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Abstract
Secret sharing is an essential tool for many distributed appli-
cations, including distributed key generation and multiparty
computation. For many practical applications, we would
like to tolerate network churn, meaning participants can
dynamically enter and leave the pool of protocol participants
as they please. Such protocols, called Dynamic-committee
Proactive Secret Sharing (DPSS) have recently been studied;
however, existing DPSS protocols do not gracefully handle
faults: the presence of even one unexpectedly slow node can
often slow down the whole protocol by a factor of O(n).

In this work, we explore optimally fault-tolerant asyn-
chronous DPSS that is not slowed down by crash faults and
even handles byzantine faults while maintaining the same
performance. We first introduce the first high-threshold
DPSS, which offers favorable characteristics relative to
prior non-synchronous works in the presence of faults while
simultaneously supporting higher privacy thresholds. We
then batch-amortize this scheme along with a parallel non-
high-threshold scheme which achieves optimal bandwidth
characteristics. We implement our schemes and demon-
strate that they can compete with prior work in best-case
performance while outperforming it in non-optimal settings.

1 Introduction

Secret sharing [37] is an essential primitive in many
fault-tolerant distributed applications, where a committee of
nodes each hold a share of a secret and the secret can only
be recovered once a threshold of the nodes reveal their shares.
Secret shared data can also be used as input to a confidential
computation using secure multiparty computation (MPC)
without having to reveal the secret data at all.

For many long-running applications where the secret shared
data persists over a long period of time, we need to consider
practical aspects such as network churn, where the committee
membership needs to change periodically due to nodes going
offline. Additionally we may consider stronger adversary
models, like a mobile adversary that may gradually corrupt

even more than the threshold number of nodes. Ordinary se-
cret sharing schemes are no longer secure under these settings.
To overcome these difficulties, previous works [19,33,36,43]
propose and study a generalization of secret sharing called
Dynamic-committee Proactive Secret Sharing (DPSS), where
the secret shares can be refreshed among a possibly different
set of committee nodes, while keeping the secret unchanged.

A limitation of most previous works is that they assume a
perfectly synchronous network, e.g., a synchronous broadcast
primitive or a blockchain. The consequence of this assump-
tion is that these protocols are unsafe under asynchrony. A
node that experiences a temporary network outage must be
ejected after a timeout and deducted from the fault tolerance
threshold; the protocol can be rerun without the ejected
node, but now with a lower fault tolerance. For partially
synchronous or asynchronous settings, very few DPSS pro-
tocols [36,43] have been designed until very recently [38,40].
However, these protocols either incur a high communication
cost (O(n4) to reshare a secret), or lose liveness under
asynchrony [38], or compromise for non-optimal fault
tolerance [40]. In contrast, this work aims to build protocols
which are not only concretely efficient, but also highly robust,
meaning that they perform well even in worst-case scenarios.
Our contributions.

• We design the first asynchronous DPSS protocol which
achieves an O(n3) network bandwidth complexity and
simultaneously achieve optimal fault tolerance and main-
tain our performance even under byzantine faults. This
protocol additionally functions as the first realization
of high-threshold resharing in a DPSS protocol.

• We additionally provide a batch-amortized version of
our high threshold scheme which achieves a network
complexity of O(n2) and a third scheme which no
longer supports high-threshold secrets but achieves an
optimal O(n) amortized network bandwidth even under
byzantine faults. All three schemes are implemented
and the source code is made available.

• We provide a security analysis of our protocols under
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the UC framework. We also survey and discuss
numerous applications of our DPSS schemes, such as
in confidential blockchains and MPC.

1.1 Related Work

We begin with a survey (summarized in Table 1) of prior
DPSS works under a variety of fault and network assump-
tions. While all of these works offer an asymptotic best case
performance value, few actually analyze how their protocols
perform in the presence of multiple crash faults (let alone
byzantine faults). Consequently, many of the asymptotic
performances of prior works under faults in Table 1 are the
result of our own estimates.

Synchronous DPSS schemes. The problem of proactive
secret sharing was first introduced by Herzberg et al. [26],
where a mobile adversary which gradually corrupted different
members of a static committee holding some shared secret
could be defended against via periodic share refreshes, each at
communication cost of O(n3). Desmedt et al. [19] initiated the
study of dynamic proactive secret sharing under synchrony,
however, their protocol only considers a passive adversary
which merely observes the protocol, but does not attempt to
interfere with it. Wong et al. [39] proposed a verifiable DPSS
solution extending the work of Desmedt et al. [19]. However,
their solution requires all new committee members are honest,
and has an exponential communication cost in the worst case.

The work of Baron et al. [6] provides statistical (rather
than cryptographic) security but with a non-optimal resilience
threshold t < (1/2− ε)n. They can achieve O(n3) for the
single-secret setting, and O(1) for the batch setting thanks to
the use of virtualization techniques. However, these virtualiza-
tion techniques are impractical in actual implementations as
they require extraordinarily-large groups to function (to use an
epsilon value small enough to achieve a t<n/3 fault tolerance
would require 576 committees of 576 nodes each running ma-
liciously secure MPC. More discussion of this can be found
in [33]). Additionally, the secrets in this scheme are all packed
into the same polynomial and can not be used independently.

CHURP [33] uses asymmetric bivariate polynomials to
refresh a secret with cost O(n2) in the best case (when there
are no faults), and cost O(n3) in the worst case. Goyal et
al. [23] recently proposed the state-of-the-art synchronous
DPSS scheme that improves the cost of CHURP by a
factor of O(n) in the batch setting. Similar to CHURP, their
protocol optimizes the optimistic-case cost to O(n2), but
has worst-case cost O(n3) for the single-secret setting or
O(n2) for the batch setting. Similar to our scheme, they use
a randomness extraction technique [8] for the batch setting.

Partially synchronous DPSS schemes. The only partially
synchronous DPSS schemes we are aware of are Schultz-
MPSS [36] and the very recent work of COBRA [38].
Schultz-MPSS [36] follows the primary-based approach
where every iteration a primary node will determine a

proposal consisting the blinding polynomials (Herzberg et
al. [26]). Practical Byzantine Fault Tolerance (PBFT) [16] is
used to ensure agreement among all nodes. Similar to PBFT,
malicious primaries need to be replaced via view-change, and
the protocol only makes progress during periods of synchrony.

COBRA [38] uses Verifiable Secret Sharing (VSS) to
generate blinding polynomials to facilitate resharing. Notably,
as VSS does not guarantee that all honest parties receive
shares, COBRA implements a share recovery mechanism
in which for each player Pi requesting a missing share, a
random polynomial R(·) is generated where R(i) = 0 and
shares of φ(·)+R(·) are sent to Pi. However, this recovery
protocol costs O(n3) network communication per recovered
share and t honest parties may need to run it if some dealers
crashed during the resharing phase. By using Asynchronous
Complete Secret Sharing (ACSS), which guarantees that if
one honest party outputs successfully then eventually all will,
we are able to avoid this issue completely.

Asynchronous DPSS schemes. Cachin et al. [13] initiated
the study of PSS under asynchronous networks, with a O(n4)
cost solution based on resharing the shares of the secret via
AVSS and agreeing on the resharing via VBA. Their scheme
inspires our first DPSS construction. Zhou et al. [43] proposed
the first dynamic PSS scheme but with exponential cost. Then,
the communication cost of asynchronous DPSS was improved
to O(n3logn) very recently by Shanrang [40]. However, Shan-
rang has non-optimal resilience of t <n/4 and defaults to a
synchronous fallback in the presence of byzantine behaviour.

Moreover, all existing asynchronous DPSS schemes do
not consider high-threshold secrets, and do not attempt
to achieve better amortized cost for the batch setting. In
contrast, our work improves the communication cost of the
state-of-the-art asynchronous DPSS protocol, while providing
many desirable features such as optimal resilience, no trusted
setup (i.e. no Structured Reference String is required to
use the protocol), high-threshold reconstruction and batch
amortization. For low-threshold secrets, our protocol can
even achieve amortized linear cost assuming the trusted setup
of KZG commitments.

2 Preliminaries

System Model We assume an asynchronous network
of interconnected nodes, such that each pair of nodes can
communicate over a reliable authenticated channel. We
assume a static Probabilistic Polynomial Time adversary A
which can arbitrarily delay any message but can not read
messages sent between honest nodes nor prevent them from
eventually arriving. The adversary also controls t nodes in
the old committee C and t ′ nodes in the new committee C′

such that t < |C|/3 and t ′< |C′|/3. We also use n to denote
the committee size when there is not ambiguity.

The new committee can contain any number of the same
members as the old committee (including none) and A can
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Table 1: Comparison to Existing DPSS Schemes. For “Reshare Amortized”, the faults are Byzantine, and “—” means the cost
is the same as “Reshare Byzantine”. For other places, “—” means not applicable.

