
A Small GIFT-COFB: Lightweight
Bit-Serial Architectures

Andrea Caforio1, Daniel Collins1, Subhadeep Banik2, and
Francesco Regazzoni3,2

1 LASEC, Ecole Polytechnique Fédérale de Lausanne, Switzerland
{andrea.caforio,daniel.collins}@epfl.ch

2 Università della Svizzera Italiana, Lugano, Switzerland
subhadeep.banik@usi.ch

3 University of Amsterdam, Netherlands
f.regazzoni@uva.nl

Abstract. GIFT-COFB is a lightweight AEAD scheme and a submission
to the ongoing NIST lightweight cryptography standardization process
where it currently competes as a finalist. The construction processes
128-bit blocks with a key and nonce of the same size and has a small
register footprint, only requiring a single additional 64-bit register. Be-
sides the block cipher, the mode of operation uses a bit permutation and
finite field multiplication with different constants. It is a well-known fact
that implementing a hardware block cipher in a bit-serial manner, which
advances only one bit in the computation pipeline in each clock cycle,
results in the smallest circuits. Nevertheless, an efficient bit-serial circuit
for a mode of operation that utilizes finite field arithmetic with multiple
constants has yet to be demonstrated in the literature.

In this paper, we fill this gap regarding efficient field arithmetic in bit-
serial circuits, and propose a lightweight circuit for GIFT-COFB that
occupies less than 1500 GE, making it the to-date most area-efficient
implementation of this construction. In a second step, we demonstrate
how the additional operations in the mode can be executed concurrently
with GIFT itself so that the total latency is significantly reduced whilst
incurring only a modest area increase. Finally, we propose a first-order
threshold implementation of GIFT-COFB, which we experimentally verify
resists first-order side-channel analysis. (For the sake of reproducibility,
the source code for all proposed designs is publicly available [14].)

Keywords: GIFT-COFB · Serial · ASIC · Threshold Implementation

1 Introduction

Resource-constrained devices have become pervasive and ubiquitous commodi-
ties in recent years to the extent that the task of securing such gadgets has
spawned a dedicated branch of cryptographic research. Lightweight cryptogra-
phy is a discipline that comprises the creation, analysis and implementation of

2 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

resource-optimized cryptographic primitives in terms of criteria such as circuit
area, power consumption and latency.

This proliferation of low-resource devices and their security requirements
spurred the NIST Lightweight Cryptography competition [1]. Commencing in
2018 and recently entering its ultimate round with ten competing candidate de-
signs, the competition can nowadays be considered the essential driving force
in this research field. GIFT-COFB [9,10] is one the finalists and thus an effi-
cient implementation of this construction on hardware and software platforms
is both timely and useful. The designers of this scheme have provided results
for round-based circuits, i.e., which perform one round of the underlying block
cipher encryption algorithm per clock cycle. However, such circuits, although
they consume less energy [6], induce a higher hardware footprint in gate count.
Consequently, the minimum circuit area of GIFT-COFB remains unexplored.

A popular technique to reduce the hardware footprint of circuits is serial-
ization. Serialized circuits operate with a datapath of width much less than the
specified block size of the cipher, and therefore allow for specific resources of
the circuit to be reused several times in each round. The byte-serial circuit (i.e.,
which advances one byte in the computation pipeline in each clock cycle) for
AES-128 [16] by Moradi et al. [21], with area equivalent to around 2400 GE,
remained for many years the most compact implementation of this block cipher.
The implementation was subsequently extended to support both encryption and
decryption capabilities as well as different key sizes [2,7,8].

A first generic technique to obtain bit-serial block cipher implementations,
termed bit-sliding, was proposed in a work by Jean et al. [20] yielding, at the time,
the smallest circuits for the ciphers AES-128, SKINNY [11] and PRESENT [13].
However, all these circuits required more clock cycles than the block size of
the underlying block ciphers to execute one encryption round. The circuit for
PRESENT was further compacted in [4] with a technique that made it possible
to execute one round in exactly 64 clock cycles which is equal to the block
size. This endeavour of computing a round function in the same number cycles
as there are bits in the internal state was successfully extended to other ciphers
including AES-128, SKINNY and GIFT-128 [3]. This was achieved by not treating
the round as a monolithic entity by deferring some operations to the time allotted
to operations of the next round. Additionally, the authors proposed bit-serial
circuits for some modes of operation such as SAEAES [22], SUNDAE-GIFT [5],
Romulus [18], SKINNY-AEAD [12]. It is important to note that the canon of bit-
serial works has pushed implementations to a point where the corresponding
circuits are predominantly comprised of storage elements with almost negligible
amounts of combinatorial parts that implement the actual logic of the algorithm.

1.1 Contributions

Unlike the bit-serial AEAD implementations proposed in [3], GIFT-COFB in-
volves finite field arithmetic for which there is no straightforward mapping into
a bit-serial setting that is both circuit area and latency efficient. In this paper,
we fill this gap by proposing three bit-serial circuits that stand as the to-date

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 3

most area-efficient GIFT-COFB implementations known in the literature. More
specifically, our contributions are summarized as follows:

1. GIFT-COFB-SER-S: This circuit represents an effective transformation of the
swap-and-rotate GIFT-128 scheme into the GIFT-COFB mode of operation
minimizing its area footprint.

2. GIFT-COFB-SER-F: Subsequently, we observed that the interspersing of block
cipher invocations with calls to the finite field module as found in the baseline
GIFT-COFB design can be reordered by leveraging its inherent mathematical
structure in order to further optimize the overall latency of GIFT-COFB-SER-
S while only incurring a modest area increase.

3. GIFT-COFB-SER-TI: In a natural progression, we design a bit-serial first-
order threshold implementation based on GIFT-COFB-SER-F whose security
is experimentally verified through statistical tests on signal traces obtained
by measuring the implemented circuit on a SAKURA-G side-channel evalu-
ation FPGA board.

4. We synthesise all of the proposed schemes on ASIC platforms using multiple
standard cell libraries and compare our results to existing bit-serial imple-
mentations of NIST LWC candidate submissions, indicating our designs are
among the smallest currently in the competition. A brief overview of the
synthesis results is tabulated in Table 1.

Table 1: Synthesis results overview for lightweight block cipher based NIST LWC
competitors using the STM 90 nm cell library at a clock frequency of 10 MHz.
Latency and energy correspond to the encryption of 128 bits of AD and 1024
message bits. Highlighted schemes are NIST LWC finalists. A more detailed
breakdown, including figures for the TSMC 28 nm and NanGate 45 nm processes,
is given in Table 2.

Datapath Area Latency Power Energy Reference

Bits GE Cycles µW nJ

SUNDAE-GIFT 1 1201 92544 55.48 513.4 [3]

SAEAES 1 1350 24448 84.47 206.5 [3]

Romulus 1 1778 55431 82.28 456.1 [3]

SKINNY-AEAD 1 3589 72960 143.7 1048 [3]

GIFT-COFB 128 3927 400 156.3 6.254 [9]

GIFT-COFB-SER-S 1 1443 54784 50.11 275.8 Section 3

GIFT-COFB-SER-F 1 1485 51328 62.15 319.8 Section 4

GIFT-COFB-SER-TI 1 3384 51328 158.1 813.5 Section 5

1.2 Roadmap

Section 2 introduces preliminaries and the description of the GIFT-COFB AEAD
scheme. Section 3 delves into the complexities of implementing finite field mul-
tiplication and presents the first bit-serial circuit for GIFT-COFB. In Section 4,

4 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

we present a modified circuit in which the finite field operations are absorbed in
the last encryption round of the GIFT-128 block cipher. Section 5 presents the
circuit for the first order threshold implementation of GIFT-COFB and experi-
mental results for leakage detection in which we do not observe any first-order
leakage. Section 6 shows our implementation results. Section 7 concludes the
paper.

