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Abstract

In this work, we define and study equivalence problems for sum-rank codes,
giving their formulation in terms of tensors. Moreover, we introduce the concept
of generating tensors of a sum-rank code, a direct generalization of the generating
matrix for a linear code endowed with the Hamming metric. In this way, we
embrace well-known definitions and problems for Hamming and rank metric codes.
Finally, we prove the TI-completeness of code equivalence for rank and sum-rank
codes, and hence, in the future, these problems could be used in the design of
post-quantum schemes.
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1 Introduction

Code Equivalence. The problem of finding the equivalence between two linear codes in
the Hamming metric was studied by Leon in 1982 [17], and later its hardness was analyzed
in [26,29,30]. The Support Splitting Algorithm [28] finds a permutation between two codes in
exponential time in the dimension of the hull, and, for random codes, it has been proven that
the algorithm runs in practical time. Moreover, in [2, 26] are shown some links between the
Code Equivalence and the Graph Isomorphism problem.
The code equivalence problem belongs to the large class of isomorphism problems, like Graph
Isomorphism and Polynomial Isomorphism, contained in NP∩coAM. A recent complexity class
called TI links equivalence problems to Tensor Isomorphism: concepts like TI-hardness and
completeness are formalized in [13]. These problems can be easily modelled by Hard Homoge-
neous Spaces (or Cryptographic Group Actions) [1, 6] and are relevant from a cryptographic
point of view since they lead to a Sigma protocol, for example the one for Graph Isomorphism
presented in [11]. Assuming that the underlying problem is intractable, a Sigma protocol can
be converted to a digital signature using the Fiat-Shamir transform [10]. Many post-quantum
signatures are based on this construction, for example [3, 4, 8, 9, 25,32].
More recently, the hardness of the equivalence problem on matrix codes has been studied:
in [7] it is proven that in the rank metric it is at least harder than the monomial equivalence
in the Hamming metric, and in [27], it is shown that a problem on homogeneous quadratic
polynomials is polynomially equivalent to deciding the equivalence between two matrix codes.

Sum-rank codes. Sum-rank codes are a generalization of both Hamming and matrix
codes, and they were independently introduced in [24] and [18]. A sum-rank code is a subspace
of the Cartesian product of t matrix spaces of (eventually) different sizes. Given a tuple of
matrices, its sum-rank weight is the sum of their ranks. It can be seen as a generalization of
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Figure 1: Reduction between problems and TI-completeness. “A→B” indicates that
A reduces to B.

the Hamming weight and the rank. This field is still in its beginning and an introduction to
the general theory for such codes can be found in [21]. Isometries of certain classes of codes
are studied in [21] and a straightforward question is to decide whether two arbitrary sum-rank
codes are equivalent, leading to the equivalence problem in the sum-rank metric, introduced
in [20].

Our contribution. In this work, we define the linear equivalence problem for sum-rank
codes CEsr and we study its hardness. It is also given a characterization of linear maps that
preserve the sum-rank metric. We show that CEsr is polynomially equivalent to the same
problem in the rank metric CErk and we show the TI-completeness of both problems. Figure
1 summarises all the reductions between code equivalence and other problems. To ease the
notation and the proofs, we generalize the concept of generating matrix to generating tensors
of a linear code. In Section 2 some preliminaries on codes and tensors are given, while Section
3 sets the notation and define the generating tensors for sum-rank codes. Section 4 concerns
the linear equivalence problem and shows some reductions between different formulations of it.

2 Preliminaries

For a prime power q, Fq is the finite field with q elements, and Fnq is the n-dimensional
vector space over Fq. With Fn×mq we denote the linear space of n×m matrices with coefficients
in Fq. Let GLn(q) be the group of invertible n×n matrices with coefficients in Fq. A monomial
n× n matrix is given by the product of a n× n diagonal matrix with non-zero entries on the
diagonal, with a n × n permutation matrix. Monomial matrices form a subgroup of GLn(q).
The transpose of a matrix A is denoted with At. With || we denote the concatenation of strings
or vectors.

2.1 Tensors

For the scope of this paper, when we talk about tensors, we intend d-way arrays.

