matter how cleverly the backdoor is
designed, it is not possible for the designer to access it without the user’s cooperation (as the
user can always cross-check if some secret information is revealed – and if so – can deny the
request); or one backdoor entry cannot be used more than once (as the attacker will get to
know as soon as it is used). The elephant in the room, however, lurks in hiding the key which
is released as a result of the backdoor access — the key is not encrypted in any way, meaning
the attacker gets to know about it no later than the designer does.

1.2 Prerequisite

As discussed in [19, Section 1], the concept of backdoor itself is not new. In our context, we
directly follow [19]. For clarity, the terms/ideas used are briefly described here.

The cipher designer, whom we refer to as “Derek” for simplicity, designs a cipher with an
intentional backdoor (which is known only by him). The cipher (the public description of the

6In this case, the designers are a group of researchers from the American government’s National Security
Agency (NSA), possibly hinting at a government-level initiative in the background.

7Depending on the hash output size and the state size of the encryption algorithm, we may need to
pad/truncate.

3

Alice
User

(Sender)

Bob
User

(Recipient)

Eve
Attacker

Cipher

Derek
Cipher Designer

Fig. 1: Schematic of backdoor work-flow

cipher, to be more precise) is then used by the users, Alice and Bob, to communicate sensitive
information. The attacker, Eve, watches the channel between Alice and Bob closely and knows
all the (publicly available) specification/cryptanalysis regarding the cipher. Figure 1 shows a
schematic.

Now, at some point during communication, Derek can use the backdoor to retrieve sensi-
tive information, this incidence (if happens) is indicated by backdoor access. The backdoor
mechanism lets Derek to access sensitive information (this works as a weakened version of the
cipher). The mechanism is activated with the help of a backdoor entry (e.g., a 128-bit string
when used as the plaintext to the cipher), which is known only to Derek (it will likely become
a public knowledge after it has been used once).

For the interest of brevity, we assume the reader’s familiarity with the basic terms/concepts,
including; CSPRNG, LFSR, block cipher (along with padding, and mode of operation like
CTR), stream cipher (along with IV and nonce), hash function, MAC, AE, AEAD; PRP, SPRP;
OWF; cipher families (Feistel, SPN and ARX); and ciphers (DES, AES, RC4, RSA). We also use
XOF8 (eXtended Output Function).

1.3 Organisation

The background information is covered in Section 2 (particularly Section 2.2 contains some
previously unreported observations). Section 3.1 goes through the practical aspects of a
backdoor, and Section 3.2 covers two related notions of security.

In Section 4, we present our Feistel network based block cipher named “ZUGZWANG”9 that
has a backdoor10. After the fundamental idea is stated in Section 4.1, we show a concrete
instance by using AES-128 and SHAKE-1288 in Section 4.2, followed by the provable security
claim which can be found in Section B. Apart from that, a comparison with Malicious is
given in Section 4.3.

The conclusion can be found in Section 5. Some postscript thoughts are given in Section A.
Finally in Section C, we present some test cases for the concrete instance of ZUGZWANG.

8See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf.
9It is a German word (translates to ‘a compulsion to move’), used in context of Chess to describe wherein

all the available moves for a player make the situation worse.
10As it has a backdoor, any practical application of ZUGZWANG is not recommended (to be used mostly, if not

only, as an interesting proof-of-concept).

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

4

2 Background

2.1 Implementation Level and Cipher Level Backdoors

The term, ‘backdoor’ is generally more common in the cyber-security or hacking communities.
Here it typically refers to an intentionally implanted weakness11. This process is done at the
fabrication/implementation level and transparent at the cipher design level12. In other words,
it is possible that the cipher being used does not have any potential security flaw, but it the
call to the cipher is be bypassed by using a secret mechanism. This mechanism is generally too
small compared to the rest of the circuit that it evades during inspection, or is made obscure by
some implementation/protocol level technique. Most of the time the mechanism stays dormant
(further evading detection during black box testing), only activating when a preset condition
is matched (this happens with a very low probability unless the mechanism is known). One
common way to do this is with a Hardware Trojan (HT) [4, 20], where the chip manufacturer
implants a low footprint component on top of the designer-specified circuit. The presence of
the HT and its access mechanism is known only to the chip manufacturer (neither the cipher
designer nor the user knows about it), hence the manufacturer can trigger the HT at point
thereby making the chip to leak sensitive information.

Our interest, however, lies on the other type of backdoor, which works at the cipher design
level. In this case, the cipher is so designed that, it has a secret backdoor which is known
only by its designers. It is long been speculated that some ciphers, whose entire specification
is available in public, may contain some secret backdoor. It is possible that one (or more)
such cipher will eventually become a part of an international standard and subsequently be
adopted by industry and academia alike; while its designers will sneak on sensitive information
processed by this cipher.

The main differences between these two types are noted here. First, not every cipher has
the second vulnerability, but every cipher affected in the first type as the cipher itself is made
irrelevant. Also, it is possible to implant a first type of backdoor on a cipher having a second
type backdoor. Second, the second type obeys the Kerckhoffs’s principle (the design and
security claims are made public), but the first type relies on vulnerability through obscurity
(the complete information on manufacturing the chip/implementation of the network is not
made public or kept vague/incomplete).

Each of these two types requires specialised knowledge, expertise and access. The first type
is quite well explored, but this seems not to be the case for the second type. It can be argued
that the second type is harder to build, as the cipher description, together with a somewhat
clear design rationale is to be provided.

2.2 Context

The cipher level backdoors can be theoretically divided into the following categories:

(1) A cipher so craftily designed that nobody is able to find the presence of a backdoor after
few years of speculation and testing. So far it passes all the known methods of cryptanalysis.

11For instance, one may look at the “politically correct” backdoor: https://www.kb.cert.org/vuls/id/
247371.

12This is noted in [19, Section 1]: “There are two categories of backdoors. The first one is the backdoor
implemented in a security product at the protocol or key-management level, which is generally considered in
practice.”

https://www.kb.cert.org/vuls/id/247371
https://www.kb.cert.org/vuls/id/247371

5

It is not known whether there is actually a backdoor or this is just a myth. If/when this
cipher is made a standard and adopted as a global standard, it is in theory possible for its
designers to access the backdoor and retrieve sensitive information.

The SIMON and SPECK [3] family contain few block ciphers which are suspected to have
this kind of backdoor (see, e.g., [19]). It is not known if there is any backdoor, or how the
backdoor mechanism works if there is one. Even if there is a backdoor in those ciphers, it
is never accessed, to the best of our knowledge/understanding.

(2) A cipher where the designers publicly claim there is a backdoor. The cipher is secure except
when the backdoor is accessed. The designers make no attempt to hide the backdoor; rather
they claim upfront that there is a backdoor – this is how the backdoor mechanism works –
so on and so forth.

This category is recently popularised through the Malicious framework [19]. This
framework can create such a cipher by tinkering with some otherwise secure cipher, given
the base cipher satisfies some criteria. By accessing the backdoor, the cipher designer can
retrieve the key by analysing the cipher output. The LOWMC-M [19] is an instance of this
framework, which takes a secure instance of LOWMC as the base cipher.

One may notice the following characterisation of this category:
(α) The presence of the backdoor is made public by the designers without anybody asking.

This also nullifies the question of whether it is hard to spot the presence of the backdoor
had it not been known13.

(β) Except when the backdoor is accessed, the cipher is secure. When the backdoor is
accessed, the secret key is released from the cipher output (assuming the user does not
prevent that, see Inference (B)), satisfying the “practicality” condition of [19, Section
2.2].

(γ) Though the backdoor mechanism is public, it is infeasible to find out what the secret
backdoor entry that activates the mechanism is. This is called the “undiscoverability”
condition [19, Section 2.2].

By observing the Category (2) design in the literature (namely, [19]), the following inferences
can be drawn (see Section 3.1 for more discussion):

(A) The backdoor can be accessed at most once. The backdoor mechanism is public, therefore
anyone can check with the incoming requests to the user to see if the backdoor is activated.
Once it is found, the secret backdoor access becomes visible to everyone. Basically, one can
monitor all the incoming traffic to the user and attempt to reverse-engineer the backdoor
entry, and will eventually succeed as soon as the backdoor entry is used.

This can be done by the user (Alice) or the attacker (Eve14) alike. Though Eve does
not know the actual secret key (which is chosen and kept secret by Alice), she can still
choose an arbitrary key, and then follow-through the steps of the backdoor mechanism to
see if information about the arbitrarily chosen key is released.

(B) It is not possible to extract the secret key without the user’s (Alice’s) cooperation. Alice can
always keep an eye out for activation of the backdoor mechanism. Based on that, she may
return an invalid output or something random (if the backdoor mechanism is activated),
instead of the actual output from the cipher.

13It may be hard to spot the backdoor for someone who does not know beforehand, but here it does not
matter as the designers have already made it public.

14Based on [19, Section 2.1], the attacker/eavesdropper Eve is considered within the Malicious framework.

6

(C) The key which is released from the cipher output (as a consequence of the backdoor access)
is not encrypted15, meaning pretty much everyone on the network (including the attacker)
can access it.

As any cipher belonging to Category (1) is not known16, the following questions remain
unanswered:

(a) Is it possible to design a backdoor where the backdoor mechanism and/or backdoor entry
can stay hidden with the cipher specification being public but the alleged backdoor being
accessed never?