2 Preliminaries

For the remainder of this paper, we denote by upper-case letters bitvectors, e.g.,
X = xn−1xn−2 · · ·x1x0 represents a vector of length n composed of individual
bits xi and ε the empty string. We use || to indicate a concatenation of two
bitvectors. ≪ i signifies the leftward rotation of a bitvector by i positions,
whereas � i is the leftward logical shift. For any binary string X and bit b,
b ∗X = X if b = 1 and 0|X| if b = 0.

2.1 GIFT-COFB

GIFT-COFB is a block-cipher-based authenticated encryption mode that inte-
grates GIFT-128 as the underlying block cipher with an 128-bit key and state.
The construction adheres to the COmbined FeedBack mode of operation [15]
which provides a processing rate of 1, i.e., a single block cipher invocation per
input data block. The mode only adds an additional 64-bit state L to the ex-
isting block cipher registers and thus ranks among the most lightweight AEAD
algorithms in the literature.

In the following, let n = 128 and denote by EK a single GIFT-128 encryp-
tion using key K ∈ {0, 1}n. Furthermore, N ∈ {0, 1}n signifies a nonce and A
represents a list of n-bit associated data blocks of size a ≥ 0. Analogously, let
M be a list of n-bit plaintext blocks of size m ≥ 0. GIFT-COFB intersperses EK

calls with that of several component functions. In particular, it uses a trunca-
tion procedure Trunck(x) that retrieves the k most significant bits of an n-bit
input and a padding function Pad(x) that extends inputs whose lengths are not
a multiple of n as follows:

Pad(x) =

{
x if x 6= ε and |x| mod n = 0

x‖10(n−(|x| mod n)−1) otherwise.

Additionally, the internal state enters a feedback function between encryptions
composed of two rotations of an input X = (X0, X1) where Xi ∈ {0, 1}n/2 such
that

Feed(X) = (X1, X0 ≪ 1).

Alongside the execution of Feed, the auxiliary state L is updated through a
multiplication over the finite field GF(264) generated by the root of the polyno-
mial p64(x) = x64 + x4 + x3 + x + 1. Consequently, the doubling of an element

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 5

z = z63z62 · · · z0 ∈ GF(264), i.e., the multiplication by the primitive element
α = x = 06210, is conveniently calculated as

α · z =

{
z � 1 if z63 = 0

(z � 1)⊕ 05911011 otherwise.
(1)

By leveraging this multiplication, we can similarly triple an element z by calcu-
lating (1 + α) · z. The encryption of the last block of both A and M is preceded
by the multiplication of L by 3x and 3y respectively, where

x =

{
1 if |A| mod n = 0 and A 6= ε,

2 otherwise;
y =

{
1 if |M | mod n = 0 and M 6= ε,

2 otherwise.

All other encryptions lead to a multiplication of L by 2, excluding the initial
encryption of the nonce. Ultimately, the mode of operation produces a ciphertext
C of size |C| = |M | and a tag T ∈ {0, 1}n. A graphical diagram of GIFT-COFB
is given in Figure 1.

2.2 Swap-and-Rotate Methodology

Swap-and-rotate is a natural progression of the bit-sliding technique with a par-
ticular focus on reducing the latency of an encryption round such that the num-
ber of required cycles is equal to the bit-length of the internal state. This tech-
nique was first successfully demonstrated on PRESENT and GIFT-64 by Banik et
al. [4] and refined for other block ciphers in a follow-up work [3]. The core idea
behind the technique lies in the reliance on a small number of flip-flop pairs
that swap two bits in-place at specific points in time during the round function
computation while the state bits are rotating through the register pipeline one
position per clock cycle.

For simplicity, we represent an n-bit pipeline, i.e., shift register, as a sequence
of individual flip-flops such that FFn−1 ← FFn−2 ← · · · ← FF1 ← FF0. A swap
is a hard-wired connection between two flip-flops FFi, FFj that, when activated,
exchanges the stored bits in registers FFi and FFj and takes effect in the follow-
ing clock cycle (shown in Figure 2). Feature-rich cell libraries normally offer a
specific register type, a so-called scan-flip-flop, that enriches a normal d-flip-flop
with an additional input value in order to implement this functionality more ef-
ficiently than simply multiplexing the input bits. However, if one flip-flop is part
of multiple swaps, there is usually no other solution than placing an additional
multiplexer in front of a regular d-flip-flop.

Depending on the block cipher, swap-and-rotate may be sufficient to fully
implement the linear layer without any additional logic, especially in the case of
simple bit permutations like those found in PRESENT or the bit-sliced variant
of GIFT which is used in GIFT-COFB.1 Considering the latter, a reinterpretation

1 A detailed description of the bit-sliced GIFT representation can be found in the
GIFT-COFB white paper [9].

6 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

EKN b

Trunc64

L

Feed

A0 2L||0n/2

EK
b Feed

Aa−1

Pad 3x3y2a−1L||0n/2

EK Tb b

(a) A 6= ε, M = ε

EK

N

b Trunc64

Feed

ǫ

3xL||0n/2

EK b
b
b

Feed Mm−1

Pad

3x3y2m−1L||0n/2

EK

T

Pad

Feed M0

3x2L||0n/2

EK

b C0
b Trunc64

L

Cm−1

(b) A = ε, M 6= ε

EK

N

b Trunc64 L

Feed

Aa−1

3x2a−1L||0n/2

EK

b
b
b

Feed Mm−1

Pad

3x3y2a+m−2L||0n/2

EK

T

Pad

Feed M0

3x2L||0n/2

EK

b C0

b Cm−1Trunc64

A0

2L||0n/2

EK

b
b
b

(c) A 6= ε, M 6= ε

Fig. 1: Schematic depiction of GIFT-COFB mode of operation for all associated
data and plaintext sizes. We remark that an empty associated data input will
always be padded to a full block, hence the minimum number of encryption calls
is two.

of GIFT-128, the state bits x127 · · ·x1x0 are partitioned into four lanes such that

S3 = x127x126 · · ·x97x96, S2 = x95x94 · · ·x65x64,
S1 = x63x62 · · ·x33x32, S0 = x31x30 · · ·x1x0.

The bit permutation Π now reduces to four independent sub-permutations
Π3, Π2, Π1, Π0 that act on each lane

Π(x127 · · ·x0) = Π3(x127 · · ·x96)Π2(x95 · · ·x64)Π1(x63 · · ·x32)Π0(x31 · · ·x0).

This fact was then exploited in [3] to compute each sub-permutation while
the corresponding bits are advancing through FFi for 96 ≤ i ≤ 127. More specif-
ically, the plaintext is loaded into FF0 throughout cycles 0-127. In cycles 96-127,

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 7

FFx

v1

FFy

v3b b b

FFx+1 FFy+1

v0 v2

FFy−1

v4

FFx

v2

FFy

v5b b b

FFx+1 FFy+1

v4

v5

FFy−1

FFx−1

FFx−1

v1

FFx FFy
FFx+1 FFy+1

FFy−1FFx−1

b b b

Cycle t

Cycle t+1

Fig. 2: The fundamental concept of swap-and-rotate. When a swap is active as
shown by a colored box on FFx and FFy, then the operation performed in the
pipeline swaps the contents of FFx and FFy and then rotates. The construct can
be achieved by using scan flip-flops wired as shown above. The large green boxes
on the right denote scan flip-flops.

the S-box layer of the first round and the swaps that calculate Π3 are active.
Subsequently, the swaps corresponding to Π2, Π1, Π0 are active during the cycles
128-159, 160-191 and 192-224 respectively, concluding the calculation of the first
round function. This pattern repeats for the remaining rounds until the 40-th
and ultimate round which starts executing in cycle 5088. The first ciphertext
bits are made available at FF127 from cycle 5120 until the last bit has exited the
pipeline in cycle 5248. Hence, a full encryption takes exactly (40+1) ·128 = 5248
cycles. A schematic timeline diagram is given Figure 3.