Scheme Network
Fault

Tolerance
Dynamic

High-
Threshold

Reshare
Best-case

Reshare
Crash

Reshare
Byzantine

Reshare
Amortized

No Trusted
Setup

Herzberg et al. [26] Sync n/2 ✗ ✗ O(n3) O(n3) O(n3) — ✓

Desmedt et al. [19] 1 Sync n/2 ✓ ✗ O(n2) — — — ✓

Wong et al. [39] Sync n/2 ✓ ✗ exp(n) exp(n) exp(n) — ✓

Baron et al. [6] Sync (1/2−ε)n ✓ ✗ O(n3) O(n3) O(n3) O(1) 2 ✓

CHURP [33] Sync n/2 ✓ ✓ 3 O(n2) O(n3) O(n3) — ✗

Goyal et al. [23] Sync n/2 ✓ ✗ O(n2) O(n3) O(n3) O(n2) ✗

Schultz-MPSS [36] P. Sync 4 n/3 ✓ ✗ O(n4) O(n4) O(n4) — ✓

COBRA [38] P. Sync n/3 ✓ ✗ O(n3) O(n4) O(n4) — ✗ 5

Cachin et al. [13] Async n/3 ✗ ✗ O(n4) O(n4) O(n4) — ✗

Zhou et al. [43] Async n/3 ✓ ✗ exp(n) exp(n) exp(n) — ✓

Shanrang [40] Async n/4 ✓ ✗ O(n3logn) O(n3logn) O(n4) — ✗

This work Async n/3 ✓ ✓ O(n3) O(n3) O(n3) O(n2) ✓

This work Async n/3 ✓ ✗ — — — O(n) ✗

1 Desmedt et al. [19] is not verifiable, and
assumes passive adversary.

2 Requires impractically-large committee
sizes.

3 CHURP [33] only supports dual-threshold.
4 Schultz-MPSS [36] claims asynchrony but

their protocol uses PBFT [16] and requires
eventual synchrony for liveness.

5 COBRA [38] uses KZG commitments [27],
but it is possible to use other commitment
schemes with no trusted setup, while keeping
the same asymptotic cost.

choose which nodes to corrupt in each. In the case of static
committees, this can be considered equivalent to a mobile
adversary who can over the course of several refresh periods
corrupt every node (though no more than t in one epoch).
Our epoch definition and the corresponding constraint on the
adversary follows MPSS [36], and more details can be found
in Appendix A.

Notation For a given secret s, we use [s] to refer to a
secret share of s. Additionally we may use [s]d to specify
a d-sharing of s, meaning that d + 1 shares are needed to
reconstruct it. Lastly, [s]id refers to the specific d-sharing of
s held by player Pi.

In order to achieve our secrecy properties, it is often
necessary to pair a given secret s with a blinding secret ŝ,
such as the case where the Pedersen commitment gshŝ is
visible to the adversary. We use theˆsymbol generally to refer
to a blinding object, such as a blinding polynomial φ̂(x). Any
object with the ˆ symbol above it is assumed to be sampled
uniformly randomly.

When defining a polynomial, we may use x and y as free
variables and i and j as indices. For example, φ(x) is a
polynomial, φ(i) is a point, φ(x,y) is a bivariate polynomial,
and φ(x, j) is a univariate polynomial.

Lastly we use C to refer to the old committee of nodes
which is set to transfer their shares to a new committee C′.
More generally, we use ′ when an object is held by one or
more members of C′: φ′(x) is a polynomial held by C′, and
[ŝ′] j

d is the share of the d-shared blinding secret of s held by
P′j, the j’th member of C′.

2.1 Asynchronous Complete Secret Sharing

Asynchronous Complete Secret Sharing (ACSS) is a protocol
in which a dealer distributes shares of some secret s, such
that any d + 1 correct shares can be combined to recreate
s. A controls t nodes and in the general case d = t, but in
the high threshold setting, t ≤ d ≤ n− t − 1. If the ACSS
protocol terminates, then every honest party is guaranteed
to eventually receive a correct share of s. An ACSS scheme
consists of the following subprotocols:

• Share(C,t,d,s)→⟨{[s]id}Pi∈[C],aux⟩: A dealer D shares
some secret s to a committee C with t corrupt nodes,
such that d + 1 shares will be needed to reconstruct s.
Some auxiliary information aux may also be output and
used to guarantee the success of Rec.

• Rec(C,t,d,{[s]id}Pi∈[C],aux)→ ⟨s⟩: Each party Pi ∈ C
uses their share [s]id (and possibly some auxilary infor-
mation aux) to publicly reconstruct s.

Secret Sharing protocols are often defined in terms of the
properties they achieve. In this work, we describe properties
for our schemes to achieve along with an ideal functionality
which realizes them. For a protocol with a Share and Rec in-
terface to provide ACSS, it must have the following properties

• Correctness: If D is correct, then Share will result in
correct parties eventually outputting [s]id . Once Share
is complete, if all honest parties perform Rec, they will
output s as long as at most t players are corrupt.

• Secrecy: If D is correct, then for any non-uniform PPT
adversary A controlling up to t members of C, there
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exists a PPT simulator S such that the output of S and
A’s view in the real-world protocol are computationally
indistinguishable.

• Agreement: If any correct party outputs in Share, then
there exists a canonical secret s̃ such that each correct
party Pi eventually outputs ⟨[s̃]id ,aux⟩ and s̃ is guaranteed
to be correctly reconstructed in Rec. Moreover, if D is
honest, s̃=s.

A High-Threshold ACSS scheme additionally has the
following property:

• High Threshold: The privacy threshold d can be
different from the correctness threshold t. Specifically,
d can be between t and |C|−t−1.

2.2 Dynamic-committee Proactive Secret
Sharing

We next describe a protocol to transfer an already-shared se-
cret from one committee to another. Previous work originally
defined Proactive Secret Sharing as a mechanism by which
a committee holding shares of some secret s could refresh the
shares, i.e. generate a new set of random shares that recon-
struct to the same secret. This was done to defend against a
mobile adversary who could eventually compromise all nodes,
but never more than a fixed percentage at a time. Later work
added a dynamic-committee property in which the committee
holding the new set of shares could contain a different set of
nodes than the old committee, optionally with some overlap.

We define Dynamic-Committee Proactive Secret Sharing
(DPSS) as an ACSS protocol with an additional Reshare
function:

• Reshare(C, C′, t, t ′, d, d′, {[s]id}Pi∈[C], aux) →
⟨{[s] j

d}P′j∈[C′],aux′⟩: The old committee C creates a new
sharing d′-sharing of s for the new committee C′

This Reshare function should have the following
properties:

• Correctness: C′ will receive a sharing [s′]d′ such that
invoking Rec will reveal that s′=s.

• Secrecy: For every non-uniform PPT adversary A
controlling t members of C and t ′ members of C′, there
exists a PPT simulator S such that the output of S and
A’s view in the real-world protocol are computationally
indistinguishable.

• Liveness: If a byzantine PPT adversary A controls up
to t parties in C and t ′ parties in C′, and additionally
controls all message ordering, A can not prevent
Reshare from completing.

A DPSS scheme can additionally be resizable:

• Resizability: |C| and |C′| can be different as long
as t ′ < |C′|/3 and d′ = t ′ in the normal setting or
t ′≤d′≤|C′|−t ′−1 in the High Threshold setting.

We additionally define a functionality FDPSS in Appendix B
which realizes these properties and which we use to prove the
secrecy of our scheme. As it is often useful for different appli-
cations, our FDPSS provides an interface by which to homo-
morphically combine shares from different Share instances
(as an arbitrary linear combination) and either reshare or re-
construct the result. We will elaborate more in Section 3.4.

2.3 Multi-valued Validated Byzantine Agree-
ment

Multi-valued validated Byzantine agreement (MVBA) [14]
is a Byzantine fault-tolerant agreement protocol where a
set of protocol nodes each with an input value can agree on
the same value satisfying a predefined external predicate
f (v) : {0, 1}|v| → {0, 1} globally known to all the nodes.
An MVBA protocol with predicate f (·) should provide the
following guarantees except for negligible probability.

• Agreement: All honest nodes output the same value.

• External Validity: If an honest node outputs v, then
f (v)=1.

• Termination: If all honest nodes input a value satisfying
the predicate, all honest nodes eventually output.

Our protocol uses an MVBA with slightly strong validity
requirement, where the predicate f (v,e) additionally can have
some variable e depending on the execution state of the node
as the input. We will explain more details in Section 3.2.

2.4 Reliable Broadcast

A protocol for a set of nodes where a designated broadcaster
holds an input M, is a reliable broadcast protocol, if the
following properties hold:

• Agreement: If an honest node outputs a message M′ and
another honest node outputs M′′, then M′=M′′.

