
PEReDi: Privacy-Enhanced, Regulated and Distributed
Central Bank Digital Currencies

Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh⋆

University of Edinburgh and IOHK, UK
akiayias@inf.ed.ac.uk, mkohlwei@ed.ac.uk, and amirreza.sarencheh@ed.ac.uk

Abstract. Central Bank Digital Currencies (CBDCs) aspire to offer a digital re-
placement for physical cash and as such need to tackle two fundamental requirements
that are in conflict. On the one hand, it is desired they are private so that a finan-
cial “panopticon” is avoided, while on the other, they should be regulation friendly
in the sense of facilitating any threshold-limiting, tracing, and counterparty audit-
ing functionality that is necessary to comply with regulations such as Know Your
Customer (KYC), Anti Money Laundering (AML) and Combating Financing of Ter-
rorism (CFT) as well as financial stability considerations. In this work, we put forth
a new model for CBDCs and an efficient construction that, for the first time, fully
addresses these issues simultaneously. Moreover, recognizing the importance of avoid-
ing a single point of failure, our construction is distributed so that all its properties
can withstand a suitably bounded minority of participating entities getting corrupted
by an adversary. Achieving all the above properties efficiently is technically involved;
among others, our construction uses suitable cryptographic tools to thwart man-
in-the-middle attacks, it showcases a novel traceability mechanism with significant
performance gains compared to previously known techniques and, perhaps surpris-
ingly, shows how to obviate Byzantine agreement or broadcast from the optimistic
execution path of a payment, something that results in an essentially optimal com-
munication pattern and communication overhead when the sender and receiver are
honest. Going beyond “simple” payments, we also discuss how our scheme can facili-
tate one-off large transfers complying with Know Your Transaction (KYT) disclosure
requirements. Our CBDC concept is expressed and realized in the Universal Compo-
sition (UC) framework providing in this way a modular and secure way to embed it
within a larger financial ecosystem.

Keywords: Privacy, Cryptography, CBDC, Distributed Ledgers, Regulatory Com-
pliance, KYC, AML, CFT, Universal Composition.

1 Introduction

The development of cryptocurrencies provided a strong motivation for the development of
“central bank digital currency” (CBDC) systems. A CBDC is central bank money but more
widely accessible and transferable than central bank reserves and banknotes (see e.g., Bank
of England [30] for an overview of the basic principles of such systems). This type of money
can also be interest bearing (with a different rate than that on reserves) [11] and has a
different operational structure than other forms of central bank money [40]. It was early on
observed that CBDCs solve a different problem than general cryptocurrencies such as Bitcoin
and/or Ethereum. The first construction that exploited this distinction is RSCoin [24] which
was followed by designs explored by a number of central banks [1,22,10]. In such systems the
verification of transactions relies on a distributed set of independent authorities (we call them
“maintainers”). Such entities are empowered to enforce the monetary and regulatory policies
of the system that are dictated by the central bank and regulatory entities. A distinguishing
characteristic of CBDC systems compared to cryptocurrencies is that the monetary policy
⋆ Corresponding author.

2 Kiayias, Kohlweiss, Sarencheh

is decoupled from the monetary exchange system. The integrity and soundness of the former
remains in the purview of the central bank, while the integrity of the latter is distributed
across a set of entities. Therefore, the CBDC system’s state is maintained in a distributed
manner by the maintainers such that the central bank as well as any regulatory entities can
be offline during the time users transact.

A common concern expressed in the context of CBDCs is that, contrary to other forms
of central bank money, a CBDC may transform the central bank into a “panopticon” that
is continuously aware of all transactional data. Such concerns have also been highlighted
in the context of cryptocurrencies. First generation cryptocurrencies such as Bitcoin and
Ethereum are only pseudonymous in the sense that a user’s transactions are linkable to a
(set of) pseudonym(s) that the user can generate. Privacy enhanced cryptocurrencies (e.g.,
ZCash [8] or Monero [34]) were developed to hide the value of transactions and offer un-
linkable transactions to a certain degree or under plausible assumptions. Note that such
systems enjoy a level of anonymity that does not reveal directly any information about
payment counterparties and transaction values and, hence, may be attractive and be used
for illegal activities such as money laundering, financing terrorism, and so on. As a result,
privacy-preserving systems using such techniques can be problematic in settings where com-
prehensive regulatory compliance is required. CBDCs constitute such setting and hence it is
imperative to have built-in features by which, while full anonymity can be offered for most
circumstances, at the same time conditional disclosure to regulators and law enforcement in
case of misbehavior can be facilitated, cf. [4].

Privacy in payment systems can interfere with three main regulatory obligations:

1. Know-Your-Customer (KYC), which requires the positive identification of counterparties
before they are able to transact.

2. Anti-Money Laundering (AML), which requires that sources of funds should be legiti-
mate.

3. Combating Financing of Terrorism (CFT), which requires that the recipients of funds
should not engage in terrorism.

To appreciate the way such requirements interfere with privacy, it helps to imagine the
set of all payments as a hidden directed graph where vertices correspond to counterparties
and edges to payments between them weighted by their value. Using this abstraction, it
follows that introducing vertices in the graph should be subject to KYC, while it should
be possible to reveal the incoming or outgoing edges to any vertex which is suspected for
illicit or terrorism activity, as well as trace selectively particular paths in the graph from
source to destination and vice versa to address AML and CFT considerations. Beyond these
opening and tracing operations it is widely recognized in the CBDC context, cf. [1,7,10],
that it is desirable to restrict both the volume of payments that a particular vertex can make
(so that “hoarding” CBDC currency is tempered) as well as limit the amount of value that
can be transferred between two counterparties in a single transaction, without triggering
additional auditing regarding the funds of the sender (what is referred to as KYT - know
your transaction, cf. [3]). Unfortunately, currently no existing CBDC design offers privacy
combined with such “regulation friendly” capabilities.

Our Results. We put forth a model and construction that for the first time addresses all
the issues identified above simultaneously. In PEReDi each user has an account which is ap-
proved during onboarding (i.e., it undergoes KYC) and can subsequently be issued currency
by the central bank (following its monetary policy) as well as receive or transmit funds
to other users. Our design approach applies a novel combination of cryptographic primi-
tives and distributed organization that, perhaps surprisingly, shows how we can remove the
requirement for (byzantine) agreement or broadcast from the optimistic path of payment
execution. PEReDi features an encrypted ledger maintained separately by each maintainer,
transactions are identified by transaction identifiers and leave encrypted fingerprints in the

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 3

ledger of each maintainer that under normal circumstances are completely opaque. Trans-
action senders and receivers independently update their private accounts, leaving the above
traces, while only in the case of a transaction abort the maintainers need to engage in an
agreement protocol to ensure consistency. In this way, PEReDi offers a digital equivalent of
physical cash: payments do take place with double-spending prevention without anyone in
the system becoming aware of the precise value transferred or the counterparties involved. At
the same time (and contrary to physical cash) the transaction value is subject to constraints
in terms of sending and receiving limits of the two counterparties and maximum transaction
size, while the counterparties themselves are preconditioned to proper KYC onboarding.
Tracing and opening operations are accommodated by the design elements of the encrypted
ledgers. Given adequate evidence about suspicious activities of a specific user or a particular
transaction (indexed by its unique transaction identifier), the authorities can trace trans-
actions made by that user or reveal the metadata of a given transaction by unlocking the
real world identities of the counterparties or the total value transferred. Combining these
opening and tracing operations, authorities can identify the labels of specific vertices in the
payment graph as well as trace paths of payment from source to destination and vice-versa.
We stress that such operations require a quorum of entities to agree and hence cannot be
unilaterally invoked by any individual entity hence precluding a single point of failure.

To summarize, our contributions are as follows:

1. To the best of our knowledge, this is the first time that a fully privacy-preserving and
comprehensively regulated CBDC is modeled formally. Our formal model is in the Uni-
versal Composition (UC) setting [17]. This modeling enables the composition of the
system as payment infrastructure within larger systems.

2. We review the regulatory compliance in the context of payment systems (KYC, AML,
CFT, auditing, etc.) and argue how our ideal functionality for CBDCs captures such
requirements.

3. We put forth a distributed construction that realizes our CBDC ideal functionality in an
efficient manner based on standard cryptographic assumptions. Notably our construction
demonstrates that Byzantine broadcast or agreement is not needed in the optimistic
execution path of a payment instance, resulting in an optimal communication pattern
and message size in the case when both sender and receiver are online and willing to
finalize a payment.

4. We introduce a novel simulatable approach for tracing suspicious users in the auditing
protocol which is employed for double-spending prevention as well and may be of inde-
pendent interest as it is more efficient than previously known techniques in the broader
context of tracing users in conditionally anonymous payment systems.

5. We describe how our distributed CBDC construction can facilitate additional features
such as protocol support for concurrent digital currency issuance by the central bank for
different users, aborting transactions, and Know Your Transaction (KYT) operations.

It is worth noting that even though we describe our results in the context of CBDCs, it
is immediate that our system can be used to implement any “stablecoin” or more generally
fungible digital token which has a centrally managed supply. In such case, the role of the
central bank is played by the issuer of the digital token, who is capable to introduce new
tokens increasing the supply as determined by the issuer’s policy. It is also straightforward to
return such tokens to the issuer by sending them to a designated account for that purpose.

1.1 Related Work

The first system for anonymous electronic cash was introduced by Chaum [21] and focused
on sender anonymity, while disclosing the recipient’s identity and the amount transferred.
The system also required users to hold information linear in the number of coins that they
possess, a performance consideration that was addressed in follow up work [19,14].

4 Kiayias, Kohlweiss, Sarencheh

Regarding the problem of revealing the transaction value to the bank, transferable e-
cash [16,6] introduced a mechanism for double-spending prevention. In this mechanism,
coins can be transferred to various users without communicating with the bank. Hence,
coins expand in size depending on how frequently they are used, which might be inefficient
for retail payments. Additionally, in these schemes coins are distinguishable based on the
number of transfers performed.

Camenisch et al. [15] proposed a token-based e-payment solution in which the bank can
enforce simple rules such as per-user payment limits. Privacy of senders of transactions is
preserved, nonetheless, the recipient identity and payment amount are leaked.

Considering blockchain-ledger-based anonymous payment systems like Zerocash [8], Gar-
man et al. [27] addressed how regulation rules could be enforced in such constructions. The
disadvantage of payment systems similar to the Zerocash approach is that they result in
privacy-preserving transactions that are unsuitable for resource-constrained users. Users
should prove knowledge of the path of a transaction output in a Merkle tree, hence, they
must maintain an up-to-date version of this tree. Moreover, users are supposed to download
the whole ledger and decrypt all transactions to conclude whether they are recipients of
transactions. Instead, in our construction there is no need to download the ledger. The ne-
cessity for users to be up-to-date with the whole ledger makes distributed blockchain-ledger
based constructions less efficient than our scheme which is based on signatures of distributed
(known) maintainers on the updated account of each user (this technique eliminates the need
to synchronize with the ledger state, which is only necessary for auditing).

Danezis et al., [24] introduced RSCoin, a central bank currency framework which is built
around an efficient broadcast mechanism. In RSCoin, the central bank delegates the respon-
sibility of verifying transactions to a set of entities called mintettes. Different from traditional
cryptocurrency miners, in their framework mintettes are known and may eventually be held
responsible for any misconduct. RSCoin focuses on the scalability of broadcast rather than
privacy or regulatory compliance.

Wüst et al. [39] proposed an anonymous payment scheme called PRCash in which trans-
actions are verified in a distributed manner. It achieves privacy and some degree of reg-
ulatory compliance. However, the main drawbacks of PRCash are that it does not meet
full anonymity as validators can link different transactions and it does not have auditabil-
ity. Hence, the authorities cannot investigate suspicious transactions or counterparties on
demand.

Androulaki et al. [5] introduced a privacy-preserving auditable token management sys-
tem. Their proposed scheme uses a UTxO model in a permissioned blockchain. In contrast
to our construction which is account-based, they target business-to-business scenarios, and
they do not offer a comprehensive approach to regulatory compliance as we do.

Damgård et al.’s work [23] addressed the problem of balancing accountability with pri-
vacy. Nevertheless, their work is in the identity layer for blockchain systems, and they do
not study various features necessary for a CBDC system (e.g., currency issuance, transac-
tions between users, financial and regulatory policies, and so on) in their transaction layer
framework. The tracing mechanism in [23], for each account generation, requires the account
holder to compute a pseudorandom-function PRF using its secret key. There is no concrete
implementation for tracing in their work as they use a secure multi-party computation for
PRF in a black-box manner. More importantly, the input of PRF is only restricted to be in a
range of values making tracing inherently inefficient as authorities are supposed to generate
the PRF values for all possible inputs in the range. In contrast, we achieve tracing com-
plexity, per user, proportional to the actual number of transactions issued by that specific
user.

Wüst et al. [38] introduced Platypus which is a privacy preserving and centralized pay-
ment system. Platypus relies on a single authority, our scheme is distributed such that it is
robust against single points of failure with respect to regulation enforcement, and can work
even if the central bank is completely offline. Furthermore, our scheme offers encrypted (dis-

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 5

tributed) ledgers which allow compliance with regulation like AML and CFT, by enabling
the set of authorities to trace a malicious user and to discover the transfer value and iden-
tities of the counterparties in any suspicious transaction. Platypus [38] does not offer such
capability. We stress that it is quite delicate to add efficient tracing and opening mechanisms
to a CBDC design as various attacks such as man-in-the-middle attacks where the sender’s
transaction information is not tied to the receiver’s identity and vice versa can take place
and should be addressed by careful design and modeling choices as we do here. Moreover,
the security properties of a CBDC system in their work are defined via a game-based ap-
proach something which may limit the composability of their construction, cf. [18]. Finally,
another drawback of Platypus [38] is that the technical details on their regulation approach,
currency issuance by the central bank, and addressing concurrent and aborted transactions
are not formally studied within their security model.

Tomescu et al.[37] introduced a decentralized payment system called UTT. Their con-
struction rely on Byzantine fault tolerant infrastructure. However, PEReDi obviates Byzan-
tine agreement and byzantine broadcast from the optimistic execution path of a transaction.
Hence, we have an essentially optimal communication pattern and communication overhead
when transaction participants are honest. In UTT, the receiver of a transaction has to scan
all transactions on a ledger similar to blockchain-ledger-based anonymous payment systems
to be able to successfully receive the currency which increases the load on users’ sides. Re-
garding regulation enforcement, the amount of money that can be anonymously sent in UTT
setting is limited by a monthly budget. PEReDi, on the other hand, allows for comprehensive
regulatory compliance, and can also enforce them from the recipient’s standpoint.

2 CBDC Security Desiderata and Modeling

2.1 CBDC Entities

We abstract a CBDC system to three separate classes of entities: the central bank, a set of
maintainers (e.g., commercial banks and financial institutions), and users. Role separation
is an important element in CBDC design, cf. [1]. The description of these roles together with
the relevant assumptions made about them are as follows.

1. Central Bank: The central bank issues the digital currency and is responsible for mon-
etary policy. The monetary supply at any given time is in the purview of the central
bank. However the state of all users’ accounts is not under its control. Moreover, due
to the potential threat of mass surveillance [22], the central bank is also not trusted for
privacy, i.e. it has no ability to deanonymize the sender or recipient of a transaction or
reveal the transferred values associated with a specific transaction. Finally, the central
bank is not responsible for enforcing the regulatory rules that govern payments. We refer
to [10], and [22] for more context on the role of central banks.

2. Maintainers: The authority of validating transactions and facilitating various auditing
operations needed for regulatory compliance is delegated to a number of approved insti-
tutions that we call the maintainers. As a result, the central bank and regulator are not
needed to be active in any of the system’s day to day operations (except for issuing cur-
rency for the former). The maintainers share the state of system and are responsible for
continuously updating it as users issue transactions. In a real world deployment, main-
tainers can be organizations with an existing connection to the central bank for instance,
commercial banks, financial institutions, and etc. Note that contrary to e.g., miners in a
cryptocurrency blockchain, the set of all maintainers is public and known to all network
participants. The basic properties of the system such as the integrity, regulatory compli-
ance and privacy of transactions emanate from the actions of the maintainers. We note
that the system’s security and liveness objectives will be met as long as the adversary
controls less than a certain threshold number of maintainers. In any financial system,
there exist various operations that are subject to regulatory rules. Examples of relevant

6 Kiayias, Kohlweiss, Sarencheh

entities developing and/or enforcing such rules are the Financial Conduct Authority
(FCA) in the UK or the Securities and Exchange Commission (SEC) in the US. One
important aspect of regulatory compliance is KYC; in our CBDC system abstraction, we
assume maintainers are responsible for onboarding users to the system, i.e., all accounts
in the system that are introduced subject to the approval of the maintainers.

3. Users and Payment interface Providers (PIPs): As any digital currency system, in a
CBDC system, the users can act as either the sender (a.k.a. buyer, payer, or customer)
or the recipient (a.k.a. seller, payee, or merchant) of digital currency in a transaction.
Users of the currency can be private individuals or organizations. Note that users engage
with the system through software and/or hardware provided by a PIP. The distinction
between users and PIPs will not be essential for our analysis and modeling, and we will
not pursue it further. We assume that any number of users of the system are untrusted,
i.e. they may behave maliciously against honest users or other system entities. Privacy
of payments should be satisfied between an honest sender and an honest receiver in a
transaction.

2.2 CBDC Security Requirements

In this section, we informally define security requirements that will be captured by our
CBDC ideal functionality. Note that the CBDC system should be resilient against broad
types of attacks (e.g., Sybil attacks, man-in-the-middle attacks etc.), however, the focus of
this section is on explaining requirements which are more specific to payment systems and
CBDCs; these are as follows.

1. Financial and Regulatory Integrity. No one should be able to update the account of
another user. Furthermore, currency in circulation or the amount of CBDC that is
used to conduct transactions between consumers and businesses does not change as the
system evolves over time except when the central bank decides to create new money
(digital currency). Double-spending prevention is a crucial requirement for any payment
system. A specific balance of a user should not be used in two transactions without
being updated each time. In addition, after a successful payment between two users, the
account of both of them should be updated correctly considering all parameters that are
included in users’ accounts for the purpose of checking financial and regulatory rules.