Round 1

96 128 160 192

Round 2 Round 40

b b b

Load PT

224 256

Read CT

288 320 352 5088 5120 5152 5184 5216 524864320

Π3 Π2 Π1 Π0

SB SB SB

Π3 Π3Π2 Π2Π1 Π1Π0 Π0

Fig. 3: Timeline diagram of the swap-and-rotate GIFT-128 implementation; the
numbers in the x-axis denote clock cycles.

Another peculiarity of the bit-sliced GIFT-128 variant is that the 4-bit S-box is
not applied to adjacent bits of the state but to the first bits of each lane, i.e.,
x96, x64, x32, x0. Summa summarum, the circuit for the state pipeline is compact
and simple as shown in Figure 4.2

2 Note that there is an equally efficient circuit for the key schedule pipeline. An exact
breakdown of all the swaps in the state pipeline is given in Appendix A.

8 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

RK

FF96

FF64

FF32

FF0FF31

FF63

FF95

FF127

PT
CT

FF63

FF31

S3

S2

S1

S0

CT

PT
CT

FF95

0RC0

S
-
B
o
x

Fig. 4: The swap-and-rotate GIFT-128 state pipeline circuit. There are in total 9
swaps over 12 flip-flops. Their exact placement and activity cycles are given in
Appendix A.

3 GIFT-COFB-SER-S

In this section, we lay the groundwork for our bit-serial GIFT-COFB circuits
and describe how to efficiently implement the field multiplication as well as the
feedback function. In the process, we integrate the obtained component circuits
with the swap-and-rotate module described in Section 2.2 which yields the first
lightweight bit-serial GIFT-COFB circuit. This is straightforward in the sense
that there is a clear separation between the execution of the GIFT-128 encryp-
tion, the calculation of Feed and the addition of L to the internal state, alongside
the loading of the plaintext as part of the next encryption. Meaning that, af-
ter the ciphertext has completely exited the pipeline, these three operations are
each performed in 128 separate cycles during which the GIFT-128 pipeline exe-
cutes the identity function, i.e., the state bits rotate through the shift register
without the activation of any swap or the S-box. Hence, there is an overhead
of 3 × 128 cycles between encryption invocations. We denote this circuit by
GIFT-COFB-SER-S which will be the basis for the latency-optimized variant,
presented in Section 4, that circumvents those periodic 384 penalty cycles with
only a marginal increase in circuit area.3 The exact sequence of operations be-
tween encryptions is described in Figure 5.

3.1 Implementing the Feedback Function

Recall the feedback function as detailed in Section 2.2, i.e.,

Feed(X0, X1) = (X1, X0 ≪ 1).

It is a bit-permutation belonging to the symmetric group over a set of 128
elements and executes two operations sequentially:

1. Swapping of the upper and lower halves of the word (X0, X1)→ (X1, X0).
2. Leftward rotation of the lower half X0 by one position.

3 The letters S and F in GIFT-COFB-SER-S and GIFT-COFB-SER-F stand for slow and
fast respectively.

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 9

160 192 2242565088 5120 5152 5184 5216 5248 64

Π3 Π2 Π1 Π0

SB

2x, 3x

Π3 Π2 Π1 Π0

SB

Absorb AD/M

Output GIFT-128 CT

3x 3x

Feed

3x

96 128128

Round 1Round 40

Load L

Output CT Add L

Load Input Next Enc

GIFT-128 Core Idle for 384 Cycles

Cycles Operations

0-5087 The nonce is fed into the state pipeline bit by bit in cycles 0 to 127.
Thereafter, the first 39 rounds of GIFT-128 are executed.

5088-5247 Round 40 executes during cycles 5088-5216. The resulting ciphertext bits
exit the pipeline during cycles 5120-5247. We read the first 64-bits of the
ciphertext into the L register during cycles 5120-5183 while executing the
first multiplication during the same period.

For each additional data block, the following cycles are executed sequentially:

0-127 After the ciphertext has fully exited the state pipeline, we start execut-
ing the feedback function for 128 cycles. In parallel, we can absorb the
input data block and, if needed, produce the ciphertext bits. Subsequent
multiplications of L are performed if required.

128-255 The state after the above is now XORed with the content of the L register
and the result is written back, bit by bit, into the state register.

0-5247 A new encryption starts after L has been added to the cipher state.

Fig. 5: Timeline diagram and cycle-by-cycle description of GIFT-COFB-SER-S
for two successive encryptions. Note the interval of 3 × 128 idle cycles between
encryptions.

Proposition 1. Using two swaps over four flip-flops, it is possible to fully im-
plement both subroutines of the subroutine Feed in exactly 128 clock cycles.

Proof. A schematic cycle-by-cycle diagram of the feedback function is depicted in
Figure 6. The first swap FF0 ↔ FF1 is active from cycles 2 to 64. As a result, the
state at clock cycle 64 is given as x63x62 · · ·x1x0x126x125 · · ·x127x64. Note that
this is already the output of Feed if the two least significant bits were swapped,
which is then done in cycle 64. The second swap FF127 ↔ FF63 is active from
cycle 64 to 127 which effectively computes the identity function over 64 cycles.
One can thus see that after 128 cycles that the register contains the intended
output of the Feed function. ut

10 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

FF127

x127

FF126

x126
b b b

FF64

x64

FF63

x63
b b b

FF1

x1

FF0

x0Cycle 0

FF127

x125

FF126

x124
b b b

FF64

x62

FF63

x61
b b b

FF1

x127

FF0

x126Cycle 2

FF127

x63

FF126

x62
b b b

FF64

x0

FF63

x126

FF1

x127

FF0

x64Cycle 64

FF127

x62

FF126

x61
b b b

FF64

x63

FF63

x125
b b b

FF1

x127

FF0

x126Cycle 65

FF127

x63

FF126

x62
b b b

FF64

x0

FF63

x126
b b b

FF1

x64

FF0

x127
Cycle 128

b

b

b

b

b
b

b
b

b

X0 <<< 1X1

X0 X1

FF127

x126

FF126

x125
b b b

FF64

x63

FF63

x62
b b bCycle 1

FF127

x0

FF126

x63
b b b

FF64

x1

FF63

x127
b b b

FF1

x65

FF0

x64Cycle 127

FF127

x124

FF126

x123
b b b

FF64

x61

FF63

x60
b b b

FF1

x127

FF0

x125Cycle 3

FF2

x2

FF1

x0

FF0

x127

FF2

x1

FF2

x0

FF2

x126

FF2

x65

FF2

x64

FF2

x66

FF2

x65

b b b

Fig. 6: Cycle-by-cycle execution diagram of the feedback function. Green marked
registers denote active swaps that execute X0 ≪ 1 while yellow registers mark
active swaps that perform (X0, X1)→ (X1, X0). Note that when a swap is active
as shown by a colored box on FFx and FFy, then the operation performed in the
pipeline is a) swap contents of FFx and FFy and then b) rotate. The construct
can be achieved by using scan flip-flops wired as shown in Figure 2.