Definition 1. Let d, n1, . . . , nd be positive numbers. A d-tensor T over the field F of side
lengths n1, . . . , nd, written as

T = Ti1,...,id 1 ≤ ij ≤ nj for every 1 ≤ j ≤ d

is a d-dimensional array with entries in F.

From here, we will consider mainly 3-tensors over the finite field Fq.
Given a 3-tensor Gijk of side length n,m, s, the s slices of G are 2-tensors (n ×m matrices)
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given by Gij1, . . . , Gijs. Here we use the notation with indexes ij to denote that they are
2-tensors.
Like in the case of Graph Isomorphism, the problem of 3-Tensor Isomorphism can be defined.

Definition 2. The 3-Tensor Isomorphism (3-TI) problem is given by

• Input : two 3-tensors G = Gijk and G′ = G′ijk of side length n,m, s.

• Output : YES if there exist matrices A in GLn(q), B in GLm(q) and C in GLs(q) such
that for every i, j, k the following holds:

Gijk =
∑
u,v,w

G′uvwAiuBjvCkw

and NO otherwise.

The search version s3-TI is the problem of finding such matrices, given two isomorphic 3-
tensors.

The above problem can be generalized in the case of d-tensors, with d constant. In [12] it
is shown that d-TI and 3-TI are polynomially equivalent. In the same flavour of the complexity
class GI (the set of problems reducible in polynomial time to Graph Isomorphism [16]), the TI
class is defined in [13], since a lot of different problems can be reduced to d-TI.

Definition 3. The Tensor Isomorphism class (TI) contains decision problems that can be
reduced to d-TI for a certain d. A problem D is said TI-hard if d-TI can be reduced to D, for
any d. A problem is said TI-complete if it is in TI and is TI-hard.

It is easy to see that TI is a subset of NP and we can adapt the AM protocol for the
complement of Graph Isomorphism [11] and Code Equivalence [26] to show that TI is in coAM.
This means that no problem in TI can be NP-complete unless the polynomial hierarchy collapses
at the second level [5]. From a cryptographic point of view, this is not a big issue: problems
in NP ∩ coAM have the interesting property that the hardest instance is as difficult to solve
as a random one. More formally, given an arbitrary instance, it can be reduced to a random
one. Such property is not held by any NP-complete problem, unless the polynomial hierarchy
collapses at the third level.

2.2 Hamming metric

Let C be a [n, k]q-code , i.e. a Fq-linear subspace of Fnq of dimension k. The Hamming
weight of a vector x in Fnq is the number of its non-zero coordinates, and it is denoted with
wH(x). The Hamming distance is given by

dH(x, y) = wH(x− y)

and it is, indeed, a metric [14, Theorem 1.4.1].

Definition 4. An invertible map f : Fnq → Fnq is a linear equivalence that preserves the
Hamming weight if it is Fq-linear and for every x in Fnq we have

wH (x) = wH (f(x)) .

By linearity, f preserves the Hamming metric and we say that f is a linear Hamming metric-
preserving map.

Two linear codes in the Hamming metric C and C′ are linearly equivalent if there is a linear
Hamming metric-preserving map f such that C = f (C′).

We can characterize linear metric-preserving maps in the Hamming metric, reporting a
well-known result from [19].

Proposition 5. If f : Fnq → Fnq is a linear Hamming metric-preserving map, then there exists
a n× n monomial matrix Q such that f(x) = xQ for all x in Fnq .
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Then two codes C and C′ are linearly equivalent if there exists a monomial matrix Q such
that

C = {yQ ∈ Fn | y ∈ C′} .
The generator matrix G of a code C is not unique, hence, for every invertible matrix S, the
matrix SG generate the same code C. This must be considered since we state the equivalence
problem for Hamming metric codes in terms of generator matrices.

Definition 6. The Hamming Linear Code Equivalence (CEH) problem is given by

• Input : two codes C and C′ represented by their k × n generator matrices G and G′,
respectively.

• Output : YES if there exist a k × k invertible matrix S and a n× n monomial matrix Q
such that G = SG′Q, and NO otherwise.

The search version sCEH is the problem of finding such matrices given two linearly equivalent
codes.