2. Comprehensive Regulatory Compliance. This term means achieving all the following four
items at the same time.
(a) Balance Limit: It limits the amount of funds that a particular user can possess in a

specific period of time. Bank of England [1] and a report from several Central Banks
(that details the principles, motivations, and risks of CBDC) [10] have mentioned
that balance limit can help prevent bank runs and evasion of wealth tax. Moreover,
the Bank of England (BoE) [1] and the European central bank (ECB) [9] have
addressed that to manage the implications of a CBDC for financial stability, limits
of how much CBDC any individual can hold is necessary.

(b) Receiving and Sending Limit: It limits the amount of received and sent funds that a
particular user can receive or send in a specific period of time. The sent and received
amounts should not exceed a predefined threshold. European central bank [7], and
several central banks [10] have mentioned that limiting receiving and sending values
can help achieve AML and prevent tax evasion.

(c) Transaction Value Limit and KYT: Reporting requirements and disclosure of source
of funds for large value transactions are typically required (e.g., in the US filing a
report is required for transactions in cash exceeding $10, 000). To reflect this, we have
a limit on the value of each transaction. Furthermore we discuss how it is possible
to comply with more complex KYT policies where users should disclose additional
information for large value transactions.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 7

(d) Auditability: In cases of suspicious activities, additional auditing actions are needed
(for e.g., filing suspicious activity reports called SARs [2]). The auditing functionality
has two components:
i. Privacy Revocation: Given an anonymous transaction, authorities can reveal

the real world identities of involved parties and the transferred value of that
transaction.

ii. Tracing: Given a real world identity of a user, authorities can trace anonymous
payments in which the user has engaged (as a sender or recipient).

3. Full Privacy. This property means achieving all the following three items at the same
time.
(a) Identity Privacy: It means for any given transaction the real world identities of either

the sender or the receiver cannot be revealed (except when auditing). Furthermore,
given the identity of a specific user no one can find the transactions in which the
user has involved as a sender or receiver.

(b) Transaction Privacy: The transferred value by the sender to the recipient cannot be
revealed (except when auditing) and given a specific amount of transferred value
no one can find the transactions that match that same (or related) value. Only the
sender and recipient should know the value of the transaction. Moreover, the account
information of users (e.g., sum of all sent and received values) are hidden from all
network entities.

(c) Full Unlinkability: It contains two parts that are as follows.
i. User Unlinkability: Given an anonymous payment’s real world identities of the

sender or receiver it should not be possible to link the sender or receiver’s other
transactions to the given transaction.

ii. Transaction Unlinkability: Given a transaction, it should not be possible to link
any past transaction that resulted in the possession of the funds used by the
current transaction.

4. Accountability. When a user makes a payment it should not be able to deny it later —
there is an obligation to accept the responsibilities that come with a finalized transaction.

2.3 Notations

In this paper, for uniquely identifying parties, we denote the central bank by B, the user
and its key pair with U and (pkU, skU) respectively. U also has another secret key a used
for generating per-transaction tracing tag. This tag is denoted by T. We denote the account
of U by acc. The notation Mj is used for the j-th maintainer and M for the set of all
maintainers. We assume |M| = D and there are two thresholds, α is the threshold number
of maintainers required for verifying transactions on behalf of the central bank and the
regulator, and β is the threshold number of maintainers required for executing the Auditing
protocol. Maintainers of which β number is required for executing the Auditing protocol
is called audit committee. Set of honest and malicious maintainers are denoted by H and
C, and their associated identifiers (indexes) by H and C respectively. We assume |C| = t.
Honest maintainer is denoted by Mw and malicious maintainer is denoted by Mt.
Lj denotes the j-th ledger maintained by j-th maintainer Mj which is initially empty. We

denote the user record which is saved in L with UR. The sender and receiver of a payment
are denoted by Us and Ur respectively. The value of transaction that is transferred from a
sender (B or Us) to a recipient is denoted by v and the transaction identifier is denoted by
tid.

The balance of U is denoted by B, and sum of all sent and received values of U by S
and R respectively. Bmax, Smax, Rmax, and Vmax are regulatory limits on maximum allowed:
balance, sum of all sent values, sum of all received values, and transaction value respectively.
We denote transaction counter of a user which is incremented for each transaction (Currency
Issuance or Payment) by x.

8 Kiayias, Kohlweiss, Sarencheh

The notation {ei}Ni=1 is used to denote a set {e1, ..., eN} with N elements. If for every
positive polynomial p, there is an integer i0 where for all integers i > i0, negl(i) < 1

p(i) holds,
the function negl is negligible. We use Fq to denote a field with q elements. PPT stands for
probabilistic polynomial time.

2.4 CBDC Formal Model

We formalize the objectives of a CBDC system as an ideal functionality in the Universal
Composition framework [17]. The central bank digital currency scheme consists of six main
sub-protocols: User Registration, Currency Issuance, Payment, Abort Transaction, Privacy
Revocation and Tracing. The last two are called Auditing. Valid transactions are recorded
in the ledger L of each maintainer M. Hence, there is a history of all verified transactions
accessible by anyone who is permissioned to audit private transactions.
FCBDC is parameterized by D, t, Vmax, Bmax, Smax, and Rmax where D = 3t+1 holds. The

functionality FCBDC maintains the following tables and mappings:

1. T (U) outputs 0 if U has not been traced and 1 if it has been traced. Initially, T (U)← ⊥
meaning that for non-registered users T (U) outputs ⊥.

2. Users to their accounts’ state: W = (B,S,R, x)← K(U). Initially, K(U)← ⊥.
3. U(U) outputs pid if the user U has ongoing transaction with pid. Once the transaction is

finalized (in the real world the user receives α valid signature shares on its new account)
U(U) is set to ⊥ meaning that user is in the Idle state, therefore, can start a new
transaction.

4. Payment identifiers pid to transaction identifiers tid: tid ← P (pid).
5. Set of maintainers who engage in a specific transaction whose identifier is tid: M(tid).
6. Users to their most recent transaction metadata and transaction identifier (Us,Ur, tid, v)←

Tid(U) where U = Us or U = Ur, or (B,U, tid, v)← Tid(U). Initially, Tid(U)← ⊥.
7. Transaction identifiers to transaction metadata (Us,Ur, v)← Rvk(tid).
8. Users to all their transaction identifiers and their role in each of them {tτid, role

τ}xτ=1 ←
Trc(U).

We note that session identifiers are of the form sid = (B,M, sid′) such that M = {Mj}Dj=1.
Initially, init← 0 where init ∈ {0, 1}. At the end of Initialization init is set to 1 afterwards in
the beginning of all parts of the functionality namely User Registration, Currency Issuance,
Payment, Abort Transaction, Privacy Revocation and Tracing the functionality ignores the
received message if 0← init.

In the following, by sending a message to M via delayed output, we mean, FCBDC lets
adversary A to decide the order of maintainers who receive the message, and whether or not
deliver the message to each M included in the set M.

Functionality FCBDC, part I: Registration and Issuance

Initialization.

1. Upon input (Init, sid) from party P ∈ {B,M}: Abort if sid ̸= (B,M, sid′). Else,
output (InitEnd, sid,P) to A. Once all parties have been initialized, set init← 1.

User Registration.

1. Upon receiving a message (GenAcc, sid) from U: If K(U) = ⊥, output
(GenAcc, sid,U) to A. Else, ignore.

2. Upon receiving (Ok.GenAcc, sid,U) from A: Output (AccGened, sid,U) to M via
public-delayed output. Output (AccGened, sid) to U via public-delayed output and
set K(U)←W = (0, 0, 0, 0) and T (U)← 0 when delivered.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 9

Currency Issuance.

1. Upon receiving a message (Iss, sid,U, v) from B: Ignore if B not in sid. Else, gen-
erate a new pid. If U is corrupted, output (Iss, sid, pid,U, v) to A. Else, output
(Iss, sid, pid) to A.

2. Upon receiving (AcceptIss, sid, pid, v) from U: If K(U) = ⊥ or U(U) ̸= ⊥, ignore.
Else, retrieve W ← K(U). If B + v > Bmax or R + v > Rmax, ignore. Else, set
U(U)← pid and retrieve T (U): (a) If T (U) = 0, output (AcceptIss, sid, pid) to A.
(b) Else, output (AcceptIss, sid, pid,U) to A.

3. Upon receiving (GenTnx, sid, pid, tid) from A: If already exits a pid′ ̸= pid where
tid ← P (pid′), ignore. Else, if P (pid) = ⊥, set P (pid) ← tid. Else, retrieve t′id ←
P (pid), ignore if t′id ̸= tid. Set Tid(U)← (B,U, tid, v).

4. Upon receiving (GenTnx, sid, pid,Mk) from A: Ignore if ⊥ ← P (pid). Else, retrieve
tid ← P (pid). Set M(tid) ← M(tid) ∪Mk and output (TnxDone, sid, tid) to Mk via
public-delayed output. Once |M(tid)| ≥ t+ 1: Set K(U)← (B + v, S,R+ v, x+ 1),
Rvk(tid) ← (B,Ur, v), Trc(U) ← Trc(U) ∪ (tid, receiver). Once |M(tid)| ≥ 2t + 1:
Output (TnxDone, sid,B, v) to U via private-delayed output and set U(U) ← ⊥
when delivered.

In more details the components of our functionality are as follows.

1. Initialization.This step merely ensures that the relevant parties (B and all D maintainers
M) have been activated; the functionality keeps a record of all parties that have been
initialized for the scheme.

2. User Registration. At the registration phase, a user U should get their account ratified
by the system. If the user U has already been registered by maintainers M, it cannot
be registered again. Note that as it is common in the Universal Composition setting, we
allow the adversary A communications and hence also block registration (i.e., we do not
model denial of service attacks). The balance and regulation-related information of user
W are set to initial values which are zero for balance B, sum of all sent values S, sum
of all received values R of user, and transaction counter x. The maintainers are notified
for each successful user registration.

3. Currency Issuance. In the Currency Issuance process different from Payment, only the
central bank B is allowed to be the payer and there are no limits imposed to the funds
that the central bank possesses. First of all, functionality FCBDC checks whether the
receiver of digital currency U is a valid registered user in the system or not which means
if the user U has not already been registered by maintainers M, it cannot obtain any
digital currency. The functionality imposes the regulatory restrictions of B + v ≤ Bmax

and R + v ≤ Rmax, where v is the amount of currency that is issued following the
central bank’s instructions. We remark that based on different regulatory rules in each
jurisdiction, some of the restrictions such as upper bounding the value central bank B
issues v ≤ Vmax can be easily captured or the mentioned checks B+v ≤ Bmax and R+v ≤
Rmax can be ignored for currency issuance transactions (note that as our construction is
account-based rather than token-based; adding or removing such regulatory compliance
constraints is relatively straightforward). Currency issuance is not a unilateral action
from the central bank B as it also needs the activation of the user U who receives
the digital currency. This highlights one of the distinctions of our setting compared to
blockchain systems: the recipient of funds U is online during transaction and the protocol
is interactive. The state of the receiver’s account is updated after each currency issuance
action. As before, the adversary A may block the currency issuance from going forward.
A successful currency issuance will increase the balance of the receiver U by the indicated
amount v. Transaction value, and identity of the receiver is hidden from the adversary.
The ideal-world adversary A is also required to assign a unique transaction identifier tid

10 Kiayias, Kohlweiss, Sarencheh

and all transaction metadata are stored by the functionality in a table Rvk(tid) while the
tid is stored in Trc(U), where U is the recipient.

4. Payment. As in the case of Currency Issuance, the Payment process involves both the
sender Us and the receiver Ur being activated. Contrary to issuance transaction, the
functionality during payment performs the important check that the sender Us has
sufficient balance to fund the payment Bs − v ≥ 0. Interactive payment is necessary as
we claim that FCBDC captures regulatory compliance (e.g., AML, CFT) considering both
parties which means both of them are supposed to know with whom they are making
a payment. Hence, it is vital for the receiver Ur to actively engage in each payment. A
successful payment protocol will increase the balance of the receiver Ur by the indicated
amount v as well as subtract that amount from the balance of the sender Us. Additionally,
account information of each user is updated to capture different regulation policies. As
in the case of issuance a unique transaction identifier tid is determined by the ideal-
world adversary A and the transaction metadata are stored in table Rvk(tid) while the
tid is stored in Trc(Ur) and Trc(Us), where Ur and Us are the sender and recipient of
the payment. Note that the adversary A is not aware of the transaction value, and
identities of sender and receiver (unless one of them is malicious) and the tid is selected
independently of them.

5. Privacy Revocation. Privacy revocation is initiated by the maintainers who submit the
transaction identifier of a fully anonymous payment they wish to revoke. If a sufficient
number of them (this is set to β) agrees on the revocation of a specific transaction the
functionality will recover the metadata of the specific transaction and return them to
the maintainers.

6. Tracing. As in the case of revocation, the maintainers have to agree they want to trace a
specific user. If the quorum is reached (requiring β maintainers) then the set of transac-
tion identifiers that correspond to the agreed users will be returned to the maintainers.

Functionality FCBDC, part II: Payment and Auditing

Payment.

1. Upon receiving a message (GenTnxSnd, sid,Ur, v) from Us: If K(Us) = ⊥ or U(Us) ̸=
⊥ ignore. Else, retrieve Ws ← K(Us). If Ss + v > Smax, or Bs− v < 0, or v > Vmax,
ignore. Else, generate a new pid and set U(Us) ← pid. If Ur is corrupted, output
(GenTnxSnd, sid, pid,Us,Ur, v) to A. Else, retrieve T (Us): (a) If T (Us) = 0, output
(GenTnxSnd, sid, pid) to A. (b) Else, output (GenTnxSnd, sid, pid,Us) to A.

2. Upon receiving (GenTnxRcv, sid,Us, v) from Ur: If K(Ur) = ⊥ or U(Ur) ̸= ⊥ ignore.
Else, retrieve Wr ← K(Ur). If Br + v > Bmax, or Rr + v > Rmax, ignore. Else, set
U(Ur)← pid and retrieve T (Ur): (a) If T (Ur) = 0, output (GenTnxRcv, sid, pid) to
A. (b) Else, output (GenTnxRcv, sid, pid,Ur) to A.

3. Upon receiving (GenTnx, sid, pid, tid) fromA: If already exits a pid′ ̸= pid where tid ←
P (pid′), ignore. Else, if P (pid) = ⊥, set P (pid) ← tid. Else, retrieve t′id ← P (pid),
ignore if t′id ̸= tid. Set Tid(Us)← (Us,Ur, tid, v) and Tid(Ur)← (Us,Ur, tid, v).

4. Upon receiving (GenTnx, sid, pid,Mk) from A: Ignore if ⊥ ← P (pid). Else, re-
trieve tid ← P (pid). Set M(tid) ← M(tid) ∪ Mk, and output (TnxDone, sid, tid)
to Mk via public-delayed output. Once |M(tid)| ≥ t + 1: Set K(Us) ←
(Bs−v, Ss+v,Rs, xs+1), K(Ur)← (Br+v, Sr, Rr+v, xr+1), Rvk(tid)← (Us,Ur, v),
Trc(Us) ← Trc(Us) ∪ (tid, sender), and Trc(Ur) ← Trc(Ur) ∪ (tid, receiver). Once
|M(tid)| ≥ 2t + 1: Output (TnxDone, sid,Us, v) to Ur via private-delayed output
and set U(Ur) ← ⊥ when delivered. Output (TnxDone, sid,Ur, v) to Us via
private-delayed output and set U(Us)← ⊥ when delivered.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 11

Abort Transaction.

1. Upon receiving a message (AbrTnx, sid) from Ua: If K(U) = ⊥ or Tid(U) = ⊥,
ignore. Else, retrieve (Us,Ur, tid, v)← Tid(U). Send (AbrTnx, sid, tid) to A.

2. Upon receiving (AbrTnx.Ok, sid, tid) from A: Set Tid(U)← ⊥. (a) If |M(tid)| ≤ t: Set
K(U)← (B,S,R, x+1), Trc(U)← Trc(U)∪(tid,Aborted). Output (TnxAborted, sid)
to U via public-delayed output and set U(U) ← ⊥ when delivered. Output
(TnxAborted, sid, tid) to M via public-delayed output. (b) Else, given the retrieved
tuple (Us,Ur, tid, v): Output (TnxDone, sid,Us, v) to Ur via private-delayed output
and set U(Ur)← ⊥ when delivered. Output (TnxDone, sid,Ur, v) to Us via private-
delayed output and set U(Us) ← ⊥ when delivered. Output (TnxDone, sid, tid) to
M via public-delayed output.

Privacy Revocation.

1. Upon receiving a message (RvkAnm, sid, tjid) from maintainer Mj : If Rvk(tjid) = ⊥,
ignore. Else, record (RvkAnm, sid, tjid,Mj) and output (RvkAnm, sid, tjid,Mj) toA. Once
|{j|tjid = tid}| ≥ t+ 1, set X ← tid.

2. Upon receiving (RvkAnm.Ok, sid, tid) from A: If X has not already been set to tid,
ignore. Else, retrieve (Us,Ur, v)← Rvk(X). Output (AnmRevoked, sid, tid,Us,Ur, v)

b

to M via public-delayed output.

Tracing.

1. Upon receiving a message (Trace, sid,Uj) from maintainer Mj : If K(Uj) = ⊥ ignore.
Else, record (Trace, sid,Uj ,Mj) and output (Trace, sid,Uj ,Mj) toA. Once |{j|Uj =
U}| ≥ t+ 1, set Y ← U.

2. Upon receiving (Trace.Ok, sid,U) from A: If Y has not already been set to U,
ignore. Else, retrieve (B,S,R, x) ← K(U). Retrieve {tτid, role

τ}xτ=1 ← Trc(Y). Set
T (U)← 1. Output (Traced, sid, {tτid, role

τ}xτ=1) to M via public-delayed output.

a Either U = Us or U = Ur holds.
b For a currency issuance transaction Us = B.

3 Our Construction

In our construction, we aim to achieve all the financial, regulatory and security properties
described informally in Sec. 2.2 and formally in Sec. 2.4. We assume that the whole number
of maintainers are 3t+1 and t of them can be corrupted by the adversary. Hence, we set the
thresholds of blind signature scheme and auditing as α = 2t+ 1 and β = t+ 1 respectively.

