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Abstract. We propose a group signature scheme with a function of designated traceability; each opener
has attributes, and a signer of a group signature can be traced by only the openers whose attributes
satisfy the boolean formula designated by the signer. We describe syntax and security definitions of the
scheme. Then we give a generic construction of the scheme by employing a ciphertext-policy attribute-
based encryption scheme.
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1 Introduction

A group signature scheme proposed by Chaum and van Heyst [9] enables a signer to sign a message on
behalf of a group to which he/she belongs. The signature is anonymous [9] in the sense that the signer is not
identified in the group. Nonetheless, the scheme is traceable [1] by an authority called an opener who can
identify the signer by using an opening key. So far group signature schemes with some characteristics and
properties were proposed ([5,16,14], etc.). Also, rigorous foundations of security were proposed for the cases
of static, partially dynamic and fully dynamic groups [3,4,7]. Especially, an authority called an issuer was
introduced separately from an opener by Bellare et al. [4].

One of the view points on traceability is that it is excessive; an opener is able to open all the signatures.
One direction to pursue the problem is “message-dependent opening” [19,17,10]. In a group signature scheme
with message-dependent opening, there is an authority called an admitter who admits the opener to open
signatures by specifying messages. That is, the admitter issues a token that corresponds to a message,
and then the opener extracts the signer’s identity from the signature using the token. Another direction is
“accountable tracing” [15,12]. In an accountable tracing group signature scheme, users in a group are divided
into two kinds. One is a kind of users who can be traced and the other is a kind of users who cannot be
traced. A user is given a group-signing key by the issuer, where the key belongs to either the former kind or
the latter. However, in the both schemes users themselves do not have the right to actively specify limitation
on the opening function. As a remarkable work, Xu and Yung [20] introduced “accountable ring signatures”
(ARS), in which an anonymous signer can designate an opener by indicating the opener’s public key. Bootle
et al. [8] described an efficient scheme of ARS based on the DDH assumption.
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1.1 Our Contribution

In this paper, we introduce a function of designated traceability in a group signature scheme, which concerns
with users’ right on the opening function. In our scheme there are more than one opener, and an opener has
a set of attributes over all the possible attributes. Each attribute corresponds to a component of a public key,
and the public key is maintained by the group manager. An opening key is issued to an opener by the group
manager depending on the opener’s attributes. When a user signs a message on behalf of a group, he/she
can specify an access structure over the attributes, and generate a signature that has the access structure to
his/her hidden identity. When an opener tries to open a group signature to identify the signer, the opener
uses its opening key, but the signature can be opened to disclose the identity if and only if the attached
access structure is satisfied by the attributes described in the opening key. Hence only the designated openers
can open signatures. In this sense, our direction is an enhancement of the function of ARS [20,8].

In a realistic scenario, our designated traceability can be used as follows. Suppose that there is a company
which has a chief information officer (CIO) and a number of departments each of which is under a head
person. These head persons are enrolled as “openers” by CIO, while CIO itself is the “group manager”.
When an employee generates a group signature on behalf of the company, he/she designates the head of
his/her department, or more freely, “the head or the heads of related departments”, as his/her choice.
More concretely, the designation is by means of specifying an access structure over the attributes that are
maintained by CIO as components of a public key. Thus, only the opener(s) whose attributes satisfy the
access structure is able to open and trace the signer, if it is needed. We note that, since an access structure
Y is visibly attached to a generated signature σ0, an opener, receiving the pair σ = (Y, σ0), sees whether
the opener can open it or not. We also note that the group manager (CIO) should be able to open all the
signatures by using the master secret key.

1.2 Outline of Our Construction and Security Proofs

After giving syntax and security definitions of our scheme, we give a generic construction of our scheme
by modifying the construction of a partially dynamic group signature scheme proposed by Bellare et al.
[4]. Our core idea is to replace a public-key encryption scheme (PKE), which is one of the building blocks
in [4], with a (only-payload-hiding) ciphertext-policy attribute-based encryption scheme (CP-ABE). Other
building blocks are a digital signature scheme (SIG) and a simulation-sound non-interactive zero-knowledge
proof system (SS-NIZK), as is the same as the construction in [4]. The setup algorithm of CP-ABE is
executed by the group manager to generate a set of public parameters, a public key and the master secret
key. Also, the key-generation algorithm of CP-ABE is executed by the group manager to issue a secret key
to an opener. That is, an opener joins dynamically. Then, when a user wants to join a group as a member,
he/she generates a pair of a public key and a secret key of SIG in advance of joining. After that it executes
a joining protocol with the issuer in the same way as [4]. When a user wants to generate a group signature,
he/she first generates a signature s by using another signing key in joining the protocol. Then, specifying an
access structure X, he/she encrypts s (and the identity data and certificate) by the encryption algorithm of
CP-ABE. When one of the openers try to trace the signer of a group signature, it first decrypts the ABE
ciphertext. This is executable if and only if the set of attributes X of the opener’s secret key satisfies the
ciphertext policy Y in the signature (i.e. R(X,Y ) = 1 for the relation R of ABE).

As for security proofs, only anonymity is affected by the replacement of PKE in [4] with ABE; traceability
and non-frameability are not affected. To prove anonymity according to under a suitably modified definition
of the experiment (in [4]), we have to introduce an “Add-an-opener oracle” and a “Corrupt-an-opener oracle”.
(See Section 3.2.)