Observe that the matrix S in the above definition models a possible change of basis, while
the monomial matrix Q is a permutation and a scaling of the coordinates of the code.

2.3 Rank metric

In this work we consider codes in the rank metric in their matrix representation. Let n,m
be positive integers, a [n×m, k]q matrix code C is a Fq-linear subspace of Fn×mq of dimension k.
The rank weight of a matrix is given by wrk(A) = rkFq (A). The rank distance of two elements
A,B in Fn×mq is given by

drk(A,B) = rkFq
(A−B)

and it is, indeed, a metric.

Definition 7. An invertible map f : Fn×mq → Fn×mq is a linear equivalence that preserves the
rank if it is Fq-linear and for every A in Fn×mq we have

wrk (A) = wrk (f(A)) .

By linearity, f preserves the rank metric and we say that f is a linear rank metric-preserving
map.

Two matrix codes in the rank metric C and C′ are linearly equivalent if there is a linear
rank metric-preserving map f such that C = f (C′).

From [22], linear rank metric-preserving maps can be characterized.

Proposition 8. If f : Fn×mq → Fn×mq is a linear rank metric-preserving maps, then there exist
a n× n invertible matrix A and a m×m invertible matrix B such that

1. f(W ) = AWB for all W in Fn×mq , or

2. f(W ) = AW tB for all W in Fn×mq ,

where the latter case can occur only if n = m.

In the literature, for example [7, 27], the linear equivalence problem for matrix codes is
defined taking into account only the first case of Proposition 8, even when n = m. In terms
of hardness this is not a problem, since considering both cases requires at most twice the time
of considering only the first case, and hence, just a polynomial overhead. For simplicity, we
continue the approach from [7,27] in the following definition.

Definition 9. The rank Linear Code Equivalence (CErk) problem is given by

• Input : two [n×m, s] matrix codes C and C′ represented by their bases.

• Output : YES if there exist matrices A in GLn(q) and B in GLm(q) such that for every
W in C′ we have that AWB is in C, and NO otherwise.

The search version sCErk is the problem of finding such matrices given two linearly equivalent
codes.
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3 Sum-rank Codes

A generalization of both Hamming and rank metric is the sum-rank metric. Consider
positive integers t, n1, . . . , nt,m1, . . . ,mt. A sum-rank code is a Fq-linear subspace of the
Cartesian product

Fn1×m1
q × · · · × Fnt×mt

q .

In order to define the metric on which the code is based, we define the sum-rank function (or
weight)

wsr : Fn1×m1
q × · · · × Fnt×mt

q → N
(A1, . . . , At) 7→

∑t
i=1 rkFq (Ai) .

The sum-rank distance (or metric) is given by

dsr (A,B) = wsr (A−B) ,

where A and B are elements of Fn1×m1
q × · · · × Fnt×mt

q , i.e. t-tuples of matrices. It can be
shown that the function dsr is a metric [21, Proposition 1.1].

Observe that, for n1 = · · · = nt = m1 = · · · = mt = 1, the sum-rank metric coincides with
the Hamming metric and sum-rank codes can be seen as linear codes of length t in Ftq. For
t = 1 we have the rank metric, and sum-rank codes are matrix codes of size n1 ×m1.

It is useful to define maps that preserve the sum-rank metric.

Definition 10. An invertible map

f : Fn1×m1
q × · · · × Fnt×mt

q → Fn1×m1
q × · · · × Fnt×mt

q

is a linear equivalence that preserves the sum-rank if it is Fq-linear and for every (A1, . . . , At)
in Fn1×m1

q × · · · × Fnt×mt
q we have

wsr ((A1, . . . , At)) = wsr (f((A1, . . . , At))) .

By linearity, f preserves the sum-rank metric and we say that f is a linear sum-rank metric-
preserving map.

Two codes in the sum-rank metric C and C′ are linearly equivalent if there is a linear
sum-rank metric-preserving map f such that C = f (C′).