3.1 High-level Technical Overview of Our Protocol

Every user in the system has an account acc for storing the current balance B and other user
specific values related to the system’s financial and regulatory restrictions. Users update their
accounts when transacting. For each new Currency Issuance or payment transaction, the
involved parties in the transaction engage in a cryptographic protocol with all maintainers
M. To this end, users encode the values of accounts into cryptographic one-time objects that
fix a unique tag T. When updating an account a user discloses the tag associated to the
previous account snapshot acc (which has been signed by at least α maintainers). A user also
discloses σRnd

M that is a re-randomization of the consolidated signature σM on their previous
account snapshot. The disclosed tags are stored by maintainers for the purpose of enforcing
users to use their most updated accounts (as in Chaum’s double-spending prevention for

12 Kiayias, Kohlweiss, Sarencheh

Receiving

Sending

Idle
(initial state)

Aborting

Fig. 1. User’s State Transition in PEReDi’s Transactions. TI: Transaction Information. AR: Abort
Request. σnew

M : Maintainers’ signature on the new account of the user. σr
M: Maintainers’ signature

on the refreshed account of the user.

online cash [21]). To support tracing, the protocol in fact computes tags pseudo-randomly
so that they can be recomputed by the Auditing protocol (in a distributed fashion by the
maintainers).

The newly updated account accnew is given to M for signing together with a proof that the
new account accnew is consistent with the previous account snapshot acc and the transaction
value v issued by B to U in the Currency Issuance protocol or transferred from Us to Ur

in the Payment protocol. To this end, users prove to M in a privacy-preserving way that
their new accounts snapshots accnew are updated honestly. For instance, the same value is
deducted from Us’s account and that value is added to Ur’s account. Similarly, the account
of the receiver is updated with respect to the value of digital currency issued by the central
bank while making sure that attacks such as a replay attack on central bank’s message is
prohibited. Moreover, both Us and Ur’s new accounts accnews and accnewr comply with the
system’s regulatory compliance rules. The parties engaged in a payment should acquire at
least α number of maintainers’ blind signature shares σnew,B on their new accounts. They
locally unblind these signature shares σnew and aggregate them to create a single consolidated
signature σnew

M on their new account snapshot.
Furthermore, every transaction results in a transaction identifier tid that is output to

maintainers M and stored in each maintainer’s ledger L. This identifier contains crypto-
graphic information concerning the transaction. To ensure privacy, we prove that the trans-
action identifier tid does not leak any privacy-sensitive information so that we achieve full
privacy. It is only retrievable and reconstructable by an audit committee using the infor-
mation saved in L for the purpose of privacy revocation and tracing. In other words, an
audit can be done when the audit committee has been convinced that a specific transac-
tion or user is suspicious enough for anonymity to be revoked or have its counterparties be
traced respectively. Note that tracing and revocation can be applied in an adaptive fashion
to reconstruct a set of counterparties across a sequence of payments.

In the following, we describe user’s state transition (in Currency Issuance and Payment
protocols) in the PEReDi’s setting which is depicted in Fig. 1. Upon receiving environ-
ment’s Z command (of the form (AcceptIss, sid, pid, v) or (GenTnxRcv, sid, pid,Us, v) or
(GenTnxSnd, sid,Ur, v)) to make a transaction, if the user U is in:

1. The Idle state, it sends its transaction information TI (which includes U’s new-blinded ac-
count accnew,B) to all maintainers M. Upon sending TI, U’s state is changed to Receiving
(from central bank B or from another user Us) or Sending (to another user Ur).

2. One of the states Receiving or Sending (which means U’s most recent transaction is
pending), U ignores Z’s message.

When state is changed from Idle to Receiving or Sending, the transaction can be successful
or pending as explained in the following cases:

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 13

1. Successful (e.g., payment participants use their newly updated accounts, regulatory com-
pliance is met, and pair of sender-receiver has been generated). U receives at least α
valid blind signature shares of maintainers on accnew,B. Upon generating unblinded-
consolidated maintainers’ signature on the new account σnew

M , state is changed to Idle.
Hence, U who, now, has its new account signed is ready to enter into the next transaction.

2. Pending (e.g., the sender-receiver pair has not been generated on sufficiently enough
maintainers’ sides). U’s state remains in Receiving or Sending up to the moment when Z
instructs U to send an abort request AR.

Upon Z’s instruction (of the form (AbrTnx, sid)) for sending abort request AR (which includes
U’s refreshed-blinded account accr,B), U sends AR to M (in this case, if the state of U is
not Sending or Receiving, it ignores Z’s instruction). Doing so changes U’s state from either
Sending or Receiving to Aborting. The two following scenarios are for the case when U is in
the Aborting state:

1. If at least t+ 1 maintainers have saved a sender-receiver TI pair in their ledgers (which
guarantees at least one honest maintainer has the pair), maintainers ignore accr,B and
send their signatures for accnew,B to U. Upon generating unblinded-consolidated main-
tainers’ signature on the new account σnew

M , state is changed to Idle.
2. Else, maintainers sign accr,B, record the pending transaction as aborted and ignore

accnew,B included in TI. Upon generating unblinded-consolidated maintainers’ signature
on the refreshed account σr

M, state is changed to Idle.

Furthermore, you can find a pictorial representation of all the sub-protocols of our con-
struction in Fig. 2-6. Note that for simplicity, in the figures we do not include the messages
between the environment Z and the parties. For the same reason, we do not depict AR
messages as well.

3.2 Details of the Construction

In this section, we describe our CBDC protocol ΠPEReDi. We will prove that ΠPEReDi se-
curely realizes FCBDC. Our construction uses several concrete cryptographic components
(see Appendix A) and ideal functionalities (see Appendix B). Our scheme uses the Coconut
Threshold Blind Signature scheme (TBS) [36,33] and the Threshold ElGamal Encryption
(TE) scheme [25,31,28]. We will reduce the unforgeability of Coconut to its underlying
Pointcheval-Sanders [32] signature component. PEReDi employs the following functional-
ities: a Key-Registration functionality FKR, a communication Channels functionality FC

(parameterized by different labels, e.g., “sa” for a sender anonymous channel F sa
C), a Broad-

cast functionality FB, a Byzantine Agreement functionality FBA, a Non-Interactive Zero
Knowledge functionality FNIZK and a Signature of Knowledge functionality FSoK.

We will assume that transacting parties communicate through variants of FC as spec-
ified. We note that some sender-anonymity is necessary for privacy, as otherwise network
“leakage” will trivially reveal the counterparties of a transaction irrespective of the strength
of cryptographic protections at the transactional level. We note that in a real-world deploy-
ment such network leakage may be considered tolerable — our analysis would apply directly
to such setting as well, exhibiting the unavoidable concession that the adversary may break
privacy via traffic analysis.

Throughout this section we use the notation of Sec. 2.3. Each maintainer M has its own
ledger L for storing registration and transaction information. In the Currency Issuance and
Payment protocols of the construction below, the sender (Us or B) and receiver (U or Ur)
separately send their transaction information TI to all maintainers M. However, a plausible
alternative communication pattern could have the sender sending its transaction information
TI to the receiver and then the receiver sending both the sender’s TI and its own TI to M.

14 Kiayias, Kohlweiss, Sarencheh

3
4

Maintainers’ consolidated-unblinded
signature on user’s initial account.

Maintainers’ blind signature shares
on user’s account.

Registration Information

(Blinded account, share of tracing tag’s secret key, randomness,
commitment on tracing tag’s secret key, public key, and NIZK proof).

1

2

Commercial Banks and Financial Institutions

5

6

Sybil-resilient user record

is saved in ledgers that will be used
in the Auditing protocol.

User

Fig. 2. User Registration Protocol

Initialization. The key generation algorithm takes the security parameter as input and
generates the secret key sk and public key pk for the caller of algorithm as outputs. Partic-
ipants of the network independently call the key generation algorithm for each underlying
cryptographic scheme to generate their keys (see Appendix A). The public keys of all parties
are maintained in a public-key directory and are assumed to be accessible on demand by
calling FKR with input (RetrieveKey, sid,P) for party P.

User Registration. Maintainers M enroll a user U in the CBDC system by creating a sig-
nature on the user’s initial account. Afterwards, U uses the signature to create transactions.
For registration, U with a pair of public-secret key (pkU, skU) and a secret key a (used in
tag generation) engages in a threshold blind signature TBS protocol with M where U proves
honest creation of its initial account to M. The output of this protocol is a signed account
σM for U (needed for its first transaction) and the user record UR saved in the ledger L
of each maintainer M (required for additional investigation during the Auditing protocol).
Every user’s account consists of a tuple of values

acc = (B,S,R, skU, x, a)

During registration, U sets B,S and R to 0 and x to 1.
Upon receiving (GenAcc, sid) (from Z), U who is initially in the Idle state initiates the

User Registration protocol, see Fig. 2, to get the account signed by M. U generates its
registration information

RIj =
(
accB, aj , rj , comM, pkU, π

)
as follows:

1. Given acc, it calls PrepareBlindSign algorithm of the threshold blind signature scheme
TBS to obtain a blinded account accB.

2. It calls {aj}Dj=1

$←− SSH.ShareD,β(a) to secret share a and computes comj = gajhrj for

rj
$←− Z∗

p. It sets comM = {comj}Dj=1.
3. It calls FNIZK with input (Prove, sid, x, w), and receives (Proof, sid, π) where π is a NIZK

proof of knowledge for statement

x =
(
accB, comM, pkU

)
and witness

w =
(
acc, {aj}Dj=1 , rbacc, rcom

)
We denote the randomness used to create the blinded account accB and the commitment
comM by rbacc and rcom, respectively and define the relation R(x, w) of NIZK as follows:

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 15

(a) The secret key skU in the blinded account accB is the secret key associated with
public key pkU.

(b) The secret key a in accB is the same as the secret key that can be reconstructed
from the shares {aj}Dj=1 committed in comM.

(c) accB is generated such that B = S = R = 0 and x = 1 hold.
(d) The user U knows the randomness rbacc and rcom.

4. It calls FB with (Broadcast, sid, comM).
5. It calls (Send, sid,Mj ,RIj) to the secure channel F sc

C for j = 1, . . . , D. Specifically, U calls
F sc

C with the input (Send, sid,Mk,RIk) (1 ≤ k ≤ D − 1) and waits for F sc
C to send back

(Continue, sid) then U proceeds by calling F sc
C with the input (Send, sid,Mk+1,RIk+1).

Each maintainer (e.g., Mj):

1. Generates pairs of messages. Each pair contains the received message from FB and F sc
C

where both messages have the same identifier U of the user. In other words, it receives
(Broadcasted, sid,U′, comM) from FB and (Received, sid,U′,RIj) from the secure chan-
nel F sc

C . If U′ = U, Mj generates a pair of messages containing the received messages
from FB and F sc

C . Else, waits to receive such messages.
2. If comM received from FB is not equal to comM included in RIj received from F sc

C , aborts.
3. Else, ignores the message if at least one of the following conditions holds:

(a) There already exists a user record UR′ in Lj where U′ = U.
(b) Upon calling FKR with (RetrieveKey, sid,U), it receives (KeyRetrieved, sid,U, pk′)

such that pkU ̸= pk′.
(c) Upon calling FNIZK with (Verify, sid, x, π), it receives (Verification, sid, 0).
(d) Given (a′j , r

′
j) received from F sc

C included in RIj , it computes ga
′
jhr

′
j which is not

equal to comj for comj ∈ comM.
(e) Know Your Customer (KYC) guidelines for U is not verified.

4. Else, the user record:
UR = (aj , rj , comM,U)

is saved in Lj .
5. Signs associated information of accB using the BlindSign algorithm of TBS scheme to

obtain blind signature share σB
j .

6. Sends back σB
j to U using the authenticated channel Fac

C with input (Send, sid,U, σB
j).

7. Outputs (AccGened, sid,U) (to Z).

The user U:

1. Receives (Received, sid,Mj , σ
B
j) for different j from the authenticated channel Fac

C .
2. Unblinds at least α different signature shares {σj}αj=1 using the Unblind algorithm of the

TBS scheme.
3. Aggregates unblinded signature shares using the TBS.Agg algorithm of the TBS scheme

to form one consolidated signature σM.
4. Outputs (AccGened, sid) (to Z).

Currency Issuance. Upon receiving (Iss, sid,U, v) (from Z), B initiates Currency Issuance
protocol as shown in Fig. 3. To issue a digital currency worth of v for U, first of all, B sends
v to U using the secure-receiver anonymous channel F sra

C with input (Send, sid,U, v) so that
U receives (Received, sid,B, v). Upon receiving (AcceptIss, sid, pid, v) (from Z), if U is in
Idle state, it sends the randomness ρ of ψ to B using the secure-sender anonymous channel
F ssa

C with input (Send, sid,B, ρ)1.
ψ is ElGamal threshold encryption of U’s public key pkU and gv.

1 Upon receiving (AcceptIss, sid, pid, v) (from Z), if U is in one of the Sending or Receiving state,
U ignores the message.

16 Kiayias, Kohlweiss, Sarencheh

User

Central Bank

1

2

(Threshold encryption of public key and transaction
value, blinded-updated account, re-randomized
signature on previous account, tracing tag, and
NIZK proof).

Commercial Banks and Financial Institutions

Transaction identifier

is saved in ledgers that will be
used for compelling users to
use their most updated
accounts and in the auditing
protocol as well.

3

3

4(Threshold encryption of user’s public key and
transaction value). 5

Maintainers’ blind signature shares
on user’s updated account.

6

Maintainers’ consolidated-
unblinded signature
on user’s updated account.

7

Fig. 3. Currency Issuance Protocol

U waits for the message (Continue, sid) from F ssa
C and after receiving it, U sends its

transaction information TIU to M which is of the form:

TIU =
(
ψ, accnew,B, σRnd

M ,T, π
)

The components of TIU is computed by U who does the following:

1. Computes threshold ElGamal encryption as follows setting its public key pkU and gv as
plaintexts:

ψ = (c1, c2, c3) =
(
gρ, pkρ1,M · pkU, pk

ρ
2,M · g

v
)

2. Computes accnew,B and σRnd
M . Similar to accB at User Registration protocol, to obtain

blind signature shares of M on U’s new account which is as follows:

accnew = (B + v, S,R+ v, skU, x+ 1, a)

U should prove that it has a valid signature σM on its previous account acc and request
a new signature on its new account accnew.
accnew,B is computed for U’s new account accnew using PrepareBlindSign algorithm and
σRnd
M is computed for U’s previous account acc (for which it has consolidated signature
σM) using the ProveSig algorithm of the TBS scheme.

3. Computes
T = ga

x

that is a tag used for compelling users to use their most updated accounts in which x
is an incrementing value per transaction. As we will see, same value is used for tracing
the user when it is necessary.

4. Calls FNIZK with input (Prove, sid, x, w), and obtains (Proof, sid, π) from it in which π
is a NIZK proof for the statement

x =
(
ψ, accnew,B, σRnd

M ,T
)

We denote the randomness used to create accnew,B, σRnd
M and threshold encryption ψ by

rreg. The witness of π is
w = (acc, rreg, v)

for the following relation R(x, w):
(a) The secret key skU used in accnew,B is the secret key associated with public key pkU

in the threshold encryption ψ generated under the public keys of maintainers pk1,M
and pk2,M.

(b) T is generated using a and x included in acc (for which user reveals σRnd
M).

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 17

(c) σRnd
M is re-randomization of σM which is α different valid aggregated signature shares

of maintainers on acc.
(d) accnew,B is generated considering acc and v in ψ. Hence, Bnew = B + v, Snew =

S,Rnew = R+v, sknewU = skU, x
new = x+1 and anew = a hold for accnew. Additionally,

Bnew ≤ Bmax, and Rnew ≤ Rmax hold2.
(e) U knows the randomness rreg.

5. Calls the sender anonymous channel F sa
C with input (Send, sid,Mj ,TIU) for j = 1, . . . , D.

Specifically, U calls F sa
C with the input (Send, sid,Mk,TIU) (1 ≤ k ≤ D − 1) and waits

for functionality to send back (Continue, sid), then U proceeds by calling F sa
C with the

input (Send, sid,Mk+1,TIU).

Upon receiving (Received, sid,U, ρ) from the secure-sender anonymous channel F ssa
C , B also

sends its transaction information
TIB = ψ

to M. The central bank B calls the authenticated channel Fac
C with input (Send, sid,Mj ,TIB)

for j = 1, . . . , D. Specifically, B calls Fac
C with the input (Send, sid,Mk,TIB) (1 ≤ k ≤ D−1)

and waits for Fac
C to send back (Continue, sid) then B proceeds by calling Fac

C with the input
(Send, sid,Mk+1,TIB).

Each maintainer (e.g., Mj):

1. Receives (Received, sid,TIU,mid) from the sender anonymous channel F sa
C and parses

TIU as
(
ψ, accnew,B, σRnd

M ,T, π
)

(resp. receives (Received, sid,B,TIB) from the authenti-
cated channel Fac

C and parses TIB as ψ).
2. Ignores TIU if at least one of the following conditions holds:

(a) There already exists a transaction identifier t′id (for an issuance transaction or an
aborted transaction) in its ledger Lj where T′ = T or ψ′ = ψ (the latter only applies
for t′id of issuance transaction).

(b) There already exists a transaction identifier t′id (for a payment transaction) in Lj

where T′
s = T or T′

r = T.
(c) Upon calling FNIZK with (Verify, sid, x, π), it receives (Verification, sid, 0).

3. Else, records TIU (resp. TIB) in Lj .
4. Upon receiving TIB (resp. TIU that passes all the checks) that has ψ′ value where ψ′ = ψ,

it saves a sender-receiver pair (TIB,TIU) in Lj
3.

5. Saves transaction identifier
tid = (ψ,T)

in Lj .
6. Signs associated information of accnew,B using BlindSign algorithm to obtain blind sig-

nature share σnew,B
j .

7. Calls the sender anonymous channel F sa
C with input (Send, sid,mid, σnew,B

j).
8. Outputs (Issued, sid, tid) (to Z).

The user U:

1. Receives (Received, sid,Mj , σ
new,B
j) for different j from the sender anonymous channel

F sa
C .

2. Unblinds at least α different maintainers’ signature shares
{
σnew
j

}α
j=1

using Unblind al-
gorithm.

3. Aggregates unblinded signature shares based on TBS.Agg algorithm to form one consol-
idated signature σnew

M .
4. Outputs (Issued, sid, v) (to Z).
2 Different from Payment protocol in which transferred value is upper bounded, in this protocol,

there is no upper bound on value of transaction v issued by B. However, as addressed before, it
is straightforward to add such a constraint if desired.