(b) Is it possible to design a backdoor where the backdoor mechanism and/or backdoor entry
can stay hidden with the cipher specification being public and after the backdoor being
accessed (at least) once?

(c) Is it possible to design a backdoor where the user cannot sense that the backdoor is being
accessed (or equivalently, the backdoor mechanism does not become visible when accessed)?

(d) Is it possible to design a backdoor where the user can sense that the backdoor is being
accessed, but cannot (efficiently) reverse-engineer the backdoor entry?

(e) Is it possible that the key released through backdoor access is somehow protected17, so
that the attacker does not get it (but the cipher designer can still get it)?

(f) Is it possible for the designer to retrieve the key only from one-way communication (either
Alice → Bob or Bob → Alice)? Is it possible for the designer not to retrieve the secret key
only from one-way communication, but from both-way communication (Alice ↔ Bob)?

In this work, we aim at improving Category (2) backdoors; i.e., we are interested to create
improved design that satisfies Criteria (2α), (2β) and (2γ). It is important to note that those
criteria are adopted from [19], and are not conceived by us. It is perhaps worth noting that
Inferences (A) and (B) violate the “untraceability” condition which is described in [19, Section
2.2] (Inference (B) is already acknowledged in [19, Section 5.3] as a violation of “untraceability”).
Whether or not it is possible to design a Category (1) backdoor is left as an open problem.

Remark 1. The closest to Category (1) the designers of Malicious could have gone is to
present a new cipher/framework/mode and make vague claim about presence/absence of a
backdoor. Then it would be up to the community to figure out if there is a backdoor, how to
activate the backdoor/how the backdoor mechanism works, etc.

Remark 2. In theory, it is possible to design a cipher in Category (1) if the designer manages to
find an attack not yet known to the (mainstream) community18. The backdoor in this case will
be activated through this new attack, and will (more than likely) be missed by the community

15If the released key is encrypted with another key, that means the cipher designer and the user have to know
the other key beforehand. In that case, they can simply use any cipher (with the other key) to communicate the
key released through the backdoor instead, thus completely cutting off the need for a backdoor.

16The closest example to Category (1) is probably the infamous DUAL EC DBRG, which is confirmed by Snowden
in 2013. DUAL EC DBRG is supposed to be a secure CSPRNG. Unless re-seeded with an external source of entropy,
its state can be recovered by observing an output, thus all subsequent outputs can be retrieved. Notice that,
it does not exactly fit the basic requirement to a Category (1) cipher; as it cannot be initialised with a seed
supplied by the designer, nor there is a secret key to recover.

17‘Protection’ here includes, but not limited to, encryption. See Section 3.1 for relevant discussion.
18For instance, some of the public-key ciphers (including RSA) are now known to be vulnerable against

quantum computers, but those attacks were not known when those ciphers were designed. In a less restricted
sense, the quantum attacks can be considered as backdoors to those ciphers.

7

(at least until this attack is discovered or the backdoor mechanism is reverse-engineered). For
perspective, the construction of Malicious [19] depends on the extremely popular differential
attack (which is known for over three decades); thus the backdoor, in a very high likelihood,
would be spotted by the community (had it not been known already).

3 Basic Concepts

3.1 Practical Application of a Backdoor

Status Quo The first problem that arises while talking about the practicality of backdoor is
to convince the users to adopt it. There is no shortage of efficient ciphers in the public domain;
with well-described design rationale and which are well-analysed by the community. The users,
Alice and Bob, may simply refuse to adopt any new/experimental cipher (for example, any
cipher from the LOWMC family [1] altogether, or the unusual choice of using an XOF to design
an encryption as in LOWMC-M [19]), suspecting there could potentially be a backdoor. Therefore,
in a loose sense, they agree for the designer to retrieve the secret key if they agree to adopt a
new cipher. Thus, the design and study of backdoor appears to be purely an academic interest
than a pragmatic one.

Anyway, as far the technical problems are concerned with the current concept of backdoor
[19] (which we call Category (2), see Section 2.2), we note the following: Since the identity of
the cipher designer (whom we call Derek for simplicity, as indicated in Section 1.2) is known
to everybody in the network; including Alice (sender), Bob (recipient) and Eve (attacker).
Therefore Alice (as well as Bob) can be extra cautious when a request comes from Derek,
implying the limitations:

(i) Alice can simply deny any request from Derek, preventing him to access the backdoor.
(ii) If Alice complies with Derek’s requests and lets him access the backdoor, this can be noticed

by Eve. Now the secret key is leaked through the response from Alice and the key is not
encrypted19, thus Eve can effectively recover the key.

Overall, the Limitations (i) and (ii) mostly, if not fully, diminish any real-life application for
a Category (2) backdoor. The cipher designer (Derek) cannot use it without active cooperation
from the user (Alice or Bob). Even if Derek can obtain anonymous identity or spoof a fake
identity, it is still up to the mercy of Alice. All the information is coming from Alice, so she can
simply check the output from the cipher before sending it20; and discard the request or give a
random output; should she suspect the backdoor is being accessed. On the other hand, if Alice
agrees Derek to access the backdoor, they can instead create a secure channel between them
(no need for a backdoor). Besides, letting Eve know the secret key is a miserable flaw, since
the whole purpose of any cryptographic system is to ensure the attacker cannot access the key.

The point to note here is, we are heavily implying that the notion of backdoor, at least in
its current form, suffers from severe limitation that comes from lack/absence of trust for Derek.
If Alice does not respond to anyone she does not trust, anonymous/fake identity by Derek is

19There is practically no way to encrypt this key, at least within the realm of symmetric-key cryptography;
as this would require exchange of another secret key between Alice and Derek. This invalidates the need for a
backdoor in the first place.

20For instance, Alice can check if the XOR of two consecutive cipher outputs equals to the key. Given the
backdoor mechanism is public, she already knows exactly what to look out for.

8

meaningless. We are not saying either of the assumptions is objectively true/untrue. We are
simply saying, in order for Derek to succeed in utilising the backdoor; he needs to circumvent
those real-life problems at first, which may turn out to be challenging.

The existing work [19] does not seem to address any such issue with adequate clarity21,
despite being published in a coveted venue. Hence it serves only as an interesting proof-of-
concept (but lacks any practical application), in our humble opinion.

Uncertain Future Prospect While it does not seem possible to extract the secret key
without cooperation from the user, it may be possible with some cipher in the future where the
designer can extract the key in a way that the attacker cannot get it. One potential concept to
achieve this in the future (that may or may not work) can be stated as follows.

Suppose, instead of only one backdoor entry, it is split into q backdoor shares22 (somewhat
comparable with the concept of secret-sharing [21]), where the cipher output from all the shares
are required to retrieve the key. Say, by querying with the bi backdoor entry, ci is obtained, for
i = 0, . . . , q − 1. Each ci contains some information about the secret key, but all of those are
required to get the key.

Not only that, each ci is connected in secret way (which is only known to Derek) so that
the connection is to be respected in order to find the key. With some suspension of disbelief,
say, k = f(cj0 , cj1 , . . . , cjq−1) where the function f is secret (only known to Derek) and is not
symmetric, for (j0, j1, . . . , jq−1) being secret a permutation of (0, 1, . . . , q − 1). Thus, despite
knowing all the public information as Derek does, Eve may not be able to actually uncover
the key given certain regularity assumptions (like, q is sufficiently large) as she would need to
cover the search-space of q!.

This concept is shared here only to pique the interest of the future researchers. Whether or
not this will turn out to be a feasibility is unclear as of now.

3.2 Associated Notions of Security

Undetectability The authors of Malicious in of [19, Section 2.2] mention one desirable
security notion for a Category (2) backdoor, “undetectability”. It is defined as “the inability
for an external entity to realize the existence of the hidden backdoor”. Here we argue that this
is not a valid notion.

Note from Criterion (2α), the backdoor designers of Malicious [19] have already made
the presence of the backdoor a public knowledge. Thus, it is a preconceived knowledge of the
whole community that a backdoor exists, trivially violating “undetectability”.

On a careful examination, we further notice that the notion about whether the cipher has
an embedded backdoor does not seem to hold water either. This is because we are not aware
of any possible way to ascertain a cipher does not contain a backdoor (“How do you know AES

does not have a backdoor?”). The ciphers which are broken can be (arguably) considered to
have a backdoor, but it does not seem possible to comment on non-existence of a backdoor
about those ciphers which are deemed secure. As a consequence, it is not possible to say

21To be fair, the authors agree the “untraceability” condition is violated in their construction [19, Section
5.3]; still they do not analyse the extent of its consequence. Also, they seem to be completely oblivious to Eve’s
access to the secret key.

22Possibly something similar is laid out by Peyrin: https://thomaspeyrin.github.io/web/assets/docs/
invited/TII_CRC_21_slides.pdf, Slide 63.

https://thomaspeyrin.github.io/web/assets/docs/invited/TII_CRC_21_slides.pdf
https://thomaspeyrin.github.io/web/assets/docs/invited/TII_CRC_21_slides.pdf

9

an arbitrary instance of LOWMC-M does not contain a backdoor (regardless of an intentional
backdoor following Malicious is implanted or not), thereby making the analysis in [19, Section
5.1] useless.

