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Abstract

In this work, we define and study equivalence problems for sum-rank codes,
giving their formulation in terms of tensors. Moreover, we introduce the concept
of generating tensors of a sum-rank code, a direct generalization of the generating
matrix for a linear code endowed with the Hamming metric. In this way, we
embrace well-known definitions and problems for Hamming and rank metric codes.
Finally, we prove the Tl-completeness of code equivalence for rank and sum-rank
codes, and hence, in the future, these problems could be used in the design of
post-quantum schemes.
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1 Introduction

Code Equivalence. The problem of finding the equivalence between two linear codes in
the Hamming metric was studied by Leon in 1982 [17], and later its hardness was analyzed
in [26,29,30]. The Support Splitting Algorithm [28] finds a permutation between two codes in
exponential time in the dimension of the hull, and, for random codes, it has been proven that
the algorithm runs in practical time. Moreover, in [2,26] are shown some links between the
Code Equivalence and the Graph Isomorphism problem.

The code equivalence problem belongs to the large class of isomorphism problems, like Graph
Isomorphism and Polynomial Isomorphism, contained in NPNcoAM. A recent complexity class
called TI links equivalence problems to Tensor Isomorphism: concepts like Tl-hardness and
completeness are formalized in [13]. These problems can be easily modelled by Hard Homoge-
neous Spaces (or Cryptographic Group Actions) [1,6] and are relevant from a cryptographic
point of view since they lead to a Sigma protocol, for example the one for Graph Isomorphism
presented in [11]. Assuming that the underlying problem is intractable, a Sigma protocol can
be converted to a digital signature using the Fiat-Shamir transform [10]. Many post-quantum
signatures are based on this construction, for example [3,4,8,9,25,32].

More recently, the hardness of the equivalence problem on matrix codes has been studied:
in [7] it is proven that in the rank metric it is at least harder than the monomial equivalence
in the Hamming metric, and in [27], it is shown that a problem on homogeneous quadratic
polynomials is polynomially equivalent to deciding the equivalence between two matrix codes.

Sum-rank codes. Sum-rank codes are a generalization of both Hamming and matrix
codes, and they were independently introduced in [24] and [18]. A sum-rank code is a subspace
of the Cartesian product of ¢ matrix spaces of (eventually) different sizes. Given a tuple of
matrices, its sum-rank weight is the sum of their ranks. It can be seen as a generalization of
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Figure 1: Reduction between problems and Tl-completeness. “A—B” indicates that
A reduces to B.

the Hamming weight and the rank. This field is still in its beginning and an introduction to
the general theory for such codes can be found in [21]. Isometries of certain classes of codes
are studied in [21] and a straightforward question is to decide whether two arbitrary sum-rank
codes are equivalent, leading to the equivalence problem in the sum-rank metric, introduced
in [20].

Our contribution. In this work, we define the linear equivalence problem for sum-rank
codes CEg, and we study its hardness. It is also given a characterization of linear maps that
preserve the sum-rank metric. We show that CEg, is polynomially equivalent to the same
problem in the rank metric CE,x and we show the Tl-completeness of both problems. Figure
1 summarises all the reductions between code equivalence and other problems. To ease the
notation and the proofs, we generalize the concept of generating matriz to generating tensors
of a linear code. In Section 2 some preliminaries on codes and tensors are given, while Section
3 sets the notation and define the generating tensors for sum-rank codes. Section 4 concerns
the linear equivalence problem and shows some reductions between different formulations of it.

2 Preliminaries

For a prime power ¢, F; is the finite field with ¢ elements, and Fy is the n-dimensional
vector space over F;. With Fj*™ we denote the linear space of n x m matrices with coefficients
in Fy. Let GL,(g) be the group of invertible n x n matrices with coefficients in F,. A monomial
n X n matrix is given by the product of a n x n diagonal matrix with non-zero entries on the
diagonal, with a n X n permutation matrix. Monomial matrices form a subgroup of GLy(q).
The transpose of a matrix A is denoted with A*. With || we denote the concatenation of strings
or vectors.

2.1 Tensors
For the scope of this paper, when we talk about tensors, we intend d-way arrays.

Definition 1. Let d,nq,...,ng be positive numbers. A d-tensor T over the field F of side
lengths nq,...,ng, written as

T=T, ., 1<ij<njforeveryl<j<d

d
is a d-dimensional array with entries in F.