2 Preliminaries

In this section, we fix our notation. Also, we survey the needed notions for the later sections.
The set of natural numbers is denoted by N. The security parameter is denoted by λ, where λ ∈ N. The

bit length of a string s is denoted by |s|. A uniform random sampling of an element a from a set S is denoted
as a ←R S. When an algorithm A on input a outputs z, we denote it as z ← A(a), or, A(a) → z. When a
probabilistic algorithm A on input a and with randomness r returns z, we denote it as z ← A(a; r). St is the
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inner state of a particular algorithm. ppt means “probabilistic polynomial time”. When an algorithm A on
input a accesses an oracle O, we denote it as A(a : O). A function P of λ is said to be negligible in λ if for
any given positive polynomial poly(λ) P (λ) < 1/poly(λ) for sufficiently large λ.

2.1 Digital Signature ([11])

A digital signature scheme Sig consists of three ppt algorithms, KG, Sign and Vrfy. (If needed, we put a
subscript s.)
• KG(1λ)→ (pk, sk). This ppt algorithm takes as input the security parameter 1λ. It returns a verification
key pk and a signing key sk.
• Sign(sk,m)→ s. This ppt algorithm takes as input a signing key sk and a message m. It returns a signature
s.
• Vrfy(pk,m, s)→ d. This deterministic polynomial-time algorithm takes as input a public key pk, a message
m and a signature s. It returns a boolean value d ∈ {1, 0}.

Correctness of Sig is defined as follows; for any λ and any m, Pr[d = 1 | KG(1λ)→ (pk, sk);Sign(sk,m)→
s;Vrfy(pk,m, s)→ d] = 1.

Existential unforgeability against chosen-message attacks of Sig is captured by the following experiment,
where A is an algorithm.

Expreuf-cma
Sig,A (1λ)

(pk, sk)← KG(1λ); (m∗, s∗)← A(pk : SignO(sk, ·))
If Vrfy(pk,m∗, s∗) = 1 and m∗ was not queried

then return 1 else return 0

Here SignO(sk,m) returns s ← Sign(sk,m). m∗ must not be a message that was queried to SignO. The
advantage of A over Sig is defined by

Adveuf-cma
Sig,A (λ)

def
= Pr[Expreuf-cma

Sig,A (1λ) = 1]. (1)

A digital signature scheme Sig is said to be EUF-CMA secure if, for any ppt A, Adveuf-cma
Sig,A (λ) is negligible

in λ.

2.2 Attribute-Based Encryption ([18,13,6,2])

An attribute-based encryption scheme ABE consists of four ppt algorithms, Setup, KG, Enc and Dec, and a
function Rκ. (If needed, we put a subscript a.)
• κ. This is an index s.t., for a constant c, κ ∈ Nc. It indicates authorized attribute sets and a predicate
function (below).
• Xκ. This is the set of all key attributes.
• Yκ. This is the set of all ciphertext attributes.
• Rκ : Xκ × Yκ → {0, 1}. A predicate function on Xκ × Yκ, which determines a relation (i.e. a subset
{(X,Y ) ∈ Xκ × Yκ | Rκ(X,Y ) = 1}).
• Setup(1λ, κ)→ (pk,msk). This ppt algorithm takes as input the security parameter 1λ and the attribute
index κ ∈ Nc. It returns a public key pk and a master secret key msk.
• KG(msk, i,X) → skiX . This ppt algorithm takes as input the master secret key msk, an identity index i
and a key attribute X. It returns a secret key skiX .
• Enc(pk, Y,M)→ C. This ppt algorithm takes as input the public key pk, a ciphertext attribute Y and a
plaintext M . It returns a ciphertext C. We assume that Enc is only-payload-hiding, that is, C can be parsed
as (Y,C0).
• Dec(pk, skiX , C)→ M̂ . This deterministic polynomial-time algorithm takes as input a secret key skiX and
a ciphertext C. It returns a decryption result M̂ .

Correctness of ABE is defined as follows; for any λ, any κ, any M , any i, any X and Y s.t. Rκ(X,Y ) = 1,
Pr[M = M̂ | Setup(1λ, κ) → (pk,msk);KG(msk, i,X) → skiX ;Enc(pk, Y,M) → C;Dec(pk, skiX , C) → M̂ ] =
1;.
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Indistinguishability against chosen-plaintext attack of ABE is captured by the following experiment, where
A is an algorithm.

Exprind-cpa-bABE,A (1λ, κ)

(pk,msk)← Setup(1λ, κ)

d← A(pk : KGO(msk, ·, ·), LROb(pk, ·, ·, ·))
Return d

Here KGO(msk, i,X) returns skiX ← KG(msk, i,X), and LROb(pk,M0,M1, Y
∗) returns C∗ ←

Enc(pk, Y ∗,Mb). The challenge query (M0,M1, Y
∗) must satisfy |M0| = |M1| and Rκ(X,Y ∗) 6= 1 for all

queried X to KGO. Y ∗ is called the target attribute. After accessing LROb, X cannot be queried to KGO if
Rκ(X,Y ∗) = 1. The advantage of A over ABE is defined by

Advind-cpa
ABE,A (λ)

def
= |Pr[Exprind-cpa-1ABE,A (1λ, κ) = 1]− Pr[Exprind-cpa-0ABE,A (1λ, κ) = 1]|. (2)

An attribute-based encryption scheme ABE is said to be adaptive IND-CPA secure if, for any ppt A,
Advind-cpa

ABE,A (λ) is negligible in λ.
An ABE scheme is called “ciphertext policy” if X is the set of all subsets of attributes and Y is the set of

all access structures over the attributes [18,13,6,2].