• Validity: If the broadcaster is honest, all honest nodes
eventually output the message M.

• Totality: If an honest node outputs a message, then every
honest node eventually outputs a message.

Our High-threshold ACSS protocol of Section 3.1 will use
the reliable broadcast protocol of Das et al. [17], which only
assumes collision-resistant hash functions of output size
κ and has a communication complexity O(n|M|+κn2) for
broadcasting a message M
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3 High-Threshold Share Transfer

We first introduce a DPSS protocol which functions with
high-threshold shares, meaning it can support privacy
thresholds between t+1 and n−t. To construct it, we need
both a high-threshold ACSS protocol and a Multi-valued
Validated Byzantine Agreement (MVBA) protocol.

3.1 High-Threshold ACSS

The recent work of Das et al [18] introduced a high-threshold
ACSS scheme with a total network bandwidth of O(n2). To
summarize, for each share [s], the dealer broadcasts a discrete
log commitment g[s], a Paillier encryption Enc([s]) under the
intended receiver’s public key, and a Zero Knowledge Proof
of Knowledge (ZKPoK) of a value which is both the discrete
log of the commitment and the result of decrypting the
ciphertext. Receivers then check if every proof is valid and
that the discrete log commitments correspond to a degree ≤d
polynomial. If so, they can decrypt their share and output.

This protocol, while simple, has very desirable com-
pleteness and bandwidth-overhead properties. However, it
assumes that the secret s is uniformly random (otherwise, gs

would reveal information about s) and therefore is somewhat
limited in its uses. We propose a modified version which
can be thought of as the "Pedersen" version of this scheme:
Essentially, we add a second blinding value ŝ for the dealer
to share alongside s, replace g[s] with g[s]h[ŝ] and create a new
ZKPoK to relate this value to the Paillier-encrypted shares.
We present our modified protocol in Algorithms 1 and 2.

3.2 MVBA

Since first proposed by Cachin et al. [14], several recent
improvements have been made for MVBA [4, 25]. The state-
of-the-art MVBA protocol is sMVBA [25], which has O(κn2)
bit complexity and 12 asynchronous rounds as the expected
worst-case round complexity. As mentioned in section 2.3,
our protocols uses MVBA with slightly strengthened validity
requirement, defined by the state-aware predicate below.

Definition 1 (State-aware Predicate). A state-aware predicate
function is f (v,e) : {0,1}|v|×{0,1}|e|→{0,1} where v is the
input value and e is some variable dependent on the execution
state, satisfying that once f (v,e)=1 for some execution state
at a node, it remains 1 for any future execution state.

Compared to the standard MVBA definition, it uses a
state-aware predicate that can also input some execution state
dependent variables. We will first explain the predicate used
in our protocol, and then show how to use existing MVBA
protocols for our purpose. Finally, we will discuss setup
assumptions and efficiency aspects of MVBA.

In our protocols, each node i locally maintains a set Ti
to record the indexes of terminated ACSS instances, i.e.,

Algorithm 1 High Threshold ACSS Share
Public Inputs: g,h,C,d,{PKi}Pi∈C
Private Inputs: D holds a secret s
Public Outputs: {g[s]id h[ŝ]

i
d}i∈[n]

Private Outputs: Pi holds [s]id ,[ŝ]
i
d

Share (as D):
101: Sample two random degree d polynomials, φ(x),φ̂(x) and set

φ(0)=s
102: for i∈ [n] do
103: vi←EncPKi(φ(i)),v̂i←EncPKi(φ̂(i)),ci←gφ(i)hφ̂(i)

104: πi ← ZK{(φ(i), φ̂(i)) : vi = EncPKi(φ(i)) ∧ v̂i =

EncPKi(φ̂(i))∧ci=gφ(i)hφ̂(i)}
105: ReliableBroadcast({vi,v̂i,ci,πi}i∈n)

Share (as Pi):
201: upon receiving {vi,v̂i,ci,πi}i∈n from ReliableBroadcast do
202: if DegreeCheck({ci}i∈[n]) ̸=1 then
203: Abort
204: for i∈ [n] do
205: if Verify(vi,v̂i,ci,PKi,πi) ̸=1 then
206: Abort
207: [s]id←DecryptSKi

(vi),[ŝ]id←DecryptSKi
(v̂i),

208: Output [s]id ,[ŝ]
i
d ,{g

[s]id h[ĥ]
i
d}i∈[n]

Ti←Ti∪{ j}whenever j-th ACSS with valid commitment out-
puts. When d′+1 ACSS terminates, node i inputs the above
set to the MVBA, with the state-aware predicate function that
also includes Ti as the input. As shown in Algorithm 3, for any
other node j’s input T ′j , the predicate f (T ′j ,Ti) immediately
returns 0 if |T ′j | ̸=d′+1, and returns 1 once T ′j ⊆Ti, meaning
that the terminated d′+1 ACSS instances proposed by node
j are also terminated at node i. Hence, the predicate may not
return immediately. Instead, when the set of ACSS instances
are not yet all terminated at i, node i will hold the predicate
check and re-evaluate whenever its Ti grows. Once the condi-
tion is satisfied, the predicate returns 1. Note that it is possible
that the predicate never returns for a value from Byzantine
node, by proposing ACSS instances that are never terminated;
but for any honest nodes i and j, due to the agreement
property of ACSS, eventually T ′j ⊆Ti and thus f (T ′j ,Ti)=1.

Our protocols can directly use existing MVBA protocols in
a black-box manner, by plugging in the state-aware predicate
as defined in Algorithm 3. The obtained MVBA satisfies the
validity property that if an honest node output v at time T ,
then f (v,e)= 1 for at least one honest node at time T . Now
we briefly argue why the agreement, termination and validity
properties of MVBA holds. The validity property holds due to
the external validity of the underlying MVBA. For agreement,
the strengthening of the validity predicate has no effect on the
safety argument. For termination, note that the predicates at
all honest nodes eventually return 1 for any input from honest
nodes. For an input from a Byzantine node, the predicate
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Algorithm 2 High Threshold ACSS Reconstruct

Public Inputs: g,h,C,d,{g[s]id h[ŝ]
i
d}i∈[n]

Private Inputs: Pi holds [s]id ,[ŝ]
i
d

Public Outputs: s

Reconstruct (as Pi):
301: Multicast [s]id ,[ŝ]

i
d to all parties

302: upon Receiving m j,m̂ j from Pj do
303: if gm j hm j =g[s]

i
d h[ŝ]

i
d then

304: Set [s] j
d =m j

305: upon Receiving d+1 valid shares do
306: Interpolate and output s

may not return, and it is equivalent as the Byzantine node
never inputs to MVBA, so the termination is also preserved.

The state-of-the-art MVBA protocol, sMVBA [25], (along
with many other MVBA protocols) requires a high-threshold
non-interactive threshold signature setup to reduce commu-
nication and perform leader election [15]. To setup these
threshold signatures, we can either assume a trusted dealer
that equips all the committees with such setup, or use exist-
ing asynchronous distributed key generation (ADKG) proto-
cols [3,17,18,21,29] to lift the trusted dealer assumption. The
(special-purpose) ADKG protocols of Gao et al. [21] and Das
et al. [17] achieves O(κn3) cost and O(1) expected worst-case
asynchronous rounds, but generates a secret key that is a group
element rather than a field element. To be compatible with ex-
isting threshold signature schemes [11], the (general-purpose)
ADKG protocol of Das et al. [18] generates a field element
as the secret key, at the same cost of O(κn3) but O(log n)
expected worst-case rounds (and O(1) expected rounds in
common-case when there are no faults and network is syn-
chronous). Theoretically, it is possible to obtain a worst-case
expected constant-round general-purpose ADKG protocol, by
replacing the n instances of parallel ABA’s of Das et al. [18]
with one instance of MVBA (which has constant rounds), and
bootstrapping its shared randomness using special-purpose
ADKG protocols such as [17,21]. Then, the total network cost
will remain cubic and the latency can be reduced to constant.
However, such a construction may not be concretely efficient,
and in the common-case when there are no faults and the net-
work is synchronous, may perform worse than Das et al. [18].

3.3 High-Threshold Share Transfer

We present our High-Threshold DPSS protocol in Algo-
rithm 3. Relative to previous works it is the first to achieve
optimal fault tolerance in asynchrony with a polynomial bit
complexity, and does so without the need for trusted setup
(which needed for the KZG polynomial commitments [27]
used in many other DPSS works). We additionally note that
this protocol is a more general version of DKG transfer:
if ŝ = 0, then this reduces to a scheme with discrete-log

Algorithm 3 High-Threshold Asynchronous DPSS
Private Inputs: Pi holds [s]id ,[ŝ]

i
d

Public Inputs: {g[s]id h[ŝ]
i
d} for i∈ [n]

Private Outputs: P′i holds [s]id′ ,[ŝ]
i
d′

Public Outputs: {g[s]
i
d′ h[ŝ]

i
d′ } for i∈ [n′]

OLD COMMITTEE PORTION (as Pi):
101: Sample two degree-d′ polynomials {χi(x), χ̂i(x)} s.t.