We understand the sentiment why Peyrin and Wang [19] would want this notion of
“undetectability”. Just because we have a sentiment, it does not mean it is possible to achieve
that in a rational/reasonable manner. In their case, what they actually do is to compare “a LOWMC
instance with a Malicious-based backdoor” with “a LOWMC instance without a Malicious-
based backdoor”, and do some security evaluation. This does not conform to their definition,
as they do not prove “the LOWMC instance without a Malicious-based backdoor” does not
have any other kind of backdoor. For all we know and care, even though that instance does
not have a Malicious-based backdoor, it is certainly possible for it to have some other kinds
of backdoor which are not known yet. Thus, they actually compare between two instances
of LOWMC; of which one surely has a backdoor, and the other can have a backdoor (̸= surely
does not have a backdoor). If one insists on having a notion similar to “undetectability”, we
recommend to make it specific with respect to a particular framework — something like, “the
inability for an external entity to distinguish between the two scenarios; where a particular
framework is used to create a backdoor, versus where that particular framework is not used”.

Need for White-box Security Given the analysis in Sections 2.2 and 3.1; it stands to reason
that, Alice (as well as Bob) and Eve can reverse-engineer the backdoor mechanism as soon as
the first query is made by Derek as long as the cipher specification is public. Indeed, no matter
how the backdoor mechanism works, it has to trigger something (such as, some variable has to
become 0, some loop has to terminate, and so on). If the cipher specification is known, then
anybody can utilise such information as soon as the correct backdoor entry is used.

Therefore, if we want the backdoor mechanism will not be revealed even after a backdoor
entry is queried with, a basic condition is that the cipher specification is to be kept secret by
Derek. However, this alone is not enough, since it is possible to reverse-engineer the cipher
specification given its (unprotected) implementation (cf. the well-known cases of reverse-
engineering RC423 or CRYPTO-1 in Mifare Classic RFID tag [16]). Thus, the implementations of
the cipher (which are prepared and shared by Derek to Alice and Bob) practically have to be
secure against the white-box [8, 9] attacks. In a white-box setting, the secret key is embedded
in the cipher implementation in a way that it cannot be recovered. That said, one may notice
the following differences from the usual white-box setting:

1. The cipher specification itself is secret in a backdoor setting, which is a more stringent
requirement than usual white-box (where it is public).

2. The cipher designer supplies the implementations to the users, but he does not know the
secret key. This contrasts the usual white-box setting where the implementer knows and
embeds the key. It is not clear whether this is a more stringent requirement.

At this point, it is perhaps safe to assume, there is no proper real-life application of
the concept of backdoor introduced in [19], at least in the mainstream academic community.
Somebody may still use a cipher like that if it is enforced24. For instance, assume the situation

23https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/date/1994/09/

msg00304.html.
24One may compare with the government-issued (closed-source) applications to trace COVID-19 to some

extent, though there is no separate recipient (Derek = Bob) and there is no secret key to recover.

https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/date/1994/09/msg00304.html
https://web.archive.org/web/20010722163902/http://cypherpunks.venona.com/date/1994/09/msg00304.html

10

where there a push from the government to implant some intentional backdoor to compromise
the security of products used by the common people. In that case, it is in theory possible to
use a Category (2) cipher, with its full specification being available in public (and with no
white-box protection). Our cipher ZUGZWANG can be in theory used in such a situation; but
as academic researchers with a moral compass, we do not condone that. To the best of our
finding, the only incident similar to this is rumoured in Australia in 2018, but it seems to be
officially denied25.

4 ZUGZWANG: Constructing a Block Cipher with a Backdoor

One major observation from Malicious [19] is that, the only reason the user/attacker cannot
retrieve the backdoor is the one-way property of the XOF. As it is known, a Feistel block
cipher can use an OWF as its state-update (see, DES for an example), we adopt the idea to
finally extend it to ZUGZWANG. Whether or not a similar construction is possible with SPN and
ARX families, and whether some other idea is possible that does not involve any OWF, are
left open for future research.

4.1 Fundamental Idea of ZUGZWANG

In its simplest form, ZUGZWANG is a 2-branch balanced Feistel network based block cipher that
runs for n rounds (counting of rounds goes from 0 to n− 1). It uses fi(Ki, cL) as the round
function for for the ith round; where Ki is the corresponding round key, cL is the plaintext
or the intermediate ciphertext currently at the left branch. Each fi has the property that it
collapses if cL = p̂0 (if i is even) or cL = p̂1 (if i is odd), for some predefined p̂0 and p̂1. In this
case, p̂ = p̂0||p̂1 constitutes the secret backdoor. Also note that, the last Feistel round does not
have any swap operation between the two branches (so there are n− 1 branch swaps).

Now, notice that, p̂0 and p̂1 cannot be used directly in the specification of fi’s (those
cannot be passed as parameters of fi’s); otherwise Alice and Eve would trivially retrieve these.
Thus, we run an OWF, H(·) first. This leads to pre-computing and storing H(p̂0) (respectively,
H(p̂1)) where i is even (respectively, odd) in the cipher specification as constants. Now that
H(·) is used to p̂0 and p̂1, we need to apply it to cL too. Ultimately, instead of directly checking
whether cL = p̂0 or cL = p̂1, we are now checking if H(cL) = H(p̂0) or H(cL) = H(p̂1).

AlthoughH(p̂0) andH(p̂1) are stored and accessible in the cipher specification, the following
claims hold due to the property of H(·):

• Pre-image resistance: It is hard to retrieve p̂0 and p̂1.
• Second pre-image resistance: It is hard to find another p̂i

′ (̸= p̂i) such that H(p̂i
′) =

H(p̂i) for i = 0, 1.

Notice that the birthday-bound security for collision does not apply here. These claims
constitute the secrecy of the backdoor entry given its H; i.e., no algorithm better than the
brute-force search is known.

Next, we need to use an encryption, EKi(·) inside fi’s to make the overall Feistel cipher
secure. As some form of the check H(cL) = H(p̂j) for j = i (mod 2) has to be inside fi, a

25https://www.homeaffairs.gov.au/about-us/our-portfolios/national-security/

lawful-access-telecommunications/myths-assistance-access-act.

https://www.homeaffairs.gov.au/about-us/our-portfolios/national-security/lawful-access-telecommunications/myths-assistance-access-act
https://www.homeaffairs.gov.au/about-us/our-portfolios/national-security/lawful-access-telecommunications/myths-assistance-access-act

11

natural choice is fi = EKi(H(cL))⊕ αi where αi = EKi(H(p̂j)). After n rounds of update are
done, post-whitening keys (KL,KR) are XORed to the branches.

Notice that when p̂0 and p̂1 are fed to the left and right branches respectively, fi’s are always
0, and this holds irrespective of number of rounds. Basically, fi (which is 0) is XORed to the
right branch, making the content of the right branch going to the left branch in the next round.
As the content of the right branch is what makes fi+1 collapse, the pattern continues. This
allows us to create an arbitrary number of rounds, though for proper security in two directions
(and with the assumption that E and H have desirable cryptographic properties) the number
of rounds is required to be ≥ 4. Therefore, when fed with the secret backdoor p̂ = p̂0||p̂1, the
ciphertext from the cipher does not depend on the Feistel round keys (Ki’s). Rather it always
follows the simple invariant relationship with the post-whitening keys (KL,KR), which leads
to direct key recovery with 1 plaintext query as:

(cL, cR) =

{
(p̂0 ⊕KL, p̂1 ⊕KR) if number of Feistel rounds is odd,

(p̂1 ⊕KL, p̂0 ⊕KR) if number of Feistel rounds is even.

On the other hand, when a p (̸= p̂) is used as the plaintext, the cipher works as secure
Feistel block cipher. At each round, the state update can be compared to a Boolean derivative
of E – it resembles a form of differential attack on E (but weaker since H(p̂0) and H(p̂0)
constants). Given E is secure, any differential attack on E does not give any usable information.
We thus conclude, 4 rounds of the ZUGZWANG construction can be considered to provide adequate
security in two directions.

Extension to Other Symmetric-key Primitives It may be possible to extend the core
idea of ZUGZWANG to other primitives in the symmetric-key cryptography (viz., stream cipher,
hash function, MAC, AE and AEAD). However, it is not immediately apparent how such
extension will pan out. For instance, it is possible to get a stream cipher from a block cipher by
using a number of modes (e.g., CTR); but it is to be noted that the plaintext does not enter the
state of a stream cipher per-se. As such, we may have to use a secret IV/nonce so that, (say)
the key-stream becomes all-zero regardless of the secret key. This requires elaborate discussion,
and hence is kept out-of-scope for this work.

Feistel Types, Branches and Rounds The basic idea can be generalised to more Feistel
branches, wherein the secret backdoor entry is split into multiple branches. In that case, one
also needs to decide on the type of the Feistel Network and the minimum number of rounds
required. Analysis such such options is left open for future research.

Location of Whitening Keys/Backdoor on Decryption Note that, the key recovery
through backdoor access in ZUGZWANG does not retrieve any Feistel round key, rather it retrieves
the whitening keys (the post-whitening keys for encryption, to be more precise). If we take all
the Feistel branches have a whitening key XOR (for maximum key recovery), then the question
is whether to use pre- or post-whitening keys.