2.3 Simulation-Sound Non-interactive Zero-Knowledge Proof (Argument) ([4], Section 5.1)

A simulation-sound non-interactive zero-knowledge proof system Π consists of two algorithms, P and V. We
consider in this paper that not only V but also P are polynomial time (i.e. an argument system). We also
assume that P is probabilistic and V is deterministic. An NP-relation over domain Dom ⊆ {0, 1}∗ is a subset
ρ of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) is decidable in time polynomial in |x|, ∀x ∈ Dom. The

language Lρ is defined by Lρ
def
= {x ∈ Dom | ∃w ∈ {0, 1}∗ (x,w) ∈ ρ}. P and V have access to a common

reference string R. There exist two polynomials ` and p s.t. the following two properties hold;
• Completeness.

∀λ ∈ N ∀(x,w) ∈ ρ s.t. |x| ≤ `(λ) and x ∈ Dom

Pr[R←R {0, 1}p(λ);π ← P(1λ, x, w,R) : V(1λ, x, π,R) = 1]

= 1.

• Soundness.

∀λ ∈ N ∀P̂ : ppt ∀x ∈ Dom s.t. x /∈ Lρ
Pr[R← {0, 1}p(λ);π ← P̂(1λ, x,R) : V(1λ, x, π,R) = 1]

< 2−λ.

Further, we introduce the third property.
• Zero-Knowledge. For Π there exists a ppt algorithm Sim called a simulator. We consider the following
experiment, where D is an algorithm.

Expzk-0P,Sim,D(1λ)

(R,St)← Sim(gen, 1λ); d← D(R : P1(·, ·)); return d

P1(x,w) : π ← Sim(prv,St, x); return π

Expzk-1P,Sim,D(1λ)

R← {0, 1}p(λ); d← D(R : P2(·, ·)); return d

P2(x,w) : π ← P(1λ, x, w,R); return π
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The advantage of D over Π is defined by

Advzk
P,Sim,D(λ)

def
= |Pr[Expzk-0P,Sim,D(1λ) = 1]− Pr[Expzk-1P,Sim,D(1λ) = 1]|. (3)

A non-interactive proof system Π is said to be computational zero-knowledge if, for any ppt D,
Advzk

P,Sim,D(λ) is negligible in λ.

Besides, we need in this paper;

• Simulation Soundness.

ExpssΠ,A(1λ)

(R,St)← Sim(gen, 1λ); (x, π)← A(R : Sim(prv,St, ·))
If x /∈ Lρ ∧ π was not given to A ∧ V(1λ, x, π,R) = 1

then return 1 else return 0

The advantage of A over Π is defined by

Advss
Π,A(λ)

def
= Pr[ExpssΠ,A(1λ) = 1]. (4)

A non-interactive proof system Π is said to be simulation sound if, for any ppt A, Advss
Π,A(λ) is negligible

in λ.

3 Syntax and Security Definitions

In this section, we give syntax and security definitions of our proposed group signature scheme that has
designated traceability, GSdT.

3.1 Syntax

The scheme GSdT consists of nine ppt algorithms; (GKG,OKG,UKG, Join, Iss,GSign,GVrfy,Open, Judge).

• GKG(1λ, κ)→ (gpk, ik, omk). This ppt algorithm takes as input the security parameter 1λ and the attribute
index κ. It returns a group public key gpk, an issuing key ik and an opening master key omk.

• OKG(gpk, omk, j,X) → ok[j]. This ppt algorithm takes as input gpk, omk, an opener’s index j and an
opener’s attribute X. It returns an opening key ok[j]. Note that ok[j] includes the data of X.

• UKG(1λ)→ (upk,usk). This ppt algorithm takes as input 1λ. It returns a user public key upk and a user
secret key usk.

• Join and Iss. These interactive ppt algorithms Join and Iss are explained in Fig.1. (Since these are essentially
the same as in [4], we omit the explanation.)

• GSign(gpk, gsk[i], Y,m)→ (Y, σ0). This ppt algorithm takes as input gpk, a group signing key gsk[i] (see
Fig.1) of a member i, an access structure Y and a message m. It returns a group signature (Y, σ0).

• GVrfy(gpk,m, (Y, σ0))→ d. This deterministic polynomial-time algorithm takes as input gpk,m and (Y, σ0).
It returns a boolean value d ∈ {0, 1}.
• Open(gpk,ok[j], reg,m, (Y, σ0)) → (i, τ). gpk, ok[j], the user registration table reg, m and (Y, σ0). It
returns a user identity index i and a proof τ .

• Judge(gpk, i,upk[i],m, (Y, σ0), τ) → d. This deterministic polynomial-time algorithm takes as input gpk,
i, upk[i], m, (Y, σ0) and a proof τ . It returns a boolean value d ∈ {1, 0}.
Remark. In the above, OKG takes as input an index j to generate the j-th entry ok[j]. This is so that two
openers having the same attribute X can be separated in realistic use. However, in theory, we can introduce
another syntax without the index j.
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Useri(gpk, i,upk[i],usk[i]) Issueri(gpk, ik, i,upk[i])
Stjoin = (gpk, i,upk[i],usk[i]) Stiss = (gpk, ik, i,upk[i])
Min = ε
(St′join,Mout, cont)← Join(Stjoin,Min)
Stjoin = St′join (Mout, cont)

−→ reg[i] = Min = Mout, dec = cont

(St′iss,Mout, dec
′)← Iss(Stiss,Min, dec)

Mout Stiss = St′iss,dec = dec′

Min = Mout ←−
(St′join, ε, acc)← Join(Stjoin,Min)
gsk[i] = St′join

Fig. 1. Group joining protocol.