We recall the vector representation of a special class of sum-rank codes over Fq. Suppose
m = m1 = · · · = mt and set N = n1 + · · ·+ nt, fix a basis B for Fqm over Fq as vector space.
We can see tuples of matrices in Fm×n1

q ×· · ·×Fm×nt
q as vectors in FNqm : a matrix Ci in Fm×ni

q

is associated to the vector c(i) in Fni
qm and we take the concatenation of such vectors

(c(1)||c(2)||· · · ||c(t)).

This transformation is invertible and its inverse is called the total matrix representation map
[21]:

MB : FNqm → Fm×n1
q × · · · × Fm×nt

q .

This maps induces a sum-rank weight on vectors in FNqm

wv(c1, . . . , cN ) = wsr (MB(c1), . . . ,MB(cN ))

and a distance dv(x, y) = wv(x− y).
It can be shown that the choice of the basis of Fqm over Fq does not affect the metric [21].
This metric depends only on the n1, . . . , nt and m.
Linear sum-rank metric-preserving maps for sum-rank codes in the vector representation are
characterized in [21] and we report here the result.

Proposition 11. Let N = n1 + · · · + nt. If f : FNqm → FNqm is a linear sum-rank metric-
preserving maps, then there exist
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1. β1, . . . , βt in (Fqm)
∗
,

2. ni × ni invertible matrices Ai, for i = 1, . . . , t, and

3. a permutation σ in St
such that

f(c(1)||· · · ||c(t)) = (β1c
σ(1)A1||· · · ||βtcσ(t)At)

for all c(i) in Fni
qm .

Due to this result, we can define the equivalence problem for sum-rank codes in the next
section.

3.1 Generating tensors

Since a sum-rank linear code C is a vector subspace of Fn1×m1
q × · · · × Fnt×mt

q , we can
choose a basis for it of the form

B =
{(
A

(1)
1 , . . . , A

(1)
t

)
, . . . ,

(
A

(s)
1 , . . . , A

(s)
t

)}
,

where A
(v)
u is in Fnu×mu

q . We can pack, for every u from 1 to t, matrices A
(1)
u , . . . , A

(s)
u in

a 3-tensor of side length nu,mu, s. This is the intuition behind the definition of generating
tensor(s).

Definition 12. Let C be a sum-rank linear code of sizes t, n1, . . . , nt,m1, . . . ,mt and dimension
s. A generating t-uple of tensors G is an element of the form

G = (G1, . . . , Gt)

where, for h = 1, . . . , t, Gh is a 3-tensor of side length nh,mh, s

Gh = (Gh)ijk

such that the s slices (Gh)ij of Gh generate the projection of C to Fnh×mh
q . In other words we

have
C = Span

{(
(G1)ij1 , . . . , (Gt)ij1

)
, . . . ,

(
(G1)ijs , . . . , (Gt)ijs

)}
.

We can see that this definition embraces the more standard concept of generating matrix
of a Hamming code C: whenever n1 = · · · = nt = m1 = · · · = mt = 1 we have that the 3-tensor
Gh, for h = 1, . . . , t, has side length 1, 1, s and hence it is a vector. A t-tuple of vectors of
length s can be rearranged in a matrix, that is a generator matrix of the code, in fact we have

C = Span {(G11, . . . , Gt1) , . . . , (G1s, . . . , Gts)} .

In the case of matrix code C with the rank metric, we have t = 1. This implies that we
have a 1-tuple of generating tensor G = Gijk of side length n,m, s. In terms of vector spaces
we have that the slices of G generates the matrix code C:

C = Span {Gij1, . . . , Gijs} .

This formulation of generating tensors is useful to convert equivalence problems in tensors
and matrices problems, as we can see in the following section.

With this notation we can translate the equivalence of code into isomorphism of tensors.
Observe that, in [12], the problem 3-TI is implicitly assumed to be equivalent to the Matrix
Space Equivalence problem. The latter is a reformulation of CErk: here we give the explicit
reduction between CErk and 3-TI, proving that the former is TI-complete.

