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Abstract—Physically related functions (PReFs) are hardware
primitives proposed to establish key-exchange between resource-
constrained devices with no pre-established secrets. In this paper,
we introduce XOR composition of PReFs to eliminate the require-
ment of revealing the complete functionality of the hardware
primitive during the setup phase, which is a prerequisite to
setup PReFs. We evaluate the quality of XOR PReF design by
implementing them on Artix-7 FPGAs.

I. INTRODUCTION

Over the past several decades, a plethora of cryptographic
solutions, both symmetric-key and asymmetric-key, have been
proposed in the literature for securing data and preserving
its privacy. Essentially all traditional cryptographic solutions
crucially rely on some form of secure storage of “secret” keys
on the user’s device using trusted platforms. This leads to a
question - how practical is it to assume the existence of such
secure storage? In particular, given the widespread advent of
invasive and non-invasive implementation-level attacks [1, 2]
on cryptographic implementations, such an assumption might
not always be realistic, especially on low-end consumer de-
vices such as encountered in the Internet of Things.

A pair of physically related functions (PReFs) are two
devices, for which a unique input set called the “related” input
set exists such that they output binary strings that are close
to each other with respect to some distance metric. For any
input that is not in the related input set, the output of the
devices are not close. Additionally, over this unique related
input set, any third PReF devices’ outputs are not close with
either of the former PReF devices. It is mathematically shown
in [3], that PReFs can be sampled from devices that implement
Boolean functions. In fact, they used PUFs to realize PReFs,
where two PUF devices output responses that differ in few bit
positions for a subset of challenges. These challenges can be
made public, as long as they do not reveal the functionalities
of the PUFs. They provided a simple key-exchange scheme
between two PReF-enable resource-constrained nodes.

In this work, we explore new properties of PReFs to design
superior and practically deployable schemes. We propose XOR
composition of PReFs, to eliminate the inherent requirement
of revealing the complete truth table of PReFs to generate the
related input subset. We experimentally validate the quality
of our improved construction, by implementing it on Artix-7
FPGAs.
Notations. Below are some notations that are used in the
following sections. For a, b ∈ N such that a ≥ b, we denote by
[a, b] the set of integers lying between a and b (both inclusive).
We refer to λ ∈ N as the security parameter, and denote

by poly(λ) and negl(λ) any generic (unspecified) polynomial
function and negligible function in λ, respectively. Note that
a function f : N→ N is said to be negligible in λ if for every
positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently
large.

II. PHYSICALLY RELATED FUNCTIONS

Below, we formalize a unique case of PReFs.

Definition II.1. Physically Related Function (PReF). Let
F : {fi : X → Y } be a family of functions where X and Y are
arbitrary sets. Di and Dj be two devices that are functionally
modeled as fi and fj respectively. (Di,Dj) is said to constitute
a PReF pair if there exists a unique input set Xi,j ⊂ X , such
that

1) fi(x) = fj(x) for all x ∈ Xi,j , and
2) Di, Dj are conditionally pseudorandom as per Defini-

tion II.2.

Definition II.2. Conditional Pseudorandomness. Let F :
{fi : X → Y } be a family of functions where X and Y are
arbitrary sets. For k ∈ N and i ∈ [1, k], let there be an input
set X0,i such that f0(x) = fi(x) for all x ∈ X0,i. The devices
D0 . . .Dk are functionally modelled as f0, . . . fk respectively
such that (D0,Di) forms a PReF pair, for all k ∈ [1, k].
Let A be a probabilistic poly-time adversary who has oracle
access to the devices {D1, . . . ,Dk}. Then we say that D0 is
conditionally pseudorandom if A cannot distinguish between
D0(x

′) and a value y that is chosen randomly from Y with
more than negligible advantage subject to the restriction that

• if x′ ∈ X \
(
∪ki=1 X0,i

)
, then A is not allowed to issue

an oracle query of the form D0(x
′) and

• if x′ ∈ X0,i, then A is not allowed to issue oracle queries
of the form D0(x

′) or Di(x
′).

Note that the restrictions are obvious since otherwise A can
trivially win the distinguishing game.