3 Note that it does not matter which transaction information TIU or TIB is received by Mj first.

18 Kiayias, Kohlweiss, Sarencheh

Receiver

Sender

1

2

(Threshold encryption of sender and receiver’s public keys and
transaction value, signature of knowledge, blinded-updated account,
re-randomized signature on previous account, and tracing tag).

Commercial Banks and Financial Institutions

Transaction identifier

is saved in ledgers that will be
used for compelling users to
use their most updated
accounts (e.g., to achieve
double-spending prevention)
and in the Auditing protocol as
well.

4

5

Maintainers’ blind signature shares ,

on sender and receiver’s updated accounts.

6

Maintainers’ consolidated-
unblinded signature on
receiver’s updated account.

7

3

3

Maintainers’ consolidated-
unblinded signature on
sender’s updated account.

7

6

Fig. 4. Payment Protocol

Payment. To make a payment, upon receiving (GenTnxSnd, sid,Ur, v) (from Z), if Us is in
Idle state, it initiates the Payment protocol as shown in Fig. 4 by sending randomness ρs of
ψs and the value of transaction v to the receiver Ur via fully anonymous channel F fa

C with
input (Send, sid,Ur, (ρs, v))

4.
ψs is ElGamal threshold encryption of Us’s public key pks and gv.
On receiving (GenTnxRcv, sid,Us, v) (from Z), if Ur is in Idle state, it sends back random-

ness ρr used in ψr to Us using the fully anonymous channel F fa
C with input (Send, sid,Us, ρr)

5.
ψr is ElGamal threshold encryption of Ur’s public key pkr.
Furthermore, Us and Ur generate their transaction information. The transaction infor-

mation TI of Us is of the form:

TIs =
(
ψs, ψr, σs(ψr), acc

new,B
s , σRnd

s,M,Ts

)
The components of TIs is computed by Us who does the following:

1. Computes threshold ElGamal encryptions

ψs = (cs,1, cs,2, cs,3) =
(
gρs , pkρs

1,M · pks, pk
ρs

2,M · g
v
)

and
ψr = (cr,1, cr,2) =

(
gρr , pkρr

1,M · pkr
)

2. Computes accnew,Bs , σRnd
s,M, and Ts similar to the Currency Issuance protocol where the

new account of Us is as follows:

accnews = (Bs − v, Ss + v,Rs, sks, xs + 1, as)

3. Calls FSoK on input (Sign, sid, ψr, xs, ws) and receives (Signature, sid, ψr, xs, σs(ψr))
from it in which σs(ψr) is Us’s signature of knowledge on ψr that also binds the message
ψr to the proof so that it proves knowledge of ws satisfying the relation R(xs, ws) for the
statement

xs =
(
ψs, acc

new,B
s , σRnd

s,M,Ts

)
and the message of signature ψr.
We denote the set of all random values accnew,Bs , σRnd

s,M, and ψs by rs. The witness of
σs(ψr) is

ws = (accs, rs, v)

4 Upon receiving (GenTnxSnd, sid,Ur, v) (from Z), if Us is in one of the Sending or Receiving state,
it ignores the message.

5 Upon receiving (GenTnxRcv, sid,Us, v) (from Z), if Ur is in one of the Sending or Receiving state,
it ignores the message.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 19

for the following relation R(xs, ws):
(a) The secret key sks used in accnew,Bs is the secret key associated with public key pks

in the threshold encryption ψs generated under the public keys of maintainers pk1,M
and pk2,M.

(b) Ts is generated using as and xs included in accs (for which user reveals σRnd
s,M).

(c) σRnd
s,M is re-randomization of σs,M which is α different valid aggregated signature shares

of maintainers on accs.
(d) accnew,Bs is generated considering accs and v in ψs. Hence, Bnew

s = Bs−v, Snew
s = Ss+

v,Rnew
s = Rs, sk

new
s = sks, x

new
s = xs + 1 and anews = as hold for accnews . Additionally,

0 ≤ Bnew
s Snew

s ≤ Smax and v ≤ Vmax hold.
(e) Us knows the randomness rs.

The transaction information of Ur, TIr is similar to TIs with values associated to Ur

which is
TIr =

(
ψs, ψr, σr(ψs), acc

new,B
r , σRnd

r,M ,Tr

)
Hence, everything is similar to what has been described for Us except that accnew,Br is
generated considering accr (for which user reveals σRnd

r,M) and v in cs,3 (Ur gets to know ρs).
The new account of the receiver is

accnewr = (Br + v, Sr, Rr + v, skr, xr + 1, ar)

Hence, Bnew
r = Br + v, Snew

r = Sr, R
new
r = Rr + v, sknewr = skr, x

new
r = xr + 1 and anewr = ar

hold for accnewr . Additionally, Bnew
r ≤ Bmax and Rnew

r ≤ Rmax hold6.
The sender Us (resp. receiver Ur):

1. Calls the sender anonymous channel F sa
C with input (Send, sid,Mj ,TIs) (resp. (Send, sid,Mj ,

TIr)) for j = 1, . . . , D. Specifically, Us (resp. Ur) calls F sa
C with the input (Send, sid,Mk,

TIs) (resp. (Send, sid,Mk,TIr)) (1 ≤ k ≤ D − 1) and waits for the channel to send back
(Continue, sid), then Us (resp. Ur) proceeds by calling F sa

C with the input (Send, sid,Mk+1,
TIs) (resp. (Send, sid,Mk+1,TIr)).
Note that, Us, after receiving (Received, sid,Ur, ρr) from F fa

C sends its TIs to M. Ur

waits for the message (Continue, sid) from F fa
C and then sends TIr to M.

Each maintainer (e.g., Mj):

1. Receives (Received, sid,TIs,mids) (resp. (Received, sid,TIr,midr)) from the sender anony-
mous channel F sa

C and parses TIs as
(
ψs, ψr, σs(ψr), acc

new,B
s , σRnd

s,M,Ts

)
(resp. parses TIr

as
(
ψs, ψr, σr(ψs), acc

new,B
r , σRnd

r,M ,Tr

)
).

2. Ignores TIs (resp. TIr) if at least one of the following conditions holds:
(a) There already exists a transaction identifier t′id (for an issuance transaction or an

aborted transaction) in its ledger Lj where T′ = Ts (resp. T′ = Tr).
(b) There already exists a transaction identifier t′id (for a payment transaction) in Lj

where T′
s = Ts or T′

r = Ts (resp. T′
s = Tr or T′

r = Tr).
(c) Upon calling FSoK with (Verify, sid, ψr, xs, σs(ψr)) (resp. (Verify, sid, ψs, xr, σr(ψs))),

it receives (Verified, sid, ψr, xs, σs(ψr), 0) (resp. (Verified, sid, ψs, xr, σr(ψs), 0)).
3. Else, records TIs (resp. TIr) in Lj .
4. Upon receiving a transaction information (which has not been ignored w.r.t. the condi-

tions above) that has (ψ′
s, ψ

′
r) value where (ψ′

s, ψ
′
r) = (ψs, ψr), it saves a sender-receiver

pair (TIs,TIr) in Lj .
5. Saves transaction identifier

tid = (ψs, ψr,Ts,Tr)

in Lj .

6 Regulatory compliance v ≤ Vmax has already been considered in TIs.

20 Kiayias, Kohlweiss, Sarencheh

6. Signs associated information of accnew,Bs and accnew,Br using BlindSign algorithm to obtain
blind signature shares σnew,B

s,j and σnew,B
r,j that belong to Us and Ur respectively.

7. Calls the sender anonymous channel F sa
C with input (Send, sid,mids, σ

new,B
s,j) and (Send, sid,

midr, σ
new,B
r,j).

8. Outputs (TnxDone, sid, tid) (to Z).

The sender Us (resp. receiver Ur):

1. Receives (Received, sid,Mj , σ
new,B
s,j) (resp. (Received, sid,Mj , σ

new,B
r,j)) for different j

from the sender anonymous channel F sa
C .

2. Unblinds α different maintainers’ signature shares
{
σnew
s,j

}α
j=1

(resp.
{
σnew
r,j

}α
j=1

) using
Unblind algorithm.

3. Aggregates unblinded signature shares based on TBS.Agg algorithm to form one consol-
idated signature σnew

s,M (resp. σnew
r,M).

4. Outputs (TnxDone, sid,Ur, v) (to Z) (resp. Ur outputs (TnxDone, sid,Us, v)).

Abort Transaction. In Currency Issuance and Payment protocols it can be the case that
a user’s specific transaction is pending which means the transaction has passed the checks
maintainers do. However, sufficiently enough maintainers have not received a valid TI of
user’s counterparty so far. As a result, a pair of sender-receiver has not been generated
on sufficiently enough maintainers’ sides which implies that the user has not received α
valid signature shares on its new account so far. In this case, upon receiving environment’s
instruction (AbrTnx, sid) for aborting the transaction, U sends an abort request AR to M
which is of the form

AR =
(
accr,B, σRnd

M ,T, π
)

in which
accr = (B,S,R, skU, x+ 1, a)

is a refreshed account of the user and accr,B is a blinded version of it. T = ga
x

is the most
recent tag used in the user’s most recent transaction. π is a NIZK proof of knowledge.
Specifically, the user U acts as follows:

1. Computes accr,B and σRnd
M . accr,B is computed for U’s refreshed account accr using

PrepareBlindSign algorithm and σRnd
M is computed for U’s previous account acc (for which

it has consolidated signature σM) using the ProveSig algorithm of the TBS scheme.
2. Calls FNIZK with input (Prove, sid, x, w), and obtains (Proof, sid, π) from it in which π

is a NIZK proof for the statement

x =
(
accr,B, σRnd

M ,T
)

We denote the randomness used to create accr,B and σRnd
M by rabr. The witness of π is

w = (acc, rabr)

for the following relation R(x, w):
(a) T is generated using a and x included in acc (for which user reveals σRnd

M).
(b) σRnd

M is re-randomization of σM which is α different valid aggregated signature shares
of maintainers on acc.

(c) accr,B is generated considering acc. Hence, Br = B,Sr = S,Rr = R, skrU = skU, x
r =

x+ 1 and ar = a hold for accr.
(d) U knows the randomness rabr.

3. Calls the sender anonymous channel F sa
C with input (Send, sid,Mj ,AR) for j = 1, . . . , D.

Specifically, U calls F sa
C with the input (Send, sid,Mk,AR) (1 ≤ k ≤ D − 1) and waits

for channel to send back (Continue, sid,midk), then U proceeds by calling F sa
C with the

input (Send, sid,Mk+1,AR).

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 21

Each maintainer Mj ,

1. Receives (Received, sid,AR,mid) from the sender anonymous channel F sa
C and parses

AR as
(
accr,B, σRnd

M ,T, π
)
.

2. Ignores AR if at least one of the following items holds:
(a) There already exists a transaction identifier t′id (for an aborted transaction) in its

ledger Lj where T′ = T.
(b) Upon calling FNIZK with (Verify, sid, x, π), it receives (Verification, sid, 0).

3. Else, calls Byzantine Agreement FBA with input (Agree, sid, dj). The value of dj is set
to 1 if Mj sees a tid (for issuance or payment transaction) in Lj that contains T. Else,
dj is set to 0. The output of FBA is (Agreed, sid, Q).

4. If Q = 1 (which means at least one honest maintainer has saved a tid in its ledger that
contains T)7:
(a) Each maintainer (e.g., Mi) who has already had sender-receiver pair saved in Li,

sends it to others by calling the authenticated channel Fac
C with the input (Send, sid,Mj ,

(TIs,TIr)) for j = 1, . . . , D ∧ j ̸= i.
(b) Maintainers receive sender-receiver pair from Fac

C (e.g., Mj receives (Received, sid,Mi,
(TIs,TIr)) sent by Mi).

(c) Each maintainer verifies the validity of TIs and TIr by calling FSoK and ignore them
if they are not valid.

(d) Else, each maintainer e.g., Mk signs the new-blinded accounts of users accnew,Bs and
accnew,Br included in TIs and TIr to obtain σnew,B

s,k and σnew,B
r,k .

(e) Mk saves the associated tid = (ψs, ψr,Ts,Tr) in Lk (if it has not already done so).
(f) Mk calls the sender anonymous channel F sa

C with input (Send, sid,mids, σ
new,B
s,k) and

(Send, sid,midr, σ
new,B
r,k).

(g) Mk outputs (TnxDone, sid, tid) (to Z).
The sender Us (resp. receiver Ur):
(a) Receives (Received, sid,Mk, σ

new,B
s,k) (resp. (Received, sid,Mk, σ

new,B
r,k)) for different

k from the sender anonymous channel F sa
C .

(b) Unblinds α different maintainers’ signature shares
{
σnew
s,k

}α

k=1
(resp.

{
σnew
r,k

}α

k=1
)

using Unblind algorithm.
(c) Aggregates unblinded signature shares based on TBS.Agg algorithm to form one

consolidated signature σnew
s,M (resp. σnew

r,M).
(d) Outputs (TnxDone, sid,Ur, v) (to Z) (resp. Ur outputs (TnxDone, sid,Us, v)).
Having the signature on its refreshed account σr

M, the user can enter into new transaction
by generating its new account accnew using accr (rather than acc).

5. Else (meaning that Q = 0):
(a) Maintainers who have already saved tid = (ψs, ψr,Ts,Tr) in their ledgers where Ts

or Tr equals to T delete it.
(b) Each maintainer saves the aborted transaction identifier in its ledger which is of the

form
tid = (Aborted,T)

(c) Each maintainer e.g., Mj signs the refreshed-blinded account of the user accr,Bj to
obtain σr,B

j .
(d) Mj calls the sender anonymous channel F sa

C with input (Send, sid,mid, σr,B
j).

(e) Outputs (TnxAborted, sid, tid) (to Z).
The user U:

7 For the ease of understanding, in the protocol description, we address payment transactions.
Issuance transactions are similar as we have (TIB,TIU) instead of (TIs,TIr) thus the tag T is only
checked against TIU. Moreover, maintainers who have TIB, they send the proof of receiving it
from authenticated channel so that others make sure that TIB has been sent by B.

22 Kiayias, Kohlweiss, Sarencheh

Commercial Banks and Financial Institutions

Transaction identifier of a suspicious
privacy-preserved payment.

Associated threshold encryptions of
public keys and transaction value.

1 2

3
4

5 Decryption shares.

6

Fig. 5. Privacy Revocation Protocol

(a) Receives (Received, sid,Mj , σ
r,B
j) for different j from the sender anonymous channel

F sa
C .

(b) Unblinds α different maintainers’ signature shares
{
σr
j

}α
k=1

using Unblind algorithm.
(c) Aggregates unblinded signature shares based on TBS.Agg algorithm to form one

consolidated signature σr
M.

(d) Outputs (TnxAborted, sid) (to Z).

Auditing. For achieving auditability, we make use of trust dispersal, cf. [1]. Users trust
several authorities independently serving in different roles so that no single authority has
unlimited power or authority over any user. Hence, for privacy revocation and user tracing,
we also take advantage of threshold cryptography. For executing any type of auditing the
participation of at least β = t+ 1 maintainers is required where t is the maximum number
of maintainer that can be corrupted by the adversary. As we have set the threshold of TBS
scheme to α = 2t + 1, always there exists at least t + 1 honest maintainers that have the
transaction identifier tid of a transaction saved in their ledgers.

This protocol parses as two sub-protocols Privacy Revocation and Tracing which are as
follows.

I Privacy Revocation: Given a privacy-preserved payment made by a specific sender-
receiver pair, the audit committee revokes the privacy of the transaction by decrypting
the ciphertexts and identifying transaction participants and value of the transaction. Upon
receiving a message (RvkAnm, sid, tjid) (from Z) the j-th maintainer Mj does the following as
shown in Fig. 5:

1. Finds for the associated (ψs, ψr) saved in its ledger Lj for the given tjid
8.

2. Computes its decryption shares that are csk1,js,1 and csk2,js,1 for ψs, and csk1,jr,1 for ψr.
3. Calls FNIZK with input (Prove, sid, xj , wj), and obtains (Proof, sid, πj) from it in which
πj is a NIZK proof for the statement

xj =
(
cs,1, cr,1, c

sk1,j
s,1 c

sk2,j
s,1 , c

sk1,j
r,1

)
The witness of πj is

wj = (sk1,j , sk2,j)

for the following relation R(xj , wj): logg pk1,j = logcs,1 c
sk1,j
s,1 , logg pk2,j = logcs,1 c

sk2,j
s,1 , and

logg pk1,j = logcr,1 c
sk1,j
r,1 hold.

8 (For currency issuance transaction, given the fact that the sender is B, the cryptographic in-
formation saved for auditing only contains ψ. However, in the following, we describe the steps
of Privacy Revocation protocol for a payment transaction and currency issuance transaction is
similar.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 23

Commercial Banks and Financial Institutions

Identifier of a
suspicious user.

1

3

Associated user record.

2

4
Tracing share.

5

6

Fig. 6. Tracing Protocol

4. Calls the authenticated channel Fac
C with the input (Send, sid,Mi, (xj , πj)) for i =

1, . . . , D ∧ i ̸= j.
5. Considering the following equations

pks = cs,2/
∏
j∈I

c
sk1,jλ1,j

s,1 , gv = cs,3/
∏
j∈I

c
sk2,jλ2,j

s,1 , pkr = cr,2/
∏
j∈I

c
sk1,jλ1,j

r,1

such that |I| = β and λ is Lagrange coefficient, upon obtaining β valid decryption shares
from Fac

C (sent by other maintainers), computes pks, gv, and pkr. Validity of shares is
checked by calling FNIZK.

6. Calls FKR with (RetrieveID, sid, pks) and (RetrieveID, sid, pkr) to retrieve unique iden-
tifiers of users by receiving (IDRetrieved, sid,Us, pks) and (IDRetrieved,
sid,Ur, pkr) from FKR. Computes v from gv9.