Absorbing Data Blocks and Outputting the Ciphertext. In order to avoid
having to pass the message block bits twice to the circuit, once to produce the
AEAD ciphertext and once for absorption into the state, i.e., Feed(X)⊕M , this
absorption is performed in parallel to the execution of the feedback function.
Note that if X = x127x126 · · ·x0 and M = m127m126 · · ·m0, then the i-th bit ui
of Feed(X)⊕M is given as:

ui =

mi ⊕ xi−64 if 64 ≤ i < 128,
mi ⊕ xi+63 if 0 < i ≤ 63,
mi ⊕ x127 if i = 0

By inspection of Figure 6, one can see that in order to execute the above
seamlessly, the data bits must be added to FF63. This is because, for any i, the

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 11

state bit xi−64 (for 64 ≤ i < 128), xi+63 (for 0 < i ≤ 63) and x127 (for i = 0)
is always present at FF63 at clock cycle i. Thus, to implement the above, we
need one additional XOR gate before the 63rd flip-flop in the state register.
Additionally, FF127 always contains the most significant bit of X ≪ i at any
cycle i ∈ [0, 127], thus the ciphertext, which is computed as M ⊕X, is extracted
by adding the input data bit with FF127. In Figure 7, we present the state pipeline
circuit of GIFT-COFB-SER-S that integrates the swaps of the feedback function,
and the additional XOR gates for the data absorption and ciphertext creation.

RK

FF96

PT

U

FF63

FF31

U

PT
U

FF95

0RC0

S
-
B
o
x

FF97FF127 FF98FF99FF100FF101FF102bbb

FF32FF33FF63 FF34FF35FF36

FF0FF1FF31 FF2FF3FF4FF5FF6bbb

L0

b

AD/M
0

M
0

b

CT

FF37FF38bbb

FF64FF65FF95 FF66FF67FF68FF69FF70bbb

X0 → X0 <<< 1
Cycles 2-64

(X0, X1) → (X1, X0)
Cycles 64-127

Fig. 7: GIFT-COFB-SER-S state pipeline.

3.2 Multiplication by 2 and 3

GIFT-COFB multiplies the auxiliary state L between encryptions by either the
factor 2 or 3x for 1 ≤ x ≤ 4 depending on the associated data and message block
sizes and padding. If it were not for the period right after the initial encryption
of the nonce N in which L has to be loaded and updated in a short time interval,
this would not be too much of an issue as there is ample time to calculate the
multiplication while the encryption core is busy. In the following, we demonstrate
how to efficiently multiply L by 2 or 3 in 64 cycles, yielding a maximum latency
of 256 clock cycles for any factor 34.

Let L = l63l62 · · · l1l0 be the individual bits of the register. On a 64-bit shift
register, multiplication by 2 has the following form:

2× l63l62 · · · l0 = (L� 1)⊕ (l63 ∗ 05911011)

which, in plain terms, is simply a leftward shift by one position and the addition
of the most significant bit l63 to four lower bits. On the other hand, the mul-
tiplication by three is more involved as 3 × L = (2 × L) ⊕ L and is thus given
as

3× l63l62 · · · l0 = (L� 1)⊕ (l63 ∗ 05911011)⊕ L.
A single-cycle implementation of this function necessitates 64 additional 2-input
XOR gates that would incur roughly 128 GE in most standard libraries, which

12 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

is a considerable overhead for a bit-serial circuit. Note that technically 3× can
be implemented with zero additional gates, if one is prepared to pay with
latency. This is because p64(x) is a primitive polynomial, and since the ele-
ment 2 is the root of p64(x) it must generate the cyclic multiplicative group
of the finite field. With some arithmetic, it can be deduced that 3 = 2d where
d = 9686038906114705801 in this particular representation of the finite field.
The discrete logarithm d of 3 is an integer of the order of 263, hence executing
the multiplication by 2 over d would, in theory, compute the multiplication by
the factor 3.

Disregarding this theoretical detour, our actual goal consists in implementing,
with minimal circuitry, both the multiplication by 2 and 3 in such a way that
after 64 clock cycles the first bit of the updated state exits the pipeline and after
the 128 cycles the entire multiplication has finished.

Proposition 2. By equipping the L shift register with a single auxiliary d-flip-
flop, three 2-input NAND gates, one 2-input XOR gate and one 2-input XNOR
gate, it is possible to multiply L by either 2 or 3, i.e., by the polynomials x or
(x+ 1).

Proof. We begin by observing the following: if V = v63v62 · · · v0 = 2× l63l62 · · · l0
and W = w63w62 · · ·w0 = 3× l63l62 · · · l0, where vi, wi are given as

vi =

 li−1 ⊕ l63 if i ∈ {1, 3, 4},
l63 if i = 0,
li−1 otherwise

wi =

 li−1 ⊕ l63 ⊕ li if i ∈ {1, 3, 4},
l63 ⊕ li if i = 0,
li−1 ⊕ li otherwise.

It is immediately evident that for all three cases vi and wi differ only by the
XOR of the term li. In cycle 0, bit l63 is first stored in an auxiliary register,
which we hereafter refer to as Aux. Using this fact, we show how to update the
register. Then we calculate each update bit as follows, where α, β and γ are
signals defined below:

u = (α · Aux)⊕ (β · FF63)⊕ (γ · FF62). (2)

Identity function. It is simply a rotation of the L register; α = β = γ = 0.

Multiplication by 2. Signal α is used to add l63, which is stored in Aux in
cycle 0, to the output bit. β is always 0 for multiplication by 2. γ is 1 for all but
cycle 63 in order to implement a left shift (and not left rotate). Consequently,
we have

α =

{
1 cycles 59, 60, 62, 63,

0 otherwise;
β = 0; γ =

{
1 cycle 6= 63,

0 otherwise.
(3)

Recall the doubling function (1). If the update function u were to simply be
γ · FF62, then after 64 cycles, the register would store l63 · · · l0 � 1. Now if we
added l63 to the LFSR update in cycles 59, 60, 62, 63, then after 64 cycles, the

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 13

LFSR state would be (l63 · · · l0 � 1) ⊕ (l63 ∗ 05911011) which is the output of
the doubling function.

Multiplication by 3. α, and γ as above and always β = 1. Adding β · FF63 to
the update function enables the output to be (l63 · · · l0 � 1)⊕ (l63 ∗ 05911011)⊕
(l63 · · · l0), which is the output of the tripling function.

Using (2), we can implement both multiplications by factors 2 and 3 in 64 cycles
using one auxiliary d-flip-flop, three 2-input NAND gates and one 2-input XOR
gates and one 2-input XNOR gate. A diagram of the resulting circuit is shown
in Figure 8. ut

FF63 FF62 FF61 FF1 FF0

Aux

b

b

b

βα

b

γ

b

b b b b

Input

Fig. 8: Implementation of the bit-serial multiplication by 2 and 3.

3.3 GIFT-COFB-SER-S Total Latency

It can be seen that the encryption of the nonce takes 5248 cycles. Thereafter,
every additional block takes 256 + 5248 = 5504 cycles to process. Thus if the
padded associated data and message consist of B blocks in total, then the time
taken to produce the ciphertext and tag is TS = 5248 + 5504 ·B clock cycles.