Generating and Distributing Related Inputs for PReFs.
Let the inputs to Alice and Bob be the devices DA and DB.
They form a PReF pair over the input set XA,B ⊂ X , that are
functionally modeled as fA and fB. To compute this input set,
the designer should learn the complete functionality of both the
devices. If the functions fA and fB are known, then suitable
machine learning algorithms can be used to mathematically
model these functions. These models are then be fed to a
SAT solver to obtain the inputs over which both the devices
generate the same output. Here, there is a dependency on a
trusted third party or setup who gains access to the mathe-
matical models and generated the related inputs. The entities
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with the PReF devices should trust that this setup process does
not behave maliciously after gaining the knowledge of PReF
functionalities and destroys this information after the related
inputs are distributed. However, in the next section, we discuss
how to generate and distribute these related inputs, without
revealing the complete functionalities of the PReF devices.

A. Security Properties for PReFs

Here, we introduce two security properties for PReFs and
to prove the security of PReF based protocols. Let the devices
(D,D′), with input and output spaces X and Y respectively,
form a pair of PReFs over the related input set X ′ ∈ X . Let
A be an adversary who has access to neither the devices nor
their functionalities. We informally present the relation hiding
and universality properties of the PReFs as follows.

• Relation Hiding: It should be difficult for A to generate
the related input set X ′ over which the outputs of two
PReFs match, without learning the mathematical models
or complete input/output behaviour of both the devices.

• Universality: It should be difficult for A to distinguish
between D(x) and y where x

R←− X ′ and y
R←− Y .

We formalize these properties below.

Definition II.3. Relation Hiding. Let (D,D′) be a PReF pair
that are functionally modeled as f : X → Y and f ′ : X → Y
respectively. The related input set is denoted as X ′ ⊆ X . For
any security parameter λ, and for any probabilistic algorithm
A that is poly(λ)-time bounded and has oracle-access to f, f ′,
define the event EA,b(λ) for b ∈ {0, 1} as:

EA,b(λ) : Af(·),f ′(·)(1λ, x, f(x))

where x is uniformly randomly sampled as:

• x← X ′ when b = 0.
• x← X \X ′ when b = 1,

subject to the restrictions that, A can make either the query
f(x) or the query f ′(x). A can make queries of the form
f(x′), f ′(x′), where x′ ̸= x after the event EA,b(λ).
The relation between f and f ′ is said to be hidden, if for
any security parameter λ, for any input x satisfying the
requirements above and for any such PPT algorithm A, we
have ∣∣Pr[EA,0(λ) = 1]− Pr[EA,1(λ) = 1]

∣∣ ≤ negl(λ)

Definition II.4. Universality. A PReF device instance D
functionally modeled as f : X → Y is said to follow
universality property if for any subset of inputs X ′ ⊆ X , the
distribution

{
f(x)

}
x∈X′ is statistically close to the uniform

distribution {U}Y over Y . In other words, for any subset
X ′ ⊆ X and for any y ∈ Y , we have∑

x∈X′

∣∣∣Pr[f(x) = y]− Pr[UY = y]
∣∣∣ ≤ negl(λ)

It should be noted that breaking the universality property of
PReFs, in turn breaks the relation hiding property.

III. IMPROVED PREF CONSTRUCTION

In this section, we present an improved architecture for
PReFs we call as XOR PReFs . We begin with the construc-
tion of XOR PReFs followed by the methodology to find the
related inputs. We obtain these inputs without revealing the
secret XOR PReF functionalities.

A. XOR PReF: A New Construction
Let the devices D1,D

′
1,D2,D

′
2 physically implement the

functions f1, f
′
1, f2, f

′
2 respectively over the input and output

spaces X = {0, 1}m and Y = {0, 1}n. Now, consider two
devices D (ref. to Fig. 1) and D′ defined as:

D : D1 ⊕ D2,

D′ : D′
1 ⊕ D′

2

(1)

Then they physically implement the functions f and f ′ such
that for any (x1, x2) ∈ X ×X:

f(x1, x2) = f1(x1)⊕ f2(x2),

f ′(x1, x2) = f ′
1(x1)⊕ f ′

2(x2)
(2)

Let X1 ⊂ X and X2 ⊂ X be the related input sets for the pairs
(D1,D

′
1) and (D2,D

′
2) respectively. Then as per Definition II.1

for any input (u, v) where u ∈ X1 and v ∈ X2:

D(u, v) = D′(u, v)

In this way, we can say that the device pair (D,D′) forms
a PReF pair for the related input set X1 × X2. We formally
define XOR PReFs below.