7. Outputs (AnmRevoked, sid, tid,Us,Ur, v) (to Z).

II Tracing: Given a suspicious user’s unique identifier, the audit committee traces all
the privacy preserved transactions made by that user. First of all, they find user’s record
generated in User Registration protocol. Using secret shares of a, maintainers engage in a
protocol explained below to compute all tracing tags of the user without revealing a. We
will see that to achieve simulatability a should not be revealed. The maintainers mutually
compute tracing tags such that the last computation results in a tag that does not exist
in their ledgers. In this way, tracing authorities know the most recent transaction of U. As
described in Currency Issuance and Payment protocols, all transactions contain tracing tag
values of the form ga

x

in which a is user’s (tracing tag) secret key and x is its transaction
counter (note that for aborted transactions the user also increments x by one). The threshold
for TBS is α which results the fact that always there exists at least β honest maintainers
who have tid of a specific transaction saved in their ledgers. However, the number of honest
maintainers who have the whole tid of all transactions of a specific user is not β (we do not
use any agreement in the main body of payment). Hence, we have to make sure that at
each step of threshold tag computation all maintainers are able to compute the tag T and
afterwards check their ledgers to see if such a tag has already existed or not. They do so,
by sending their next tag-computation shares in a provable way to others so that having β
shares, the next tag is computed. This process is done up to the point that maintainers do
not see the computed tag T in their ledgers so that there is no β shares for computing the
next tag.

Upon receiving a message (Trace, sid,Uj) the j-th maintainer Mj does the following as
shown in Fig. 6:

1. Finds associated user record UR = (aj , rj , comM,U) saved in Lj .

9 Note that to have an efficient zero-knowledge and signature of knowledge proofs the user sets
gv as one of the plaintexts in ψ. One of the system’s regulatory compliance is having a limit on
transaction value v < Vmax which makes extracting v from gv efficient for M in this sub-protocol.

24 Kiayias, Kohlweiss, Sarencheh

2. Proves that the share contributed by itself to the threshold tag computation (equation
at step 4) is consistent with j-th commitment comj ∈ comM (broadcasted at User
Registration protocol to M). More specifically, for the witness

wj = (aj , rj)

and a given group element ġ = ga
e

where initially e← 0 and the statement

xj = (comj , ġ
aj , ġ)

it calls FNIZK with input (Prove, sid, xj , wj), and receives (Proof, sid, πj) from FNIZK.
Verification of πj outputs (Verification, sid, 1) if R(xj , wj) (which is as follows) holds:
comj is the commitment to the same aj as what is in the maintainer’s share ġaj .

3. Calls the authenticated channel Fac
C with the input (Send, sid,Mi, (xj , πj)) for i =

1, . . . , D ∧ i ̸= j.
4. Considering the following equation

ġa =
∏
j∈I

(ġaj)
∏

i∈I,i̸=j(i/(i−j))

where |I| = β and
∏

i∈I,i̸=j (i/(i− j)) is a Lagrange coefficient, upon obtaining β valid
tracing shares from Fac

C (sent by other maintainers), computes ġa. In other words,
upon receiving (Received, sid,Mi, (xi, πi)) from Fac

C (sent by Mi), Mj calls FNIZK with
(Verify, sid, xi, πi).
Mj ignores the received message from Fac

C if FNIZK outputs (Verification, sid, 0).
Else, having β valid shares it computes ġa based on the equation above.

5. If there already exists a transaction identifier tid (for issuance, payment, or aborted
transaction) in its ledger Lj that includes ġa as a tag T, proceeds from step 2 with
e← e+ 1 and records the associated tid of computed T and role.
Else, sends a message to all maintainers via calling Fac

C with input (Send, sid,Mi, (0, ġ
a))

for i = 1, . . . , D ∧ i ̸= j (which means it has not seen ġa in Lj).
6. If it receives 2t + 1 messages of the form (Received, sid,Mi, (0, ġ

a)) (in which ġ = ga
e

)
from Fac

C , outputs transaction identifiers and corresponding roles (Traced, sid, {tτid, role
τ}xτ=1)

(to Z), and aborts.
Else, waits for at least t+ 1 messages of the form (Received, sid,Mi, (xi, πi)) (in which
ġ = ga

e+1

) from Fac
C and proceeds from step 2.

For currency issuance transaction tid only contains tracing tag of receiver and for payment
transaction it contains tracing tags of both sender and receiver. Based on the computed
tracing tags each maintainer knows that the traced user was sender or receiver of the trans-
action for which tid is retrieved (tag of the sender appears first in tid). Hence, M output
(Traced, sid, {tτid, role

τ}xτ=1) (to Z) such that role can be sender or receiver. Note that given
the {tτid}

x
τ=1 values, the counterparties of the suspicious user can be revealed using the Pri-

vacy Revocation protocol described above. To make tracing efficient, at User Registration
protocol each user proves that x starts from 1 and then increments by one for each transac-
tion at Currency Issuance and Payment protocols.

3.3 Know Your Transaction for Large Payments

Enforcing limits on transaction value and sum of all sent values are two general regulatory
rules. The maximum allowed values for the former is denoted by Vmax and for the latter
is denoted by Smax. While such limits serve a purpose, a user may want to exceed them
when a large payment is required. Even though we do not include this feature in our main
functionality we describe in this section how to realize it given our construction.

In such cases, regulatory compliance may require proving the source of funds. In such
circumstances, the user can exceed the mentioned thresholds up to the new limits V ′

max

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 25

and S′
max. The new limit is computed by adding all values whose sources are proven as

verified sources to the pre-defined general limit value. For instance, assuming the setting
in which the user has accumulated funds during a long period of time and now it wants
to spend them at once (e.g., in the process of buying a property) this will result in a
transaction value far exceeding Vmax (note we assume Bmax ≫ Vmax, as otherwise there is
no need for the mechanism of this paragraph). The user saves the relevant information of
transactions for which it will make a claim. The user points to transaction identifiers of
associated transactions in which it has received money during a period of time from an
acceptable source. The user can make such a claim to M who will facilitate the excess
thresholds. We denote the sum of all values for which the user makes a claim by δ, then
following the above explanation V ′

max = Vmax+δ and S′
max = Smax+δ hold. The user points to

the relevant transaction identifier of l transactions {tτid}
l
τ=1 that contain associated threshold

encryptions {(ψs, ψr)
τ}lτ=1. Given the fact that the user knows the randomness of threshold

encryptions it provides the proof of knowledge and proves that sum of all values in threshold
encryptions equals to δ. Moreover, using the relevant random values it convinces M regarding
the sender of transactions. More generally, M can recognize a third party auditor who will
verify the user’s claim and in this case the user needs only to present a certification of this
transaction by that auditor.

4 Proof of PEReDi Security

Our main theorem is given below.

Theorem 1. Assuming that Pedersen commitments are perfectly hiding, Pointcheval-
Sanders signatures are EUF-CMA secure in the random oracle model, ElGamal encryption
is IND-CPA secure, and the d-strong Diffie-Hellman problem is hard, there exist two polyno-
mials pc and pu such that no PPT environment Z can distinguish the real-world execution
EXECΠPEReDi,A,Z from the ideal-world execution EXECFCBDC,S,Z with advantage better than
AdvEUF-CMA

A + pc · AdvIND-CPA
A + pu · Advd-sDDH

A in the {FKR,FC,FBA,FB,FNIZK,FSoK}-hybrid
model with static corruptions in the presence of arbitrary number of malicious users, up to
t malicious maintainers out of D = 3t + 1 total maintainers and a potentially malicious
central bank.

In the remaining of the section, we provide a sketch of the security proof.

4.1 Sketch of Proof of Theorem 1.

We denote the real-world protocol and adversary by ΠPEReDi and A respectively. The sim-
ulator S described in a detailed manner in the Appendix C makes the view of real-world
execution EXECΠPEReDi,A,Z and ideal-world execution EXECFCBDC,S,Z for any PPT environ-
ment Z indistinguishable. Session identifier denoted by sid is chosen by Z. The simulator
S internally runs a version of ΠPEReDi and makes the view of the dummy adversary A in
the ideal world indistinguishable from its view in the real-world. At the inception of the
execution, Z triggers A to corrupt parties with a message (Corrupt, sid,P), where P de-
notes a party that can be any entity of the network. S reads these corruption messages
and tells FCBDC which parties are corrupted by sending the message (Corrupt, sid,P), the
simulator S also stores the corrupted parties identifiers. S internally emulates the functional-
ities FKR,FC,FBA,FNIZK,FB and FSoK. A instructs corrupted parties arbitrarily. S interacts
with FCBDC on behalf of corrupt parties. In the ideal-world execution EXECFCBDC,S,Z , honest
(dummy) parties forward their input from Z to FCBDC.

Sequence of games Through a sequence of games, we show that the random variables
EXECΠPEReDi,A,Z and EXECFCBDC,S,Z are statistically close. We denote by Pr

[
Gamei

]
the prob-

ability that the environment Z outputs 1 in Gamei. Each game Gamei has its own F i
CBDC

26 Kiayias, Kohlweiss, Sarencheh

and Si. We start from the most leaky functionality F0
CBDC and the associated simulator S0

and gradually go toward the main functionality FCBDC and the simulator S.

Game0: Initially, F0
CBDC forwards all communication with Z, and the simulator S0 cor-

responds to the execution of the real-world protocol EXECΠPEReDi,A,Z .

Game1: Same as Game0 except that in Game1 we change w-th honest maintainer’s blind
signature share on U’s account to σB

w which is simulated by S1. To do so, in this game,
S1 selects the secret signing key of non-threshold Pointcheval-Sanders signature and then
computes non-threshold signature σM = (h, s). Note that after Game1 the simulator Si for
i ≥ 2 never uses the secret signing key of non-threshold signature scheme (as we will see it
receives a non-threshold signature from the challenger of non-threshold signature’s unforge-
ability game –see Def. 6– in the associated reduction). Also, by selecting the secret key of
malicious maintainers, S1 computes partial blind signatures of malicious maintainers that
are σB

t for t ∈ C. As a result of having σM and σB
t for t ∈ C the simulator S1 computes

honest maintainers’ signature shares σB
w for w ∈ H as follows.

When A initiates the protocol in which it requests a signature on the blinded account
accB, S1 who emulates FNIZK in Currency Issuance and FSoK in Payment protocols extracts
the witness of A’s (malicious user’s) message namely acc and the associated randomness
of accB. Then, having the message acc, S1 computes σM. S1 selects the secret keys of
malicious maintainers10 and computes associated public keys. S1 uses Lagrange interpolation
to compute public keys of Mw ∈ H using computed public keys for Mt ∈ C and public key
of non-threshold signature. Hence, all public keys are consistent with the public key of non-
threshold signature. First of all, S1 computes blind signature shares for ∀Mt ∈ C using
selected skt =

(
xt, {yt,τ}qτ=1

)
to obtain σB

t =
(
h, hxt

∏q
τ=1 com

yt,τ
τ

)
. As described above, S1

has extracted witness of NIZK or SoK proofs, hence, it knows {oτ}qτ=1 which lets him to
compute unblinded signature shares in the following way: σt =

(
h, c

∏q
τ=1 β

−oτ
t,τ

)
= (h, st) in

which st = hxt
∏q

τ=1 h
mτyt,τ . Then, S1 computes unblinded signature shares for ∀Mw ∈ H

as follows (note that k ̸= 0 as 0 does not exist in the corrupted maintainers’ indexes C).

σw = (h, sw) =

(
h, s

∏
k∈C((k−w)/k)

∏
t∈C

st
∏

k∈C,k ̸=t((w−k)/(t−k))

)
.

Having the extracted witness {oτ}qτ=1, the simulator computes blind signature shares for
∀Mw ∈ H using the computed σw as follows: σB

w =
(
h,
∏q

τ=1 swβ
oτ
w,τ

)
.

As a result, in this game we changed w-th honest maintainer’s blind signature share on
U’s account to σB

w which is simulated by S1 as described above. Based on Unblind algorithm
which is run by A, the unblinded signature is computed as follows σw =

(
h, c

∏q
τ=1 β

−oτ
w,τ

)
for the c simulated by S4 as c =

∏q
τ=1 swβ

oτ
w,τ . As a result, we have σw = (h, sw) that passes

the verification algorithm e
(
h, α̃w

∏q
τ=1 β̃

mτ
w,τ

)
= e (sw, g̃) which means that the following

equation holds.
Pr
[
Game1

]
= Pr

[
Game0

]
Game2: Same as Game1 except that in Game2, F2

CBDC does not allow S2 to submit any mes-
sage on behalf of adversary A (malicious user) who forges threshold blind signature TBS
scheme to F2

CBDC. Hence, Game2 equals to Game1 except the fact that it checks if a flag is
raised or not. If A who is not issued at least α signature shares submits a valid signature, the
flag is raised. Hence, any difference between Game2 and Game1 is because of the forgery for
threshold blind signature TBS which allows us to bound the probability that Z distinguishes
Game2 from Game1 as follows.

10 Note that Z triggers (ideal-word) adversary to corrupt parties with a message (Corrupt, sid,P),
therefore, S1 has already known C.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 27

Associated Reduction (existential unforgeability of signature). If A forges threshold blind
signature TBS used in our construction, it can be used to construct another A′ who breaks
unforgeability property (see Def. 6) of non-threshold Pointcheval-Sanders signature used in
threshold blind signature TBS scheme. The partial blind signatures of all honest maintainers
σB
w for ∀w ∈ H can be reconstructed from the partial blind signatures of malicious main-

tainers that are σB
t for t ∈ C and the non-threshold signature σM = (h, s) obtained from the

challenger of the existential unforgeability game (different from Game1 in which S1 selected
the secret signing key of non-threshold signature) using the Lagrange interpolation for the
other shares. We omit writing the details as the algorithm is similar to what S1 does in
Game1 except the fact that A′ obtains the non-threshold signature σM from the challenger.
Hence, given the non-threshold signature, A′ simulates the entire view of A which are partial
signatures that the honest maintainers are contributed which implies that A cannot forge
messages in the threshold setting of our construction unless A forges it in the non-threshold
one. In other words, for Z, Game2 is the same as running a threshold signature TBS with
real-world maintainers rather than simulated maintainers by A′. Hence, if A forges in the
real world, it will forge in this threshold setting and A′ uses this forgery as a forgery for
the non-threshold scheme. As a result, TBS is simulatable that together with unforgeabil-
ity property of non-threshold Pointcheval-Sanders signature makes TBS unforgeable in our
construction’s setting.

Therefore, under the unforgeability property of non-threshold Pointcheval-Sanders sig-
nature the following inequality holds (see Def. 6 for the definition of AdvEUF-CMA

A):∣∣Pr [Game2
]
− Pr

[
Game1

]∣∣ ≤ AdvEUF-CMA
A

Game3: Same as Game2 except that S3 computes σRnd
M for the honest user without knowing

the account values of the user. In the real world, having the consolidated signature σM =

(h, s), σRnd
M is computed as (h′, s′) =

(
hr

′
, sr

′
hr

′r
)

such that r $←− Zp and r′
$←− Zp. Assume

a random value as η, set h = gη by programming the random oracle. Hence, we have

σRnd
M =

hr′ ,
∏

j∈E

(
hxj

q∏
τ=1

comyj,τ
τ β−oτ

j,τ

)lj
r′

hr
′r

 =
(
gηr

′
, gηr

′(x+
∑q

τ=1(mτyτ)+r)
)

(x+
∑q

τ=1(mτyτ)+r)=d
−−−−−−−−−−−−−−−→

ηr′=d′
σRnd
M = (gd

′
, gdd

′
)

Also, in the real world in ProveSig algorithm the user U computes κ as well which is of the
form:

κ = α̃

q∏
τ=1

β̃m
τ g̃

r = g̃(x+
∑q

τ=1(yτmτ)+r) (x+
∑q

τ=1(mτyτ)+r)=d
−−−−−−−−−−−−−−−→ κ = g̃d

S3 randomly selects u $←− Zp and u′
$←− Zp. Then, sets h′ ← gu

′
, s′ ← guu

′
and hence sets

σRnd
M ← (gu

′
, guu

′
). Finally, sets κ ← g̃u. Computed values pass the verification e (h′, κ) =

e (s′, g̃) as we have e
(
gu

′
, g̃u
)
= e

(
guu

′
, g̃
)
. As d = (x+

∑q
τ=1(mτyτ) + r) and d′ = ηr′

are random values, they match the distribution of u and u′ which concludes the fact that

Pr
[
Game3

]
= Pr

[
Game2

]
Game4: Same as Game3 except that in Game4, S4 simulate the decryption shares csk1,ws,1 and
c
sk2,w
s,1 (for ψs), and c

sk1,w
r,1 (for ψr), of honest maintainer Mw, w ∈ H, and for s-th and r-th

honest users’ threshold encryptions using the values of a non-threshold ElGamal encryption
scheme. In this game, plaintexts of ψs and ψr are the same as real-world values (in Game4i
for i ≥ 1, we will change plaintexts to dummy values selected by the simulator S4i). To do

28 Kiayias, Kohlweiss, Sarencheh

so, in this game, S4 selects the secret decryption keys of non-threshold ElGamal encryption
sk1,M and sk2,M (note that from Game4 onward simulator does not use sk1,M and sk2,M
directly as the decryption shares are simulated using a non-threshold scheme. This allows
for reductions to the non-threshold ElGamal IND-CPA security game, see Def. 5, associated
with Game5). Then, S4 computes cs = (cs,1, cs,2, cs,3) =

(
gρs , pkρs

1,M · pks, pk
ρs

2,Mg
v
)

and

cr = (cr,1, cr,2) =
(
gρr , pkρr

1,M · pkr
)
. The plaintexts of threshold encryptions are retrieved as

pks = cs,2/
∏

j∈I c
sk1,jλ1,j

s,1 , pkr = cr,2/
∏

j∈I c
sk1,jλ1,j

r,1 and gv = cs,3/
∏

j∈I c
sk2,jλ2,j

s,1 . Now, S4
should simulate honest maintainers’ decryption shares such that decrypted values become
pks, pkr and gv respectively that are consistent with (AnmRevoked, sid, tid,Us,Ur, v) received
from the leakage of F4

CBDC.
S4 computes cs,2/pks which results in pkρs

1,M =
(
gsk1,M

)ρs
= c

sk1,M
s,1 that is used in the

computation of honest maintainers’ shares in the following equation. S4 computes w-th
honest maintainer’s decryption share as follows with knowing malicious maintainers shares
c
sk1,t
s,1 and csk2,ts,1 for ψs, and csk1,tr,1 for ψr for ∀t ∈ C such that |C| ≤ β− 1 = t (note that in the

equation below k ̸= 0 as 0 does not exist in the corrupted maintainers’ indexes C).

c
sk1,w
s,1 = (cs,2/pks)

∏
k∈C(k−w)/k ·

∏
t∈C

(
c
sk1,t
s,1

)∏
k∈C,k ̸=t(w−k)/(t−k)

S4 computes cr,2/pkr which results in pkρr

1,M =
(
gsk1,M

)ρr
= c

sk1,M
r,1 then computes csk1,wr,1 as

follows:
c
sk1,w
r,1 = (cr,2/pkr)

∏
k∈C(k−w)/k ·

∏
t∈C

(
c
sk1,t
r,1

)∏
k∈C,k ̸=t(w−k)/(t−k)

S4 computes cs,3/gv which results in pkρs

2,M =
(
gsk2,M

)ρs
= c

sk2,M
s,1 then computes csk2,ws,1 as

follows:
c
sk2,w
s,1 = (cs,3/g

v)
∏

k∈C(k−w)/k ·
∏
t∈C

(
c
sk2,t
s,1

)∏
k∈C,k ̸=t(w−k)/(t−k)

FNIZK emulation allows S4 to provide faked proofs about the contribution of honest main-
tainers which is unconditionally secure. Moreover, changing honest maintainers’ decryption
shares is information theoretically indistinguishable. Moreover, the simulated decryption
shares work in the threshold decryption computation (as shown above), thus, we have the
following equation:

Pr
[
Game4

]
= Pr

[
Game3

]
Game5: Same as Game4 except that in Game5 we change all plaintexts of threshold encryp-
tions to dummy values selected by S5. Hence, Game5 equals to Game4 except the fact that
S5 computes encryptions for some dummy values as plaintexts (e.g., denoted by pk∗s, pk

∗
r

and g∗v) on behalf of an honest user. However, the decryption shares of honest main-
tainers simulated in a way that computation of cs,2/

∏
j∈I c

sk1,jλ1,j

s,1 , cr,2/
∏

j∈I c
sk1,jλ1,j

r,1 and
cs,3/

∏
j∈I c

sk2,jλ2,j

s,1 result in pks, pkr and gv respectively that are consistent with (AnmRevoked,

sid, tid,Us,Ur, v) received from F5
CBDC (rather than dummy values pk∗s, pk

∗
r and g∗v). We ig-

nore writing the details as it is similar to Game4. Hence, any difference between Game5 and
Game4 is because of breaking the IND-CPA security of threshold encryption used in our con-
struction which allows us to bound the probability that Z distinguishes Game5 from Game4

as follows.