χi(0)=[s]id ,χ̂i(0)=[ŝ]id
102: Use ACSS to share these polynomials with the new committee

NEW COMMITTEE PORTION (as P′i ):
201: Ti←{}
202: upon outputting in j-th ACSS sessions where

gχ j(0)hχ̂ j(0)=g[s]
i
d h[ŝ]

i
d do

203: Ti←Ti∪{ j}
204: if |Ti|=d′+1 then
205: T ′i ←Ti
206: Invoke MVBA(T ′i ) with predicate f (T ′j ,Ti) // T ′j is the

input value of some node j, Ti is i’s local variable defined above.
f (T ′j ,Ti) is defined below.

207: upon MVBA outputting T do
Let B(x, y) be a degree d,d′ bivariate where B(0,0) = s and
B( j,y)=χ j(y) for ∀ j∈T
Let B̂(x, y) be a degree d,d′ bivariate where B̂(0,0) = ŝ and
B̂( j,y)= χ̂ j(y) for ∀ j∈T

208: Interpolate [s]id′ = B(0,i),[s]id′ = B̂(0,i) from the shares in
the subset

209: Similarly, interpolate {g[s]
j
d′ h[ŝ]

j
d′ } for j∈ [n]

210: Output Private: {[s]id′ ,[ŝ]
i
d′}, Public:{g[s]

j
d′ h[ŝ]

j
d′ } for j∈ [n′]

Predicate f (T ′j ,Ti) for MVBA (as P′i ):

301: if |T ′j | ̸=d′+1 then
302: return 0
303: upon T ′j ⊆Ti do
304: return 1

commitments which are used to facilitate threshold signing
with signature schemes such as BLS [12].

We will now describe the operation of our protocol. The
core mathematical component is that if some committee C
holds shares of some degree d polynomial, they can create
new shares for some new committee C′ who wishes for shares
of some degree d′ polynomial by having d+1 members of
C d′-share their shares with C′. We can then use each of these
polynomials to define a degree d,d′ bivariate polynomial
B(x,y) where B(i,y) would be the polynomial which Pi ∈C
shared to C′. Note that relative to this bivariate, each party
Pi ∈C held B(i,0), meaning that B(0,0) = s. As a result of
these sharings P′j ∈ C′ receives {B(i, j)}i∈|C|, from which
she can derive B(0, j), a point on a degree d′ univariate
polynomial which encodes the same secret s. The high level
takeaway of this is that the new committee derives rerandom-
ized shares of a specified degree as a linear combination of
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d+1 instances of a member of C secret sharing their share.
A concise outline of the protocol strategy then is 1) Have

all members of C secret share their shares to C′, 2) Have
all members of C′ agree on d + 1 such instances which
succeeded, 3) Use the outputs of these instances to allow C′

to derive new rerandomized shares.
A few questions still need to be answered to create a

maliciously-secure protocol. By answering them one at a
time, we arrive at a full derivation of Algorithm 3.

How Do We Ensure All Parties in C′ Get A Share? If we
used simple Shamir Sharing, we would have no guarantees
about the correctness or eventual arrival of the shares that C′

needs to receive from C. Previous works address this through
the use of Verifiable Secret Sharing, in which an honest party
outputting guarantees that there is a canonical polynomial
of the correct degree which can be guaranteed to be
reconstructed successfully if desired. However, this does not
necessarily imply that all honest parties will receive a share
and previous works which relied on this needed a more ex-
pensive fallback mechanism to recover missing shares [7, 38].

Instead, we sidestep this issue by using Asynchronous
Complete Secret Sharing, in which an honest party outputting
guarantees that all honest parties will do so successfully.

How Does C Prove They Are Resharing The Correct
Shares? To prevent a malicious member of C from resharing
anything besides their share, we utilize public commitments.
Say that all honest members of C agree on some set of discrete
log commitments {g[s]1 ,g[s]2 ,...g[s]n} that correspond to each
privately held share. Then we utilize an ACSS scheme, such
as the one by Das et al [18], which includes a discrete log com-
mitment to the secret being shared. C could transfer the set of
commitments to C′, who could then use them to individually
check that each member of C is sharing the correct value.

Das et al’s ACSS scheme also includes discrete log com-
mitments to each share that every other party receives. These
commitmentment strings from each ACSS session can also be
combined via the same linear operations that derive the new
shares, resulting in each node being able to homomorphically
calculate commitments to the new shares of all other nodes in
C′. This thus completes the invariant of a committee knowing
public commitments which correspond to its shares, which
can be used to facilitate the next share transfer.

How Do We Handle High Thresholds? Most secret
sharing schemes that assume t corrupt parties will also use
degree t polynomials, such that t + 1 shares are needed to
reconstruct the secret. This privacy threshold works nicely in
the n=3t+1 setting, as it means that during reconstruction
a robust decoding algorithm such as Berlekamp-Welch or
Gao’s Algorithm [20] can be used to find and correct faulty
shares without relying on cryptography.

However, for larger privacy thresholds, these robust de-
coding techniques no longer work and it becomes necessary
to be able to detect faulty shares individually. The share

commitments discussed earlier are sufficient for this purpose
and allow polynomials of degree up to n − t − 1 to be
reconstructed successfully.

How Do We Handle Non-Uniform Secrets? The discrete
log commitments discussed previously are only compu-
tationally hiding if the committed values are uniformly
random. And while secret shares should in fact be uniformly
random, the additive homomorphism property of discrete
log commitments means than an attacker who can see d+1
different share commitments can derive a commitment
to the secret. If the secret is non-uniform (say, a single
bit in the extreme case), an adversary can guess possible
decommitments until she finds one which matches.

To avoid this, it is necessary to use a perfectly hiding
commitment such as a Pedersen Commitment of the form
gshr where h is a second generator of the same cyclic group
as g, but the relationship between g and h is unknown (which
is necessary for the commitment to be computationally
binding). Then, as long as r is uniformly random, the
commitment protects the secrecy of a non-uniform s.

Lastly, we need these commitments to be openable even
after being transferred and recalculated. To facilitate this, we
replace r with a "blinding secret" ŝ shared on a polynomial
of the same degree as s. For every operation performed with
a share of s, a parallel one should take place with a share of ŝ,
and any discrete log commitment g[s]

i
should be replaced with

Pedersen commitment g[s]
i
h[ŝ]

i
. We modify the ACSS protocol

from earlier as well as our DPSS to incorporate these changes.

How Does C′ Decide Which ACSS Instances To Use?
Before the honest nodes in the new committee C′ can
interpolate the new shares for the secret, the protocol needs
to provide two guarantees: (i) honest nodes in C′ agree on
the same set of ACSS instances for interpolation, and (ii)
the above set of ACSS will eventually terminate at all honest
nodes, so that they can receive their shares for interpolation.
For (i), our design uses a multi-valued Byzantine agreement
(MVBA), where each node i can input the set Ti of finished
ACSS instances to the MVBA, and MVBA ensures that all
honest nodes will agree on the same set of ACSS. However,
since malicious nodes can input any set of ACSS instances,
including those that will never terminate, running MVBA
naively does not guarantee (ii).

To ensure the agreement only on the set of ACSS that will
eventually terminate at all honest nodes, in MVBA, honest
nodes should only consider a set of ACSS instances valid
if all the instances in the set have terminated locally. More
specifically, we modify the validity predicate function of
existing MVBAs to also take the node’s local execution state
(the set of finished ACSS instances) into account. Then, a
node considers an input of ACSS set to be valid, only when
all the instances in the set have terminated locally. Since the
output of MVBA is valid to at least one honest node, meaning
the set of ACSS have been terminated at that honest node, due
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Figure 1: UC Security — The setup in ideal and real worlds.
The adversarial entities are shaded in red. We omit the
communications between the environment and the other
entities to make the figure clean.

to the Agreement property of ACSS, the agreed set of ACSS
instances will eventually terminate at all honest nodes as well.

3.4 Security Analysis

In this section, we show that the DPSS protocol in Algo-
rithm 3 implements the FDPSS functionality (c.f. Appendix B),
assuming the ACSS protocol is secret and the Pedersen
commitments are hiding. Due to the page limit, we only
present a high-level analysis. We do not explicitly model the
party corruption process. We assume once the environment
instructs the adversary to corrupt a party, the adversary learns
the memory of the party and the party becomes a proxy of
the adversary. Namely, the adversary sends and receives mes-
sages on behalf of the party. We also include a coordinator,
which is an uncorruptible party for easier security analysis.
The coordinator issues instructions for events, including
sharing a secret, recovering a secret, and resharing the secret.
We assume the coordinator notifies everyone on the beginning
of an event. Namely, it listens from the environment and
tells everyone if an event happened. The environment is free
to choose any secret s and issue any number of Resharing
events between the Sharing and Reconstruction events. For
simplicity, we omit some interactions that can be inferred
from the context, and we assume authenticated asynchronous
channels between the entities.