Definition III.1. XOR Physically Related Function
(XOR PReF). Let F : {fi : X×X → Y }, G : {gi : X → Y }
and H : {hi : X → Y } be families of functions, where
X = {0, 1}m and Y = {0, 1}n. Let there be two devices
Di and Dj that physically implement the distinct functions
fi, fj ← F × F such that for any (u, v) ∈ X ×X

fi(u, v) = gi(u)⊕ hi(v)

and
fj(u, v) = gj(u)⊕ hj(v)

Then, we say that the devices Di and Dj form an XOR PReF
pair if

1) There exists a unique subset Xi,j ⊂ X×X such that for
any (u, v) ∈ Xi,j :

gi(u) = gj(u)

and
hi(v) = hj(v)

2) The devices Di and Dj are conditionally pseudorandom,
as per Definition II.2.

3) The pair (Di,Dj) follows relation hiding property as per
Definition II.3. Note that, the adversary is restricted from
outputting inputs of the form (u, v′) or (u′, v) if it has
the knowledge about inputs (u, v), (u′, v′) ∈ Xi,j during
query phase.

4) Both Di and Dj follow universality property as per
Definition II.4

Next, we present a mechanism to generate the related inputs
for XOR PReFs.



3

x1

x2

x D1

D2

D

y

x = (x1, x2)

f1

f2

x′
1

x′
2

x′
D′

1

D′
2

D′

y′

x′ = (x′
1, x

′
2)

f ′
1

f ′
2

f1

f2

f ′
2

f ′
1

SAT

SAT

X1

X2

Setup

D

D′

x

x

y

y

Pair of XOR PReFs

x = (u, v), where u ∈ X1, v ∈ X2

f1(u) = f ′
1(u)

f2(v) = f ′
2(v)

D(x) = f1(u)⊕ f2(v)

D′(x) = f ′
1(u)⊕ f ′

2(v)

Figure 1: D and D′ are two XOR PReF devices that physically implement the functions f = f1 ⊕ f2 and f ′ = f ′
1 ⊕ f ′

2, with
input space X ×X and output space Y where X = {0, 1}m and Y = {0, 1}n. X1 ⊂ X is the related input set for the PReF
pair (D1,D

′
1) and X2 ⊂ X is the related input set for the PReF pair (D2,D

′
2). For any u ∈ X1 and v ∈ X2, the input to

XOR PReF is x = (u, v) and the output is y ∈ Y such that D(x) = D′(x) = y.

B. Generating Related Inputs for a pair of XOR PReFs

In this section, we generate the related inputs for a pair of
XOR PReFs while preserving the privacy of their function-
alities, with the help of two non-colluding semi-honest third
parties TP1 and TP2.

Let (D,D′) be a pair of XOR PReFs that physically imple-
ment the functions f = f1⊕f2 and f ′ = f ′

1⊕f ′
2 respectively.

We denote the input and output spaces for functions f, f ′

as X × X and Y . For i ∈ {1, 2}, the inputs to TPi are
the functions fi and f ′

i . TPi generates the related input set
Xi ⊂ X such that for any x ∈ Xi

fi(x) = f ′
i(x) (3)

Then the related input set for the pair (D,D′) is defined as

⟨X1, X2⟩ =
{
(u, v) | u ∈ X1, v ∈ X2

}
(4)

such that for any (u, v) ∈ ⟨X1, X2⟩

D(u, v) = D′(u, v) (5)

as per Eq. 2 and Eq. 3.

Here, we make the following observations:
• Since TP1 learns only (f1, f

′
1) and the functions (f2, f

′
2)

are conditionally pseudorandom, it is difficult for TP1 to
compute the final output of D or D′ over inputs that are
not in the related input set. Similar argument can be made
for TP2.

• If the functions f2, f ′
2 follow the relation hiding property,

then it is hard for TP1 to find their related input set X2.
Therefore, TP1 cannot learn the final output of D and
D′ over related inputs. Similar argument can be made for
TP2.