We define Game40 = Game4 and pc as the upper bound on the number of all ciphertexts
of honest users. Also, lets define Game41 as a game similar to Game40 except in Game41 we
change the plaintext of first ciphertext from the real-world value to the ideal-world dummy
value. The reduction between Game40 and Game41 is similar to the described reduction be-
low so that any difference between Game40 and Game41 is upper bounded by AdvIND-CPA

A (see

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 29

Def. 5 for the definition of AdvIND-CPA
A). Similarly, we change the plaintexts of ciphertexts of

i-th honest user to dummy values and finally we do the same for the last ciphertext of last
honest user such that in Game4pc (which equals to Game5) all ciphertexts are generated from
dummy plaintexts. The reduction between Game4pc−1 and Game4pc is similar to the described
reduction below so that the any difference between Game4pc−1 and Game4pc is upper bounded
by AdvIND-CPA

A .

Associated Reduction Between Game4i−1 and Game4i (IND-CPA security of encryption).
If A distinguishes Game4i−1 and Game4i it can be used to construct another A′ who breaks
IND-CPA security of non-threshold ElGamal encryption used in threshold encryption scheme.
The decryption shares of all honest maintainers csk1,ws,1 and c

sk2,w
s,1 for ψs, and c

sk1,w
r,1 for ψr

for ∀w ∈ H can be reconstructed from the decryption shares of malicious maintainers that
are csk1,ts,1 and c

sk2,t
s,1 for ψs, and c

sk1,t
r,1 for ψr for ∀t ∈ C and the non-threshold encryption cs

and cr obtained from the challenger of the IND-CPA security game of non-threshold encryp-
tion using the Lagrange interpolation for the other shares. We omit writing the details as
the algorithm is similar to the described algorithm in Game4 except the fact that A′ ob-
tains the non-threshold encryptions cs and cr from the challenger of IND-CPA game. Hence,
given the non-threshold ciphertexts, A′ simulates the entire view of A which are decryp-
tion shares that the honest maintainers contribute which implies that A cannot distinguish
Game4i−1 from Game4i unless A distinguishes non-threshold ciphertexts cs and cr generated
by real-world values as plaintexts from ciphertexts generated by ideal-world dummy values
as plaintexts. In other words, for Z, Game4i is the same as running a threshold encryption
with real-world maintainers rather than simulated maintainers by A′. Hence if Z distin-
guishes Game4i−1 from Game4i , A′ uses this to win the non-threshold encryption scheme’s
IND-CPA game. As a result, threshold encryption is simulatable that together with IND-CPA
property of non-threshold encryption scheme makes threshold encryption IND-CPA secure
in our construction’s setting.

Therefore, under IND-CPA property of non-threshold ElGamal encryption scheme the
following inequality holds:∣∣Pr [Game5

]
− Pr

[
Game4

]∣∣ ≤ pc · AdvIND-CPA
A

Game6: Same as Game5, except that for honest maintainer Mw the simulator S6 computes
the tracing tag share ġaw for tracing honest user U without directly knowing the shares aw
of the tracing key. Here ġ is a group element computed in each step of the protocol. In this
game tracing tags are the same as real-world values (in Game6i for i ≥ 1, we will change these
tags to dummy values selected by the simulator S6i). S6 knows {gzτ }xτ=1 from the transaction
identifiers leaked from F6

CBDC which are (Traced, sid, {tτid, role
τ}xτ=1) and computes Mw’s first

share as follows (ġ = g):

gaw = (gz1)
∏

k∈C,k ̸=0(k−w)/k ·
∏
t∈C

(gat)
∏

k∈C,k ̸=t(w−k)/(t−k)

Then, given the revealed (τ − 1)-th tracing tag (gzτ−1), w-th honest maintainer’s share for
the next computation is simulated as follows (ġ = gzτ−1):

(gzτ−1)
aw = (gzτ)

∏
k∈C,k ̸=0(k−w)/k ·

∏
t∈C

((gzτ−1)
at)

∏
k∈C,k ̸=t(w−k)/(t−k)

Changing honest maintainers’ shares is information theoretically indistinguishable and emu-
lating FNIZK (which is unconditionally secure) allows S6 to provide faked proofs. As a result,
we have

Pr
[
Game6

]
= Pr

[
Game5

]
Game7: Same as Game6 except that in Game7 we change the tracing tags of honest users
to the dummy values selected by S7. Hence, Game7 equals to Game6 except the fact that

30 Kiayias, Kohlweiss, Sarencheh

S7 computes tracing tags and submits them to F7
CBDC as part of transaction identifiers in

Currency Issuance and Payment protocols. However, the tracing tag shares of honest main-
tainers simulated in a way that computation of tags result in {gzτ }xτ=1 that are consistent
with transaction identifiers tid leaked from F7

CBDC. We ignore writing the details as it is sim-
ilar to Game6. Hence, any difference between Game7 and Game6 is because of distinguishing
ga

x

values from gz values which allows us to bound the probability that Z distinguishes
Game7 from Game6 as follows.

We define Game60 = Game6 and pu as the upper bound on the number of all honest users.
Also, lets define Game61 as a game similar to Game60 except in Game61 we change the tracing
tags of first honest user from real-world values to ideal-world dummy values. The reduction
between Game60 and Game61 is described below so that any difference between Game60 and
Game61 is upper bounded by Advd-sDDH

A (see Def. 2 for the definition of Advd-sDDH
A). Similarly,

we change the tracing tags of i-th honest user to the dummy values and finally we do the
same for the last honest user such that in Game6pu (which equals to Game7) all tracing tags
are dummy values. The reduction between Game6pu−1 and Game6pu is similar to the described
reduction below so that the any difference between Game6pu−1 and Game6pu is upper bounded
by Advd-sDDH

A .

Associated Reduction Between Game6i−1 and Game6i (hardness of d-sDDH). If A dis-
tinguishes Game6i−1 from Game6i it can be used to construct another A′ who breaks hardness
of d-strong Diffie-Hellman problem. The tracing tag shares of all honest maintainers ġaw

for ∀w ∈ H can be reconstructed from the tracing tag shares of malicious maintainers that
are ġat for ∀t ∈ C and the tracing tags {gzτ }xτ=1 received from the leakage of functionality
using the Lagrange interpolation for the other shares. We omit writing the details as the
algorithm is similar to the described algorithm in Game6. Hence, A′ simulates the entire
view of A which are tracing tag computation shares that the honest maintainers contribute
which implies that A cannot distinguish Game6i−1 from Game6i unless A breaks the hardness
of d-strong Diffie-Hellman problem. Hence, if Z distinguishes Game6i−1 from Game6i , A′ uses
this to win the indistinguishability game of d-strong Diffie-Hellman problem. As a result,
under hardness of d-strong Diffie-Hellman problem the following inequality holds:∣∣Pr [Game7

]
− Pr

[
Game6

]∣∣ ≤ pu · Advd-sDDH
A

As F7
CBDC = FCBDC and S7 = S which means Game7 corresponds to the ideal-world execu-

tion EXECFCBDC,S,Z , we argue that random variables EXECΠPEReDi,A,Z and EXECFCBDC,S,Z are
statistically close or, in other worlds, the probability for any PPT environment Z to distin-
guish EXECΠPEReDi,A,Z from EXECFCBDC,S,Z is upper bounded by AdvEUF-CMA

A +pc ·AdvIND-CPA
A +

pu · Advd-sDDH
A that concludes the sketch of security proof.

References

1. Central bank digital currency—opportunities, challenges and design. Bank of England, Discus-
sion Paper, March (2020)

2. SAR Online User Guidance. National Crime Agency (2021), Available in this Link
3. Know Your Transaction (KYT) – The Key to Combating Transaction Laundering. Insights into

Payments and Beyond (December 2020), Available in this Link
4. Allen, S., Čapkun, S., Eyal, I., Fanti, G., Ford, B.A., Grimmelmann, J., Juels, A., Kostiainen,

K., Meiklejohn, S., Miller, A., et al.: Design choices for central bank digital currency: Policy
and technical considerations. Tech. rep., National Bureau of Economic Research (2020)

5. Androulaki, E., Camenisch, J., De Caro, A., Dubovitskaya, M., Elkhiyaoui, K., Tackmann, B.:
Privacy-preserving auditable token payments in a permissioned blockchain system. Cryptology
ePrint Archive, Report 2019/1058 (2019), https://eprint.iacr.org/2019/1058

https://www.nationalcrimeagency.gov.uk/what-we-do/crime-threats/money-laundering-and-illicit-finance/suspicious-activity-reports
https://thepaypers.com/expert-opinion/know-your-transaction-kyt-the-key-to-combating-transaction-laundering--1246231
https://eprint.iacr.org/2019/1058

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 31

6. Baldimtsi, F., Chase, M., Fuchsbauer, G., Kohlweiss, M.: Anonymous transferable E-cash. In:
Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 101–124. Springer, Heidelberg (Mar / Apr 2015).
https://doi.org/10.1007/978-3-662-46447-2_5

7. Bank, E.C.: Exploring anonymity in central bank digital currencies (2019)
8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,

M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE Sympo-
sium on Security and Privacy. pp. 459–474. IEEE Computer Society Press (May 2014).
https://doi.org/10.1109/SP.2014.36

9. Bindseil, U.: Tiered CBDC and the Financial System (2020), Available in this Link
10. BIS: Bank of canada, european central bank, bank of japan, sveriges riksbank, swiss national

bank, bank of england, board of governors of the federal reserve, and bank for international
settlements. central bank digital currencies: foundational principles and core features, (2020),
Available in this Link

11. Bjerg, O.: Designing new money-the policy trilemma of central bank digital currency (2017)
12. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applica-

tions (extended abstract). In: 20th ACM STOC. pp. 103–112. ACM Press (May 1988).
https://doi.org/10.1145/62212.62222

13. Boyle, E., Cohen, R., Goel, A.: Breaking the o(
√
n)-bit barrier: Byzantine agreement with

polylog bits per party. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed
Computing. pp. 319–330 (2021)

14. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) Ad-
vances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005,
Proceedings. Lecture Notes in Computer Science, vol. 3494, pp. 302–321. Springer (2005).
https://doi.org/10.1007/11426639_18, https://doi.org/10.1007/11426639_18

15. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using
e-cash (extended abstract). In: Prisco, R.D., Yung, M. (eds.) SCN 06. LNCS, vol. 4116, pp.
141–155. Springer, Heidelberg (Sep 2006). https://doi.org/10.1007/11832072_10

16. Canard, S., Gouget, A.: Anonymity in transferable e-cash. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 08. LNCS, vol. 5037, pp. 207–223. Springer, Heidelberg
(Jun 2008). https://doi.org/10.1007/978-3-540-68914-0_13

17. Canetti, R.: Universally composable security: A new paradigm for cryptographic pro-
tocols. In: 42nd FOCS. pp. 136–145. IEEE Computer Society Press (Oct 2001).
https://doi.org/10.1109/SFCS.2001.959888

18. Canetti, R.: Security and composition of cryptographic protocols: A tutorial. Cryptology ePrint
Archive, Report 2006/465 (2006), https://eprint.iacr.org/2006/465

19. Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In: Nyberg, K.
(ed.) Advances in Cryptology - EUROCRYPT ’98, International Conference on the The-
ory and Application of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998,
Proceeding. Lecture Notes in Computer Science, vol. 1403, pp. 561–575. Springer (1998).
https://doi.org/10.1007/BFb0054154, https://doi.org/10.1007/BFb0054154

20. Chase, M., Lysyanskaya, A.: On signatures of knowledge. Cryptology ePrint Archive, Report
2006/184 (2006), https://eprint.iacr.org/2006/184

21. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman,
A.T. (eds.) CRYPTO’82. pp. 199–203. Plenum Press, New York, USA (1982)

22. Chaum, D., Grothoff, C., Moser, T.: How to issue a central bank digital currency. arXiv preprint
arXiv:2103.00254 (2021)

23. Damgård, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Balancing privacy
and accountability in blockchain identity management. In: Paterson, K.G. (ed.) CT-RSA 2021.
LNCS, vol. 12704, pp. 552–576. Springer, Heidelberg (May 2021). https://doi.org/10.1007/978-
3-030-75539-3_23

24. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. In: NDSS 2016. The Internet
Society (Feb 2016)

25. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 10–18. Springer, Heidel-
berg (Aug 1984)

26. Garay, J.A., Katz, J., Kumaresan, R., Zhou, H.S.: Adaptively secure broadcast, revisited. In:
Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of distributed
computing. pp. 179–186 (2011)

https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1109/SP.2014.36
https://www.ecb.europa.eu/pub/pdf/scpwps/ecb.wp2351~c8c18bbd60.en.pdf
https://www.bis.org/publ/othp33.htm
https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/11832072_10
https://doi.org/10.1007/978-3-540-68914-0_13
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2006/465
https://doi.org/10.1007/BFb0054154
https://doi.org/10.1007/BFb0054154
https://eprint.iacr.org/2006/184
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-030-75539-3_23

32 Kiayias, Kohlweiss, Sarencheh

27. Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous payments.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–98. Springer, Heidelberg
(Feb 2016)

28. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation
for discrete-log based cryptosystems. Journal of Cryptology 20(1), 51–83 (Jan 2007).
https://doi.org/10.1007/s00145-006-0347-3

29. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for np. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp.
339–358. Springer (2006)

30. Kumhof, M., Noone, C.: Central bank digital currencies-design principles and balance sheet
implications (2018)

31. Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended abstract) (rump
session). In: Davies, D.W. (ed.) EUROCRYPT’91. LNCS, vol. 547, pp. 522–526. Springer,
Heidelberg (Apr 1991). https://doi.org/10.1007/3-540-46416-6_47

32. Pointcheval, D., Sanders, O.: Short randomizable signatures. Cryptology ePrint Archive, Paper
2015/525 (2015), https://eprint.iacr.org/2015/525

33. Rial, A., Piotrowska, A.M.: Security analysis of coconut, an attribute-based credential scheme
with threshold issuance. Cryptology ePrint Archive (2022)

34. Saberhagen, N.: Cryptonote v. 2.0. https://cryptonote.org/whitepaper.pdf (October 17 2013)
35. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
36. Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut: Threshold issuance

selective disclosure credentials with applications to distributed ledgers. In: NDSS 2019. The
Internet Society (Feb 2019)

37. Tomescu, A., Bhat, A., Applebaum, B., Abraham, I., Gueta, G., Pinkas, B., Yanai, A.: Utt:
Decentralized ecash with accountable privacy. Cryptology ePrint Archive (2022)

38. Wüst, K., Kostiainen, K., Capkun, S.: Platypus: A central bank digital currency with unlinkable
transactions and privacy preserving regulation. Cryptology ePrint Archive, Report 2021/1443
(2021), https://eprint.iacr.org/2021/1443

39. Wüst, K., Kostiainen, K., Capkun, V., Capkun, S.: PRCash: Fast, private and regulated trans-
actions for digital currencies. In: Goldberg, I., Moore, T. (eds.) FC 2019. LNCS, vol. 11598, pp.
158–178. Springer, Heidelberg (Feb 2019). https://doi.org/10.1007/978-3-030-32101-7_11

40. Yao, Q.: A systematic framework to understand central bank digital currency. Science China
Information Sciences 61(3), 1–8 (2018)

A Cryptographic Schemes

In this section we present the basic cryptographic primitives that we use in our construction
ΠPEReDi.

A.1 ElGamal Encryption Scheme

The security of ElGamal encryption scheme [25] depends on the hardness of the discrete
logarithm problem. It contains the three following algorithms:

1. KeyGen: Let p be a large prime and g be a generator of Z∗
p. The receiver (maintainer in

ΠPEReDi) randomly chooses the secret key sk
$←− Z∗

p and computes pk = gsk mod p. Then,
the receiver publishes public parameters (g, p, pk) while keeping sk secret.

2. Encryption: For encrypting a message m ∈ Zp, the user randomly chooses an integer

k
$←− Z∗

p and set the ciphertext c = (c1, c2) =
(
gk, pkkm

)
mod p.