In the UC model, we say a protocol π UC-realizes a
functionality F if and only if there exists a simulator
such that, in the ideal and real worlds shown in Figure 1,
the adversary cannot distinguish which world he/she is
interacting with by sending and receiving messages.

Theorem 1. Assuming the ACSS protocol is secret, the
protocol in Algorithm 3 UC-realizes the functionality FDPSS.

We illustrate the high-level proof idea in Figure 2. The
simulator creates a simulated honest party in mind for each
real honest party and lets the simulated honest parties play
with the external corrupted parties by running an instance of
the asynchronous DPSS protocol in Algorithm 3 with a fake
secret s′=0. Only at the time of reconstruction, the simulator
secretly “overwrites” the memory of the simulated honest par-
ties and lets them continue the reconstruction protocol. The

Env

Adv

Sim

Figure 2: Proof Idea — Run ΠDPSS with fake secret s′ when
resharing; Switch true secret s back when reconstructing.

overwritten shares correspond to the real secret, which the sim-
ulator learns by: (1) hijacking the leaking message (REC,φ,φ̂)
from the functionality FDPSS to the adversary when the dealer
is honest, or (2) decrypting from the broadcast messages us-
ing the keys it simulated for honest parties when the dealer is
corrupted. We include a more detailed proof in Appendix C.

3.5 Performance Analysis

The protocol presented in Algorithm 3 has communication
complexity of O(n3), since each node invokes an ACSS
instance of cost O(n2) (thus O(n3) in total), and participates
in one MVBA instance which has cost O(n2) and requires
O(n3) to generate the public DKG parameters without
trusted setup. The overall round complexity is constant
if a constant-round MVBA is used, which can itself be
instantiated by a constant-round asynchronous DKG protocol.
Alternatively, if n concurrent ABA protocols are used instead,
then the best case round complexity is still O(1) but the worst
case is reduced to O(logn).

The presence of byzantine behaviour does not meaning-
fully affect the performance of our protocol. If a byzantine
ACSS dealer provides an invalid sharing or proof, their
malfeasance is immediately identified by all honest parties
and their messages are simply ignored. The MVBA is
guaranteed to have enough valid ACSS instance inputs to
form a subset of valid instances which fully define the shares
that the new committee receives. Once the subset has been
defined, honest parties are guaranteed to eventually receive
all shares simply by waiting for them to arrive.

Computationally, each node in the protocol is expected to
perform O(n2) work due to the need to check n different cor-
rectness proofs in each of the n ACSS instances. While a lucky
node may only need to check the proofs in d+1 instances,
this does not change the overall asymptotic behaviour.

4 Batch-Amortized Share Transfer

For many applications, such as distributed Key Value stores
or more generally Multiparty Computation, it would be
beneficial to be able to transfer a large number of secrets
from one committee to the next in a more bandwidth-efficient
manner. However, the high-threshold DPSS scheme we
introduced previously relies on the availability of Pedersen
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commitments to every share generated in the share-resharing
process which we use to realize DPSS. Unfortunately this
reliance requires all n parties to receive n commitments from
each of the n−1 other parties, imposing a cubic bandwidth
overhead for the whole network.

To get around this, we switch away from using share-
resharing to facilitate share transfer and instead look to a
classic MPC technique for inspiration:

Given three independent secret sharings [s], [r], [r′] where
r=r′ and r←Zp∗

[s+r]=[s]+[r]

(s+r)←Open([s+r])

[s′]=(s+r)−[r′]

Essentially, if we can create some paired sharing ([r],[r′])
such that the old committee holds r and the new committee
holds r′, we can have the old committee reconstruct (s+r)
and the new committee can use this information to derive
new rerandomized shares of s.

A key challenge here is that r needs to be uniformly
random and not known to any party. One solution is for each
party to share their own locally sampled random value [ri] and
add together a set of such values to derive a globally random
[r]=∑i[ri], where the set of [ri] values to use is determined by
MVBA. The issue with this approach is that it does not result
in a bandwidth savings: A cubic bandwidth is required to use
ACSS to secret share the O(n) local secrets that constitute r.

Instead, we leverage a classic randomness extraction
technique using hyperinvertible matrices [8]. In short, by
performing a series of local linear operations to a set of
m locally-random shared secrets, we can extract m − t
globally-random secrets. Thus if our starting subset of
[ri] values contained n− t entries, we could extract n− 2t
globally-random outputs, a linear yield in the optimally
byzantine fault-tolerant asynchronous protocol setting. We
can also leverage a BatchReconstruction technique from the
same work to efficiently open many (s+ r) values at once
with an amortized network overhead of O(n) per opening.

The last major obstacle to overcome is the following: How
do we create a shared random value which is held by both the
old and new committees? The recent work of [23] offers a
solution, but it requires the use of an a synchronous broadcast
channel to publish shares and accuse faulty nodes. Instead we
introduce a general technique to turn an ACSS protocol into
what we call a dual-committee ACSS, the goal of which is to
share a secret to two committees at once (one polynomial per
committee) such that one honest player outputting implies
that all honest parties in both committees will eventually
receive shares that will reconstruct the same secret.

We present our dual-committee ACSS modification
in Algorithm 4. We remark that the construction is very
straightforward. Given an ACSS scheme which produces
a commitment to the secret which can be verified to be

Algorithm 4 Dual-Committee ACSS Share
Let C∗ denote the joint committee of both C and C′

Public Inputs: C,C′,d,d′

Private Inputs: D holds a secret s
Private Outputs: Pi holds [s]id , P′j holds [s] j

d′

Share (as D):
Select an ACSS scheme which produces a commitment com to
the secret and proves that Decommit(com)=s

101: ACSS(s)→C,ACSS(s)→C′

Share (as either Pi or P′i ):
201: upon outputting ([s]i,com,aux) in the local copy of ACSS do
202: Multicast com to all parties in the other committee
203: Store com locally
204: upon Receiving com from the other committee t+1 times do
205: Output ([s]i,aux)

correct, a Dealer executes two ACSS instances (one for
each Committee) in which it shares the same secret. Upon
terminating their local ACSS instance, a player in one
committee sends the commitment to the secret com to every
player in the other committee. Upon receiving t +1 copies
of this same com from the other committee, we know that at
least one must have come from an honest party, implying that
all honest parties will eventually receive shares of the same
secret per the Agreement property of ACSS. At this point an
honest node can safely output their share and use it elsewhere.

With the requisite building blocks described, we now
present our Batch-Amortized High-Threshold DPSS scheme
in Algorithm 5. Given a batch size B, each member of C
needs to share enough locally random values that there will
be enough globally random shares to open each (s+r) and
(ŝ + r̂). After sharing their random values, C runs MVBA
with a similar predicate to before in order to agree on n−t
players from whom to use output. C can then calculate all
of the (s+ r) and (ŝ+ r̂) openings and send them to C′. C′,
by virtue of using the Dual Committee ACSS, does not need
to perform its own agreement subprotocol, as the node ids
agreed upon by C should all eventually deliver shares to C′

which can be used to calculate the final output.
After amortization, Algorithm 5 would still require O(n)

constant-sized share commitments to be known by everybody
for each secret in the batch, making the amortized network
cost O(n2).

Batch-Amortized Share Transfer With Linear Network
Overhead The previous DPSS protocols we presented
require a O(n)-sized set of commitments to be public in
order to function, resulting in an O(n2) network bandwidth
bottleneck per secret. While this appears to be necessary
in order to facilitate a high-threshold share transfer, it is
not necessary when dealing with secrets which are merely
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Algorithm 5 Batch-Amortized High-Threshold DPSS
Let B be the number of degree d (secret, blind) pairs ([s],[ŝ]) to be
transferred
Private Inputs: Pi holds {[s j]

i
d ,[ŝ j]

i
d} for j∈ [B]

Public Inputs: {{g[s j ]
k
d h[ŝ j ]

k
d} for k∈ [n]} for j∈ [B]

Private Outputs: P′i holds {[s′j]id′ ,[ŝ
′
j]

i
d′} for j∈ [B]

Public Outputs: {{g[s
′
j ]

k
d′ h[ŝ

′
j ]

k
d′ } for k∈ [n′]} for j∈ [B]

OLD COMMITTEE PORTION (as Pi):
101: Sample B/(n−t) random (r, r̂) pairs and use a Dual-Committee

ACSS to share them with a degree d polynomial for C and degree
d′ polynomial for C′.