From here, we will consider mainly 3-tensors over the finite field F,.
Given a 3-tensor G,ji of side length n,m, s, the s slices of G are 2-tensors (n x m matrices)
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given by Gjj1,...,Gijs. Here we use the notation with indexes ij to denote that they are
2-tensors.
Like in the case of Graph Isomorphism, the problem of 3-Tensor Isomorphism can be defined.

Definition 2. The 3-Tensor Isomorphism (3-Tl) problem is given by
e Input: two 3-tensors G = Gyj; and G’ = G, of side length n,m, s.

e Output: YES if there exist matrices A in GL,(¢), B in GL,,(¢q) and C in GL(q) such
that for every 1, j, k the following holds:

G’ijk = Z G;u)wAiquUCkw

u,v,w
and NO otherwise.

The search version s3-Tl is the problem of finding such matrices, given two isomorphic 3-
tensors.

The above problem can be generalized in the case of d-tensors, with d constant. In [12] it
is shown that d-Tl and 3-T| are polynomially equivalent. In the same flavour of the complexity
class Gl (the set of problems reducible in polynomial time to Graph Isomorphism [16]), the Tl
class is defined in [13], since a lot of different problems can be reduced to d-TI.

Definition 3. The Tensor Isomorphism class (TIl) contains decision problems that can be
reduced to d-Tl for a certain d. A problem D is said Tl-hard if d-T| can be reduced to D, for
any d. A problem is said Tl-complete if it is in Tl and is Tl-hard.

It is easy to see that Tl is a subset of NP and we can adapt the AM protocol for the
complement of Graph Isomorphism [11] and Code Equivalence [26] to show that Tl is in coAM.
This means that no problem in Tl can be NP-complete unless the polynomial hierarchy collapses
at the second level [5]. From a cryptographic point of view, this is not a big issue: problems
in NP N coAM have the interesting property that the hardest instance is as difficult to solve
as a random one. More formally, given an arbitrary instance, it can be reduced to a random
one. Such property is not held by any NP-complete problem, unless the polynomial hierarchy
collapses at the third level.

2.2 Hamming metric

Let C be a [n, k],-code , i.e. a Fg-linear subspace of [y of dimension k. The Hamming
weight of a vector z in Fy is the number of its non-zero coordinates, and it is denoted with
wr(z). The Hamming distance is given by

du(z,y) =wh(z —y)
and it is, indeed, a metric [14, Theorem 1.4.1].

Definition 4. An invertible map f : Fy — Fj is a linear equivalence that preserves the
Hamming weight if it is F-linear and for every z in Fj we have

wr () =wg (f(z)).

By linearity, f preserves the Hamming metric and we say that f is a linear Hamming metric-
PTeserving map.

Two linear codes in the Hamming metric C and C’ are linearly equivalent if there is a linear
Hamming metric-preserving map f such that C = f (C’).

We can characterize linear metric-preserving maps in the Hamming metric, reporting a
well-known result from [19].

Proposition 5. If f : ¥y — Fy is a linear Hamming metric-preserving map, then there exists

a n x n monomial matriz Q such that f(x) = xQ for all x in Fy.
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Then two codes C and C’ are linearly equivalent if there exists a monomial matrix ) such
that
C={yQeF" |yel'}.
The generator matrix G of a code C is not unique, hence, for every invertible matrix S, the
matrix SG generate the same code C. This must be considered since we state the equivalence
problem for Hamming metric codes in terms of generator matrices.

Definition 6. The Hamming Linear Code Equivalence (CEy) problem is given by

e Input: two codes C and C’ represented by their k X n generator matrices G and G/,
respectively.

o QOutput: YES if there exist a k x k invertible matrix S and a n x n monomial matrix @
such that G = SG’Q, and NO otherwise.

The search version sCEy is the problem of finding such matrices given two linearly equivalent
codes.

Observe that the matrix S in the above definition models a possible change of basis, while
the monomial matrix @ is a permutation and a scaling of the coordinates of the code.

2.3 Rank metric

In this work we consider codes in the rank metric in their matrix representation. Let n,m
be positive integers, a [n x m, k], matrix code C is a F4-linear subspace of g™ of dimension k.
The rank weight of a matrix is given by wy(A) = rkp, (A). The rank distance of two elements
A, B in F*™ is given by
drk(A, B) = I‘k[[:q (A — B)
and it is, indeed, a metric.