3. Decryption: Given c = (c1, c2), the receiver computes the message m = c2/c1
sk mod p.

A.2 Threshold ElGamal Encryption Scheme

Using a distributed key generation protocol introduced in [31] or [28] the secret key of
threshold ElGamal encryption scheme is generated. We denote that skj is the secret key of

https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/3-540-46416-6_47
https://eprint.iacr.org/2015/525
https://eprint.iacr.org/2021/1443
https://doi.org/10.1007/978-3-030-32101-7_11

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 33

decryption for j-th maintainer and pkj = gskj is the corresponding public key share. Hence,
we have sk =

∑
j∈I skjλj such that λj is the Lagrange coefficient for the j-th share and

|I| = β. To decrypt an ElGamal ciphertext c = (c1, c2) =
(
gk, pkkm

)
, j-th maintainer first

publishes cskj1 , and then generates a proof that logg pkj = logc1 c
skj
1 hold to prove its honest

contribution. Finally, the plaintext m can be retrieved as m = c2/
∏

j∈I c
skjλj

1 .
In our construction, assuming the first message as user’s public key m1 = pkU and

the second message as m2 = gv in which v is the value of transaction, we extend the
ciphertext such that c = (c1, c2, c3) =

(
gk, pkk1,Mm1, pk

k
2,Mm2

)
. Hence, j-th maintainer has

two secret keys sk1,j and sk2,j such that pk1,j = gsk1,j and pk2,j = gsk2,j . Similarly, we
have sk1,M =

∑
j∈I sk1,jλ1,j and sk2,M =

∑
j∈I sk2,jλ2,j , and their associated public keys

are pk1,M = gsk1,M and pk2,M = gsk2,M respectively. The j-th maintainer’s decryption shares
are csk1,j1 and c

sk2,j
1 . It also generates a proof that logg pk1,j = logc1 c

sk1,j
1 and logg pk2,j =

logc1 c
sk2,j
1 hold to prove its honest contribution. The messages m1 and m2 are retrieved by

computing m1 = c2/
∏

j∈I c
sk1,jλ1,j

1 and m2 = c3/
∏

j∈I c
sk2,jλ2,j

1 respectively.

A.3 Secret Sharing

Shamir introduced (D,β)-threshold scheme [35]. A β-out-of-D threshold secret sharing of a
secret message m is sharing m into D parts such that any β shares together can be used to
reconstruct the secret m. However, fewer shares provide no information at all about m.

Definition 1. A (D,β)-secret sharing scheme SSH = (SSH.Share,SSH.Agg) consists of the
following algorithms:

1. {mi}Di=1
$←− SSH.ShareD,β (m): Upon receiving m as input it outputs D secret shares such

that mi denotes the i-th share of m.
2. m∗ ←− SSH.AggD,β {mi}i∈I : Upon receiving β shares (|I| = β) as input it outputs a

reconstructed secret m∗.

Moreover, SSH generally satisfies Correctness and Privacy. The former guarantees that
Pr [m∗ = m] = 1 and the latter requires that given β − 1 or fewer shares of either m1

or m0 no PPT adversary A can guess which message was shared with probability better than
1
2 + negl(λ).

A.4 Pointcheval-Sanders Signature Scheme

Pointcheval-Sanders signature scheme [32] is existentially unforgeable and randomizable
which consists of the following algorithms:

1. KeyGen(1λ, q): Run G(1λ) to obtain a pairing group setup η =
(
p,G, G̃,Gt, e, g, g̃

)
. Pick

random secret key sk = (x, {yτ}qτ=1) from Zq+1
p . Set the public key pk = (η, α, {βτ}qτ=1)←

(η, g̃x, {g̃yτ }qτ=1).
2. Sign(sk, {mτ}qτ=1): Select random r from Zp, and set h ← gr. Output the signature
σ = (h, s)← (h, hx+{yτmτ}q

τ=1)
3. VerifySig(pk, σ, {mτ}qτ=1): Output 1 if h ̸= 1 and e(h, α

∏q
τ=1 β

mτ
τ) = e(s, g̃). Else, output

0.

A.5 Threshold Blind Signature

Coconut [36] is an optional declaration credential construction supporting distributed thresh-
old issuance based on Pointcheval-Sanders signature [32]. Unlinkable optional attribute dis-
closures, and public and private attributes are supported by the framework of [36] even when

34 Kiayias, Kohlweiss, Sarencheh

a part of issuing authorities are malicious or offline. Recently, Rial et al. [33] have analyzed
the security properties of Coconut [36] by introducing an ideal functionality which captures
all the security properties of a threshold blind signature TBS. They introduced a new con-
struction that follows Coconut with a few modifications to realize TBS ideal functionality.
They have some changes for issuing blind signatures and for signature show.

Informally TBS scheme satisfies unforgeability, unlinkability and blindness. Unforgeabil-
ity guarantees unfeasibility for a corrupted user to convince an honest verifier that it has a
valid signature if in fact it has not. Blindness guarantees unfeasibility for a corrupted signer
to learn any information about the message m during the execution of IssueSig protocol,
except for the fact that m satisfies a predicate. Unlinkability guarantees unfeasibility for a
corrupted signer or verifier to learn anything about the message m, except that it satisfies
a predicate, or to link the execution of ProveSig with either another execution of ProveSig
or with the execution of IssueSig.

We use the improved version of Coconut [36] introduced in [33] with modifications (to
their construction such as modelling the communication between the user and the signing
maintainer, and embedding the NIZK proofs needed throughout the TBS scheme into proofs
generated in our construction as we describe in Sec. 3.2) as a TBS scheme. The scheme
TBS = (TBS.KeyGen, IssueSig,TBS.Agg,ProveSig,VerifySig) consists of the following algo-
rithms and protocols (maintainers and signers are interchangeable).

1 TBS.KeyGen

1. Run
(
p,G, G̃,Gt, e, g, g̃

)
← G

(
1λ
)

and pick q random generators {hτ}qτ=1 ← G and set

the parameters par ←
(
p,G, G̃,Gt, e, g, g̃, {hτ}qτ=1

)
.

2. Choose (q + 1) polynomials (v, {wτ}qτ=1) of degree (α − 1) with random coefficients in
Zp and set (x, {yτ}qτ=1)← (v(0), {wτ (0)}qτ=1).

3. For j = 1 to D, set the secret key skj of each maintainer Mj as skj =
(
xj , {yj,τ}qτ=1

)
←

(v(j), {wτ (j)}qτ=1) and set the verification key pkj of each maintainer Mj as pkj =(
α̃j ,
{
βj,τ , β̃j,τ

}q

τ=1

)
← (g̃xj , {gyj,τ , g̃yj,τ }qτ=1).

4. Set pk =
(
par, α̃,

{
βτ , β̃τ

}q

τ=1

)
← (par, g̃x, {gyτ , g̃yτ }qτ=1).

2 IssueSig protocol consists three following algorithms (PrepareBlindSign,BlindSign,Unblind).
2.1. PrepareBlindSign algorithm is run by user U which is as follows:

1. Parse acc as {mτ}qτ=1. Pick a random value o $←− Zp and compute com = go
∏q

τ=1 h
mτ
τ

and send com to FRO
11 and receive h from FRO.

2. Compute commitments to each of the messages. For {τ}qτ=1, pick random oτ ← Zp and
set comτ = goτhmτ .

3. Compute a NIZK proof πs for the following relation: πs = NIZK{({mτ}qτ=1 , o, {oτ}
q
τ=1), com =

go
∏q

τ=1 h
mτ
τ ∧ {comτ = goτhmτ }∀τ∈[1,q] ∧ ϕ {mτ}qτ=1 = 1} and set

accB = (com, {comτ}qτ=1 , h)

2.2. BlindSign algorithm is run by maintainer Mj which is as follows:

1. Send com to FRO and receive h′ from FRO. Abort if h ̸= h′ or πs is not correct.
2. Compute c = hxj

∏q
τ=1 com

yj,τ
τ and set the blind signature share

σB
j = (h, hxj

q∏
τ=1

comyj,τ
τ)

.
11 FRO denotes functionality of random oracle which is a black box that provides a truly random

response from an output domain for every unique request.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 35

2.3. Unblind algorithm is run by user U which is as follows:

1. Parse σB
j as (h′, c). Abort if h ̸= h′.

2. Compute

σj = (h, sj)←

(
h, c

q∏
τ=1

β−oτ
j,τ

)

3. Abort if e
(
h, α̃j

∏q
τ=1 β̃

mτ
j,τ

)
= e (sj , g̃) does not hold.

3 TBS.Agg User U does the following:

1. Let E ∈ [1, D] be a set of α indices of maintainers in M.
2. For all j ∈ E, evaluate at 0 the Lagrange basis polynomials
lj =

[∏
i∈E,i̸=j(i)/(i− j)

]
mod p.

3. For all j ∈ E, take σj = (h, sj) from M and compute the signature

σM = (h, s)←

h,∏
j∈E

s
lj
j

4. Abort if e

(
h, α̃

∏q
τ=1 β̃

mτ
τ

)
= e(s, g̃) does not hold.

4 ProveSig
User U does the following:

1. Parse σM as (h, s), pick r $←− Zp and r′ $←− Zp.
2. Compute

σint
M = (h′, s′)←

(
hr

′
, sr

′
(h′)

r
)

3. Parse acc as {mτ}qτ=1. Compute

κ← α̃

q∏
τ=1

β̃mτ
τ g̃r

4. Compute the NIZK proof πv for the relation: πv = NIZK{({mτ}qτ=1 , r) : κ = α̃
∏q

τ=1 β̃
mτ
τ g̃r∧

φ ({mτ}qτ=1) = 1}
5. Set

σRnd
M =

(
σint
M , κ

)
5 VerifySig
Maintainer Mj does the following:

1. Parse σRnd
M as

(
σint
M , κ

)
and abort if h′ = 1 or if e (h′, κ) = e (s′, g̃) does not hold.

2. Verify πv and abort if the proof is not correct.

B Functionalities

The description of the ideal functionalities used in our protocol is as follows. Functionality
FKR models key registration. A party calls the functionality with (Register, sid, key) to
register a key for the identifier U of the party. Later, all parties can call the functionality
with (RetrieveKey, sid,U) to receive the registered key key of party U; or they can call the
functionality with (RetrieveID, sid, key) to obtain the identifier of the owner of key.

36 Kiayias, Kohlweiss, Sarencheh

Functionality FKR

Register.
Upon input (Register, sid, key) from U, output (Register, sid,U, key) to A. Upon re-
ceiving (Ok, sid,U) from A, record the pair (U, key), and output (Registered, sid) to U.
Retrieve.
Upon input (RetrieveKey, sid,U) from Uj , output (RetrieveKey, sid,U,Uj) to A.
Upon receiving (Ok, sid,U,Uj) from A, if there exists a recorded pair (U, key), out-
put (KeyRetrieved, sid,U, key) to Uj . Else, output (KeyRetrieved, sid,U,⊥) to Uj .
Upon input (RetrieveID, sid, key) from Uj , output (RetrieveID, sid, key,Uj) to A.
Upon receiving (Ok, sid, key,Uj) from A, if there exists a recorded pair (U, key), output
(IDRetrieved, sid,U, key) to Uj . Else, output (IDRetrieved, sid, key,⊥) to Uj .

For privacy-preserving requirement FCBDC does not leak identities of users. To realize
this functionality, our protocol uses different types of communication channels FC to deliver
messages and to meet network level anonymity (e.g., preventing traffic analysis attack and
extracting identities).

Functionality FC

Let define a set of parties where S and R denote two parties of the set as the sender
and receiver of a message m respectively. ∆ is defined as follows based on parameters
of functionality. Message identifier mid is selected freshly by the functionality.

1. Upon input (Send, sid, R,m) from S, output (Send, sid, ∆,mid) to A.
2. Upon receiving (Ok, sid,mid) from A, send (Received, sid, S,m) to R.

Set ∆ based on the following parameterized functions:

– for Fac
C set ∆ = (S,R,m). Upon receiving (Ok.Snd, sid,mid) from A, send

(Continue, sid) to Sa.
– for F sra

C set ∆ = (S, |m|).
– for F ssa

C set ∆ = (R, |m|).
– for F fa

C set ∆ = |m|.
– for F sc

C set ∆ = (S,R, |m|). Upon receiving (Ok.Snd, sid,mid) from A, send
(Continue, sid) to S.

– for F sa
C set ∆ = (R,m).

1. Upon receiving (Ok, sid,mid) from A, send (Received, sid,m,mid) to R. Upon
receiving (Ok.Snd, sid,mid) from A, send (Continue, sid) to S.

2. Upon receiving (Send, sid,mid,m′) from R, output (Send, sid, R,m′,mid) to A.
Upon receiving (Ok.End, sid,mid) from A, send (Received, sid, R,m′) to S.

a This gives more power to adversary A who decides when the sender can proceed as sequential
message sending is required in the UC model.

In Byzantine Agreement (BA) protocol a set of D parties agree on their inputs, even
facing malicious corruptions. The following functionality tolerates a malicious adversary who
statically corrupts up to t parties.

In our interactive protocol ΠPEReDi that tolerates static malicious adversaries we use
the following Byzantine Agreement functionality FBA which can be implemented as follows.
Parties send their input to everyone. Once all inputs are received, an honest party (with
input 0) switches its input to 1 if at most 2t zeros are received. Afterwards, parties engage
in a standard Byzantine Agreement protocol [13].

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 37

Functionality FBA

Running with M = {M1, ...,MD} parties; Byzantine Agreement functionality FBA pro-
ceeds as follows where initially Q← ⊥:

1. Upon receiving (Agree, sid, dj) from Mj where dj ∈ {0, 1}, record
(Agree, sid, dj ,Mj) and send (Agree, sid, dj ,Mj) to A. Once |{j|dj = 1}| ≥ t + 1,
set Q = 1. Once |{j|dj = 0}| ≥ 2t+ 1, set Q = 0.

2. Upon receiving (Agree.Ok, sid) from A: If Q ̸= ⊥ output (Agreed, sid, Q) to every
Mj via public-delayed output. Else, ignore.

In the following, we define the standard Broadcast functionality FB from [26] where it
does not guarantee secrecy for the message m.

Functionality FB

Broadcast functionality FB parameterized by the set M = {M1, ...,MD} proceeds as
follows:
Upon receiving (Broadcast, sid,m) from a party P, send (Broadcasted, sid,P,m) to
all entities in the set M and to A.

Groth et al. [29] formalized ideal functionality of Non-Interactive Zero Knowledge (NIZK)
that was introduced by Blum et al. [12]. FNIZK does not specify the verifier in advance
different from the interactive zero-knowledge proof. The generated proof can be verified by
anyone.

Functionality FNIZK

The functionality is parameterized by a relation R.
Proof. On receiving (Prove, sid, x, w) from U, ignore if (x, w) /∈ R. Else, send
(Prove, sid, x) to A. Upon receiving (Proof, sid, π) from A, store (x, π) and send
(Proof, sid, π) to U.
Verify. Upon receiving (Verify, sid, x, π) from U check whether (x, π) is stored. If not
send (Verify, sid, x, π) to A. Upon receiving the answer (Witness, sid, w) from A, check
(x, w) ∈ R and if so, store (x, π). If (x, π) has been stored, output (Verification, sid, 1)
to U, else output (Verification, sid, 0).

Signature of knowledge (SoK) was first formally defined by Chase et al. [20]. In SoK, by
providing a valid signature, the signer proves the possession of a witness w to a statement x
for a relation R. It generalizes the notion of traditional signature where a signature under a
public key serves as a proof that the signer is in possession of the corresponding secret key.

Functionality FSoK

The functionality is parameterized by a relation R. Moreover, Sign,Simsign and Extract
are descriptions of PPT TMs, and Verify is a description of a deterministic polytime
TM.
Setup. Upon receiving (Setup, sid) from U if this is the first time
that (Setup, sid) is received, send (Setup, sid) to A; upon receiving

38 Kiayias, Kohlweiss, Sarencheh

(Algorithms, sid,Sign,Verify,Simsign,Extract) from A, store these algorithms.
Output the stored (Algorithms, sid,Sign,Verify) to U.
Signature Generation. Upon receiving (Sign, sid,m, x, w) from U, if (x, w) /∈ R

ignore. Else, compute σ ← Simsign(m, x), and check that Verify(m, x, σ) = 1. If so,
then output (Signature, sid,m, x, σ) to U and record the entry (m, x, σ). Else, output
an error message (Completeness error) to U and halt.
Signature Verification. Upon receiving (Verify, sid,m, x, σ) from Uj , if (m, x, σ′)
is stored for some σ′, then output (Verified, sid,m, x, σ,Verify(m, x, σ)) to Uj . Else
let w ← Extract(m, x, σ); if (x, w) ∈ R, output (Verified, sid,m, x, σ,Verify(m, x, σ)) to
Uj . Else if Verify(m, x, σ) = 0, output (Verified, sid,m, x, σ, 0) to Uj . Else output an
error message (Unforgeability error) to Uj and halt.

C Simulation

We describe a simulator S that reproduces the real-world view of A and emulate the execu-
tion of honest parties. The simulator internally emulates the functionalities FKR,FC,FBA,FB,
FNIZK and FSoK. To do so, it needs to maintain specific lists associated to each functionality.
However, without loss of generality, we assume S internally keeps track of states of func-
tionalities and omit addressing all these lists explicitly. It also maintains the lists ListUR for
keeping track of registered users and Listtid for keeping track of transaction identifiers. S
interacts with the dummy adversary A and with the CBDC functionality FCBDC. Similar to
the functionality FCBDC and our construction ΠPEReDi, the simulator is described in six parts:
User Registration, Currency Issuance, Payment, Abort Transaction, Privacy Revocation and
Tracing.

C.1 Simulation of User Registration

In all the following cases, S receives (GenAcc, sid,U) from FCBDC and at the end of the
simulation, S sends the message (Ok.GenAcc, sid,U) to FCBDC if the user receives at least 2t+1
valid signature shares from maintainers12. Throughout the simulation of User Registration
S knows the identifier of the user U (regardless of the fact that U is corrupted or not).

Honest U and at most t malicious maintainers: S initiates User Registration protocol
by emulating the honest user U.