AddOO(j,X)
If j ∈ OP then return ε
OP← OP ∪ {j}; ok[j]← OKG(gpk, omk, j,X)
Return 1

AddUO(i)
If i ∈ HU ∪ CU then return ε
HU← HU ∪ {i}; deci ← cont; gsk[i]← ε

(upk[i],usk[i])← UKG(1λ)
Stijoin ← (gpk,upk[i],usk[i])
Stiiss ← (gpk, ik, i,upk[i]); Mjoin ← ε
(Stijoin,Mjoin,dec

i)← Join(Stijoin,Mjoin)
While deci = cont do

(Stiiss,Mjoin, dec
i)← Iss(Stiiss,Miss,dec

i)
If deci = acc then reg[i]← Stiiss
(Stijoin,Miss, dec

i)← Join(Stijoin,Mjoin)
gsk[i]← Stijoin
Return upk[i]

StoUO(i,Min)
If i /∈ HU then

HU← HU ∪ {i}; (upk[i],usk[i])← UKG(1λ)
gsk[i]← ε; Min ← ε;
Stijoin ← (gpk,upk[i],usk[i])

(Stijoin,Mout, dec)← Join(Stijoin,Min)
If dec = acc then gsk[i]← Stijoin
Return (Mout, dec)

USKO(i) Return (gsk[i],usk[i])
GSignO(i, Y ∗,m)

If i /∈ HU then return ⊥
If gsk[i] = ε then return ⊥
Else return GSign(gpk, gsk[i], Y ∗,m)

CrptOO(j)
If j /∈ OP then return ε
(X, ok0)← ok[j]
If ∃(m, (Y ∗, σ0)) ∈ MS s.t. Rκ(X,Y ∗) = 1

then return ε
CO← CO ∪ {j}
Return ok[j]

CrptUO(i,upk)
If i ∈ HU ∪ CU then return ε
CU← CU ∪ {i}; upk[i]← upk; deci ← cont

Stiiss ← (gpk, ik, i,upk[i])
Return 1

StoIO(i,Min)
If i /∈ CU then return ε
(Stiiss,Mout, dec

i)← Iss(Stiiss,Min, dec
i)

If deci = acc then reg[i]← Stiiss
Return Mout

OpenO(j,m, (Y, σ0))
If (m, (Y, σ0)) ∈ MS then return ⊥
Return Open(gpk,ok[j], reg,m, (Y, σ0))

RRegO(i) Return reg[i]
WRegO(i, ρ) reg[i]← ρ; Return 1
ChaOb(i0, i1,m, Y

∗)
If i0 /∈ HU or i1 /∈ HU then return ⊥
If gsk[i0] = ε or gsk[i1] = ε then return ⊥
If ∃j ∈ CO s.t.
Rκ(X,Y ∗) = 1 for (X, ok0)← ok[j]

then return ⊥
σ = (Y ∗, σ0)← GSign(gpk, gsk[ib], Y

∗,m)
MS ← MS ∪ {(m, (Y ∗, σ0))}
Return σ

Fig. 2. Oracles for security definitions.
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3.2 Security Definitions

We give four security definitions for our group signature scheme GSdT. First we introduce oracles as in Fig.2.
Here AddOO is “add-opener” oracle. AddUO is “add-user” oracle. StoUO is “send to user” oracle. StoIO
is “send to issuer” oracle. USKO is “user secret key” oracle. GSignO is “group-signing” oracle. CrptOO is
“corrupt-opener” oracle. CrptUO is “corrupt user” oracle. OpenO is “opening signature” oracle. RRegO is
“read registration table” oracle. WRegO is “write registration table” oracle. ChaOb is “challenge for b” oracle.
HU is the set of honest users. CU is the set of corrupted users. OP is the set of openers. MS is the set of
“queried message and replied signature” pairs. CO is the set of corrupted openers oracles. Compared with
the oracles in [4], these oracles are adopted to our security definitions, except AddOO and CrptOO, which
are new oracles for our GSdT.

Remark. In this paper, we introduce a scenario that a query to the opening oracle OpenO is issued only
with such (j,m, (Y, σ0)) that there exists an opening key ok[j] that has been already issued to an opener j
with an attribute X such that

Rκ(X,Y ) = 1. (5)

Correctness The correctness of GSdT is captured by the following experiment, where A is an algorithm.

ExprcorrGSdT,A(1λ, κ)

(gpk, ik, omk)← GKG(1λ, κ), CU← ∅,HU← ∅,OP← ∅
(i,m, Y )← A(gpk : AddOO(·, ·),AddUO(·),RRegO(·))
If i /∈ HU then return 0; If gsk[i] = ε then return 0

σ ← GSign(gpk, gsk[i], Y,m)

If GVrfy(gpk,m, σ) = 0 return 1

OSY ← {j ∈ OP | Rκ(X,Y ) = 1 for (X, ok0)← ok[j]}
For j ∈ OSY do

(i′, τ)← Open(gpk,ok[j], reg,m, σ)

If i 6= i′ or Judge(gpk, i,upk[i],m, σ, τ) = 0 then return 1

Return 0

The advantage of A over GSdT is defined by

Advcorr
GSdT,A(λ)

def
= Pr[ExprcorrGSdT,A(1λ, κ) = 1]. (6)

A group signature scheme GSdT is said to be correct if, for any unbounded A, Advcorr
GSdT,A(λ) = 0.

Anonymity The anonymity of GSdT is captured by the following experiment.