Definition 7. An invertible map f : Fy*™ — Fg*™ is a linear equivalence that preserves the
rank if it is Fy-linear and for every A in Fj*™ we have

Wrk (A) = Wik (f(A)) .

By linearity, f preserves the rank metric and we say that f is a linear rank metric-preserving
map.

Two matrix codes in the rank metric C and C" are linearly equivalent if there is a linear
rank metric-preserving map f such that C = f (C').

From [22], linear rank metric-preserving maps can be characterized.

Proposition 8. If f : Fg*™ — Fy*™ is a linear rank metric-preserving maps, then there exist
an X n invertible matriz A and a m X m invertible matriz B such that

1. f(W)=AWDB for all W in Fy*™, or
2. f(W)=AW'B for all W in Fp>™,
where the latter case can occur only if n = m.

In the literature, for example [7,27], the linear equivalence problem for matrix codes is
defined taking into account only the first case of Proposition 8, even when n = m. In terms
of hardness this is not a problem, since considering both cases requires at most twice the time
of considering only the first case, and hence, just a polynomial overhead. For simplicity, we
continue the approach from [7,27] in the following definition.

Definition 9. The rank Linear Code Equivalence (CE,) problem is given by
e Input: two [n X m, s] matrix codes C and C’ represented by their bases.

e Output: YES if there exist matrices A in GL,(¢) and B in GL,,(q) such that for every
W in C’ we have that AW B is in C, and NO otherwise.

The search version sCE, is the problem of finding such matrices given two linearly equivalent
codes.
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3 Sum-rank Codes

A generalization of both Hamming and rank metric is the sum-rank metric. Consider
positive integers t,n1,...,n¢,m1,...,me. A sum-rank code is a Fg-linear subspace of the
Cartesian product

]F’ﬂlxml X oeee X ]Fntth
q q :

In order to define the metric on which the code is based, we define the sum-rank function (or
weight)
Wep ]F;“X’"1 X oo X Iﬁ‘gtxmt — N
(Al,...,At) — 25:1 I'k]Fq (Al)

The sum-rank distance (or metric) is given by
der (A7 B) = Wgp (A - B) )

where A and B are elements of Fg1>™1 x ... x Fpe*™t ie. t-tuples of matrices. It can be
shown that the function dg, is a metric [21, Proposition 1.1].

Observe that, for ny =--- =n; = m; = --- = my = 1, the sum-rank metric coincides with
the Hamming metric and sum-rank codes can be seen as linear codes of length ¢ in IE";. For
t = 1 we have the rank metric, and sum-rank codes are matrix codes of size ny x mq.

It is useful to define maps that preserve the sum-rank metric.

Definition 10. An invertible map
S e e XM e e

is a linear equivalence that preserves the sum-rank if it is F,-linear and for every (Ai,..., A;)
in Fyrxms . x FpeX™t we have

Wer (A1, ..., Ar)) = wer (F((A1,...,41))) .

By linearity, f preserves the sum-rank metric and we say that f is a linear sum-rank metric-
preserving map.

Two codes in the sum-rank metric C and C' are linearly equivalent if there is a linear
sum-rank metric-preserving map f such that C = f (C').

We recall the vector representation of a special class of sum-rank codes over F,. Suppose
m=mq =---=m; and set N =n; + - + ny, fix a basis B for F,m over F, as vector space.
We can see tuples of matrices in Fj**"1 x - - - x F**™* as vectors in Févm: a matrix C; in Fg*>m

is associated to the vector ¢( in IFZJ;, and we take the concatenation of such vectors
(C(l)||c(2)||. . ||C(t)),

This transformation is invertible and its inverse is called the total matriz representation map
[21]:
. N mXn mxn
Mp : Fpm — F*7" X X FZTE

This maps induces a sum-rank weight on vectors in IF,]]Y",

WU(Cl7 ey CN) = Wgr (MB(Cl), ey MB(CN))

and a distance d, (z,y) = w,(z — y).

It can be shown that the choice of the basis of Fym over F, does not affect the metric [21].
This metric depends only on the ny,...,n; and m.

Linear sum-rank metric-preserving maps for sum-rank codes in the vector representation are
characterized in [21] and we report here the result.

Proposition 11. Let N =ny +---+ng. If [ Ff]\fn — ]Ff]\,’,, is a linear sum-rank metric-
preserving maps, then there exist
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1. ﬁla s aﬁt in (qu)*7
2. n; X n; invertible matrices A;, fori=1,...,t, and
3. a permutation o in S;

such that
f(c(1)||~ .. ||C(t)) — (6160(1)A1||' .. ||6t6”(t)At)

for all ¢ in Fom .