For simplification of notation, assume that we have a 128-bit and 2-branch ZUGZWANG

construction with n-rounds. First, let us study the situation for encryption where the left
branch has a pre-whitening key (K ′), the right branch does not have a pre-whitening key. In

12

Table 1: Complexity of whitening key recovery in 128-bit ZUGZWANG construction
(a) 2-branch Feistel

Whitening Backdoor Complexity

#Pre #Post Encryption Decryption

0‡ 2‡ 20 2128

1 1 264 264

2 0 2128 20

‡: Instantiated in Section 4.2

(b) 4-branch Feistel

Whitening Backdoor Complexity

#Pre #Post Encryption Decryption

0 4 20 2128

1 3 232 296

2 2 264 264

3 1 296 232

4 0 2128 20

this case, p̂0 does not make the fi’s collapse for even rounds, but p̂0 ⊕ K ′ does. Since the
designer does not know which K ′, he has to brute-force over 64-bits. Therefore, he has to query
with p̂0 ⊕K ′||p̂1 for all possible 264 choices of K ′. The correct guess of K ′ can be identified by
the output at the end (which will depend on presence/absence of whitening keys and if n is
even/odd).

Reflecting on this, we observe that the construction with post-whitening keys helps in back-
door access in encryption, but not in decryption. Similarly, pre-whitening helps in decryption,
but not in encryption. The invariant property that the product of the complexities for the
whitening key recovery at both sides remains the same as the brute-force search. This is an
inherent property of the ZUGZWANG construction. As shown in Table 1, this cannot be improved
by increasing the number of Feistel branches. Improving the whitening key recovery complexity
from two sides can be considered as a future work.

To the best of our finding, no claim about the backdoor access from Bob’s side is available
in Malicious [19]. Thus, the notion of “practicability”, which is introduced in [19, Section 2.2],
is unclear for Malicious/LOWMC-M decryption.

4.2 A Concrete Instance of ZUGZWANG (Using AES and SHAKE)

We show an instance of ZUGZWANG26 that uses a 2-branch balanced Feistel structure, 128-bit
state, runs for 4 Feistel rounds, and uses 0 pre-whitening and 2 post-whitening keys. We choose
AES-128 for encryption (E), and SHAKE-128 as XOF (H). See Algorithm 1 for its formal
description, and Section C for some test cases.

The basic construction for ZUGZWANG is as shown in Figure 2. The 128-bit master key K
and the 128-bit backdoor entry p̂ are split into two 64-bit post-whitening keys: K = K4||K5,
p̂ = p̂0||p̂1 respectively. The 128-bit Feistel round keys (Ki for i = 0, 1, 2, 3) are generated by
running AES in CTR mode with key k (i.e., with i as the plaintext).

As per the construction, the H(·) of p̂0 and p̂1 are computed and stored. Since these are to
be used as the plaintext for AES-128 (Line 10), we take 128-bit output for these. Similarly, the
plaintext/intermediate ciphertexts are to be used in AES as plaintexts (Line 11), so the outputs
from SHAKE for these are also taken as 128 bits long. However, since each Feistel branch is 64
bits long (see Line 12), we truncate the last 64 bits of these 128-bit SHAKE outputs.

26We use the same term, ‘ZUGZWANG’, to indicate the overall construction idea as well as the concrete instance.

13

C0 C1

/64

H E

K0

α0

/64

/
64

/
128

/
64

/
64

/64

/64

H E

K1

α1

H E

K2

α2

H E

K3

α3

C0 C1

/64 /64

K4 K5/
64

/
64

H ≡ SHAKE-128

E ≡ AES-128

K0 = Ek(0)

K1 = Ek(1)

K2 = Ek(2)

K3 = Ek(3)

K4||K5 = k

α0 = EK0(H(p̂0))

α1 = EK1(H(p̂1))

α2 = EK2(H(p̂0))

α3 = EK3(H(p̂1))

Fig. 2: ZUGZWANG (concrete instance/encryption)

If p̂ is not known, then we claim this concrete instance offers 128-bit security (see Appendix
B for a formal security proof). On the other hand, if queried with p̂ as the plaintext, then the
post-whitening keys (K4,K5) are revealed.

Remark 3. Instead of truncating the last 64 bits (Lines 10 and 11), some other methods (like,
taking only the bits even/odd positions of the state, XORing of first 64 and last 64 bits) to get
64 bits from 128 bits can be used.

Remark 4. The Feistel round keys can be generated by some other means also, so long as the
conditions for Feistel compatibility (see, e.g., [15]) are satisfied.

Remark 5. If some other cipher that supports 64-bit plaintext is used instead of AES (Lines 10
and 11), then truncation can be skipped.

ZUGZWANG is not meant to be used in practice, rather its primary function is to work as a
proof-of-concept. Thus, we acknowledge the device footprint for the concrete instance can be

14

Algorithm 1: ZUGZWANG – concrete instance/encryption (128 bits, 2-branch Feistel, 4 rounds;
AES-128 as encryption, SHAKE-128 as XOF)

Input: p̂ (backdoor entry, 128 bits), p (plaintext, 128 bits), k (master key, 128 bits)
Output: Secure encryption with key k and plaintext p if p ̸= p̂; k if p = p̂
1: n← 4 ▷ Number of Feistel rounds
2: for i← 0 to n− 1 do
3: Ki ← AESk(i) ▷ Generate Feistel round keys by using AES in CTR mode

4: K4,K5 ← k[0 : 63], k[64 : 127] ▷ Split k to use as post-whitening keys
5: p̂0, p̂1 ← p̂[0 : 63], p̂[64 : 127] ▷ Split p̂ into 2 parts
6: Pre-compute and store SHAKE(p̂0), SHAKE(p̂1) ▷ Both are of 128-bits
7: C0, C1 ← p[0 : 63], p[64 : 127] ▷ Split p into 2 parts
8: for i← 0 to n− 1 do ▷ Iterate over Feistel rounds
9: j ← i (mod 2)
10: αi ← AESKi(SHAKE(p̂j))[0 : 63]
11: βi ← AESKi(SHAKE(C0))[0 : 63] ▷ SHAKE(C0) is of 128-bits
12: fi ← βi ⊕ αi ▷ fi = 0 when C0 = p̂j
13: C1 ← C1 ⊕ fi ▷ Update right Feistel branch with fi
14: if i ≤ n− 2 then ▷ No branch swap in last Feistel round
15: C0, C1 ← C1, C0 ▷ Swap two Feistel branches

16: C0, C1 ← C0 ⊕K4, C1 ⊕K5 ▷ XOR post-whitening keys
17: return C0||C1 ▷ (C0, C1) = (p̂1 ⊕K4, p̂0 ⊕K5) when p = p̂

significantly lowered (say, using less number of rounds for AES, replacing AES with a lightweight
encryption, using an LFSR to generate Feistel round keys, etc.) but do not make any attempt
to do so. For the same reason, we do not present any benchmark.

4.3 Comparison of ZUGZWANG with Malicious/LOWMC-M

In essence, the fundamental concept in Malicious [19] can be as described as follows. The
backdoor entry is accessed through a (secret) difference at the (public) tweak and the (public)
plaintext. The backdoor access works by cancelling the differences with one another in such a
way that ultimately there is a high probability differential trail at the end, which potentially
leaks the key. However, if just this much would be implemented, the attacker/user would
(likely) notice the differences applied through the tweak and the plaintext, which would in turn
reveal the backdoor entry. To prevent the attacker/user from obtaining the differences, the
designers of Malicious [19] pass the differences through an XOF.

The following comparative points can be noted:

1. Malicious is based on somewhat new/ad-hoc and not so much analysed design principles.
It cannot be implemented atop any pre-existing cipher, rather only applies to a cipher with
meta-description given the meta-description satisfies certain requirement (e.g., a partially
non-linear layer). Effectively, Malicious is too much reliant on the security of LOWMC [1]; any
new cryptanalysis on LOWMC can potentially follow-through. Besides, being a new design type,
itself requires its own analysis (in particular, LOWMC-M is revised in [19, Section 4.3] after a
new analysis is presented in [12] where 7 instances of LOWMC-M with original parameters are
broken without finding backdoor by algebraic attacks on LOWMC). ZUGZWANG can be designed
using already well-analysed primitives – all the concepts used in its construction/analysis
are known for decades. Its security can be formally proven (Section B).

15

2. Malicious requires tweak (see Section A.1 for a possible extension that does not need a
tweak). Tweak is said to be relatively new, less efficient, and any standard does not appear
to exist [2, Section II.B]. ZUGZWANG does not require a tweak (in theory, a tweakable version
can be constructed if needed).

3. The key recovery using the secret backdoor entry in ZUGZWANG is deterministic in nature,
which requires only one call to the cipher with the secret backdoor entry equated with the
plaintext; whereas LOWMC-M requires multiple calls27, and the key recovery is not guaranteed
even if its queries satisfy all the requisite conditions.

4. Since LOWMC exploits the differential property, the search space for the secret backdoor
entry is actually less by 1 from the brute-force search (i.e., 2128 − 1 for a 128-bit cipher).
ZUGZWANG does not rely on differential, and the complexity for the backdoor access recovery
is the same as the brute-force search.

5. The overall idea of ZUGZWANG is much easier to visualise, analyse and implement. When
compared to the over-the-top design of Malicious/LOWMC-M, ZUGZWANG looks and feels
more like an open-book.

5 Conclusion

Taking inspiration from Peyrin and Wang’s Crypto’20 paper [19], we partake in a deeper dive
at backdoor construction and related security concerns. Our analysis reveals a plethora of
pertinent ideas/problems relating to [19]. A major contribution in our work is to present a block
cipher concept, ZUGZWANG, that has an internal backdoor it. We also show a concrete instance of
the concept. Our construction answers some of the open problems of Malicious/LOWMC-M [19],
thus considerably improving from it.