102: Use MVBA to agree on n−t players for whom all DC-ACSS
instances terminated successfully.

103: Use a hyperinvertible matrix to extract B globally random
sharings from the subset

104: Use BatchReconstruct to open {(s j+r j),(ŝ j+ r̂ j)} for j∈ [B]
(shares can be individually validated by checking against
g[s+r]h[ŝ+r̂]) and send these openings to C′

NEW COMMITTEE PORTION (as P′i ):
201: upon receiving {(s j+r j),(ŝ j+r̂ j)} for j∈ [B] from C do
202: for j∈ [B] do
203: [s′j]

i
d′=(s j+r j)−[r′j]id′ ,[ŝ

′
j]

i
d′=(ŝ j+r̂ j)−[r̂′j]id′

204: for k∈ [n′] do
205: g[s

′
j ]

k
h[ŝ
′
j ]

k
=g(s j+r j)h(ŝ j+r̂ j)/g[r

′
j ]

k
h[r̂
′
j ]

k

206: Output {[s′j]id′ ,[ŝ
′
j]

i
d′} for j∈ [B], {{g[s

′
j ]

k
d′ h[ŝ

′
j ]

k
d′ } for k∈ [n′]} for

j∈ [B]

t-shared. In this section, we introduce a third DPSS protocol
which is not high-threshold but which achieves an amortized
linear network overhead per share.

To achieve this, we utilize the batch amortized
hbACSS [42] secret sharing scheme which achieves a
linear network overhead per secret when instantiated with
the KZG [27] polynomial commitment scheme, which
unfortunately comes with a trusted setup assumption (though
we note that KZG is used in most recent DPSS schemes).

As this third and final scheme is no longer concerned
with high-threshold secrets, it is no longer necessary for
there to be public commitments relating to the values being
transferred. This is because opening a t-shared value in the
asynchronous n = 3t + 1 setting is possible using a simple
error correction algorithm such as Berlekamp-Welch or Gao’s
algorithm [20], rather than relying on the ability to validate
shares individually. Consequently, relative to Algorithm 5,
the main changes needed here are to switch the ACSS scheme
to hbACSS, drop the usage of public share commitments,
and to use a Structured Reference String (SRS) for KZG
polynomial commitments.

hbACSS utilizes polynomial commitments in order to
function. Given an appropriate polynomial commitment
scheme, a dealer commits to their sharing polynomial,
broadcasts this commitment, and then can send (via a

verifiable communication channel) a receiver their share
along with a proof that the share is a point on the committed
polynomial. In the case of a malicious dealer, share recovery
is also handled in a batch-amortized way which does not
result in any worsened asymptotics.

The KZG PolyCommit paper presents two schemes:
PolyCommitDL and PolyCommitPed. In the former, a prover
commits to a polynomial φ(·) by calculating gφ(α), which
itself is calculated using a SRS of the form {g,gα,gα2

,...gαt}
where α is an unknown value generated during trusted setup.
In PolyCommitPed, a second blinding polynomial φ̂(·) is
sampled and used to calculate the commitment gφ(α)hφ̂(α).
In order to reshare secrets which are not uniformly random,
we need to use PolyCommitPed, which allows us to verify
the correctness of the commitment gshŝ as required by our
Dual-Committee ACSS construction.

5 Applications

5.1 An Upgrade To Previous Applications

Confidentiality in BFT State Machine Replication. The
recent work Vassantlal et al [38] introduced COBRA as a
DPSS protocol to facilitate the storage of private information
in State Machine Replication (SMR) systems. The core
idea is that an application like a Key-Value store can be
realized by a decentralized committee which collectively
maintains a public state (say the Keys in a KV store) along
side a per-node private state (the secret shares which can be
combined to reconstruct the Value in a KV store). Protecting
data confidentiality in a replicated system has been studied
for decades, but most of the works only focus on static
committees, such as DepSpace [10], Belisarius [35] and Basu
et al. [7] building upon PBFT [16] under partial synchrony,
and Secure Store [30], CODEX [34] building upon Byzantine
Quorum Systems [32] under asynchrony.

For dynamic committess, the recent works of Goyal et
al. [23] and Benhamouda et al. [9] design new synchronous
DPSS schemes for storing secrets on blockchains, while
COBRA builds upon HotStuff [41] under partial synchrony.
CALYPSO [28] also proposes a verifiable data-management
framework based on blockchain and threshold encryption,
for a different use case where some authorized parties can
access the secret data via an access-control blockchain.

Regardless of whether the application calls for a secret-
shared threshold decryption key or for the private data itself
to be secret-shared (so to possibly facilitate computations
over the data), the usage of DPSS to either refresh or transfer
the secret information remains the same. By improving upon
DPSS itself, we therefore offer two mechanisms by which
our work can help improve upon state of the art applications.
The first is that our asynchronous protocols can offer better
performance in less-than-optimal network conditions. While
relying on a synchronous DPSS will weaken the properties
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of systems built on practical partially-synchronous consensus
such as PBFT [16], even state of the art partially synchronous
DPSS protocols like COBRA suffer asymptotic performance
hits (from O(n3) to O(n4)) during period of asynchrony.
Alternatively, using a similar-performing asynchronous
DPSS protocol (like our O(n3) DPSS scheme) can limit the
damage done by slowness or network partitions, even if other
parts of the system make stronger network assumptions.

Secondly, by offering a High-Threshold DPSS scheme,
we can improve the privacy offered by distributed KV stores
over prior solutions. By encoding secrets in high-degree
polynomials, a passive adversary would need to corrupt over
2/3 of the network at once to compromise the privacy of
the stored information. While an active attacker controlling
the majority of the network could stop the protocol from
operating (and fundamentally this is impossible to fix), any
such interference could easily be detected and a new protocol
instance could be started with new nodes.

Extractable Witness Encryption. Goyal et al [23] also
utilize the combination of DPSS and State Machine Replica-
tion, but they use it to build a primitive which is functionally
equivalent to extractable witness encryption [22]. Roughly
speaking, a witness encryption scheme for an NP language L
allows a user to encrypt a message with respect to a problem
instance x. The decryptor is able to decrypt the message
if x ∈ L and the decryptor knows a witness w that x ∈ L.
For instance, the problem instance x can be any NP search
problem and w can be any valid solution to the problem. If a
witness encryption scheme is extractable, then any adversary
that is able to distinguish two ciphertexts encrypted to the
same x is also able to provide a witness w for x∈L.

Goyal et al [23] introduce the extractable Witness
Encryption on Blockchain (eWEB), where any depositor that
wants to deposit a secret with some releasing condition can
distribute the encoded secrets among the miners via threshold
secret sharing schemes. The set of miners will be constantly
changing, thus a hand-off procedure using DPSS is period-
ically executed by the miners to ensure the secret is properly
stored and can be released. Any requester with a valid witness
to the release condition of the secret can learn the secret from
the miners securely via reconstruction. Our DPSS protocols
can further enhance the robustness the eWEB scheme, by
tolerating arbitrary network delays and adversarial schedule
of message delivery. Moreover, our high-threshold DPSS
scheme can provide better privacy guarantees and achieve the
same single-secret cost and amortized cost without trusted
setup. On the other hand, our low-threshold DPSS scheme
reduces the amortized cost by a factor of O(n) compared to
Goyal et al [23] under the same setup assumption.

5.2 Transferable MPC Computations

MPC-as-a-Service. In an MPC-as-a-Service setting, a
group of N servers evaluates an arithmetic circuit in order

to output some function of private user inputs. It is often
useful to divide this service into two parts: an offline phase
in which precomputation is performed continuously, and an
online phase which utilizes this precomputation to evaluate
a circuit upon receiving client inputs. Previous works such
as HoneyBadgerMPC [31] utilized a non-robust offline
phase in which precomputation attempts could fail but would
be assumed to succeed eventually. Once successful, this
precomputation could be used for a robust online phase,
which is guaranteed to terminate successfully even in the
presence of byzantine faults and asynchrony.

Precomputation Examples. Shared secrets which are
encoded with Shamir’s Secret Sharing Scheme are additively
homomorphic, meaning that a circuit program consisting
only of additions of different secrets could be evaluated non-
interactively once instantiated (but with an interactive step at
the end to reconstruct the result). However, most non-trivial
programs also require the ability to perform other functions
such as multiplications or coin flips. These operations may
require the use of data which may be precomputed, such as
Beaver triples (a set of three t-shared values {[a]t ,[b]t ,[ab]t})
to facilitate multiplication, a shared random bit [b]t ,b∈{0,1}
to perform a coin toss, or a shared random input mask [r]t
to efficiently allow for inputs from untrusted clients. All of
these t-shared elements can be computed more efficiently by
forgoing robustness (instead, aborting on detecting a failure),
but crucially, once they are calculated they can be spent,
transferred, or refreshed robustly.