Expranon-bGSdT,A(1λ, κ) // b ∈ {0, 1}
(gpk, ik, omk)← GKG(1λ, κ)

CU← ∅,HU← ∅,MS← ∅,CO← ∅,OP← ∅
d← A(gpk, ik : ChaOb(·, ·, ·, ·),AddOO(·, ·),OpenO(·, ·, ·),StoUO(·, ·),WRegO(·, ·),

USKO(·),CrptOO(·),CrptUO(·, ·))
Return d

The advantage of A over GSdT is define by

Advanon
GSdT,A(λ)

def
= |Pr[Expranon-0GSdT,A(1λ, κ) = 1]− Pr[Expranon-1GSdT,A(1λ, κ) = 1]|. (7)

A group signature scheme GSdT is said to be anonymous if, for any ppt A, Advanon
GSdT,A(λ) is negligible in λ.
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Traceability The traceability of GSdT is captured by the following experiment.

ExprtraceGSdT,A(1λ, κ)

(gpk, ik, omk)← GKG(1λ, κ), CU← ∅,HU← ∅,OP← ∅
(m, (Y, σ0))← A(gpk, omk : StoIO(·, ·),AddUO(·),RRegO(·),USKO(·),CrptUO(·, ·))
If GVrfy(gpk,m, (Y, σ0)) = 0 then return 0

Find X s.t. Rκ(X,Y ) = 1; ok ← OKG(gpk, omk, 0, X)

(i, τ)← Open(gpk, ok, reg,m, (Y, σ0))

If i = 0 or Judge(gpk, i,upk[i],m, (Y, σ0), τ) = 0 then return 1 else return 0

The advantage of A over GSdT is defined by

Advtrace
GSdT,A(λ)

def
= Pr[ExprtraceGSdT,A(1λ, κ) = 1]. (8)

A group signature scheme GSdT is said to be traceable if, for any ppt A, Advtrace
GSdT,A(λ) is negligible in λ.

Non-frameability The non-frameability of GSdT is captured by the following experiment.

ExprnfGSdT,A(1λ, κ)

(gpk, ik, omk)← GKG(1λ, κ), CU← ∅,HU← ∅,OP← ∅
(m, (Y, σ0), i, τ)← A(gpk, ik, omk : StoUO(·, ·),WRegO(·, ·),GSignO(·, ·, ·, ·),

USKO(·),CrptUO(·, ·))
If the following are all true then return 1 else return 0 :

- i ∈ HU ∧ gsk[i] 6= ε

- Judge(gpk, i,upk[i],m, (Y, σ0), τ) = 1

- A did not query USKO(i) ∨ GSignO(i,m)

The advantage of A over GSdT is defined by

Advnf
GSdT,A(λ)

def
= Pr[ExprnfGSdT,A(1λ, κ) = 1]. (9)

A group signature scheme GSdT is said to be non-frameable if, for any ppt A, Advtrace
GSdT,A(λ) is negligible

in λ.

4 Construction

In this section, we describe a generic construction of our proposed group signature scheme that has designated
traceability; GSdT = (GKG, OKG, UKG, Join, Iss, GSign, GVrfy, Open, Judge). We follow the construction of [4]
except that we use ciphertext-policy encryption instead of public-key encryption. There are three building
blocks to construct our scheme GSdT; a digital signature scheme Sig, a ciphertext-policy attribute-based
encryption scheme ABE and a simulation-sound non-interactive zero-knowledge proof scheme Π1 and Π2.
We give overview below, and the details are given in Fig.3 and Fig.4.

The group public key gpk consists of the security parameter 1λ, a public key pka of ABE, a verification
key pks for digital signatures which we call the certificate verification key, and two common reference strings
R1 and R2 for NIZK proofs. We denote by sks the signing key corresponding to pks, and call it the certificate
creation key. The issuer secret key ik is sks. Each opener’s secret key ok[j](j = 1, 2, . . . , J) is a decryption
key skjX (for some key attribute X) of ABE together with the random coins ra,j used to generate skjX .

In the group-joining protocol, user i, who has a key pair (upk[i],usk[i]) of Sig prior to joining, first
generates a verification key pki and the corresponding signing key ski. It uses its personal private key usk[i]
to generate a signature sigi on pki. (The signature sigi prevents the user from being framed by a corrupt
issuer.) The user sends (pki, sigi) to the issuer. The issuer issues membership data certi to i by signing pki
using its certificate creation key ik(= sks). The issuer then stores (pki, sigi) at reg[i] in the registration table
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GKG(1λ, κ)

R1 ← {0, 1}p1(λ); R2 ← {0, 1}p2(λ)

(pka,mska)← Setupa(1
λ, κ); (pks, sks)← KGs(1

λ)

gpk = (1λ, R1, R2, pka, pks); omk = mska; ik = sks

Return (gpk, ik, omk)
OKG(gpk, omk, j,X)

Parse omk as mska; ra,j ← {0, 1}r(λ)

skjX ← KGa(mska, j,X; ra,j); ok[j]← (skjX , ra,j)
Return ok[j]

UKG(1λ) (upk, usk)← KGs(1
λ); Return (upk, usk)

GSign(gpk, gsk[i], Y,m)

Parse gpk as (1λ, R1, R2, pka, pks)
Parse gsk[i] as (i,pki, ski, certi)

s← Sign(ski,m); r ←R {0, 1}λ
C = (Y,C0)← Enc(pka, Y, 〈i,pki, certi, s〉; r)
π1 ← P1(1λ, (pka, pks,m,C), (i,pki, certi, s, r), R1)
Return σ = (C, π1)

GVrfy(gpk, (m,σ))

Parse gpk as (1λ, R1, R2, pka, pks);
Parse σ as (C, π1)