Potential problems for future research are scattered throughout the paper, some of which
are listed here:

• Is it possible to design a cipher with an innate backdoor (the cipher is secure otherwise)
without using any OWF?
• How closely white-box cryptography and backdoor are related?
• Is it possible to ‘hide’ the key (which is released as the result of backdoor access) so that

designer can get it but the attacker cannot?
• Is it possible to design a backdoor such that the complexity for the key recovery from both
Alice’s side and Bob’s side are possible with trivial complexity?

In addition, we pose the theoretical problems for the follow-up works:

• Extend the concept for the public-key ciphers. One possible way could be so that Derek
knows a secret plaintext (p̂) so that Alice’s secret key (ks) can be computed given her
public key (kp); i.e., ks is a computationally feasible function of (p̂, kp).

• Extend the provable security claim of ZUGZWANG (e.g., more Feistel rounds, more Feistel
branches).

To make ourselves clear, we do not support the government or any organisation forc-
ing/tricking anybody to use any cipher that has a backdoor. We believe the intentional design
a cipher with a hidden backdoor should be done as an academic curiosity. Indeed, ZUGZWANG is

27There is no clear estimate on how many queries would be required.

16

designed to find an answer to a curious question and not intended to be used in any practical
application.

A Postscript

A.1 Malicious with a Regular Block Cipher

There is a known construction of a (variable length) block cipher from a tweakable block
cipher [7]. If we use this construction from a tweakable block cipher with a backdoor, then it is
in theory possible to have a block cipher that does not necessarily need any tweak. This makes
the construction in [19] more general, and appears to be a missed opportunity.

A.2 A Known Backdoor in Davies-Meyer Mode

It is well-known that the Davies-Meyer mode contains a fixed point. Interestingly, this can be
extended for a hash function such that two pre-images have the same hash output. This acts
as a second pre-image attack, and can be considered a backdoor for a hash function.

A.3 Backdoor with a Public-key System

It seems possible to design a backdoor using a public key system that operates as a mode. For
a quick illustration of the concept, consider RSA. The composite number n (where n = pq; p, q
are primes) is stored beforehand. The secret key is released if28 the plaintext m divides n (thus,
m = either p or q). Otherwise, some secure cipher, say AES (with a suitable mode/padding), is
run with m as the plaintext.

Breaking this, in general, seems at least as hard as breaking RSA. Effectively, p and q
independently act two backdoors. Also note that, p and q are to be larger than 128 bits to
ensure adequate security.

A.4 Note on White-box Cryptography

Since we are on the topic of white-box cryptography (Section 3.2), we take a brief moment to
look at the “theoretically secure” white-box construction. As per the existing literature (see,
e.g., [14, Chapter 3.1.1]), it is theoretically possible to achieve white-box security by using a
gigantic memory.

If we consider AES-128 to simplify the notation; then based on this hypothesis, we could
have had a theoretically secure white-box if we had a gigantic memory that could store 2128

(plaintext, ciphertext) pairs for a fixed key. Since all of the responses to the plaintext queries
are pre-computed and stored, therefore the key will not be used at all in the device, making it
impossible for the attacker to retrieve the key. The proponents of this hypothesis point out
that this far beyond what today’s technology is capable of, and this is why we do not have a
secure white-box system.

As we uncover here, the assumption of a gigantic memory does not ensure white-box
security; such a construction – if/when exists – will be broken instantly. In other words, “if

28An example of the ‘if–else’ check in a cipher construction can be found in verification of the tag at the
recipient’s side for an AEAD.

17

only we had a gigantic memory. . .” argument displays the tip of the iceberg and hides the real
problem underneath. Imagine, we have a gigantic memory, but it will not fill itself with all the
(plaintext, ciphertext) pairs. For that what we need is a super powerful processor which can
presumably do the followings:

(A) Generate all 2128 plaintexts.
(B) Encrypt all 2128 plaintexts.
(Γ) Encode all the 2128 ciphertexts, compute the address of the memory location for all 2128

ciphertexts, communicate all the 2128 ciphertexts through the peripheral to the memory.

Even if we ignore Presumption (Γ), the processor is assumed to be powerful enough to
brute-force the 128-bit key (by Presumptions (A) and (B)) already. Therefore, if such a white-
box system is ever constructed, it will be immediately broken — by the same processor which
has filled it up29! As a result, it remains unclear whether or not a theoretically sound white-box
system can be constructed.

A.5 Note of LOWMC

As a food-for-thought, we make the open-ended proposal to call LOWMC [1] a meta-cipher
henceforth (instead of a cipher as it is commonly referred to). One may note that, LOWMC does
not have fully defined specification, rather it has a meta description of the key schedule and
the linear layer.

In a typical symmetric-key cipher, no component save for the secret key, is determined at
random. Typically, the public-key ciphers (including the quantum-secure ciphers) which need
some input which are not the secret key to be set at random. However, in all situations, the
full cipher specification is already available beforehand. The random inputs are used to the
fully specified cipher to initialise some components; but not as inputs to the cipher specifier
algorithm to generate the exact cipher specification. Since LOWMC takes a random number to
generate its full specification (the random number is not an input to the fully specified cipher),
it possibly makes more sense to place LOWMC into the category of meta-ciphers.

B Security Proof of ZUGZWANG

B.1 Notations

Given any sequence X = X1 · · ·Xx and 1 ≤ a ≤ b ≤ x, we represent the sub-sequence Xa . . . Xb

by X[a · · · b]. For integers a ≤ b, we write [a · · · b] for the set {a, . . . , b}, and for integers 1 ≤ a,

we write [a] for the set {1, . . . , a}. We use X1, · · · , Xn
$← X to denote that we sample n elements

X1, · · · , Xn from the set X with replacement at random.

B.2 Preliminaries

Distinguishing Advantage For two oracles O0 and O1, an algorithm A which tries to
distinguish between O0 and O1 is called a distinguishing adversary. A plays an interactive

29In fact, the problem is more fundamental than that. In order to build such a gigantic memory, one needs to
run an EDA tool. A processor that is capable of running such an EDA tool is more than capable of brute-forcing
the cipher.

18

game with Ob where b is unknown to A, and then outputs a bit bA. The winning event is
[bA = b]. The distinguishing advantage of A is defined as:

AdvO1,O0(A) := |Pr[bA = 1|b = 1]− Pr[bA = 1|b = 0]| .

Let A[q, t] be the class of all distinguishing adversaries limited to q oracle queries and t
computations. We define:

AdvO1,O0 [q, t] := max
A[q,t]

AdvO1,O0(A) .

When the adversaries in A[q, t] are allowed to make both encryption queries and decryption
queries to the oracle, this is written as Adv±O1,±O0 [q, q

′, t] , where q is the maximum number
of encryption queries allowed and q′ is the maximum number of decryption queries allowed.
Encb and Decb denote respectively the encryption and decryption function associated with Ob.

O0 conventionally represents an ideal primitive, while O1 represents either an actual
construction or a mode of operation built of some other ideal primitives. Typically the goal of
the function represented by O1 is to emulate the ideal primitive represented by O0. We use
the standard terms real oracle and ideal oracle for O1 and O0 respectively. A security game
is a distinguishing game with an optional set of additional restrictions, chosen to reflect the
desired security goal. When we talk of distinguishing advantage with a specific security game
G in mind, we include G in the superscript, e.g., AdvG

O1,O0
(A). Also we sometimes drop the

ideal oracle and simply write AdvG
O1

(A) when the definition of the ideal oracle is clear from
the context.

Coefficients H Technique The H-coefficient technique is a proof method by Patarin [17]
that is modernised by Chen and Steinberger [5, 6]. An adversary A interacts with oracles O
(The oracle O could be a sequence of multiple oracles.) and obtains outputs from a real world
O1 or an ideal world O0. The results of its interaction are collected in a transcript τ . The
oracles can sample random coins before the experiment (often a key or an ideal primitive that
is sampled beforehand) and are then deterministic. A transcript τ is attainable if A can observe
τ with non-zero probability in the ideal world. The fundamental theorem of the Coefficients H
Technique (proof of which can be found, e.g., in [5, 6, 17]) is stated in Theorem 1.

Theorem 1 (Patarin [17]). Assume, there exist ϵ1, ϵ2 ≥ 0 such that PrO0 [Bad] ≤ ϵ1 , and

for any attainable transcript τ obtained without encountering Bad,
PrO1

[τ]

PrO0
[τ] ≥ 1− ϵ2 . Then, for

all adversaries A, it holds that: AdvO0,O1(A) ≤ ϵ1 + ϵ2 .

The technique has been generalised by Hoang and Tessaro [10] in their expectation method,
which allows them to derive the fundamental theorem as a corollary.

B.3 Design Rationale

Before we dive into the security proof of ZUGZWANG, we briefly justify our choice of number
of rounds of the underlying Luby-Rackoff construction [13]. We know that at least three
Feistel rounds are required to prove any sort of PRP (Pseudo Random Permutation) security
(birthday-bound PRP security in case of three Feistel rounds, to be exact) [13], and at least four

19

Feistel rounds are required to prove any sort of SPRP (Strong Pseudo Random Permutation)
security (birthday-bound SPRP security in case of four Feistel rounds, to be exact) [11, 13, 18]
of the Luby-Rackoff construction. As we intend to show that ZUGZWANG behaves as an SPRP
up to the allowed query complexity of the adversary, we require at least four Feistel rounds. To
keep things as simple as possible, we have opted for that minimum number of Feistel rounds,
which is four.