Proposition 13. The problem CErk is TI-complete.
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Proof. We show the TI-completeness of CErk proving the equivalence with 3-TI.
First we show the reduction from 3-TI to CErk. Given tensors G = Gijk and G′ = G′ijk of side
length n,m, s, we ask if there exist matrices A in GLn(q), B in GLm(q) and C in GLs(q) such
that

Gijk =
∑
u,v,w

G′uvwAiuBjvCkw. (1)

We can consider G and G′ as generating tensors of the two matrix codes C and C′: the slices
of G and G′ generates C and C′. Suppose that they are equivalent, then there exist Ã, B̃ such
that for every W in C′, we have ÃWB̃ is in C. Moreover, a basis for C is given by{

ÃG′ij1B̃, . . . , ÃG
′
ijsB̃

}
and for every matrix Gijk, for k = 1, . . . , s, we can write it with respect to this basis:

Gijk =
∑
w

λ(k)
w ÃG′ijwB̃

=
∑
w

λ(k)
w

∑
u,v

ÃiuG
′
uvwB̃vj

=
∑
u,v,w

ÃiuG
′
uvwB̃vjλ

(k)
w

Setting A = Ã, B =
(
B̃
)t

and C = (λ
(j)
i )ij , we obtain exactly (1).

Now we reduce CErk to 3-TI. Suppose C and C′ are two matrix codes of dimension s and
parameters n,m with generator tensors G = Gijk and G′ = G′ijk, respectively. We ask if there

exist matrices Ã in GLn(q) and B̃ in GLm(q) such that for every W in C′, we have ÃWB̃ ∈ C.
If G and G′ are isomorphic as 3-tensors, then there exist A in GLn(q), B in GLm(q) and C in
GLs(q) such that

Gijk =
∑
u,v,w

G′uvwAiuBjvCkw. (2)

We set Ã = A and B̃ = Bt, and we show that ÃWB̃ is in C for each W ′ in C′. Write a generic
W in C with respect to the basis {Gij1, . . . , Gijs}

W =
∑
k

λkGijk,

then we take the linear combination of (2) with coefficients λk:∑
k

λkGijk =
∑
k

λk
∑
u,v,w

G′uvwAiuBjvCkw.

Observe that on the left hand side we have W , and rearranging the terms on the right hand
side we have:

W =
∑
w

(∑
k

λkCkw

)∑
u,v

G′uvwAiuBjv

=
∑
w

(∑
k

λkCkw

)
AG′ijwB

t

and then W is in the space spanned by
{
AG′ij1B

t, . . . , AG′ijsB
t
}

. In particular, C is in this
subspace and then we have the thesis.

We can adapt the proof even in the case of search problem: we obtain that sCErk and s3-TI
are polynomially equivalent.
Observe that, in [27], is proven that CErk is equivalent to the problem of deciding the equivalence
of homogeneous quadratic maps hQMLE. If we combine this result with the above proposition,
we have the following corollary.
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Corollary 14. The problem hQMLE is TI-complete.

This confirms the suggestion given in [27], stating that the homogeneous instances are the
hardest for the quadratic map equivalence problem.

4 Linear Equivalence Problem for Sum-Rank
Codes

The problem of equivalence between sum-rank codes was introduced in 2020 by Mart́ınez-
Peñas [20]. Before stating the problem, we characterize linear sum-rank metric-preserving
maps, as is done in Proposition 11 for vector representation. This characterization regards
sum-rank codes in matrix representation and is a slight generalization of a result from [23,
Proposition 4.25]. For the next result we fix the following notation: for any matrix A, we
define A[0] = A and A[1] = At, where the latter occurs only if A is a square matrix.

Proposition 15. Let f : Fn1×m1
q ×· · ·×Fnt×mt

q → Fn1×m1
q ×· · ·×Fnt×mt

q be a linear sum-rank
metric-preserving map. Then there exist a vector (b1, . . . , bt) in Ft2, invertible matrices Ai in
GLni

(q) and Bi in GLmi
(q) for each i = 1, . . . , t, and a permutation σ in St such that

f (W1, . . . ,Wt) =
(
A1W

[b1]
σ(1)B1, . . . , AtW

[bt]
σ(t)Bt

)
for each Wi ∈ Fni×mi

q . Observe that bi can be non-zero only if ni = mi.