• Related inputs can be made public if (f1, f2) and (f ′
1, f

′
2)

follow universality property.

In this way we generate the related input set for a pair of
XOR PReFs without revealing their complete functionalities.

IV. EXPERIMENTAL RESULTS

In this section, we implement a prototype system for eval-
uating our XOR PReF based commitment scheme. For our
XOR PReF implementation, we use the PReF design proposed
in [3].

A. Hardware realization of the XOR PReF construction

PUFs are used for proof-of-concept (POC) realization of
PReFs in [3]. They used the PUF design presented in [4],
which takes a 64-bit binary input and outputs a 128-bit binary
response. For POC realization of XOR PReFs, we use the
same PUF design to implement the internal PReFs as shown
in Fig. 1. We implemented our XOR PReF design on 20
Artix-7 FPGAs to realize 10 XOR PReF pairs. We evaluate
the quality of XOR PReF using PUF metrics: uniqueness and
uniformity. Uniqueness is the inter-distance between two PUFs
for any random challenge. Uniformity of a PUF denotes the
distribution of 0′s and 1′s in the output space. The ideal
value for both is 50%. For the 20 XOR PReFs, the observed
uniqueness is [44-46]% and uniformity is [41-45]%, over 20K
randomly generated inputs. Below, we experimentally prove
that the XOR PReF design follows the relation-hiding and
universality properties as defined in Def.II.3 and Def. II.4.
Relation-hiding. To prove this property, we show that the
probability with which a pair of XOR PReF devices produce
the same output for a randomly chosen 64-bit input is negli-
gible. Let y and y′ denote the m−bit binary outputs of the
XOR PReF pair. Then, for all i ∈ [1, n], let the probability
with which y[i] ̸= y′[i] be p. In [3], the authors presented the
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Table I: The probability(1− p) with which each output bit matches for XOR PReF pairs 1-10.

1 2 3 4 5 6 7 8 9 10
0.592 0.536 0.578 0.537 0.583 0.591 0.541 0.532 0.579 0.536

Figure 2: Uniformity of 10 XOR PReF pairs.

probability with which the Hamming distance (HD) between
the outputs of two PReF devices is j by

Pr[HD(y, y′) = j] =

j∑
k=0

(
n

k

)
pk(1− p)n−k. (6)

From here, we can calculate the probability with which all the
bits match as

Pr[y = y′] = n(1− p)n. (7)

The ideal value of p = 0.5, since the outputs are uniform
and are independent of each other. We calculated the
probability with which each output bit mismatches for the
10 XOR PReF pairs using 20K challenges as presented in
Tab.I. Then the probability with which XOR PReF 2 (as
shown in Tab.I) outputs same 128-bit string for a randomly
chosen 64-bit string is atmost 2−109 (see Eq.7), which is
negligible. Therefore, the adversary who has no knowledge of
the XOR PReF functionalities can break the relation hiding
property only with negligible probability.

Universality. For each XOR PReF pair (D1,D2),we generate
the input subset X ′, such that theoutputs of both devices is
same. The XOR PReF pair is said to follow universality, if
the outputs are uniform, given X ′ as input. To prove this
experimentally, we generated the set X ′ of size 100K for each
of the 10 XOR PReF pairs. We measured the uniformity of
XOR PReFs as described Fig. 2 over these inputs. We can
observe that the uniformity lies between 47.76 and 49.894.
Thus, we can say that the XOR PReF pairs follow universality
property.

V. CONCLUSION

In this paper, we introduced XOR compositions of PReFs
called as XOR PReFs, that eliminate the requirement to reveal
the complete functionality of the PReF devices to generate

Figure 3: Cumulative graph representing the time taken to generate
inputs for a pair of XOR PReFs.

the related input sets. We proposed two security properties
for PReFs, that can be used to prove the security of PReF-
based protocols. We validated the quality of our construction
by implementing them on Artix-7 FPGA boards and show that
they match with the theoretical assumptions.

As future work, we will build XOR PReF-based oblivious
transfer protocols for resource-constrained devices, that do not
require secure storage or physical transfer of the hardware
devices.
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