4 GIFT-COFB-SER-F

The proposed bit-serial circuit from the previous section already represents the
to-date most area-efficient GIFT-COFB implementation. However, as our bit-
serial interpretation respects the natural order of operations as given in the
specification of the mode of operation, it has a significantly elevated latency.
This is mainly due to the encryption core being idle during 3× 128 clock cycles
between successive invocations which means that if we want to do away with
those penalty cycles, the calculation of Feed, the update and addition of L, the
addition of incoming associated data and message bits and the loading of the
next encryption state all have to occur in parallel. This means that during 128

cycles while the GIFT ciphertext bits c
(j)
i for datablock j leave the pipeline, the

newly entering bits v
(j+1)
i for data block j+ 1 at FF0 are necessarily of the form

v
(j+1)
i = c

(j)
i ⊕ RKi ⊕ RCi ⊕ L(j+1)

i ⊕D(j+1)
i , (4)

14 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

where RKi ⊕ RCi denote the i-th bit of the last round key, L
(j+1)
i denotes the

i-th bit of the L register to be added before the (j+1)-th data block and D
(j+1)
i

is the i-th bit of the (j + 1)-th data block. In this section, we describe three
requisite tweaks to GIFT-COFB-SER-S that let us achieve this goal.

1. Change the swaps of Feed described in Section 3.1 as to enable its execution
in parallel to the ciphertext bits leaving the state pipeline.

2. Reorder the incoming data bits as well as L such that they can be seamlessly
added to the exiting ciphertext bits.

3. Enrich the L circuit from Section 3.2 with additional logic in order to com-
pute the multiplication by the factors 2, 3, 32, 33 and 34 in 128 clock cycles
concurrently with the last encryption round. The updated time diagram
alongside a cycle-by-cycle description is given in Figure 9.

4.1 Tweaking the Feedback Function

Note that, as explained in Section 3.1, the swap between FF127 and FF64 during
the calculation of the Feed function preserves the state over 64 cycles in GIFT-
COFB-SER-S. However, the same can be achieved by swapping FFx and FFx−63
for any x. Since we execute Feed concurrently with the last GIFT encryption
round, we want the bit exiting the pipeline at FF127 to be the output of the
GIFT encryption routine in the same order as in GIFT-COFB-SER-S. Swapping
out FF127 and FF64, however, disrupts that order. Thus, we replace the swap

FF127 ↔ FF64 with the swap FF63 ↔ v
(j)
i , where v

(j)
i is the i-th bit of the j-th

incoming block as defined above.
A side effect of this choice affects the S-box inputs of just the first round

of every new encryption with an incoming data block. In GIFT-COFB-SER-F, in
the first S-box invocation of a new encryption, inputs are now of the form FF95,

v
(j)
i , FF31, FF63 instead of FF95, FF63, FF31, v

(j)
i due to the FF63 ↔ v

(j)
i swap. As

a result, we need two more multiplexers that swap FF63 and v
(j)
i before entering

into the S-box during cycles 96 to 127. The resulting circuit for GIFT-COFB-
SER-F is depicted in Figure 10.

4.2 Reordering Data Bits

The absorption of associated data/message bits and L normally occurs after the
computation of the feedback function. However, we have to do it with the last
encryption round, which involves some re-ordering of data bits and L. Consider
the inverse transformation of Feed:

Feed−1(X0, X1) = ((X1 ≫ 1), X0).

Note that Feed is a linear function, we have since Feed−1(L, 064) = 064||L:

Feed(X ⊕ Feed−1(D)⊕ Feed−1(L, 064)) = Feed(X)⊕D ⊕ L||064.

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 15

160 192 2244960 4992 5024 5056 5088 5120 64

Π3 Π2 Π1 Π0

SB

3x, 32x

Π3Π2 Π1 Π0

SB

Absorb AD/M

Output GIFT-128 CT

Feed

96 128

Round 1Round 40

Load L

Output CT

Add L

Load Input Next Enc

Π3

SB

32

Π2 Π1 Π0

Round 2

288 320 352

Π3

SB

256

Π2 Π1 Π0

Round 3

2x, 3x, 32x

160 192 2245088 5120 5152 5184 5216 5248 64 96 12832 288 320 352256

Initial Nonce Encryption

Cycles Operations

0-5087 The nonce is fed into the state pipeline bit by bit in cycles 0 to 127.
Thereafter, the first 39 rounds of GIFT-128 are executed.

5088-5247 Round 40 executes during cycles 5088-5216. The resulting ciphertext bits
exit the pipeline during cycles 5120-5247. We read the first 64-bits of the
ciphertext into the L register during cycles 5120-5183 while executing the
first multiplication during the same period such that in the second 64
cycles it is added back to the cipher state. In the same 128 cycles, we also
execute Feed and add the data bits.

For each additional data block, the following cycles are executed sequentially:

0-4959 We perform the first 39 rounds of the new encryption call.

4960-4991 The first 32 cycles of the last round of the encryption call.

4992-5119 We execute the following in parallel: we finish executing the encryption
call, we load the new cipher state, perform multiplication of L, execute
Feed, absorb data bits and the (updated) L, output the ciphertext and
start executing round 1 of the next encryption call.

Fig. 9: Timeline diagram of GIFT-COFB-SER-F. Note that the initial 128 cycles
to load the nonce cannot be parallelized with other functions, hence the initial
encryption of the nonce takes 5248 cycles.

16 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

RK

FF96

PT

U

FF31

U

U

FF63

FF95

0RC0

S
-
B
o
x

FF97FF127 FF98FF99FF100FF101FF102bbb

FF32FF33FF63 FF34FF35FF36

FF0FF1FF31 FF2FF3FF4FF5FF6bbb

L0

b

M
0CT

FF37FF38bbb

V

0 AD/M
b

V

V
FF63

PT

FF63

(X0, X1) → (X1, X0)

Cycles 64-95

X0 → X0 <<< 1

Cycles 2-64

FF64FF65FF127 FF66FF67FF68FF69FF70bbb

Fig. 10: GIFT-COFB-SER-F state pipeline. U denotes the input bit during in-
termediate cipher rounds and V the input during the first round of a new en-
cryption. Wires marked in red enable the concurrent execution of Feed and the
S-box.

We need to re-order the incoming data bits and the output of the L function
by the permutation Feed−1 before adding it to the state, thereafter performing
the Feed function over the modified state X ⊕ Feed−1(D) ⊕ 064||L which thus
correctly computes the input to the next encryption call. This comes with a
convenient side effect:

Proposition 3. Placing the addition of L before Feed yields 64 spare cycles that
can be used to perform the finite field multiplications.

Proof. When we add the string Feed−1(L, 064) = 064||L, the first 64 cycles are
spent adding the zero string. These 64 cycles can be used to load L into its
register and simultaneously multiply it by either 2, 3, 32, 33 or 34 such that in
cycle 64 the first correctly updated bits exit L and the entire register is updated
in a total of 128 cycles. ut

4.3 Enhancing the Multiplier

We proceed to demonstrate that the assertion from the previous proposition,
namely that after 64 cycles the first correctly multiplied bit exits the L pipeline,
can be integrated into the existing multiplier from Section 3.2 with modest
overhead.

Proposition 4. By equipping the L shift register with four auxiliary d-flip-flops,
nine 2-input NAND gates, eight 2-input XOR gates and one 2-input XNOR gate,
it is possible to multiply L by either 2, 3, 32, 33 or 34 in 128 cycles.

Proof. Again let L = l63l62 · · · l0 be the individual state, then the multiplication
by 32 is written as

32 × l63l62 · · · l0 = (L� 2)⊕ (l63 ∗ 058110110)⊕ L⊕ (l62 ∗ 05911011)

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 17

Recall the multiplication circuit for the factors 2 and 3 from Section 3.2. We
re-introduce signals α, β, γ as α0, β0 and γ0, and to capture multiplication by
32 we further add δ0 and α1. Let Aux0 be the register that stores l63 in cycle
0, and analogously denote by Aux1 the auxiliary register that stores l62 in the
same cycle. Then, the circuit for the multiplication by the factors 2, 3, 32 can
be written as

u = (α0 · Aux0)⊕ (α1 · Aux1)⊕ (β0 · FF63)⊕ (γ0 · FF62)⊕ (δ0 · FF61).