B.4 Distinguishing Game

As we will prove that the SPRP (Strong Pseudo Random Permutation) security of our
construction using Coefficients H technique in standard model, at the start of the game, we

sample four permutations p0, p1, p2, p3
$← Perm, where Perm is the set of all permutations

ever {0, 1}n, and replace the four block ciphers in our construction with them. To prove the
distinguishing advantage of the adversary, we use the standard hybrid argument, and the first
component of the distinguishing advantage will be the PRP (Pseudo Random Permutation)
advantage of the block cipher (the maximum advantage of any adversary to distinguish a PRP
from the block cipher, when instantiated by a key which is chosen from {0, 1}n uniformly).

The adversary (A) makes q queries (forward or backward) to the oracle (O1, the real oracle;
or O0, the ideal oracle). We call the ith query to the oracle as P i

0∥P i
1 if it is a forward query,

and the corresponding response as Ci
0∥Ci

1. Similarly, we call the ith query to the oracle as
Ci
0∥Ci

1 if it is a backward query, and the corresponding response as P i
0∥P i

1. A also makes q′

queries to the hash (H). We call the ith hash query as U i and the corresponding response as
V i. We call this as the online phase of the game. Note that H is same in both the real world
and the ideal world.

We assume that A is non-repeating, i.e., it follows the following two properties while making
queries to the oracle or the hash.

1. It never queries P i
0∥P i

1 or Ci
0∥Ci

1 (i ∈ [q]) to the oracle if it has already queried P i
0∥P i

1 or
Ci
0∥Ci

1 (and received Ci
0∥Ci

1 or P i
0∥P i

1 in response respectively).
2. It never queries U i (i ∈ [q′]) to the hash if it has already queried it.

Once A is done with all its queries, the oracle releases some extra information to A which
it can take into account before submitting its decision. We call this as the offline phase of
the game. While the real oracle releases all the corresponding true values throughout this
game, the ideal oracle releases them according to the following sampling method. We shall go
on mentioning the bad events simultaneously, as soon as they can possibly occur. Note that
whenever we mention any bad event or reach any sampling step, it is implicitly mentioned that
the previously mentioned bad events have not occurred until that point.

B.5 Sampling of Ideal Oracle and Bad Events

Even before the start of the online phase, we define two sets Dom and Ran and initialize them
with ∅ (i.e., null set). During the online phase, whenever A makes any hash query, we update
Dom and Ran with the input and the output respectively. In our discussion, updating a set
with an element means adding that element to that set if it is not already present in the set.
Note that the variables in each bad event which are the sources of randomness in the context

20

of bounding the probability of that bad event in Section B.6 are marked in brown. The secret
backdoor entry is denoted by the variable, P̂ , where P̂ = P̂0||P̂1, and P̂i is chosen at random
from {0, 1}n (where n = size of one Feistel branch = 64).

Online Phase

1. For all i ∈ [q], Ci
0, C

i
1

$← {0, 1}n, if it is a forward oracle query. Otherwise, P i
0, P

i
1

$← {0, 1}n,
if it is a backward oracle query.

Bad1 ∃i, j ∈ [q] with i < j such that Ci
0 = Cj

0 ∨Ci
1 = Cj

1 , when the j-th query is a forward query,

and P i
0 = P j

0 ∨ P i
1 = P j

1 , when the j-th query is a backward query.

Bad2 ∃i, j ∈ [q′] with i < j such that V i = V j .

Offline Phase

1. K4,K5, P̂0, P̂1
$← {0, 1}n .

Bad3 ∃i, j ∈ [q] such that P i
0 = Cj

0 +K4 .

Bad4 ∃i ∈ [q′] such that U i = P̂0 ∨ U i = P̂1 .

Bad5 ∃i ∈ [q] such that P i
0 = P̂0 ∨ P i

0 = P̂1 ∨ Ci
0 +K4 = P̂0 ∨ Ci

0 +K4 = P̂1 .

2. H(P̂0),H(P̂1)
$← {0, 1}n .

Bad6 ∃i ∈ [q′] such that V i = H(P̂0) ∨ V i = H(P̂1) .

3. Update Dom with P̂0 and P̂1 and Ran with H(P̂0) and H(P̂1) .

4. For P i
0 ̸= P j

0 where i ∈ [q] and j ∈ [i− 1], if P i
0 /∈ Dom, set Xi $← {0, 1}n .

5. For Ci
0 ̸= Cj

0 where i ∈ [q] and j ∈ [i− 1], if Ci
0 +K4 /∈ Dom, set W i $← {0, 1}n .

Bad7 ∃i, j ∈ [q] with i ̸= j such that P i
0 ̸= P j

0 but Xi = Xj .

Bad8 ∃i, j ∈ [q] with i ̸= j such that Ci
0 ̸= Cj

0 but W i = W j .

Bad9 ∃i, j ∈ [q] such that Xi = W j .

Bad10 ∃i ∈ [q] and j ∈ [q′] such that P i
0 ̸= U j but Xi = V j .

Bad11 ∃i ∈ [q] and j ∈ [q′] such that Ci
0 +K4 ̸= U j but W i = V j .

Bad12 ∃i ∈ [q] such that Xi = H(P̂0) ∨Xi = H(P̂1) ∨W i = H(P̂0) ∨W i = H(P̂1) .
6. Update Ran with freshly sampled Xi’s and W i’s and Dom with corresponding P i

0’s and
(Ci

0 +K4)’s.

7. For Xi ̸= Xj where i ∈ [q] and j ∈ [i− 1], set X̂i $← {0, 1}n .
8. For W i ̸= W j where i ∈ [q] and j ∈ [i− 1], set Ŵ i $← {0, 1}n .
9. α0, α1, α2, α3

$← {0, 1}n .
Bad13 ∃i, j ∈ [q] with i < j such that Xi ̸= Xj but X̂i = X̂j .

Bad14 ∃i, j ∈ [q] with i < j such that W i ̸= W j but Ŵ i = Ŵ j .

Bad15 ∃i ∈ [q] such that X̂i = α0 ∨ Ŵ i = α3 .

Bad16 ∃i, j ∈ [q] with i < j such that Ai = Aj ∨Bi = Bj , or in other words, X̂i + X̂j = P i
1 + P j

1 .

Bad17 ∃i, j ∈ [q] such that Ai = Bj , or in other words, P i
1 + X̂i + α0 = Cj

1 + Ŵ j + α3 +K5 .

Bad18 ∃i ∈ [q] and j ∈ [q′] such that Ai = U j ∨ Bi = U j , or in other words, X̂i + P i
1 + α0 =

U j ∨ Ŵ i + Ci
1 +K5 + α3 = U j .

Bad19 ∃i ∈ [q] such that Ai = P̂0∨Ai = P̂1∨Bi = P̂0∨Bi = P̂1, or in other words, X̂i+α0+P i
1 =

P̂0 ∨ X̂i + α0 + P i
1 = P̂1 ∨ Ŵ i + α3 + Ci

1 +K5 = P̂0 ∨ Ŵ i + α3 + Ci
1 +K5 = P̂1 .

21

Bad20 ∃i, j ∈ [q] such that Ai = P j
0 ∨Ai = Cj

0 +K4 ∨Bi = P j
0 ∨Bi = Cj

0 +K4, or in other words,

X̂i+α0+P i
1 = P j

0 ∨X̂i+α0+P i
1 = Cj

0+K4∨Ŵ i+α3+Ci
1+K5 = P j

0 ∨Ŵ i+α3+Ci
1+K5 =

Cj
0 +K4 .

10. For i ∈ [q], set Y i $← {0, 1}n .
11. For i ∈ [q], set Zi $← {0, 1}n .

Bad21 ∃i, j ∈ [q] with i < j such that Y i = Y j ∨ Zi = Zj .

Bad22 ∃i, j ∈ [q] such that Y i = Zj .

Bad23 ∃i ∈ [q] and j ∈ [q′] such that Y i = V j ∨ Zi = V j .

Bad24 ∃i ∈ [q] such that Y i = H(P̂0) ∨ Y i = H(P̂1) ∨ Zi = H(P̂0) ∨ Zi = H(P̂1) .

Bad25 ∃i, j ∈ [q] such that Y i = Xj ∨ Y i = W j ∨ Zi = Xj ∨ Zi = W j .
12. Update Ran with freshly sampled Y i’s and Zi’s and Dom with corresponding Ai’s and Bi’s.

Bad26 ∃i, j ∈ [q] with i < j such that Ŷ i = Ŷ j ∨ Ẑi = Ẑj , or in other words, P i
0 + P j

0 =

Ci
1 + Cj

1 + Ŵ i + Ŵ j ∨ Ci
0 + Cj

0 = P i
1 + P j

1 + X̂i + X̂j .

Bad27 ∃i ∈ [q] such that Ŷ i = α1 ∨ Ẑi = α2 .