Return V1(1λ, (pka, pks,m,C), π1, R1)

Open(gpk,ok[j], reg,m, σ)

Parse gpk as (1λ, R1, R2, pka, pks)

Parse ok[j] as (skjX , ra,j); Parse σ as (C, π1)

M ← Dec(pka, sk
j
X , C); Parse M as 〈i,pk, cert, s〉

If reg[i] 6= ε then parse reg[i] as (pki, sigi)
Else pki ← ε, sigi ← ε

π2 ← P2(1λ, (pka, C, i,pk, cert, s), (sk
j
X , ra,j), R2)

If V1(1λ, (pka, pks,m,C), π1, R1) = 0
then return (0, ε)

If pk 6= pki or reg[i] = ε then return (0, ε)
τ = (pki, sigi, i, pk, cert, s, π2)
Return (i, τ)

Judge(gpk, i,upk[i],m, σ, τ)

Parse gpk as (1λ, R1, R2,pka, pks);
Parse σ as (C, π1)
If (i, τ) = (0, ε) then

Return V1(1λ, (pka, pks,m,C), π1, R1)

Parse τ as (pk, sig, i′, pk, cert, s, π2)

If V2(1λ, (pka, C, i
′,pk, cert, s), π2, R2) = 0

then Return 0
If the following are true then return 1
else return 0:

i = i′ ∧ Vrfy(upk[i], pk, sig) = 1 ∧ pk = pk

Fig. 3. Our construction of GSdT.

Join(Stjoin,Min)
If Min = ε then

Parse Stjoin as (gpk, i, upki, uski)

(pki, ski)← KGs(1
λ); sigi ← Sign(uski,pki)

St′join = (i,pki, ski); Mout = (pki, sigi)
Return (St′join,Mout, cont)

Else
Parse Stjoin as (i,pki, ski); Parse Min as certi
St′join = (i,pki, ski, certi)
Return (St′join, ε, acc)

Iss(Stiss,Min, dec)
Mout = ε; dec′ = rej

If dec = cont then
Parse Stiss as (gpk, ik, i, upki)
Parse Min as (pki, sigi)
Parse ik as sks

If Vrfy(upki, pki, sigi) = 1 then
certi ← Sign(sks, 〈i,pki〉)
St′iss = (pki, sigi)
Mout = certi; dec′ = acc

Return (St′iss,Mout, dec
′)

Fig. 4. Our construction of GSdT (Join and Iss).
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reg (see Fig.1 and Fig.4). (Later, sigi can be used by the opener to produce proofs for its claims.) The issuer
sends back certi to the user. The user’s group signing key gsk[i] is set as gsk[i] = (i,pki, ski, certi) (see Fig.1
and Fig.4).

When a group member i generates a group signature for a message m, it generates a signature for a
message m under pki by using its secret key ski. To make it verifiable without losing anonymity, it encrypts
pki into C = (Y,C0) under the public key pka and a policy Y of the ciphertext-policy encryption scheme ABE.
Then it proves in zero-knowledge that verification succeeds with respect to pki. Also, to prevent someone
from simply creating their own key pair (pki, ski) and doing this, it also encrypts i and its certificate certi,
and proves in zero-knowledge that certi is a signature of 〈i,pki〉 under pks. Therefore, the statement of the
relation ρ1 is (pka,pks,m,C), the witness is (i,pki, certi, s, r) and the common reference string is R1. Hence,
group signature verification is verification of the NIZK proofs π1.

When an opener opens a group signature ((Y,C0), π1), it first decrypts the ciphertext C = (Y,C0) in the
signature ((Y,C0), π1) by using its secret key skjX , obtains the user identity i. This decryption is possible if
and only ifRκ(X,Y ) = 1. When i is indeed an existing user, the opener proves its claim by supplying evidence
that it decrypts the ciphertext correctly, and the user public key obtained from decryption is authentic (i.e.
signed by user i using usk[i]). The former is accomplished by a zero-knowledge proof, where the statement
of the relation ρ2 is (pka, C, i, pk, certi, s), the witness is (skjX , ra,j) and the common reference string is R2.
The judge algorithm simply checks if these proofs π2 are correct.

5 Security

In this section, we show security properties of our scheme GSdT. The security proofs can be given in a
similar manner to those of [4], We remark that the anonymity of our scheme can be proven just from the
IND-CPA security of the underlying ABE, whereas the anonymity of the original scheme [4] is proven from
the IND-CCA security of the underlying PKE because the decryption oracle is needed to simulate OpenO.
On the other hand, we can simulate OpenO in the straightforward way because the needed opening key has
been generated by AddOO, which can be simulated with KGO of ABE.

Theorem 1 (Correctness) If Sig is correct, ABE is correct, Π1 = (P1,V1) is complete and Π2 = (P2,V2)
is complete, then our group signature scheme GSdT is correct. More precisely, for any unbounded A that is
according to ExprcorrGSdT,A(1λ, κ),

Advcorr
GSdT,A(λ) = 0. (10)

Proof. The perfect correctness of Sig (Section 2.1), the perfect correctness of ABE (Section 2.2) and the
perfect compeleteness of Π1 and Π2 (Section 2.3) imply the perfect correctness of GSdT (Section 3.2).