In order to compute the multiplication by the higher factors 33 and 34, we
equip the L pipeline with a second 32 circuit at the beginning that continuously
overwrites register FF2, which is therefore a scan flip-flop, as the bits enter the
pipeline. In cycle 2, the values FF2 and FF1 are l63 and l62 respectively, which
are stored in this cycle in auxiliary flip-flops Aux2 and Aux3. The updated bit
for these cases can be written as:

u′ = (α2 · Aux2)⊕ (α3 · Aux3)⊕ (β1 · FF2)⊕ (δ1 · FF0).

The resulting circuit full multiplier is shown in Figure 11.

FF63 FF62

U

FF1 FF0

Aux0

b

b

b

β0

b

γ0
b

b b b b

Aux1

b

δ0

bFF2

Aux3

Aux2

β1 δ1

α2

α3

b

bFF61

U

b

b

α0

α1

b

32 × L{2, 3, 32} × L

b b

b

b

Input

Fig. 11: L state pipeline that performs the multiplication by the factors 2, 3, 32,
33 and 34.

As before in Section 3.2, we give an exact list of activation cycles for each control
signal below.

Identity function: All signals are set to 0.

Multiplication by 2. We have α0 = α, β0 = β and γ0 = γ where α, β, γ are
as in (3), additionally δ0 = α1 = 0. Since only the left half of the diagram is
relevant, all other signals are 0.

Multiplication by 3. As in multiplication by 2 except for β0 = 1.

Multiplication by 32. As above, only the left portion of the diagram is used. δ0
steers the addition of l61, and is active except for the last two cycles. α0 enables

18 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

the addition of l63, similarly α1 enables the addition of l62. Furthermore, γ0 is
always 0 as it is only used in the multiplication by 3 and β0 is always 1. In
summary, we have

α0 =

{
1 cycles 58, 59, 61, 62,

0 otherwise;
α1 =

{
1 cycles 59, 60, 62, 63,

0 otherwise;

δ0 =

{
1 cycle < 62,

0 otherwise;
β0 = 1; γ0 = 0.

Multiplication by 33. We first use the 32 multiplier on the right in the diagram
that executes on newly entered bits then finish with a multiplication by 3 by the
left multiplier. As we always update FF2 for the factor 32, the activation cycles
of the signals α2, α3, β1 and δ1 are analogous to the signals α0, α1, β0 and δ0
in the left 32 multiplication module except they occur 62 cycles before.

Multiplication by 34. The first phase is exactly as in the case of multiplication
by 33, and the second phase is exactly as in multiplication by 32. ut

4.4 GIFT-COFB-SER-F Total Latency.

It can be seen from Figure 9 that the encryption of the nonce takes 5248 cycles.
Thereafter every additional block takes 5120 cycles to process. Thus if the padded
AD and message consist of B blocks in total, then the time taken to produce
the ciphertext and Tag is TF = 5248 + 5120 ·B clock cycles. We can see that for
each block of data processed we save TS−TF

B = 384 clock cycles.

5 First-Order Threshold Implementation

In Boolean masking, sensitive values x are decomposed into s shares of the
form xi such that

∑s−1
0 xi = x where any set of up to s − 1 shares are jointly

independent of x. This technique can be used to provide security guarantees
when an adversary can query up to d = s − 1 wires in a circuit at any one
point in time, i.e., to provide d-th order security. In the following, we restrict
our attention to the case where d = 1.

Threshold implementations [23] are a family of masking schemes which pro-
vide provable first-order security guarantees even in the presence of hardware
glitches [17]. In a threshold implementation (TI) of a given design, n-ary Boolean
functions (i.e., sub-functions of the design) f(xn−1, ..., x0) = z are divided into

s components fi such that
∑s−1

0 fi = f . We consider sharings of values f that
are non-complete, i.e., each fi is independent of at least one value xj , and
uniform, i.e., for all xi the number of sets {xn−1, ..., x0} which satisfies for a
given (yk−1, ..., y0) both

∑
i xi = x and f(x) = (yk−1, ..., y0) is constant. We

also assume that maskings are uniform, i.e., for each x, each valid masking
{xn−1, ..., x0} such that

∑
i xi = x occurs with the same probability.

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 19

5.1 GIFT-COFB-SER-TI First-Order Threshold Implementation

We first note that the GIFT S-box S is cubic and can be decomposed into two
quadratic S-boxes SF and SG from {0, 1}4 → {0, 1}4 such that S = SF ◦SG. Since
SF and SG are quadratic, they can be masked using a direct sharing approach
using three shares for a first-order threshold implementation such that

SG = SG1
⊕ SG2

⊕ SG3
; SF = SF1

⊕ SF2
⊕ SF3

,

where SG1
, SG2

, SG3
and SF1

, SF2
, SF3

are the component function of SF and SG
respectively. This approach was used in [19] from which we take the proposed
non-complete and uniform first-order TI. We provide the algebraic expression of
the component functions in Appendix B.

Consequently, our implementation uses three shares for the state and L reg-
isters while the key and round constant pipeline remain unshared. The only
challenge in constructing the circuit is to place the SFi

and SGi
substitution

boxes such that they correctly compute the masked GIFT S-box in consonance
with the other operations done in parallel. This can readily be achieved by not-
ing that we can replace the unmasked S and replace it with SGi , and place SFi

after the first flip-flop of each lane, i.e., FF0, FF32, FF64, FF96, which executes for
32 cycles starting in cycle 97 of each round. A schematic of one of the three
shares of the state pipeline is shown in Figure 13.

RK

FF96

PT

U

FF31

U

U

FF63

FF95

0RC0

FF97FF127 FF98FF99FF100FF101FF102bbb

FF32FF33FF63 FF34FF35FF36

FF0FF1FF31 FF2FF3FF4FF5FF6bbb

L0

b

M
0CT

FF37FF38bbb

V

0 AD/M
b

V

V
FF63

PT

FF63

FF64FF65FF127 FF66FF67FF68FF69FF70bbb

b

b

b

b

GF

Fig. 12: One of the three state pipeline shares of the GIFT-COFB-SER-TI circuit.

5.2 Evaluation

We applied the TVLA methodology [24] and performed non-specific t-tests (us-
ing Welsh’s t-test) to validate the first-order security of our threshold imple-
mentation GIFT-COFB-SER-TI. We took a threshold of |t| > 4.5 for any value
of t computed to reject the null hypothesis that GIFT-COFB-SER-TI encryption
operations admit indistinguishable mean power consumption in the case that
the input is either uniform or fixed.

20 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

We used the SAKURA-G side-channel evaluation board4 with two Spartan
6 FPGA cores, one which performed GIFT-COFB-SER-TI operations clocked at
a slow 1.5MHz and the other that interfaces between the cryptographic core
and a computer (which generates pre-masked shares for the DUT). To prevent
unintended optimisations that could lead to leakage during synthesis, we added
DONT TOUCH, KEEP and KEEP HIERARCHY constraints to our code. Measurements
were taken with a Tektronix MSO44 at 625MS/s taking 3000 data points per
trace, which corresponds to 7 cycles of S-box evaluation (the only non-linear
component of GIFT-COFB) in the second round of the first GIFT encryption call,
i.e., while GIFT is encrypting the nonce. During testing, we reset the crypto-
graphic core between each GIFT-COFB encryption and interleaved encryptions
with random and fixed inputs. A sample trace is shown in Figure 13a.