Proof. Let f be a linear sum-rank metric-preserving map. Assume that M is a rank-1 matrix
in Fni×mi

q , then

1 = wsr(0, . . . , 0,M, 0, . . . , 0) = wsr(f(0, . . . , 0,M, 0, . . . , 0))

If we see f as a tuple of maps to Fni×mi
q , f = (f1, . . . , ft), then there exists a unique j such

that fj(0, . . . , 0,M, 0, . . . , 0) is a rank-1 matrix and fk(0, . . . , 0,M, 0, . . . , 0) = 0 for k different
from j. Then every fi sends the vector with a rank-1 matrix and all zeros to a rank-1 matrix.
We can extend this argument to matrices with rank greater than 1 and we can conclude that
for each matrix M in position k, there exists an index ik, depending only on k, such that

rk(M) = wsr((0, . . . , 0,M, 0, . . . , 0)) = rk(fik (0, 0,M, 0, 0))

and fj((0, . . . , 0,M, 0, . . . , 0) = 0 in Fnj×mj
q for every j different from ik. In other words, fik

preserves the rank of M when it is in position k. Since we can write

(M1, . . . ,Mt) = (M1, 0, . . . , 0) + · · ·+ (0, . . . , 0,Mt),

due to the linearity of fik , we can conclude that

fik(M1, . . . ,Mt) = fik(0, . . . , 0,Mk, 0, . . . , 0) ∈ Fnik
×mik

q . (3)

Moreover, thanks to Proposition 8, there exist bik in F2, Aik in GLnik
(q) and Bik in GLmik

(q)
such that

fik(M1, . . . ,Mt) = AikM
[bik ]

k Bik .

We define σ as the permutation in St sending ik to k, for each ik in {1, . . . , t} given by (3) and
this concludes the proof.

Using the tensors formalism, we can state the linear equivalence problem for sum-rank
codes. As in the case of CErk, we choose to not include the case of transposition of matrices.

Definition 16. The sum-rank Linear Code Equivalence (CEsr) problem is given by

• Input : two sum-rank codes C and C′, of sizes t, n1, . . . , nt,m1, . . . ,mt and dimension
s represented by their generator tensors G = (G1, . . . , Gt) and G′ = (G′1, . . . , G

′
t),

respectively.
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• Output : YES if there exist matrices A1, . . . , At, B1, . . . , Bt, where Ai is in GLni
(q) and

Bi is in GLmi
(q), and a permutation σ in St such that

C = Span

{(
A1

(
G′σ(1)

)
ij1
B1, . . . , At

(
G′σ(t)

)
ij1
Bt

)
, . . . ,(

A1

(
G′σ(1)

)
ijs
B1, . . . , At

(
G′σ(t)

)
ijs
Bt

)}
,

and NO otherwise.

The search version sCEsr is the problem of finding such matrices given two linearly equivalent
codes.

This formulation embraces both the previous linear equivalence problems for Hamming
and rank metric as special cases.

Proposition 17. CEH and CErk are particular cases of CEsr:

1. CErk is equivalent to CEsr for sum-rank codes with t = 1;

2. CEH is equivalent to CEsr for sum-rank codes with n1 = · · · = nt = m1 = · · · = mt = 1.

Moreover, both CEH and CErk can be polynomially reduced to CEsr.

Proof. 1. For t = 1 we have exactly two matrix codes C and C′ of parameters [n ×m, s]q.
Suppose that G = Gijk generates C and G′ = G′ijk generates C′ and that the two matrix
codes are linearly equivalent. This is equivalent (by the definition of CErk) to the fact
that there exist two invertible matrices A,B such that for every Y in C′ we have that
AY B is in C. Equivalently, we are saying that the space spanned by AG′ij1B, . . . , AG

′
ijsB

is the code C, and this is exactly the formulation of CEsr, where the permutation is taken
from S1 = {id}.

2. For n1 = · · · = nt = m1 = · · · = mt = 1 we have two Hamming codes C and C′, generated
by t 1-tensors (vectors) of side length s. Let these t-tuples of length s row vectors be
G = (G1, . . . , Gt) and G′ = (G′1, . . . , G

′
t). If we pack them into matrices, we obtain the

well-known generator matrices. Observe that the problem CEsr now can be formulated
as follows: there exist a1, . . . , at, b1, . . . , bt in F∗q and σ in St such that

C = Span
{(
a1

(
G′σ(1)

)
1
b1, . . . , at

(
G′σ(t)

)
1
bt

)
, . . . ,(

a1

(
G′σ(1)

)
s
b1, . . . , at

(
G′σ(t)

)
s
bt

)}
.