Theorem 2 (Anonymity) If ABE is adaptive IND-CPA secure, Π1 = (P1,V1) is simulation sound and
computational zero-knowledge and Π2 = (P2,V2) is computational zero-knowledge, then our group sig-
nature scheme GSdT is anonymous. More precisely, for any given ppt algorithm A that is according
to Expranon-bGSdT,A(1λ, κ) (b = 0, 1), there exist ppt algorithms A0, A1, As, D1 and D2 that are accord-

ing to Exprind-cpa-bABE,A0
(1λ, κ), Exprind-cpa-bABE,A1

(1λ, κ) (b = 0, 1), ExpssΠ,As
(1λ), Expzk-bP1,Sim1,D1

(1λ) (b = 0, 1) and

Expzk-bP2,Sim2,D2
(1λ) (b = 0, 1), respectively, such that the following inequality holds.

Advanon
GSdT,A(λ) ≤Advind-cpa

ABE,A0
(λ) + Advind-cpa

ABE,A1
(λ)

+Advss
Π1,As

(λ) + 2 · (Advzk
P1,Sim1,D1

(λ) + Advzk
P2,Sim2,D2

(λ)). (11)

To prove Theorem 2, we need the following four lemmata.

Lemma 1 For any given ppt algorithm A, there exists a ppt algorithm D2 described in Fig.7 and the
following equality holds.

2 · Pr[Expzk-1P2,Sim2,D2
(1λ) = 1] = 1 + Advanon

GSdT,A(λ). (12)

Proof. The equality (12) is by a standard deformation (see, for example, [4], the equality (6)).
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Ac(pka : Enc(pka, LROb(·, ·, ·, ·)),KGO(mska, ·)) // (c = 0, 1)

(StS1 , R1)← Sim1(gen, 1λ); (StS2 , R2)← Sim2(gen, 1λ)

(pks, sks)← KGs(1
λ); gpk← (1λ, R1, R2, pka,pks); ik← sks

CU← ∅; HU← ∅; MS← ∅; CList← ∅; CO← ∅; OP← ∅; d← ⊥
d′ ← A(gpk, ik : ChaOc(·, ·, ·, ·),AddOO(·, ·),OpenO(·, ·, ·), StoUO(·, ·),

WRegO(·, ·),USKO(·, ·),CrptOO(·),CrptUO(·, ·))
If d 6= ⊥ then return d else return d′

ChaOc(i0, i1,m, Y
∗)

Parse gpk as (1λ, R1, R2,pka, pks); Parse gsk[ic] as (ic, pkic , skic , certic)

sc ← Sign(skic ,m); Mc ← 〈ic,pkic , certic , sc〉; Mc̄ ← 0|Mc|

C ← LROb(pka,M0,M1, Y
∗); CList← CList ∪ {C}

π1 ← Sim1(prove, StS1 , (pka, pks,m,C))
Return (C, π1)

AddOO(j,X)
If j ∈ OP then return ε

OP← OP ∪ {j}; ra,j ← {0, 1}r(λ); skjX ← KGO(X); ok[j]← (skX , ra,j); Return 1
OpenO(j,m, (Y, σ0))

Parse (Y, σ0) as (C, π1)
If GVrfy(gpk,m, (Y, σ0)) = 1 and C ∈ CList then d← c
(i, τ)← Open′(gpk,ok, reg,m, (Y, σ0)) // Use Sim2 instead of P2

Fig. 5. Adversary Ac(c = 0, 1) on indistinguishability of ABE, which employs adversary A on GSdT .

As(R1 : Sim1(prove,StS1 , ·))
ra ←R {0, 1}r(λ); (pka,mska ← KGa(1

λ))

(StS2 , R2)← Sim2(gen, 1λ)

gpk← (1λ, R1, R2,pka, pks)
omk← (mska, ra); ik← sks

CU← ∅; HU← ∅; MS← ∅; CList← ∅; y ← ⊥
A(gpk, ik : ChaOb(·, ·, ·, ·),OpenO(·, ·, ·), StoUO(·, ·),WRegO(·, ·),USKO(·, ·),CrptUO(·, ·))
Return y ChaOb(i0, i1,m, Y

∗)

Parse gpk as (1λ, R1, R2, pka, pks); Parse gsk[i1] as (i1, pki1 , ski1 , certi1)

s1 ← Sign(ski1 ,m); M1 ← 〈i1,pki1 , certi1 , s1〉; M0 ← 0|M1|

C ← Enc(pka, Y
∗,M0); CList← CList ∪ {C}

π1 ← Sim1(prove, StS1 , (pka, pks,m,C))
Return (C, π1)

OpenO(m,σ) Parse σ as (C, π1)
If GVrfy(gpk,m, σ) = 1 and C ∈ CList then y ← ((pka, pks,m,C), π1)
Run Open using Sim2 in place of P2,

and return the result to A

Fig. 6. Adversary As on simulation-soundness of Π1, which employs adversary A on GSdT .
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D1(1λ, R1 : Prove(·, ·))
ra ←R {0, 1}r(λ)

(pka,mska ← KGa(1
λ)); (pks, sks ← KGs(1

λ))

(StS2 , R2)← Sim2(gen, 1λ)

gpk← (1λ, R1, R2, pka,pks)
omk← (mska, ra); ik← sks CU← ∅; HU← ∅; MS← ∅
b←R {0, 1}
d← A(gpk, ik : ChaOb(·, ·, ·, ·),OpenO(·, ·, ·), StoUO(·, ·),WRegO(·, ·),USKO(·, ·),CrptUO(·, ·))
If d = b then return 1 else return 0

ChaOb(i0, i1,m, Y
∗)

Parse gpk as (1λ, R1, R2,pka, pks); Parse gsk[ib] as (ib,pkib , skib , certib)

r ←R {0, 1}λ; sb ← Sign(skib ,m); Mb ← 〈ib, pkib , certib , sb〉
C ← Enc(pka, Y

∗,Mb; r)
π1 ← Prove((pka, pks,m,C), (ib,pkib , certib , sb, r))