As a measure to ensure our setup was calibrated properly, we first per-
formed a t-test in the leaky masks off setting, which is as follows. Recall that
GIFT-COFB-SER-TI is a three-share TI. Then, in the masks off setting, one input
value is set to the original input (fixed or random) and the other two to constant
values (the zero vector here). We present the results in Figure 13b revealing that
significant, potentially exploitable leakage was detected with just 20 thousand
traces. Then, with masks on (i.e., with uniform masking used), we found no
evidence of leakage with 10,000,000 traces, evident in Figure 13c.

6 Implementation

All the investigated schemes were synthesized on ASIC platforms using the Syn-
opsys Design compiler v2019.03. In particular, the compile ultra directive was
used to generate the netlists for all constructions except GIFT-COFB-SER-TI
whose hierarchy is conserved via the no autoungroup flag which ensures that
entity boundaries are preserved preventing any security-degrading optimization
that may violate the threshold implementation properties. Power figures were
calculated with the Synopsys Power Compiler that bases its analysis on back-
annotated netlists created by running the target circuits through a comprehen-
sive testbench.

In Table 2, we tabulate the synthesis results for the proposed schemes and
other bit-serial AEAD schemes for three different cell libraries. Namely, the
relatively recent TSMC 28 nm process, the high-leakage NanGate 45 nm library
and the comparably large STM 90 nm library.

Naturally, due to the increased complexity of both Feed and the multiplier,
GIFT-COFB-SER-F incurs a slightly larger circuit area than GIFT-COFB-SER-
S which is offset by the latency savings as part of the parallelization of all
component functions. We note that both GIFT-COFB-SER-S and GIFT-COFB-
SER-F significantly undercut Romulus, the only other lightweight block cipher
scheme among the NIST LWC finalists, in both area and power/energy.

4 https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

https://satoh.cs.uec.ac.jp/SAKURA/hardware/SAKURA-G.html

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 21

V
o
lt
a
g
e

Number	of	Samples
0 500 1000 1500 2000 2500 3000

(a) A sample trace taken over 7 cycles.

|t
|	
va
lu
e

0

10

20

30

40

50

60

70

80

90

100

110

Number	of	Samples
0 500 1000 1500 2000 2500 3000

(b) 20 thousand traces and masks off.

|t
|	
va
lu
e

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number	of	Samples
0 500 1000 1500 2000 2500 3000

(c) 10 million traces and masks off.

Fig. 13: Sample trace (top) and t-test results for the GIFT-COFB-SER-TI circuit
(bottom). The red lines correspond to a threshold of |t| = 4.5.

7 Conclusion

In this paper, we investigated bit-serial architectures for the AEAD mode GIFT-
COFB, a finalist in the NIST lightweight cryptography competition. In the pro-
cess, we propose two architectures: the first follows a natural order of operations
in which the finite field operations and other state updates are performed in the
time period between 2 successive calls to the encryption module. The second
absorbs all these operations in the last 128 cycles of the encryption operation,
and saves 384 clock cycles in the processing of every block of associated data
or message. We then extended the second architecture to construct a first or-
der threshold implementation of GIFT-COFB. We verify the first-order security
claims by performing statistical tests on power traces resulting from an imple-
mentation of the circuit on the SAKURA-G FPGA platform.

Acknowledgements. This project is partially supported by the European Union
Horizon 2020 research and innovation program under the CPSoSAware project
(grant 871738).

22 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

Table 2: Comprehensive synthesis figures for bit-serial AEAD schemes. Latency
and energy correspond to the encryption of 128 bits of associated data and 1024
message bits. Highlighted schemes are NIST LWC finalists.

Scheme Library Area Latency Critical Path Power (µW) Energy (nJ)

(GE) (Cycles) (ns) 10 MHz 100 MHz 10 MHz 100 MHz

SUNDAE-GIFT TSMC 28 nm 1732 92544 0.54 15.06 139.8 138.8 128.6

NanGate 45 nm 1913 92544 1.28 52.42 271.71 485.1 251.4

STM 90 nm 1201 92544 1.91 55.48 504.0 513.4 466.4

SAEAES TSMC 28 nm 1927 24448 1.63 18.66 187.9 45.62 45.7

NanGate 45 nm 2073 24448 3.05 61.16 329.7 149.5 80.6

STM 90 nm 1350 24448 5.20 84.47 779.26 206.5 190.5

Romulus TSMC 28 nm 2601 55431 0.54 24.16 225.2 133.9 124.8

NanGate 45 nm 2878 55431 1.25 42.99 387.8 238.3 214.5

STM 90 nm 1778 55431 2.29 82.28 796.8 456.1 441.2

SKINNY-AEAD TSMC 28 nm 5335 72960 0.85 42.12 421.3 307.3 307.4

NanGate 45 nm 5976 72960 1.31 167.4 861.2 1218 628.3

STM 90 nm 3589 72960 2.02 143.7 1437 1048 1048

GIFT-COFB-SER-S TSMC 28 nm 2095 54784 0.97 15.61 144.1 85.52 79.31

NanGate 45 nm 2308 54784 1.40 55.25 245.5 302.7 135.1

STM 90 nm 1443 54784 2.97 50.11 495.3 274.5 272.4

GIFT-COFB-SER-F TSMC 28 nm 2148 51328 1.12 18.83 174.9 96.89 89.99

NanGate 45 nm 2365 51328 2.22 66.62 343.55 342.8 176.8

STM 90 nm 1485 51328 3.66 62.15 627.0 319.8 322.6

GIFT-COFB-SER-TI TSMC 28 nm 4821 51328 1.15 42.30 393.2 217.7 202.3

NanGate 45 nm 5317 51328 2.31 149.01 777.4 766.7 400.0

STM 90 nm 3384 51328 3.74 158.1 1437 813.5 739.4

References

1. Nist lightweight cryptography project. https://csrc.nist.gov/projects/

lightweight-cryptography

2. Balli, F., Banik, S.: Six shades of AES. In: Buchmann, J., Nitaj, A., Rachidi, T.
(eds.) Progress in Cryptology - AFRICACRYPT 2019 - 11th International Con-
ference on Cryptology in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11627, pp. 311–329. Springer (2019).
https://doi.org/10.1007/978-3-030-23696-0 16

3. Balli, F., Caforio, A., Banik, S.: The area-latency symbiosis: Towards improved
serial encryption circuits. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1),
239–278 (2021). https://doi.org/10.46586/tches.v2021.i1.239-278

4. Banik, S., Balli, F., Regazzoni, F., Vaudenay, S.: Swap and rotate: Lightweight
linear layers for spn-based blockciphers. IACR Trans. Symmetric Cryptol. 2020(1),
185–232 (2020). https://doi.org/10.13154/tosc.v2020.i1.185-232

5. Banik, S., Bogdanov, A., Peyrin, T., Sasaki, Y., Sim, S.M., Tischhauser, E., Todo,
Y.: Sundae-gift v1.0. NIST Lightweight Cryptography Project (2019), https://
csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

6. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight
block ciphers. In: Selected Areas in Cryptography - SAC 2015 - 22nd International
Conference, Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers.
pp. 178–194 (2015). https://doi.org/10.1007/978-3-319-31301-6 10

https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://doi.org/10.1007/978-3-030-23696-0_16
https://doi.org/10.46586/tches.v2021.i1.239-278
https://doi.org/10.13154/tosc.v2020.i1.185-232
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://doi.org/10.1007/978-3-319-31301-6_10

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 23

7. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-aes: A compact implementation of
the AES encryption/decryption core. In: Progress in Cryptology - INDOCRYPT
2016 - 17th International Conference on Cryptology in India, Kolkata, India, De-
cember 11-14, 2016, Proceedings. pp. 173–190 (2016). https://doi.org/10.1007/978-
3-319-49890-4 10