6 Evaluation

We implemented* all of our asynchronous DPSS protocols
and characterize their performance in this section.

6.1 Experimental Setup

Our implementations were done primarily in python (forking
from the codebase of [18]), while core cryptographic oper-
ations rely on libraries written in rust. In particular, we used
the ristretto group implementation of curve25519_dalek [1]
to instantiate our high-threshold DPSS protocols and we
used ZCash’s bls12-381 library [24] as the backend for our
t-threshold DPSS. This is because our t-threshold scheme
requires the use of pairings to implement KZG polynomial
commitments, while our high-threshold scheme uses different
cryptography which does not require pairings.

All of our programs were evaluated on a consumer-grade
laptop with an Intel i5-1135G7 processor and 64GB of RAM.
All benchmarks are run on a single core and players are
modeled as asyncio tasks which send serialized messages to
each other.

*Repo available at https://github.com/tyurek/dpss
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n
Low Threshold

No Crashes / t Crashes
High Threshold

No Crashes / t Crashes
4 13.28 / 9.31 3172.75 / 2456.61
10 24.38 / 21.25 7687.48 / 5703.75
19 37.91 / 36.26 14557.51 / 10366.71
31 61.56 / 58.83 -

Table 2: Computation time (in seconds) required for a mem-
ber of a committee to receive 1000 shares from the previous
committee and then transfer 1000 shares to a new committee

6.2 Network Considerations

Although we do not evaluate our protocols on a geo-
distributed network, we argue that the primary bottleneck
in evaluations should be computational, rather than related
to bandwidth and network latency. We first observe that the
round complexity of our protocols is not affected by the
number of shares being transferred, so in the case where
a sizable batch of shares are used, the throughput lost to
round-trip times is vanishing. This is especially true in the
case where a constant-round MVBA is used to achieve an
overall constant round complexity (notably, our prototype
implementation uses N concurrent ABA instances instead,
which, while constant-rounded in the absence of byzantine
faults, leads to a worst case O(logn) round complexity).

We next observe that the amount of bandwidth required per
secret transferred is quite low: For the t-threshold DPSS, each
party needs to receive two 32-byte field elements (a share and
a blinding share) and two 48-byte bls12-381 G1 elements
(a KZG polycommit and witness). The distribution of these
values via a batch-amortized Asynchronous Verifiable
Information Dispersal algorithm adds a constant factor of
roughly 6x, while the costs of randomness extraction impart
another 3x overhead factor. Using speedtest.net’s global
median upload speed for April 2022 of 27.06 Mbps [2], this
would imply a throughput of over 1200 shares per second (or
roughly an order of magnitude faster than our fastest result)
if computation were not an issue.

Notably, our high-threshold DPSS protocol has an amor-
tized network bandwidth of O(n2) and therefore may be more
susceptible to bandwidth limitations. In our implementation
we measured that two Paillier ciphertexts, a Pedersen com-
mitment, and a proof about the correctness of the ciphertexts
measured roughly 10KB. Each participant in the DPSS needs
to process roughly 3n of these tuples per share transferred
and incur a roughly 3x overhead on top of this for the reliable
broadcast mechanism. Even in this case however, the compu-
tational costs of the protocol dominate by a significant margin.

6.3 Experimental Results

Our primary results in Table 2 show the amortized amount
of computation required for a node to receive a share from
an old committee and then transfer it to a new committee

when all committees are of size n. We observe that while
our high-threshold protocol comes with a meaningful
performance penalty relative to our t-threshold protocol, it
also enables a new class of applications and an increase in
privacy that practitioners may find worthwhile.

We evaluate our protocols in both the fault-free setting
and with t nodes crashing in each committee. As expected,
the difference in performance is minimal, with the t-crash
case actually performing slightly better due to nodes having
to handle fewer messages and not participating in ACSS
instances which do not end up in the final subset.

6.4 Discussion

Relative Slowness of High-Threshold Scheme. Upon im-
plementing our high-threshold DPSS scheme, we discovered
that the vast majority (above 80%) of the computation is spent
performing the modular exponentiations needed to generate
Paillier encryptions as well as prove and verify their cor-
rectness. We note that unlike many other applications which
utilize Paillier encryption, we do not require the ciphertexts to
be additively homomorphic, and that it may be more efficient
to use a different cryptosystem when proving knowledge
about the correspondence between plaintexts and committed
values in Pedersen commitments. However, we are not aware
of an instantiation of this proof in any other cryptosystem.

Comparison With Other Works. The recent work of
COBRA evaluates their DPSS scheme on a local network of
up to ten servers and benchmarks the refreshing of 100,000
shares in a time of 743.8 seconds for the ten server case,
claiming a roughly 5x speedup over the prior state of the
art MPSS [36]. Though this corresponds to a 3.28x greater
throughput, We argue that this difference is explainable as
an artifact of the experimental setup, as their benchmarks
were run on servers as an 8-threaded program, while our im-
plementation is single threaded. While in principle we could
improve our benchmarks in a number of ways including using
multiple cores, implementing persistent precomputation for
multiexponentations, and optimizing polynomial operations,
this would yield misleading results: Both our scheme and
COBRA (as well as several others [23, 33, 40]) utilize KZG
polynomial commitments as a subcomponent, which often
then becomes the primary computational bottleneck.

7 Conclusion

In this work, we designed and implemented three asyn-
chronous Dynamic-committee Proactive Secret Sharing
schemes, each of which achieved new asymptotic bounds
while also incorporating useful new properties such as sup-
porting high privacy thresholds. Moreover, we demonstrated
that asynchronous and robust DPSS protocols can compete
with prior work in good-case scenarios and outperform
them in the presence of faults. Leveraging this, we recall

12



prior applications which used DPSS and show how they
how they can be better equipped to handle more adversarial
environments. We additionally propose the usage of batch-
amortized DPSS in refreshing and transferring precomputed
data for use in robust MPC applications.We hope that these
advancements allow future practitioners to build awesome
resilient applications for use on a decentralized internet.
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A Epoch Definition

As in MPSS [36], we define epoch to constrain the power of
the mobile adversary in the proactive secret sharing scheme,
in order to circumvent the impossibility result of Alexandru
et al. [5] (which has a slightly different model where the
adverary can corrupt more than t nodes in one epoch as
defined below). Due to the nature of asynchrony, different
nodes may enter and leave different epochs at different
physical times. Below we provide the definition of epoch in
MPSS [36] for completeness.

• Local Epochs. A node is in epoch e if it has secret
shares or secret keys associated with epoch e. It leaves
epoch e and enters epoch e+ 1 when it wipes out all
such information from its memory.

• System Epochs. Let Ge denote the set of nodes
responsible for the secret in epoch e. The system is in
system epoch e from the moment the first honest node
in Ge enters epoch e until the moment the last honest
node in Ge leaves epoch e.

• System Compliance Constraint. The adversary is system
compliant through epoch e if, for all i≤ e, it is able to
corrupt no more than t nodes belonging to Gi while the
system is in any system epoch up to i.

B Functionality of DPSS

This section presents the DPSS functionality FDPSS. The
coordinator is a honest party that issues signals for the
Sharing, Reconstructing, and Resharing events.

FDPSS

//ParamGen
Sample g,h∈G and make (g,h) public.

//Share
On receiving (DEAL,sid,s,d) from an honest dealer (only
once per sid):

Sample random degree-d polynomials φ(·), φ̂(·) and
set φ(0)=s

On receiving (DEAL,sid,φ(·),φ̂(·),d) from a corrupt dealer
(only once per sid):

Abort if either polynomial has degree > d or
d>N−t−1.

In either case, compute:

• shares={φ(i),φ̂(i)}i∈[0,N],

• c={gφ(i)hφ̂(i)}i∈[0,N],

and store (shares, sid) → storage. Eventually send

(SHARE,sid,φ(i),φ̂(i),c) to each party Pi.

//Reconstruct

On receiving (REC,sid,coeffs) from the Coordinator where
coeffs defines the coefficients to use in a linear combination
of outputs of Share (only once per sid):

Interpolate degree d polynomials φ(x), φ̂(x) from the
specified linear combination of shares.

Send (REC,sid,φ(x),φ̂(x)) to every corrupted player.

Eventually send s to every honest player.

//Reshare
On receiving (Reshare, sid, coeffs, d′, C′) from the
Coordinator (only once per sid):

Send (LEAK,C,C′,d,d′) to the adversary.

Interpolate degree d polynomials φ(x), φ̂(x) linear
combination of shares.

For each (φ(i), φ̂(i)) held by an honest party in C,
sample degree d′ polynomials φi(·), φ̂i(·) where
φi(0)=φ(i),φ̂i(0)= φ̂(i).