Due to this result, we can define the equivalence problem for sum-rank codes in the next
section.

3.1 Generating tensors

Since a sum-rank linear code C is a vector subspace of Fy1*™t x ... x Fpt*™t we can
choose a basis for it of the form

B={(al,.. Al (a0, a0}

where A is in Fpexme. We can pack, for every u from 1 to t, matrices AV LAY i
a 3-tensor of side length n,,m,,s. This is the intuition behind the definition of generating
tensor(s).

Definition 12. Let C be a sum-rank linear code of sizes t,n1,...,ny, my,...,m; and dimension
s. A generating t-uple of tensors G is an element of the form

G = (G,...,Gy)
where, for h =1,...,t, G, is a 3-tensor of side length ny,mp, s
Gh = (Gh)iji

Xmp,

such that the s slices (Gy);; of G generate the projection of C to Fy» . In other words we

have
¢ =Span { ((G1)yj1s+ (Geligt )+ (G1)gsg o (Gl ) }-

We can see that this definition embraces the more standard concept of generating matriz
of a Hamming code C: whenever n; = --- =n; =my = --- = my = 1 we have that the 3-tensor
Gp, for h = 1,...,t, has side length 1,1,s and hence it is a vector. A t-tuple of vectors of
length s can be rearranged in a matrix, that is a generator matrix of the code, in fact we have

C:Span{(Gn,...,Gﬂ),...,(Gls,...,GtS)}.

In the case of matrix code C with the rank metric, we have ¢ = 1. This implies that we
have a 1-tuple of generating tensor G = G, of side length n,m,s. In terms of vector spaces
we have that the slices of G generates the matrix code C:

C = Span {Gijh ceey Gijs} .

This formulation of generating tensors is useful to convert equivalence problems in tensors
and matrices problems, as we can see in the following section.

With this notation we can translate the equivalence of code into isomorphism of tensors.
Observe that, in [12], the problem 3-TI is implicitly assumed to be equivalent to the Matriz
Space Equivalence problem. The latter is a reformulation of CE,: here we give the explicit
reduction between CE, and 3-Tl, proving that the former is Tl-complete.

Proposition 13. The problem CE,. is Tl-complete.
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Proof. We show the Tl-completeness of CE,« proving the equivalence with 3-TI.
First we show the reduction from 3-Tl to CEw. Given tensors G = Gy, and G’ = G}, of side
length n,m, s, we ask if there exist matrices A in GL,,(¢q), B in GL,,(¢q) and C in GL(g) such
that

Gigi = Y GrvwAiBjoCru. (1)

wU,,W
We can consider G and G’ as generating tensors of the two matrix codes C and C’: the slices
of G and G’ generates C and C’. Suppose that they are equivalent, then there exist A, B such
that for every W in C’, we have AW B is in C. Moreover, a basis for C is given by
{AG;ﬂB, ... AG E}

iJs
and for every matrix G, for k =1,...,s, we can write it with respect to this basis:

Gije = »_ NPDAG),,B

ijw

= Z )‘%ﬂ) Z AviuGiwwgvj
w R

= Z AviuG;vwE’Uj)‘z(])c)

UV, W

- A\t ,
Setting A=A, B= (B) and C = ()\Ej))ij, we obtain exactly (1).

Now we reduce CEy to 3-Tl. Suppose C and C’ are two matrix codes of dimension s and
parameters n, m with generator tensors G = G and G’ = G k> respectively. We ask if there
exist matrices A in GLy,(q) and B in GLy, (¢) such that for every W in C’, we have AW B € C.
If G and G’ are isomorphic as 3-tensors, then there exist A in GL,,(¢), B in GL,,(¢q) and C in
GL;(g) such that

Gijk = Y Gy AinBjuChu- (2)
We set A = A and B = B*, and we show that AW B is in C for each W' in C’. Write a generic
W in C with respect to the basis {Gjj1,...,Gijs}

W =>" MGijk,
k
then we take the linear combination of (2) with coefficients Aj:
> NGijk = M Y GrppAinBjoCr-
k k UV, W

Observe that on the left hand side we have W, and rearranging the terms on the right hand
side we have:

W = Z <Z )\kckw> Z GiwwAiquv
w k u,v
=Y <Z )\kaw> AG;,, B!
w k

and then W is in the space spanned by {AnglBt, ..., AG! Bt}. In particular, C is in this

VES
subspace and then we have the thesis. O

We can adapt the proof even in the case of search problem: we obtain that sCE, and s3-T]I
are polynomially equivalent.
Observe that, in [27], is proven that CE, is equivalent to the problem of deciding the equivalence
of homogeneous quadratic maps hQMLE. If we combine this result with the above proposition,
we have the following corollary.
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Corollary 14. The problem hQMLE is Tl-complete.