8. Banik, S., Bogdanov, A., Regazzoni, F.: Compact Circuits for Combined AES
Encryption/Decryption. Journal of Cryptographic Engineering pp. 1–15 (2017).
https://doi.org/10.1007/s13389-017-0176-3

9. Banik, S., Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin, T.,
Sasaki, Y., Sim, S.M., Todo, Y.: Gift-cofb v1.0. NIST Lightweight Cryptography
Project (2019), https://csrc.nist.gov/Projects/lightweight-cryptography/
round-2-candidates

10. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th International Con-
ference, Taipei, Taiwan, September 25-28, 2017, Proceedings. pp. 321–345 (2017).
https://doi.org/10.1007/978-3-319-66787-4 16

11. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part II. pp. 123–153 (2016). https://doi.org/10.1007/978-3-662-
53008-5 5

12. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T.,
Sasaki, Y., Sasdrich, P., Sim, S.M.: Skinny-aead and skinny-hash. NIST
Lightweight Cryptography Project (2019), https://csrc.nist.gov/Projects/

lightweight-cryptography/round-2-candidates

13. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Cryptographic Hardware and Embedded Systems - CHES 2007, 9th Interna-
tional Workshop, Vienna, Austria, September 10-13, 2007, Proceedings. pp. 450–
466 (2007). https://doi.org/10.1007/978-3-540-74735-2 31

14. Caforio, A., Collins, D., Banik, S., Regazzoni, F.: A Small GIFT-COFB:
Lightweight Bit-Serial Architectures (Repository) (5), https://github.com/

qantik/cofbserial

15. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based au-
thenticated encryption: How small can we go? J. Cryptol. 33(3), 703–741 (2020).
https://doi.org/10.1007/s00145-019-09325-z

16. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced En-
cryption Standard. Information Security and Cryptography, Springer (2002).
https://doi.org/10.1007/978-3-662-04722-4

17. Dhooghe, S., Nikova, S., Rijmen, V.: Threshold implementations in the robust
probing model. In: Proceedings of ACM Workshop on Theory of Implementation
Security Workshop. pp. 30–37 (2019)

18. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1.2. NIST
Lightweight Cryptography Project (2019), https://csrc.nist.gov/Projects/

lightweight-cryptography/round-2-candidates

19. Jati, A., Gupta, N., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold
implementations of GIFT: A trade-off analysis. IEEE Trans. Information Forensics
and Security 15, 2110–2120 (2020). https://doi.org/10.1109/TIFS.2019.2957974

https://doi.org/10.1007/978-3-319-49890-4_10
https://doi.org/10.1007/978-3-319-49890-4_10
https://doi.org/10.1007/s13389-017-0176-3
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://doi.org/10.1007/978-3-540-74735-2_31
https://github.com/qantik/cofbserial
https://github.com/qantik/cofbserial
https://doi.org/10.1007/s00145-019-09325-z
https://doi.org/10.1007/978-3-662-04722-4
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://doi.org/10.1109/TIFS.2019.2957974

24 Andrea Caforio, Daniel Collins, Subhadeep Banik, and Francesco Regazzoni

20. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: A generic technique for
bit-serial implementations of spn-based primitives - applications to aes, PRESENT
and SKINNY. In: Cryptographic Hardware and Embedded Systems - CHES 2017
- 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings. pp. 687–707 (2017). https://doi.org/10.1007/978-3-319-66787-4 33

21. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A
very compact and a threshold implementation of AES. In: Advances in Cryptol-
ogy - EUROCRYPT 2011 - 30th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011.
Proceedings. pp. 69–88 (2011). https://doi.org/10.1007/978-3-642-20465-4 6

22. Naito, Y., Mitsuru Matsui and, Y.S., Suzuki, D., Sakiyama, K., Sugawara, T.:
SAEAES. NIST Lightweight Cryptography Project (2019), https://csrc.nist.
gov/Projects/lightweight-cryptography/round-2-candidates

23. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011).
https://doi.org/10.1007/s00145-010-9085-7

24. Schneider, T., Moradi, A.: Leakage assessment methodology. In: International
Workshop on Cryptographic Hardware and Embedded Systems. pp. 495–513.
Springer (2015)

A Swap-and-Rotate GIFT-128 State Pipeline

In Table 3, we give the exact placement and activation periods of the nine swaps
that implement the swap-and-rotate GIFT-128 permutation Π as specified in the
work by Banik et al. [3].

Table 3: Swap-and-rotate listing of all swaps and their activation cycles.
Swap Cycles

FF96 ↔ FF97 Cycle mod 8 = 5

FF96 ↔ FF98 Cycle mod 8 = 5

FF96 ↔ FF99 Cycle mod 8 = 5 or Cycle mod 8 = 7

FF99 ↔ FF101 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34 35, 72, 73, 80, 81,
88, 89, 96, 97

FF99 ↔ FF103 0, 1, 42, 43, 50, 51, 58, 59, 66, 67, 104, 105, 112, 113, 120, 121

FF99 ↔ FF105 74, 75, 82, 83, 90, 91, 98, 99

FF105 ↔ FF111 6, 7, 18, 19, 28, 29, 38, 39, 50, 51, 60, 61, 70, 71, 82, 83, 92, 93, 102,
103, 114, 115, 124, 125

FF105 ↔ FF117 4, 5, 26, 27, 36, 37, 58, 59, 68, 69, 90, 91, 100, 101, 122, 123

FF105 ↔ FF123 2, 3, 34, 35, 66, 67, 98, 99

https://doi.org/10.1007/978-3-319-66787-4_33
https://doi.org/10.1007/978-3-642-20465-4_6
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://doi.org/10.1007/s00145-010-9085-7

A Small GIFT-COFB: Lightweight Bit-Serial Architectures 25

B ANF Equations of the 3-Share GIFT-128 S-Box

Below we list the exact ANF equations for all component functions of the 3-share
first-order threshold implementation of the GIFT S-box as proposed in [19].

SG1(a2, b2, c2, d2, a3, b3, c3, d3) = a3 + b3 + b2c2 + b2c3 + b3c2,

c3 + 1,

b3 + a2c2 + a2c3 + a3c2,

a3 + b3 + c3 + d3 + a2b2 + a2b3 + a3b2;

SG2(a1, b1, c1, d1, a3, b3, c3, d3) = a1 + b1 + b1c3 + b3c1 + b3c3,

c1,

b1 + a1c3 + a3c1 + a3c3,

a1 + b1 + c1 + d1 + a1b3 + a3b1 + a3b3;

SG3(a1, b1, c1, d1, a2, b2, c2, d2) = a2 + b2 + b1c1 + b1c2 + b2c1

c2,

b2 + a1c1 + a1c2 + a2c1,

a2 + b2 + c2 + d2 + a1b1 + a1b2 + a2b1;

SF1(a2, b2, c2, d2, a3, b3, c3, d3) = d3 + a2b2 + a2b3 + a3b2,

b3 + c3 + d3 + a2d2 + a2d3 + a3d2 + 1,

a3 + b3,

a3 + 1;

SF2(a1, b1, c1, d1, a3, b3, c3, d3) = d1 + a1b3 + a3b1 + a3b3,

b1 + c1 + d1 + a1d3 + a3d1 + a3d3,

a1 + b1,

a1;

SF3(a1, b1, c1, d1, a2, b2, c2, d2) = d2 + a1b1 + a1b2 + a2b1,

b2 + c2 + d2 + a1d1 + a1d2 + a2d1,

a2 + b2,

a2.

	A Small GIFT-COFB: Lightweight Bit-Serial Architectures