Send (LEAK, {(φi( j), φ̂i( j), c′i)}i∈CHonest to A , where
c′i :={{gφi(k)hφ̂i(k)}k∈[0,|C′|]} j∈C′Corrupted

.

Allow A to input degree d′ polynomials φi(·),φ̂i(·) for any
adversarial Pi, and verify φi(0)=φ(i),φ̂i(0)= φ̂(i).

Let A choose a set S of d + 1 polynomials {φi}i∈S to use
to calculate the output. If A does not specify, then
eventually choose an arbitrary S.

Interpolate shares′={φ′(i),φ̂′(i)}i∈[|C′|] from the specified

set and calculate c′={gφ′(i)hφ̂′(i)}i∈[|C′|].

Eventually send (RESHARE, sid, φ′(i), φ̂′(i), c′) to each
party P′i ∈C′

C Proof of Theorem 1

Proof. We construct the following simulator Sim with access
to trapdoors of the Pedersen commitment scheme and the
zero-knowledge proving scheme.

Simulator Sim for DPSS

Initially, sample n private keys SK1,SK2,...,SKn, and
an honest dealer’s public key. Let the fake secret
s′=0. Let the corrupted set C = /0. Get the trapdoors
of the commitment scheme and the zero-knowledge
protocol per the crs model.

On Receiving (CORRUPT,sid,i) from the adversary:

• mark the party Pi as corrupted and take over its
memory and messaging channels.

• C =C∪{i}.

On Receiving ({vi,v̂i,ci,πi}) from ReliableBroadcast:

• Run Share (as Pi) in Algorithm 3.
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• Store [s]id ,[ŝ]
i
d .

On all the simulated honest parties finish running
Share.

• Interpolate a degree d polynomial φ from [s]id ,
and a degree d polynomial φ̂ from [ŝ]id .

• store φ and φ̂.

• Send (DEAL,φ,φ̂) to FDPSS.

On receiving (SHARE,xi, x̂i,c,sid) designated to Pi
from FDPSS (once):

• compute π=Simzk(xi,x̂i),

• and store (i,xi,x̂i).

After the store contains the shares of all the corrupt
parties in C :

• If we previously already stored φ,φ′, namely, the
dealer is honest, stop and do nothing.

• Otherwise, for every honest party Pi, the simu-
lator samples uniformly xi and x̂i s.t. all the xi
are on a polynomial φ(x) where φ(0)=s′=0.

• Then, it computes for every party Pi, vi =
EncPKi(xi),v̂i =EncPKi(x̂i),ci = gxihx̂i , and πi←
SimZK(xi,x̂i) with the zero-knowledge trapdoor.

• Call ReliableBroadcast({vi,v̂i,ci,πi}) with hon-
est parties simulated in mind. For any message
sent to the corrupt party, forward it simply.

On receiving outputs from the reliable broadcast,
follow the protocol ΠACSS.

On receiving (REC,φ̄(·), ¯̂φ(·)) from the functionality.

• Compute the real secret s= φ̄(0).

• Sample a random degree d polynomial φ̃(·) s.t.
for all the corrupted party Pi, φ̃(i) = φ(i), and
φ̃(0)=s.

• Overwrite the simulated party Pi’s memory that
[s]id = φ̃(i).

• Use the trapdoor to compute [ ˆ̃s]id such that the
previous commitments are consistent with φ̃(i).
Overwrite the simulated party Pi’s memory that
[ŝ]id =[ ˆ̃s]id .

• Let the simulated honest parties follow the
protocol in Algorithm 2. Forward the messages
to and from the corrupt parties directly.

• Initiate the last message of FDPSS. Namely,
FDPSS sends s to every honest player.

On receiving (LEAK,C,C′,d,d′) from the function-
ality:

• Store C,C′,d,d′.

On receiving messages from the malicious party:

• Forward it to the simulated honest parties.

On receiving (LEAK,φi( j),φ̂i( j),c′i)i∈C\C , j∈C∩C from
FDPSS:

• Drop the message.

• Let every simulated honest party follow the
protocol to produce φi and φ̂i.

• Run ACSS between the corrupted parties and
the simulated honest parties.

• For every simulated honest party Pi, initialize
Ti={}.

On j-th ACSS outputs and the commitment check
passes:

• let Ti←Ti∪{ j} for all simulated honest party Pi.

• If |Ti| = d′ + 1, let T ′i ← Ti. Let the simulated
party Pi invoke MV BA(T ′i ).

On MVBA outputting T :

• Input the polynomials {φi}i∈T to FDPSS.

• The simulated honest parties follow the procotol.

On receiving messages (RESHARE,·) from FDPSS to
corrupted parties in the new committee, simply drop
them.

It suffices to argue that the simulator makes the ideal
world’s communication indistinguishable from the real
world’s communication.

During sharing, if the dealer is honest, the simulator
will receive the shares for the corrupted parties from the
functionality. In this case, it samples polynomials for the
fake secret s′ and produces the transcripts of the ciphertexts
vi, v̂i, commitments, and zero-knowledge proofs for the
simulated honest parties. Then, it sends these values to the
corrupted parties. Because (a) the values are encrypted, (b)
the commitments are hiding, and (c) the zero-knowledge
proofs are private, the corrupted parties cannot tell whether
the underlying secret is s or s′. If the dealer is corrupted, the
simulator will receive messages of the reliable broadcast from
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the corrupted parties, which might not follow the protocol
at all. The simulator lets the simulated honest parties run the
Share function (as Pi) in Algorithm 1 and store the shares
[s]id ,[ŝ]

i
d . After all the simulated parties get their shares, the

simulator interpolates polynomials φ and φ̂ from the shares,
and sends a DEAL message to the functionality FDPSS.

During the reconstruction event, the simulator would re-
ceive a message from FDPSS which contains the real polyno-
mials φ and φ̂. It then samples a new polynomial φ̃ which has
the same zero-point, (namely, φ(0) = φ̃(0)), and makes the
corrupted parties’ shares consistent, (namely, φ(i)= φ̃(i) for
corrupted parties Pi). Note that if the dealer is corrupted, then
the polynomial φ̄ already satisfies the requirements. So the
simulator can let φ̃= φ̄ in this case. It seems that the simulator
only needs to change the memory of the simulated honest
parties to get everything on the right track. However, there
is one problem — the adversary will realize that the commit-
ments do not open successfully because the simulated honest
parties commitments are based on their original shares φ(i),
which might correspond to a fake secret s′. To fix this, the
simulator needs to use the commitment trapdoor to compute
[ ˆ̃s]id s.t. ci = gφ(i)hφ̂(i) = gφ̃(i)h[ ˆ̃s]

i
d for the simulated honest

parties and interpolate ˆ̃
φ from [ ˆ̃s]id . The simulator overwrites

the memory of the simulated honest parties to let their share
[s]id ← φ̃(i) and the corresponding hiding share [ŝ]id ←

ˆ̃
φ(i).

Finally, the simulator lets the simulated honest parties to con-
tinue the reconstruction protocol in Algorithm 2. Note that if
the dealer is corrupted, the polynomials φ̃, ˆ̃φ equal the ground
truth polynomials φ,φ̂. If the dealer is honest, the polynomials
φ̃, ˆ̃φ compose a valid set of polynomials which could result
from the randomness of the honest dealer in another universe
with the same likelihood. Therefore, the adversary cannot dis-
tinguish the simulated world from the real world in both cases.

Now, it suffices to show that during every resharing, the
messages look indistinguishable for different underlying
secrets. When the old committee sends shares to the new com-
mittee, each of the party Pi performs an ACSS instance. By
its secrecy property, the ACSS does not reveal anything com-
putationally about the the honest parties’ local shares as long
as the adversary controls up to t parties in the new committee
C′. For the new committee portion, the MVBA instance only
deals with the set of indices. In other words, the messages are
independent from the underlying secret. So, if the adversary
learns anything about the underlying secret, it must come
from the commitments. However, the Pedersen commitments
are hiding. By a simple induction, we can conclude that
after a polynomial number of resharing, both worlds are
computationally indistinguishable. This concludes our proof.

17


	Introduction
	Related Work

	Preliminaries
	Asynchronous Complete Secret Sharing
	Dynamic-committee Proactive Secret Sharing
	Multi-valued Validated Byzantine Agreement
	Reliable Broadcast

	High-Threshold Share Transfer
	High-Threshold ACSS
	MVBA
	High-Threshold Share Transfer
	Security Analysis
	Performance Analysis

	Batch-Amortized Share Transfer
	Applications
	An Upgrade To Previous Applications
	Transferable MPC Computations

	Evaluation
	Experimental Setup
	Network Considerations
	Experimental Results
	Discussion

	Conclusion
	Epoch Definition
	Functionality of DPSS
	Proof of Theorem 1