This confirms the suggestion given in [27], stating that the homogeneous instances are the
hardest for the quadratic map equivalence problem.

4 Linear Equivalence Problem for Sum-Rank
Codes

The problem of equivalence between sum-rank codes was introduced in 2020 by Martinez-
Perias [20]. Before stating the problem, we characterize linear sum-rank metric-preserving
maps, as is done in Proposition 11 for vector representation. This characterization regards
sum-rank codes in matrix representation and is a slight generalization of a result from [23,
Proposition 4.25]. For the next result we fix the following notation: for any matrix A, we
define A% = A and A = A*, where the latter occurs only if A is a square matrix.

Proposition 15. Let f: Fjt>™ x - X Fpexme — FprX™mxc. .. x Fpe™ be a linear sum-rank
metric-preserving map. Then there exist a vector (by,...,b;) in FS, invertible matrices A; in
GL,,(q) and B; in GLy,,(q) for eachi=1,...,t, and a permutation o in S; such that

f (W17 ey Wt) = (AlVVch(ll])Bl, s 7Ath[.b(tt])Bt)

for each W; € Fg'ix””. Observe that b; can be non-zero only if n; = m;.

Proof. Let f be a linear sum-rank metric-preserving map. Assume that M is a rank-1 matrix
in Fyi*™, then

1=we(0,...,0,M,0,...,0) = wor(£(0,...,0,M,0,...,0))

If we see f as a tuple of maps to Fyi ™, f = (f1,---, ft), then there exists a unique j such
that £;(0,...,0,M,0,...,0) is a rank-1 matrix and f(0,...,0,M,0,...,0) = 0 for k different
from j. Then every f; sends the vector with a rank-1 matrix and all zeros to a rank-1 matrix.
We can extend this argument to matrices with rank greater than 1 and we can conclude that
for each matrix M in position k, there exists an index iy, depending only on k, such that

rk(M) = wer((0,...,0,M,0,...,0)) = rk(f;, (0,0, M,0,0))

and f;((0,...,0,M,0,...,0) = 0 in Fg7™"™ for every j different from ij. In other words, f;,
preserves the rank of M when it is in position k. Since we can write

(My,...,My) = (Mq,0,...,0)+---+(0,...,0, M),
due to the linearity of f;,, we can conclude that
Jie (M, My) = £3,(0,...,0,M;,,0,...,0) € Fg™* ™™ (3)

Moreover, thanks to Proposition 8, there exist b;, in [F3, A4;, in GLnik (¢) and B;, in GLmik (9)
such that e ]
fi(My,..., M) = Ay M, " B;, .

We define o as the permutation in S; sending iy to k, for each 45 in {1,...,t} given by (3) and
this concludes the proof. O

Using the tensors formalism, we can state the linear equivalence problem for sum-rank
codes. As in the case of CE,, we choose to not include the case of transposition of matrices.

Definition 16. The sum-rank Linear Code Equivalence (CEg ) problem is given by

e Input: two sum-rank codes C and C’, of sizes t,nq,...,ns, m1,...,m; and dimension
s represented by their generator tensors G = (Gy,...,Gy) and G' = (GY,...,G}),
respectively.
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e Output: YES if there exist matrices Ay, ..., Ay, By, ..., B, where A; is in GLy,(¢q) and
B; is in GLy,,(¢), and a permutation ¢ in S; such that

C = Span { <A1 (G;(1)>ij1 Bi,... A, (G;(t))m Bt) o

(Al (Gla(l))ijs By,..., A ( /U(t))ijs Bt> } )

and NO otherwise.

The search version sCEg, is the problem of finding such matrices given two linearly equivalent
codes.

This formulation embraces both the previous linear equivalence problems for Hamming
and rank metric as special cases.