We can set ci = aibi and these elements are still in F∗q , obtaining

C = Span
{(
c1

(
G′σ(1)

)
1
, . . . , ct

(
G′σ(t)

)
1

)
, . . . ,(

c1

(
G′σ(1)

)
s
, . . . , ct

(
G′σ(t)

)
s

)}
and such writing is a reformulation of

C = Span {v′1DP, . . . , v′sDP} ,

where v′i = ((G′1)i , . . . , (G
′
t)i), P is the permutation matrix associated to σ and D is the

diagonal matrix with coefficients c1, . . . , ct. Every monomial matrix can be written as
multiplication of a diagonal and a permutation matrix, then let Q = DP and we obtain

C = Span {v′1Q, . . . , v′sQ} . (4)

To conclude the proof we must formulate the problem in terms of the Definition 6. Let
B = {v1, . . . , vs} be a basis for C, then due to (4), also B′ = {v′1Q, . . . , v′sQ} is a basis.
If S is the matrix sending B′ into B and we have the thesis: given generator matrices A
and A′ with respect to bases B and B′ for C and C′ respectively, there exist an invertible
s× s matrix S and a monomial t× t matrix Q such that A = SA′Q.
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The above result is stated for decision problems but both the statements and the proofs
can be adapted for the search version of such problems.
Observe that, both in [7] and [12], CEH is reduced to CErk and this implies the statement 2 of
the previous proposition. We still keep the proof given here to highlight how the definition of
CEsr and generating tensors embrace CEH and CErk.

We recall that a sum-rank code is in vector representation when it is a linear subspace of
FNqm with the metric dv from Section 3. Suppose N = n1 + · · ·+ nt, then for each c in FNqm we
write

c =
(
c(1)||· · · ||c(t)

)
,

where every c(i) is in Fni
qm .

Using the characterization of linear map that preserves dv for vector representation of sum-rank
codes in [21, Theorem 1.1], we state the correspondent equivalence problem.

Definition 18. The vector sum-rank Linear Code Equivalence (vCEsr) problem is given by

• Input : two sum-rank codes C and C′ in their vector representation, with parameters
t,N = n1 + · · ·+nt,m and dimension s represented by their basis G = {v1, . . . , vs} and
G′ = {w1, . . . , ws}, respectively.

• Output : YES if there exist elements β1, . . . , βt in F∗qm , invertible matrices A1, . . . , At,
where Ai is in GLni(q) and a permutation σ in St such that

C = Span
{(
β1w

(σ(1))
1 A1||· · · ||βtw(σ(t))

1 At

)
, . . . ,(

β1w
(σ(1))
s A1||· · · ||βtw(σ(t))

s At

)}
and NO otherwise.

The search version svCEsr is the problem of finding such matrices given two linearly equivalent
codes.

The next technical lemma links the equivalence problem for vector representation of sum-
rank codes to matrices codes in the rank metric.

Lemma 19. The problem vCEsr can be reduced to CErk in polynomial time.

Proof. Suppose that C and C′ are two sum-rank codes in their vector representation with
parameters t,N = n1 + · · ·+nt,m and dimension s, represented by their basis G = {v1, . . . , vs}
and G′ = {w1, . . . , ws}, respectively, seen as subspaces of FNqm .
If C and C′ are equivalent, then there exist β1, . . . , βt in F∗qm , invertible matrices A1, . . . , At,
where Ai is in GLni

(q) and a permutation σ in St such that

C = Span
{(
β1w

(σ(1))
1 A1||· · · ||βtw(σ(t))

1 At

)
, . . . ,(

β1w
(σ(1))
s A1||· · · ||βtw(σ(t))

s At

)}
.

Fix a basis B of Fqm over Fq and consider the total matrix representation map

MB : FNqm → Fn1×m
q × · · · × Fnt×m

q .