B.6 Probability Calculation of Bad Events

Table 2: Bad Events

Bad event Range of indices Upper bound

Bad1 i, j ∈ [q], i < j q2/N

Bad2 i, j ∈ [q′], i < j q′
2
/N

Bad3 i, j ∈ [q] q2/N

Bad4 i ∈ [q′] 2q′/N

Bad5 i ∈ [q] 4q/N

Bad6 i ∈ [q′] 2q′/N

Bad7 i, j ∈ [q], i ̸= j q2/N

Bad8 i, j ∈ [q], i ̸= j q2/N

Bad9 i, j ∈ [q] q2/N

Bad10 i ∈ [q], j ∈ [q′] qq′/N

Bad11 i ∈ [q], j ∈ [q′] qq′/N

Bad12 i ∈ [q] 4q/N

Bad13 i, j ∈ [q], i < j q2/N

Bad14 i, j ∈ [q], i < j q2/N

Bad15 i ∈ [q] 2q/N

Bad16 i, j ∈ [q], i < j 2q2/N

Bad17 i, j ∈ [q] q2/N

Bad18 i ∈ [q], j ∈ [q′] qq′/N

Bad19 i ∈ [q] 4q/N

Bad20 i, j ∈ [q] 4q2/N

Bad21 i, j ∈ [q], i < j 2q2/N

Bad22 i, j ∈ [q] q2/N

Bad23 i ∈ [q], j ∈ [q′] 2qq′/N

Bad24 i ∈ [q] 4q/N

Bad25 i, j ∈ [q] 4q2/N

Bad26 i, j ∈ [q], i < j 2q2/N

Bad27 i ∈ [q] 2q/N

22

In this part, we bound the probabilities of the bad events after fixing the values of the
indices. Table 2 illustrates the range in which the indices varies, and bounds the probability
for each bad event.

Bad1 If the j-th query is a forward query, then the probability of each of the events Ci
0 = Cj

0 and

Ci
1 = Cj

1 comes out to be equal to (1/N) due to the randomness of Cj
0 and Cj

1 respectively.
Similarly, if the j-th query is a backward query, then the probability of each of the events
P i
0 = P j

0 and P i
1 = P j

1 comes out to be equal to (1/N) due to the randomness of P j
0 and

P j
1 respectively.

Bad2 The probability of the event V i = V j comes out to be equal to (1/N) which is the collision
security of the hash.

Bad3 The probability of the event P i
0 = Cj

0 +K4 comes out to be equal to (1/N) due to the
randomness of K4.

Bad4 The probability of each of the events U i = P̂0 and U i = P̂1 comes out to be equal to (1/N)

due to the randomness of P̂0 and P̂1 respectively.
Bad5 The probability of each of the events P i

0 = P̂0 and Ci
0 +K4 = P̂0 comes out to be equal to

(1/N) due to the randomness of P̂0. Similarly, the probability of each of the events P i
0 = P̂1

and Ci
0 +K4 = P̂1 comes out to be equal to (1/N) due to the randomness of P̂1.

Bad6 The probability of each of the events V i = H(P̂0) and V i = H(P̂1) comes out to be equal

to (1/N) due to the randomness of H(P̂0) and H(P̂1) respectively.

Bad7 If P i
0, P

j
0 ∈ Dom, then the probability of the event Xi = Xj comes out to be equal to

0 as the elements in Dom have distinct hash values. Without loss of generality, suppose
P j
0 /∈ Dom. Then the probability of the event Xi = Xj comes out to be equal to (1/N) due

to the randomness of Xj .
Bad8 If Ci

0 +K4, C
j
0 +K4 ∈ Dom, then the probability of the event W i = W j comes out to be

equal to 0 as the elements in Dom have distinct hash values. Without loss of generality,
suppose Cj

0 +K4 /∈ Dom. Then the probability of the event W i = W j comes out to be
equal to (1/N) due to the randomness of W j .

Bad9 If P i
0, C

j
0 +K4 ∈ Dom, then the probability of the event Xi = W j comes out to be equal to

0 as the elements in Dom has distinct hash values. If P i
0 /∈ Dom, then the probability of the

event Xi = W j comes out to be equal to (1/N) due to the randomness of Xi. Similarly,
if Cj

0 +K4 /∈ Dom, then the probability of the event Xi = W j comes out to be equal to
(1/N) due to the randomness of W j .

Bad10 The probability of the event Xi = V j comes out to be equal to (1/N) due to the randomness
of Xi.

Bad11 The probability of the event W i = V j comes out to be equal to (1/N) due to the randomness
of W i.

Bad12 The probability of each of the events Xi = H(P̂0) and W i = H(P̂0) comes out to be equal

to (1/N) due to the randomness of H(P̂0). Similarly the probability of each of the events
Xi = H(P̂1) and W i = H(P̂1) comes out to be equal to (1/N) due to the randomness of
H(P̂1).

Bad13 The probability of the event X̂i = X̂j comes out to be equal to (1/N) due to the randomness

of X̂j .
Bad14 The probability of the event Ŵ i = Ŵ j comes out to be equal to (1/N) due to the

randomness of Ŵ j .

23

Bad15 The probability of each of the events X̂i = α0 and Ŵ i = α3 comes out to be equal to (1/N)
due to the randomness of α0 and α3 respectively.

Bad16 If the j-th query is a forward query and P i
0 = P j

0 (which implies that Xi = Xj , from which

it follows that X̂i = X̂j), then P i
1 ̸= P j

1 (because A is non-repeating) and the probability

of the event X̂i + X̂j = P i
1 + P j

1 comes out to be equal to 0. If the j-th query is a forward

query and P i
0 ̸= P j

0 , then the probability of the event X̂i + X̂j = P i
1 + P j

1 comes out to be
equal to (1/N) due to the randomness of X̂j . If the j-th query is a backward query, then
the probability of the event X̂i + X̂j = P i

1 + P j
1 comes out to be equal to (1/N) due to the

randomness of P j
1 . Exactly similar analysis holds for the event Bi = Bj .

Bad17 The probability of the event P i
1 + X̂i + α0 = Cj

1 + Ŵ j + α3 +K5 comes out to be equal to
(1/N) due to the randomness of α3.

Bad18 The probability of each of the events X̂i + P i
1 + α0 = U j and Ŵ i + Ci

1 +K5 + α3 = U j

comes out to be equal to (1/N) due to the randomness of α0 and α3 respectively.

Bad19 The probability of each of the events X̂i + α0 + P i
1 = P̂0 and X̂i + α0 + P i

1 = P̂1 comes out
to be equal to (1/N) due to the randomness of α0. Similarly, the probability of each of the
events Ŵ i + α3 + Ci

1 +K5 = P̂0 and Ŵ i + α3 + Ci
1 +K5 = P̂1 comes out to be equal to

(1/N) due to the randomness of α3.

Bad20 The probability of each of the events X̂i + α0 + P i
1 = P j

0 and X̂i + α0 + P i
1 = Cj

0 +K4

comes out to be equal to (1/N) due to the randomness of α0. Similarly, the probability of
each of the events Ŵ i + α3 +Ci

1 +K5 = P j
0 and Ŵ i + α3 +Ci

1 +K5 = Cj
0 +K4 comes out

to be equal to (1/N) due to the randomness of α3.

Bad21 The probability of each of the events Y i = Y j and Zi = Zj comes out to be equal to (1/N)
due to the randomness of Y j and Zj respectively.

Bad22 The probability of the event Y i = Zj comes out to be equal to (1/N) due to the randomness
of Zj .

Bad23 The probability of each of the events Y i = V j and Zi = V j comes out to be equal to (1/N)
due to the randomness of Y i and Zi respectively.

Bad24 The probability of each of the events Y i = H(P̂0) and Y i = H(P̂1) comes out to be equal
to (1/N) due to the randomness of Y i. Similarly, the probability of each of the events
Zi = H(P̂0) and Zi = H(P̂1) comes out to be equal to (1/N) due to the randomness of Zi.

Bad25 The probability of each of the events Y i = Xj and Y i = W j comes out to be equal to
(1/N) due to the randomness of Y i. Similarly, the probability of each of the events Zi = Xj

and Zi = W j comes out to be equal to (1/N) due to the randomness of Zi.

Bad26 If the j-th query is a forward query, then the probability of each of the events P i
0 + P j

0 =

Ci
1+Cj

1 + Ŵ i+ Ŵ j and Ci
0+Cj

0 = P i
1 +P j

1 + X̂i+ X̂j comes out to be equal to (1/N) due

to the randomness of Ŵ j and Cj
0 respectively. Similarly, if the j-th query is a backward

query, then the probability of each of the events P i
0 + P j

0 = Ci
1 + Cj

1 + Ŵ i + Ŵ j and

Ci
0 + Cj

0 = P i
1 + P j

1 + X̂i + X̂j comes out to be equal to (1/N) due to the randomness of

P j
0 and X̂j respectively.

Bad27 The probability of each of the events Ŷ i = α1 and Ẑi = α2 comes out to be equa to (1/N)
due to the randomness of α1 and α2 respectively.

24

B.7 Ratio of Good Interpolation Probabilities

Let the number of distinct hash calls to compute the first and fourth Feistel round output be
q′P and q′C respectively. Then for any good transcript τ , we get,

Pr
O1

[τ] =

ˆ

1

N4

˙

˜

1

(N)q′P (N)2q(N)q′C

¸

ˆ

1

N |Dom|

˙

.