Proposition 17. CEy and CE,« are particular cases of CEg,:

1. CEy is equivalent to CEg, for sum-rank codes with t = 1;

2. CEy is equivalent to CEg for sum-rank codes withni =---=ng=my =---=my = 1.
Moreover, both CEy and CEyx can be polynomially reduced to CEs,.

Proof. 1. For t = 1 we have exactly two matrix codes C and C’ of parameters [n x m, s|,.
Suppose that G = G, generates C and G’ = G}, generates C’ and that the two matrix
codes are linearly equivalent. This is equivalent (by the definition of CE) to the fact
that there exist two invertible matrices A, B such that for every Y in C’ we have that
AY Bis in C. Equivalently, we are saying that the space spanned by AG;le, cee AG;st
is the code C, and this is exactly the formulation of CEg,, where the permutation is taken
from S; = {id}.

2. Forny =---=n; =mp =--- =m; = 1 we have two Hamming codes C and C’, generated
by ¢ 1-tensors (vectors) of side length s. Let these t-tuples of length s row vectors be
G =(Gy,...,Gy) and G' = (GY,...,G}). If we pack them into matrices, we obtain the
well-known generator matrices. Observe that the problem CE now can be formulated
as follows: there exist ay,...,as,b1,...,b; in Fy and o in S; such that

C= Span{(al (G;(l))l b, ..., a (G;(t))l bt)

( (G;(1)>S by,...,a (G;(t)>s b))}

We can set ¢; = a;b; and these elements are still in ]F;, obtaining

C= Span{(cl (G:’(l)>1 Yooy Ct (G;(t))l) s
(e (Go), - vex (Go), )}

and such writing is a reformulation of
C = Span {v{DP,...,v.DP},

where v, = ((GY),,...,(G}),), P is the permutation matrix associated to o and D is the
diagonal matrix with coefficients ¢y, ...,c;. Every monomial matrix can be written as
multiplication of a diagonal and a permutation matrix, then let Q = DP and we obtain

C = Span {v1Q, ..., v.Q}. (4)

To conclude the proof we must formulate the problem in terms of the Definition 6. Let
B = {v1,...,vs} be a basis for C, then due to (4), also B = {v]Q,...,v.Q} is a basis.
If S is the matrix sending B’ into B and we have the thesis: given generator matrices A
and A’ with respect to bases B and B’ for C and C’ respectively, there exist an invertible
s x s matrix S and a monomial ¢ X ¢ matrix @) such that A = SA'Q.

O
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The above result is stated for decision problems but both the statements and the proofs
can be adapted for the search version of such problems.
Observe that, both in [7] and [12], CEy is reduced to CE, and this implies the statement 2 of
the previous proposition. We still keep the proof given here to highlight how the definition of
CEs, and generating tensors embrace CEy and CE.

We recall that a sum-rank code is in vector representation when it is a linear subspace of
FY, with the metric d, from Section 3. Suppose N = nq + - - - + ny, then for each ¢ in Fé\fn we

q
c— (C(l)”. . Hc(t)) ’

write

where every ¢ is in Fahn.
Using the characterization of linear map that preserves d,, for vector representation of sum-rank
codes in [21, Theorem 1.1], we state the correspondent equivalence problem.

Definition 18. The vector sum-rank Linear Code Equivalence (vCEg,) problem is given by

e Input: two sum-rank codes C and C’ in their vector representation, with parameters
t,N =ny+---+ns,m and dimension s represented by their basis G = {vy,...,vs} and
G’ = {wy,...,ws}, respectively.

e Output: YES if there exist elements B1,...,5: in Fy., invertible matrices Ay,..., Ay,
where A; is in GL,,(¢) and a permutation o in &; such that

C = Span { (51w§0(1))A1||- - Hﬁtwgg(t))/lt) ey
(Brwl® Ayl |8l 4, ) |

and NO otherwise.

The search version svCEg, is the problem of finding such matrices given two linearly equivalent
codes.

The next technical lemma links the equivalence problem for vector representation of sum-
rank codes to matrices codes in the rank metric.

Lemma 19. The problem vCEg, can be reduced to CEy in polynomial time.