Return (C, π1)
OpenO(m,σ) Parse σ as (C, π1)

Run Open using Sim2 in place of P2, and return the result to A

D2(1λ, R2 : Prove(·, ·))
ra ←R {0, 1}r(λ)

(pka,mska ← KGa(1
λ)); (pks, sks ← KGs(1

λ))

R1 ←R {0, 1}p(λ)

gpk← (1λ, R1, R2, pka,pks)
omk← (mska, ra); ik← sks CU← ∅; HU← ∅; MS← ∅
b←R {0, 1}
d← A(gpk, ik : ChaOb(·, ·, ·, ·),OpenO(·, ·, ·), StoUO(·, ·),WRegO(·, ·),USKO(·, ·),CrptUO(·, ·))
If d = b then return 1 else return 0

ChaOb(i0, i1,m, Y
∗)

Parse gpk as (1λ, R1, R2,pka, pks); Parse gsk[ib] as (ib,pkib , skib , certib)

r ←R {0, 1}λ; sb ← Sign(skib ,m); Mb ← 〈ib, pkib , certib , sb〉
C ← Enc(pka, Y

∗,Mb; r)

π1 ← P1(1λ, (pka,pks,m,C), (ib, pkib , certib , sb, r), R1)

Return (C, π1)
OpenO(m,σ) Parse σ as (C, π1)

Run Open using Prove oracle in place of P2, and return the result to A

Fig. 7. Distinguisher D1 and D2 on zero-knowledge of Π1 and Π2, respectively, which employs adversary A on GSdT.
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Lemma 2 For any given ppt algorithm A, there exist ppt algorithms A0, A1 and As described in Figs.5
and 6 and the following equality holds.

Pr[Exprind-cpa-0ABE,A1
(1λ) = 1]− Pr[Exprind-cpa-1ABE,A0

(1λ) = 1] = Advss
Π1,As

(λ). (13)

Proof. The equality (13) is derived in a similar way to the discussion in [3], the equality (9). The only
difference is that, instead of the decryption oracle, we can use the key-extraction oracle. This is due to our
scenario concerning the relation (5).

Lemma 3 For any given ppt algorithm A, there exist ppt algorithms D1, A0 and A1 described in Figs.7
and 5 and the following equality holds.

2 · Pr[Expzk-0P1,Sim1,D1
] ≤ 1 + Pr[Exprind-cpa-1ABE,A1

(1λ) = 1]− Pr[Exprind-cpa-0ABE,A0
(1λ) = 1]. (14)

Proof. The equality (14) is derived in the same way as the discussion in [3], the equality (11).

Lemma 4 For any given ppt algorithm A, there exist ppt algorithms D1 and D2 described in Fig.7 and
the following equality holds.

Pr[Expzk-1P1,Sim1,D1
(1λ) = 1] = Pr[Expzk-0P2,Sim2,D2

(1λ) = 1]. (15)

Proof. This is due to the definitions of the experiments Expzk-1P1,Sim1,D1
and Expzk-0P2,Sim2,D2

, and of D1 and D2

given in Fig.7.

Now, from Lemma 2 and Lemma 3, we obtain the following inequality to be true.

Proposition 1

2 · Pr[Expzk-0P1,Sim1,D1
(1λ) = 1] ≤ 1 + Advind-cpa

ABE,A1
(λ) + Advind-cpa

ABE,A0
(λ) + Advss

Π,A(λ). (16)

Proof. By adding the both sides of the equations (13) and (14), and adding and subtracting the corresponding
terms, we achieve the inequality (16).

Finally, we attain Theorem 2.

Proof. Subtract the both sides of the equality (12) from the both sides of the inequality (16), respectively.
Then, to the resulted inequality, add and subtract the equal terms of (15). We obtain the inequality (11).

Theorem 3 (Traceability) If Sig is EUF-CMA secure, Π1 = (P1,V1) is sound and Π2 = (P2,V2) is
sound, then our group signature scheme GSdT is traceable. More precisely, for any given ppt algorithm A
that is according to ExprtraceGSdT,A(1λ, κ), there exists ppt algorithm F that is according to Expreuf-cma

Sig,F (1λ) such
that the following inequality holds.

Advtrace
GSdT,A(λ) ≤ 2−λ + Adveuf-cma

Sig,F (λ). (17)

Proof. The proof goes basically in the same way as the deduction in [4].

Theorem 4 (Non-frameability) If Sig is EUF-CMA secure, Π1 = (P1,V1) is sound and Π2 = (P2,V2) is
sound, then our group signature scheme GSdT is non-frameable. More precisely, for any given ppt algorithm
A that is according to ExprnfGSdT,A(1λ, κ) and that generates at most N(λ) honest users, there exist ppt

algorithms F1 and F2 that are according to Expreuf-cma
Sig,F1

(1λ) and Expreuf-cma
Sig,F1

(1λ), respectively, such that the
following inequality holds.

Advnf
GSdT,A(λ) ≤ 2−λ+1 +N(λ) · (Adveuf-cma

Sig,F1
(λ) + Adveuf-cma

Sig,F2
(λ)). (18)

Proof. The proof goes basically in the same way as the deduction in [4].
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6 Conclusion

In this paper, we introduced the notion of designated traceability, which limits excessiveness of the opening
function in that that users are capable of specifying access structures of openers. This study is a first step
towards mutual accountability between the openers and the users in group signature schemes, and this
direction should be our future work.
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