Here we describe the terms in the denominator. The first term corresponds to the number
of choices for the tuple (K4,K5, P̂0, P̂1). The second and third terms correspond to the number
of block cipher calls and the number of hash function calls respectively. We also get,

Pr
O0

[τ] =

ˆ

1

N4

˙ ˆ

1

N2q

˙ ˆ

1

N q′P+q′C

˙ ˆ

1

N |Dom|

˙

.

Here we describe the terms in the denominator. The first term corresponds to the number
of choices for the tuple (K4,K5, P̂0, P̂1). The second and third terms corresponds to the number
of choices for the tuple (P i

0, P
i
1, C

i
0, C

i
1) and (X̂i, Ŵ i) respectively where i ∈ [q]. The fourth

term corresponds to the number of hash function calls. Thus we finally obtain,
PrO1

[τ]

PrO0
[τ] ≥ 1.

B.8 Distinguishing Advantage of Adversary

Suppose the PRP advantage of the block cipher for a key K
$← {0, 1}n is AdvPRP

EK
(A′). Then

we obtain from Sections B.6 and B.7, by applying the fundamental theorem of coefficients H
technique and the standard hybrid argument:

AdvO0,O1(A) ≤ AdvPRP
EK

(A′) +
23q2 + q′2 + 5qq′ + 20q + 4q′

N
.

The dominating terms in the right hand side apart from the PRP advantage of the block cipher
are of the order of q2/N , q′2/N and qq′/N , which are all birthday-bound security terms; i.e.,
whenever the number of queries approaches

?
N , one of these terms approaches 1, depending

on what type of query is being made; and as a result, the overall SPRP advantage of the
adversary also approaches 1.

B.9 Case with Dependent Keys

The previous security proof considers the fact that the round keys are chosen independently
and uniformly from {0, 1}n; and as a result, we are able to prove the birthday-bound security of
ZUGZWANG in the standard model. But this condition is not necessary to prove the birthday-bound
security of ZUGZWANG. For example, one can derive the round keys from the post-whitening
keys using a proper key scheduling algorithm, and again prove the birthday-bound security
of ZUGZWANG. The only difference in the later scenario is that we need to prove the security
in the ideal cipher model. In fact, we have followed the second option while instantiating
ZUGZWANG. The motivation behind our choice is that the second option makes the backdoor
attack optimally powerful.

25

C Test Cases for ZUGZWANG (Concrete Instance)

In Table 3, we present some test cases for the concrete instance of ZUGZWANG (described in
Section 4.2). The source-code (for encryption) can be accessed freely30. For perspective, the
publicly available code31 for Malicious apparently produces arbitrary-looking binary matrices
only — it is not clear if/how the matrices can be used.

Table 3: ZUGZWANG (concrete instance) test cases

Key 10000000000000000000000000000000

Backdoor Entry 10000000000000000000000000000000

Plaintext f0000000000000000000000000000000

Ciphertext d5c03bdfec4e0fcf853645f83c6d74ef

Key 3cf28000471a74d22d81b6c98a3dbe33

Backdoor Entry 1831bcaa5bee08e639864e4823183090

Plaintext 1831bcaa5bee08e639864e4823183090

Ciphertext 0574ce486402444235b00a63d1d3b6d5

Recovered Key 3cf28000471a74d22d81b6c98a3dbe33

Key 3cf28000471a74d22d81b6c98a3dbe33

Backdoor Entry 1831bcaa5bee08e639864e4823183090

Plaintext 9eac455e039a58928e163658e1493a20

Ciphertext 7a7700e9f5f4f974e9ba2834160cf284

References

1. Albrecht, M., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for mpc and fhe. Cryptology
ePrint Archive, Report 2016/687 (2016) https://eprint.iacr.org/2016/687. 2, 7, 14, 17

2. Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T.: Protecting block ciphers against differential
fault attacks without re-keying (extended version). Cryptology ePrint Archive, Report 2018/085 (2018)
https://eprint.iacr.org/2018/085. 15

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The simon and speck
families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013) https://eprint.
iacr.org/2013/404. 1, 5

4. Bhasin, S., Danger, J.L., Guilley, S., Ngo, X.T., Sauvage, L.: Hardware trojan horses in cryptographic ip
cores. Cryptology ePrint Archive, Paper 2014/750 (2014) https://eprint.iacr.org/2014/750. 4

5. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. Cryptology ePrint Archive,
Paper 2013/222 (2013) https://eprint.iacr.org/2013/222. 18

6. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In Nguyen, P.Q., Oswald, E.,
eds.: Advances in Cryptology – EUROCRYPT 2014, Berlin, Heidelberg, Springer Berlin Heidelberg (2014)
327–350 18

7. Chen, Y.L., Luykx, A., Mennink, B., Preneel, B.: Efficient length doubling from tweakable block ciphers.
Cryptology ePrint Archive, Report 2017/841 (2017) http://eprint.iacr.org/2017/841. 16

8. Chow, S., Eisen, P., Johnson, H., Oorschot, P.C.V.: Oorschot. a white-box des implementation for drm
applications. In: In Proceedings of ACM CCS-9 Workshop DRM, Springer (2002) 1–15 9

9. Chow, S., Eisen, P.A., Johnson, H., Oorschot, P.C.v.: White-box cryptography and an aes implementation.
In: Revised Papers from the 9th Annual International Workshop on Selected Areas in Cryptography. SAC
’02, Berlin, Heidelberg, Springer-Verlag (2002) 250–270 9

10. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: Exact bounds and multi-user
security. In Robshaw, M., Katz, J., eds.: Advances in Cryptology – CRYPTO 2016, Berlin, Heidelberg,
Springer Berlin Heidelberg (2016) 3–32 18

30https://github.com/anubhab001/zugzwang-public.
31https://github.com/MaliciousLowmc/LowMC-M.

https://eprint.iacr.org/2016/687
https://eprint.iacr.org/2018/085
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2014/750
https://eprint.iacr.org/2013/222
http://eprint.iacr.org/2017/841
https://github.com/anubhab001/zugzwang-public
https://github.com/MaliciousLowmc/LowMC-M

26

11. Hougaard, H.B.: 3-round feistel is not superpseudorandom over any group. IACR Cryptol. ePrint Arch.
(2021) 675 19

12. Liu, F., Isobe, T., Meier, W.: Cryptanalysis of full lowmc and lowmc-m with algebraic techniques. Cryptology
ePrint Archive, Paper 2020/1034 (2020) https://eprint.iacr.org/2020/1034. 14

13. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM
J. Comput. 17(2) (1988) 373–386 18, 19

14. Mulder, Y.D.: White-Box Cryptography, Analysis of White-Box AES Implementations. PhD thesis,
Katholieke Universiteit Leuven (2014) https://core.ac.uk/download/pdf/34586143.pdf. 16

15. Nandi, M.: The characterization of luby-rackoff and its optimum single-key variants. In Gong, G., Gupta,
K.C., eds.: Progress in Cryptology - INDOCRYPT 2010 - 11th International Conference on Cryptology in
India, Hyderabad, India, December 12-15, 2010. Proceedings. Volume 6498 of Lecture Notes in Computer
Science., Springer (2010) 82–97 13

16. Nohl, K., Evans, D., Starbug, Plötz, H.: Reverse-engineering a cryptographic RFID tag. In van Oorschot,
P.C., ed.: Proceedings of the 17th USENIX Security Symposium, July 28-August 1, 2008, San Jose, CA,
USA, USENIX Association (2008) 185–194 9

17. Patarin, J.: The “Coefficients H” Technique. In Avanzi, R.M., Keliher, L., Sica, F., eds.: Selected Areas in
Cryptography, Berlin, Heidelberg, Springer Berlin Heidelberg (2009) 328–345 18

18. Patel, S., Ramzan, Z., Sundaram, G.S.: Luby-rackoff ciphers: Why XOR is not so exclusive. In Nyberg,
K., Heys, H.M., eds.: Selected Areas in Cryptography, 9th Annual International Workshop, SAC 2002, St.
John’s, Newfoundland, Canada, August 15-16, 2002. Revised Papers. Volume 2595 of Lecture Notes in
Computer Science., Springer (2002) 271–290 19

19. Peyrin, T., Wang, H.: The malicious framework: Embedding backdoors into tweakable block ciphers.
Cryptology ePrint Archive, Report 2020/986 (2020) https://eprint.iacr.org/2020/986. 1, 2, 4, 5, 6, 7,
8, 9, 10, 12, 14, 15, 16

20. Ravi, P., Deb, S., Baksi, A., Chattopadhyay, A., Bhasin, S., Mendelson, A.: On threat of hardware trojan
to post-quantum lattice-based schemes: A key recovery attack on SABER and beyond. In Batina, L.,
Picek, S., Mondal, M., eds.: Security, Privacy, and Applied Cryptography Engineering - 11th International
Conference, SPACE 2021, Kolkata, India, December 10-13, 2021, Proceedings. Volume 13162 of Lecture
Notes in Computer Science., Springer (2021) 81–103 4

21. Shamir, A.: How to share a secret. Commun. ACM 22 (1979) 612–613 https://dl.acm.org/doi/10.1145/

359168.359176. 8

https://eprint.iacr.org/2020/1034
https://core.ac.uk/download/pdf/34586143.pdf
https://eprint.iacr.org/2020/986
https://dl.acm.org/doi/10.1145/359168.359176
https://dl.acm.org/doi/10.1145/359168.359176

	Big Brother Is Watching You: A Closer Look At Backdoor Construction