Proof. Suppose that C and C’ are two sum-rank codes in their vector representation with

parameters t, N = ny+- - -+ns, m and dimension s, represented by their basis G = {v1,...,vs}
and G’ = {wy, ..., ws}, respectively, seen as subspaces of ]Févm.
If C and C’ are equivalent, then there exist f1,...,3; in Fy., invertible matrices Ay, ..., Ay,

where A; is in GLy,(¢) and a permutation ¢ in S; such that
¢ =span { (Bl 4yl [1Br" P 4,) ..
<ﬁlwgo(1>>A1||. . IIBtwg"“))At)} _
Fix a basis B of Fgm over F; and consider the total matrix representation map

Mp : Fl — By oo x Fpexm,

For each basis element w; = (w§1)||- . ||w§t)> fori=1,...,s, define the m¢ x N matrix W; as

the block diagonal matrix having as blocks the components of Mg(w;):

(Mp(wi)),
Wi =
(Mp(w;)),

10
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where with (Mp(w;)); we denote the j-th matrix of the tuple.
Since the multiplication by scalar A in Fym

A qu — ]qu
xr = AT
is a linear map when we see Fym a vector space over I, we can associate to it a matrix m x m

matrix with coefficients in Fy, denoted with Mp(A). Let P be the N x N block permutation
matrix associated to o, having t identities I,, blocks with respect to o. Set

Mp(B1)
B =
M (Bt)
and
Ay
A= ,
At
then, the linear map f leading the equivalence between C and C’ is given in the following matrix
terms

f3 F;nth N quth
C — BCPA.

The problem vCE is equivalent to decide if there exist an invertible matrix B in F***™* and
an invertible N x N matrix D such that C is the vector space generated by

BW.D,...,BW,D,
and this, if we proceed as in the proof of Proposition 17, is equivalent to CE,. O

A straightforward reduction from CEg to CE,« can be done viewing a sum-rank code of pa-
rameters t,ny, ..., N, M1, .., My as a vector representation of a code with parameters ¢, N, m,
where N =n; 4+ --- +ny and m = lem (mq,...,my), i.e. a code with coefficients in Fym, the
smallest extension containing each field F,m;. Then, applying Lemma 19 we reduce it to CEx.
Unfortunately, in the worst case this extension can be exponentially large (in ) respect to F,.

Theorem 20. CEg, can be reduced to a polynomial number of instances of CE.

Proof. Let C and C’' be two sum-rank codes of sizes t,n1,...,ns, m1,...,m; and dimension s
represented by their generator tensors G = (G1,...,Gt) and G’ = (G4, ..., G}).

Define I'(m) = {i | m; = m} and IV(m) = {i | m; = m}, where m is a positive integer. Observe
that for different m, the set of indices 1,...,t is partitioned by I'(m) and I'(m). Let o be a
permutation in S; of the equivalence, it preserves the sum-rank metric only if it acts disjointly
on such sets:

o (I'(m)) = T(m)
for each m. Due to this fact, we can focus on each of these sets individually, let
{1,...¢}=T7U---UTYy,

with h at most ¢.
If T'(m) has only one element j, the image of o(j) is determined by the (unique) element
of I'(m). More generally, setting N; = >, . ng, we can see codes C and C' as Cartesian

products of vector representation of sum-rank codes over Iﬁ‘é\f,z and using Lemma 19, we obtain
the thesis: we reduced CEg, to at most ¢ instances of CE,y. O

The above theorem shows that there is a Cook reduction from CEs, to CE,, and it is natural
to ask if there is a tight Karp reduction. Combining Theorem 20 with Proposition 17, we obtain
the following result.

Corollary 21. CEg, and CE, are polynomially equivalent. Moreover, CEs, is Tl-complete.
11



Giuseppe D’Alconzo Code Equivalence in the Sum-Rank Metric

5 Conclusions

We showed the Tl-completeness of both CE, and CEg,, using a reduction from the vector
representation of sum-rank codes to matrix codes. We point out that these results can be easily
translated in the setting of semi-linear equivalences, in such case we have only a polynomial
overhead since semi-linear maps are a composition of linear maps with a field automorphism.

An algorithm for CE is presented in [27], with running time O* (qg(m“’)) and since the

reduction from CEg to CE. is not tight, a future application can be the design of a digital
signature based on the equivalence problem for sum-rank codes. Recalling considerations at
the end of Subsection 2.1, we can say that the Tl-hardness of CEg, is a big clue that it could
be intractable even in the average case. Many isomorphism problems still resist to the Shor’s
quantum algorithm [31], and so they can be used in the design of post-quantum cryptographic
schemes. In particular, post-quantum signatures have been built on similar assumptions on
Tl-complete problems, like [32] and [15].
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