For each basis element wi =
(
w

(1)
1 ||· · · ||w

(t)
1

)
for i = 1, . . . , s, define the mt×N matrix Wi as

the block diagonal matrix having as blocks the components of MB(wi):

Wi =

(MB(wi))1
. . .

(MB(wi))t
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where with (MB(wi))j we denote the j-th matrix of the tuple.
Since the multiplication by scalar λ in Fqm

λ : Fqm → Fqm
x 7→ λx

is a linear map when we see Fqm a vector space over Fq, we can associate to it a matrix m×m
matrix with coefficients in Fq, denoted with MB(λ). Let P be the N ×N block permutation
matrix associated to σ, having t identities In blocks with respect to σ. Set

B =

MB(β1)
. . .

MB(βt)


and

A =

A1

. . .

At

 ,

then, the linear map f leading the equivalence between C and C′ is given in the following matrix
terms

f : Fmt×Nq → Fmt×Nq

C 7→ BCPA.

The problem vCEsr is equivalent to decide if there exist an invertible matrix B in Fmt×mtq and
an invertible N ×N matrix D such that C is the vector space generated by

BW1D, . . . ,BWsD,

and this, if we proceed as in the proof of Proposition 17, is equivalent to CErk.

A straightforward reduction from CEsr to CErk can be done viewing a sum-rank code of pa-
rameters t, n1, . . . , nt,m1, . . . ,mt as a vector representation of a code with parameters t,N,m,
where N = n1 + · · · + nt and m = lcm (m1, . . . ,mt), i.e. a code with coefficients in Fqm , the
smallest extension containing each field Fqmi . Then, applying Lemma 19 we reduce it to CErk.
Unfortunately, in the worst case this extension can be exponentially large (in t) respect to Fq.

Theorem 20. CEsr can be reduced to a polynomial number of instances of CErk.

Proof. Let C and C′ be two sum-rank codes of sizes t, n1, . . . , nt,m1, . . . ,mt and dimension s
represented by their generator tensors G = (G1, . . . , Gt) and G′ = (G′1, . . . , G

′
t).

Define Γ(m) = {i | mi = m} and Γ′(m) = {i | m′i = m}, where m is a positive integer. Observe
that for different m, the set of indices 1, . . . , t is partitioned by Γ(m) and Γ′(m). Let σ be a
permutation in St of the equivalence, it preserves the sum-rank metric only if it acts disjointly
on such sets:

σ (Γ′(m)) = Γ(m)

for each m. Due to this fact, we can focus on each of these sets individually, let

{1, . . . , t} = Γ′1 t · · · t Γ′h,

with h at most t.
If Γ′(m) has only one element j, the image of σ(j) is determined by the (unique) element
of Γ(m). More generally, setting Ni =

∑
k∈Γi

nk, we can see codes C and C′ as Cartesian

products of vector representation of sum-rank codes over FNi
qmi and using Lemma 19, we obtain

the thesis: we reduced CEsr to at most t instances of CErk.

The above theorem shows that there is a Cook reduction from CEsr to CErk and it is natural
to ask if there is a tight Karp reduction. Combining Theorem 20 with Proposition 17, we obtain
the following result.

Corollary 21. CEsr and CErk are polynomially equivalent. Moreover, CEsr is TI-complete.
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5 Conclusions

We showed the TI-completeness of both CErk and CEsr, using a reduction from the vector
representation of sum-rank codes to matrix codes. We point out that these results can be easily
translated in the setting of semi-linear equivalences, in such case we have only a polynomial
overhead since semi-linear maps are a composition of linear maps with a field automorphism.

An algorithm for CErk is presented in [27], with running time O∗
(
q

2
3 (m+n)

)
and since the

reduction from CEsr to CErk is not tight, a future application can be the design of a digital
signature based on the equivalence problem for sum-rank codes. Recalling considerations at
the end of Subsection 2.1, we can say that the TI-hardness of CEsr is a big clue that it could
be intractable even in the average case. Many isomorphism problems still resist to the Shor’s
quantum algorithm [31], and so they can be used in the design of post-quantum cryptographic
schemes. In particular, post-quantum signatures have been built on similar assumptions on
TI-complete problems, like [32] and [15].
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