1. Communication from U to M:
Emulating FKR, S internally records the pair (U, pkU) for a randomly chosen value as
pkU.
Simulator on behalf of honest user U is supposed to provide RIj =

(
accB, aj , rj , comM, pkU, π

)
to malicious maintainers and associated leakage of channel to adversary A.
It does so by computing accB based on dummy values. It also, selects two values as aj
and rj randomly from Z∗

p per maintainer and computes comj = gajhrj . It sets comM ←
{comj}Dj=1.
S also stores UR = (aj , rj ,Mj ,U) (per maintainer) in ListUR.
S sets x ←

(
accB, comM, pkU

)
. Emulating FNIZK the simulator sends (Prove, sid, x)

to the dummy (internally run) adversary A as the leakage of FNIZK. Upon receiving
(Proof, sid, π) from A, the simulator stores (x, π).

12 Doing so makes FCBDC to update its internally maintained mappings and output (AccGened, sid)
to U and (AccGened, sid,U) to M.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 39

Emulating FB it sends (Broadcasted, sid,U, comM) to the dummy A (both as the leakage
of FB and the message malicious maintainers receive).
Emulating F sc

C , the simulator leaks (Send, sid, (U,Mj , |RIj |) ,mid) to A. And upon receiv-
ing (Ok.Snd, sid,mid) from A, leaks the next leakage (Send, sid, (U,Mj+1, |RIj+1|) ,mid).
Finally, A (malicious maintainer e.g., Mt) receives (Received, sid,U,RIt) from F sc

C .
S gives that message to A (who controls Mt) upon receiving (Ok, sid,mid) from the
dummy A as S has already simulated all information included in RIt.

2. Communication among honest and malicious maintainers:
S outputs (RetrieveKey, sid,U,Mj) to A as leakage of FKR. S has already emulated the
honest user and FNIZK by storing (x, π). Hence, upon calling FNIZK with (Verify, sid, x, π)
via A (malicious maintainer), the simulator outputs (Verification, sid, 1) to A.
S keeps track of adversary’s blockage on the message each honest maintainer receives.
As soon as one honest maintainer receives RI the simulator submits (Ok.GenAcc, sid,U)
to FCBDC.

3. Communication from M to U:
Then, S needs to simulate the view of A considering the information that is leaked to
A when each maintainer sends back the blind signature share of U’s account. To do so,
S sends (Send, sid, (Mj ,U, σ

B
j),mid) to A as leakage of Fac

C in which σB
w for w ∈ H is

simulated by S and σB
t for t ∈ C is obtained from the A.

Emulating channel functionality allows S to keep track of active malicious maintainers
who participate at generating valid signatures. If at least 2t+1 valid signature shares are
sent by maintainers to the channel functionality the simulator lets functionality output
(AccGened, sid) to U.

Malicious U and at most t malicious maintainers: A on behalf of malicious U initiates
User Registration protocol.

1. Communication from U to M:
Once adversaryA calls FB with (Broadcast, sid, comM) S sends (Broadcasted, sid,U, comM)
to A (both as the leakage of FB and the message malicious maintainers receive).
A calls F sc

C that is emulated by S with input (Send, sid,Mj ,RIj). S leaks (Send, sid, (U,Mj ,
|RIj |),mid) toA as leakage of F sc

C . Upon receiving (Ok.Snd, sid,mid) fromA, the simulator
sends (Continue, sid) to A (malicious U).
S sends (Received, sid,U,RIt) to A (malicious maintainer Mt) as the output of Fac

C once
it receives (Ok, sid,mid) from A.

2. Communication among honest and malicious maintainers:
S who emulates FKR checks internally maintained list for FKR to see if (U, pkU) has
already been saved or not. If not, it ignores RI.
S who emulates FB,F sc

C and honest maintainers waits to receive a message from FB and
F sc

C where the message is sent from A on behalf of one specific U and comM received
from both functionalities is the same.
Afterwards, S checks whether there is a user record UR saved in ListUR for U. If there
is, it ignores RI.
Given the received (aw, rw) from A, it computes gawhrw and ignores if it is not equal to
comw ∈ comM for ∀w ∈ H.
Else, S checks if (x, π) such that x =

(
accB, comM, pkU

)
is stored. Otherwise, (to extract

the witness) sends (Verify, sid, x, π) to A as leakage of FNIZK. Upon receiving the an-
swer (Witness, sid, w) from A, checks (x, w) ∈ R and if so, stores (x, π). Else, ignore the
message.
S saves UR = (aj , rj , comM,U) in ListUR.
S keeps track of adversary’s blockage on the message each honest maintainer receives.
As soon as one honest maintainer receives RI the simulator submits (Ok.GenAcc, sid,U)
to FCBDC.

40 Kiayias, Kohlweiss, Sarencheh

3. Communication from M to U:
S sends (Send, sid, (Mj ,U, σ

B
j),mid) to A as leakage of communication channel in which

σB
w for w ∈ H is simulated by S (as described in the sequences of games Sec. 4.1) and
σB
t for t ∈ C is obtained from the A. S also sends (Received, sid,Mj , σ

B
j) to A as the

message A (malicious user) receives in the real world once it receives (Ok, sid,mid) from
A.
Emulating channel functionality allows S to keep track of active malicious maintain-
ers who participate at generating valid signatures (S has already extracted the witness
from malicious user’s RI so that it can check the validity of malicious maintainers’ sig-
natures). If at least 2t + 1 valid signature shares are received by the user (note that
honest maintainers are emulated by S itself, and S generates signatures on behalf of
the honest maintainers who have received the RI) the simulator lets functionality output
(AccGened, sid) to U.

C.2 Simulation of Currency Issuance

Honest U, honest B and at most t malicious maintainers: S receives (Iss, sid, pid)
from FCBDC and initiates Currency Issuance protocol by emulating honest B.

1. Communication from B to U:
In the real-world A sees (Send, sid, (B, |v|),midB) as leakage of F sra

C . The simulator S has
already known |v| and thus sends the leakage to A.

2. Communication from U to B:
Upon receiving (AcceptIss, sid, pid) from FCBDC the simulator emulates an honest user
U. We note that if the user has already been traced S receives (AcceptIss, sid, pid,U)
from FCBDC so that it is able to use the same tag in this protocol as it had generated
for the user U who did not have any transactions in the time of executing the Tracing
protocol.
In the real world, A sees (Send, sid,B, |ρ|,midU) as leakage of F ssa

C . The simulator has
already known |ρ| and sends the leakage to A.

3. Communication from B and U to M:
Considering U and B’s communications with M, the adversary A respectively sees
(Send, sid,Mj ,TIU,mid′U) as leakage of F sa

C and (Send, sid,B,Mj ,TIB,mid′B) as leakage of
Fac

C . Once S receives (Ok.Snd, sid,mid′U) from A it leaks the next leakage (Send, sid,Mj+1,
TIU,mid′U) and once it receives (Ok.Snd, sid,mid′B) from A it leaks the next leakage
(Send, sid,B,Mj+1,TIB,mid′B).
Hence, S is supposed to simulate the view of dummy A with respect to the information
real-world A sees without knowing the identity of U.
First of all, based on PrepareBlindSign, S selects random values to compute accnew,B.
Then, computes σRnd

M in a way described in Sec. 4.1. Afterwards, S computes a threshold
encryption ψ on dummy values as plaintexts.
It computes T by randomly selecting z $←− Zp and let T← gz.
S sets x ←

(
ψ, accnew,B, σRnd

M ,T
)
. Emulating FNIZK, the simulator sends (Prove, sid, x)

to A. The simulator receives (Proof, sid, π) from A and records (x, π).
S sends (Send, sid,Mj ,TIU,mid′U) and (Send, sid,B,Mj ,TIB,mid′B) to A such that TIU =(
ψ, accnew,B, σRnd

M ,T, π
)

and TIB = ψ as explained above.
Finally, A (malicious maintainer) receives (Received, sid,TIU,mid′U) and (Received, sid,
B,TIB) from channel (emulated by S) once dummyA sends (Ok, sid,mid′U) and (Ok, sid,mid′B)
to S respectively.

4. Communication among honest and malicious maintainers:
S has already emulated the honest user and FNIZK (it has stored (x, π)).
Hence, upon calling FNIZK with (Verify, sid, x, π) via A (malicious maintainer), the
simulator outputs (Verification, sid, 1) to A.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 41

As soon as one honest maintainer receives both TIU and TIB, the simulator submits
(GenTnx, sid, pid, tid) to FCBDC where tid = (ψ,T). The values of ψ and T are simulated
by S as described above.
For each maintainer (either honest or malicious) who generates a valid signature on
user’s account S submits (GenTnx, sid, pid,Mk) to FCBDC where Mk is the identifier of
that maintainer.

5. Communication from M to U:
S sends (Send, sid,Mj , σ

new,B
j ,mid′U) to A as leakage of F sa

C in which σnew,B
w for w ∈ H

is simulated by S and σnew,B
t for t ∈ C is obtained from the A (malicious maintainer).

Malicious U, honest B and at most t malicious maintainers: In this case, S receives
(Iss, sid, pid,U, v) from FCBDC. The simulator initiates Currency Issuance protocol on behalf
of honest B to issue a digital currency worth of v for U.

1. Communication from B to U:
Similar to the case of honest U and honest B, S leaks toA the message (Send, sid,B, |v|,midB)
as leakage of F sra

C . In the real world, A (malicious U) receives (Received, sid,B, v),
S has already received (Iss, sid, pid,U, v) from FCBDC thus it knows v and it sends
(Received, sid,B, v) to the dummy (internally run) A once it receives the message
(Ok, sid,mid).

2. Communication from U to B:
Emulating F ssa

C , the simulator receives A’s message of the form (Send, sid,B, ρ). Then, S
leaks (Send, sid,B, |ρ|,midU) to A as leakage of F ssa

C . Once S receives (Ok, sid,mid) from
A it proceeds emulating honest B.

3. Communication from B and U to M:
Simulating the communication from B to M is similar to the case of honest U and honest
B.
Regarding the communication from U to M, the adversary calls F sa

C with input (Send, sid,
Mj ,TIU).
The simulator sends (Send, sid,Mj ,TIU,mid′U) to A as the leakage of F sa

C . Upon receiving
(Ok.Snd, sid,mid′U) from A, S sends (Continue, sid) to A (malicious U).
A (malicious maintainer) receives (Received, sid,TIU,mid′U) from S. For the simulator
to do so, it uses A’s sent information TIU once it receives (Ok, sid,mid′U) from A.
S submits (AcceptIss, sid, pid, v) to FCBDC on behalf of malicious U.

4. Communication among honest and malicious maintainers:
S checks if ψ included in TIU is generated using the randomness it received from A and
value v. In other words, whether ψ equals to the threshold encryption that is generated
by S13.
Also S checks if ψ is the first element of one of the tid arrays saved in Listtid. If it is,
then ignores.
Then, verifies whether T is the second element of one of the saved tid arrays in Listtid.
If not, checks whether (x, π) such that x =

(
ψ, accnew,B, σRnd

M ,T
)

is stored. Other-
wise, sends (Verify, sid, x, π) to A as leakage of FNIZK. Upon receiving the answer
(Witness, sid, w) from A, checks (x, w) ∈ R. If so stores (x, π). Else, ignore the message.
S saves tid = (ψ,T) in Listtid.
S submits (GenTnx, sid, pid, tid) to FCBDC where tid = (ψ,T). The values of ψ is calculated
by S (also it is given by A) and T is given by A as described above.
As soon as one honest maintainer receives both TIU and TIB, the simulator submits
(GenTnx, sid, pid, tid) to FCBDC where tid = (ψ,T). The values of ψ and T are received
from A as described above.

13 In this case, S has already received (Iss, sid, pid,U, v) from FCBDC which means regulatory com-
pliance and so on have already been verified by FCBDC.

42 Kiayias, Kohlweiss, Sarencheh

For each maintainer (either honest or malicious) who generates a valid signature on
user’s account S submits (GenTnx, sid, pid,Mk) to FCBDC where Mk is the identifier of
that maintainer.

5. Communication from M to U:
For simulating the messages that are sent back to malicious U, S gives (Send, sid,Mj , σ

new,B
j ,

mid′U) to A as leakage of F sa
C in which σnew,B

w for w ∈ H is simulated by S (as described in
the sequences of games Sec. 4.1) and σnew,B

t for t ∈ C is obtained from the A (malicious
maintainer).
Also, once it receives (Ok.End, sid,mid′U) from A, it outputs (Received, sid,Mj , σ

new,B
j)

to A as the message that malicious U receives.

Honest U, malicious B and at most t malicious maintainers: A on behalf of malicious
B, initiates Currency Issuance protocol.

1. Communication from B to U:
A initiates the protocol on behalf of B by calling F sra

C with input (Send, sid,U∗, v∗).
Hence, emulating F sra

C the simulator knows U∗ and v∗ and sends (Send, sid,B, |v∗|,midB)
to A as the leakage of F sra

C . The simulator submits a currency issuance transaction to
FCBDC with input (Iss, sid,U∗, v∗) on behalf of malicious B. If S receives (AcceptIss, sid,
pid), it concludes that sent values by A, namely U∗ and v∗ are the same as corresponding
values in honest U’s message given to FCBDC. In other words, U∗ = U and v∗ = v hold.
Hence, it continues the protocol otherwise it ignores 14

2. Communication from U to B:
S emulates U and this emulation is similar to the case of honest U and honest B. In
addition, emulating F ssa

C the simulator sends (Received, sid,U, ρ) to A in which ρ is
chosen randomly by S.

3. Communication from B and U to M:
The simulation of communication between U and M is similar to the case of honest U
and honest B.
A (malicious B) calls Fac

C with input (Send, sid,Mj ,TIB). Emulating Fac
C , the simulator

leaks (Send, sid,B,Mj ,TIB,mid′B) for to A. The adversary (malicious maintainer) receives
(Received, sid,B,TIB) from S if S receives (Ok, sid,mid′B) from A.
Upon receiving (Ok.Snd, sid,mid′B) from A, S sends (Continue, sid) to A and leaks the
next massage similarly.

4. Communication among honest and malicious maintainers:
S (on behalf of honest maintainer) checks if TIB = ψ holds or not such that ψ is computed
using the randomness chosen by itself and the value v. If it does not hold, S ignores.
Other parts of simulation are similar to the case of honest U and honest B.

5. Communication from M to U:
This simulation is similar to (the associated simulation of) the case of honest U and
honest B.

Malicious U, malicious B and at most t malicious maintainers: In this case, exchang-
ing information between U and B namely communication from B to U and communication
from U to B is done by A. If A uses communication channel functionalities to exchange
information between U and B, the simulator leaks whatever real-world A sees as the leakage
of channels to the dummy A similar to the associated simulations in the cases of malicious
U and honest B, and honest U and malicious B described above.
14 Doing so, S captures the fact that if B tries to issue a currency that breaks regulatory rules

imposed to U the transaction will be failed. In the real world, U will not engage in a Currency
Issuance protocol when it knows that doing so will break the rules (when U is malicious, after
it engages in a transaction that breaks the regulatory rules, the transaction will be failed by
maintainers as we will see in the next case).

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 43

1. Communication from B and U to M:
A calls F sa

C with input (Send, sid,Mj ,TIU) on behalf of U. Also, A calls Fac
C with input

(Send, sid,Mj ,TIB) on behalf of B. The simulator leaks (Send, sid,Mj ,TIU,mid′U) and
(Send, sid,B,Mj ,TIB,mid′B) toA as leakage of F sa

C and Fac
C using the information received

from A.
Once S receives (Ok.Snd, sid,mid′U) from A it sends (Continue, sid) to A. Similarly once
S receives (Ok.Snd, sid,mid′B) from A it sends (Continue, sid) to A.
The adversary (malicious maintainer) receives (Received, sid,TIU,mid′U) and (Received,
sid,B,TIB) from S. For the simulator to do so, it uses A’s sent information TIU and TIB
once it receives (Ok, sid,mid′U) and (Ok, sid,mid′B) respectively.

2. Communication among honest and malicious maintainers:
S checks if ψ in TIB equals to ψ in TIU. If it equals, S checks if ψ is the first element of
one of the tid arrays saved in Listtid. If it is, then ignores. Else, S checks whether (x, π)
such that x =

(
ψ, accnew,B, σRnd

M ,T
)

is stored. Otherwise sends (Verify, sid, x, π) to A as
leakage of FNIZK. Upon receiving the answer (Witness, sid, w) from A, checks (x, w) ∈ R.
If so stores (x, π).
Having the witness w, the simulator submits a currency issuance transaction to FCBDC

with input (Iss, sid,U, v) on behalf of malicious B. If it receives (Iss, sid, pid,U, v) from
FCBDC it saves tid = (ψ,T) in Listtid else ignores.
Other parts of simulation are similar to the case of malicious U and honest B.

3. Communication from M to U:
This simulation is similar to the case of malicious U and honest B.

C.3 Simulation of Payment

Honest Us, honest Ur and at most t malicious maintainers: S receives (GenTnxSnd, sid,
pid) from FCBDC and initiates Payment protocol by emulating an honest sender Us. We note
that if the sender Us has already been traced, S receives (AcceptIss, sid, pid,Us) from FCBDC

so that it is able to use the same tag in this protocol as it had generated for Us who did not
have any transactions in the time of executing the Tracing protocol.

1. Communication from Us to Ur:
In the real-world A sees (Send, sid, | (ρs, v) |,mids) as leakage of F fa

C . The simulator
has already known | (ρs, v) | and sends (Send, sid, | (ρs, v) |,mids) to A once it receives
(Ok, sid,mids) from A.

2. Communication from Ur to Us:
Upon receiving (GenTnxRcv, sid, pid) from FCBDC (similar to what was explained for
traced Us above, if the receiver Ur has already been traced, S receives (AcceptIss, sid, pid,
Ur) from FCBDC), the simulator emulates honest Ur.
In the real world, A sees (Send, sid, |ρr|,midr) as leakage of F fa

C . The simulator has
already known |ρr| and sends (Send, sid, |ρr|,midr) to A once it receives (Ok, sid,midr)
from A. .

3. Communication from Us and Ur to M:
Regarding Us and Ur’s communications with M, the adversary respectively sees (Send, sid,
Mj ,TIs,mid′s) and (Send, sid,Mj ,TIr,mid′r) as leakages of F sa

C .
Hence, S is supposed to simulate the view of the dummy A with respect to the infor-
mation real-world A sees. We note the simulation of Us’s communications with M and
the simulation of Ur’s communications with M in this step of the protocol is the same.
Hence, in the following we describe simulation for Us.
Using PrepareBlindSign algorithm, S selects random values to compute accnew,Bs . Then,
computes σRnd

s,M in a way described in the Sec. 4.1.
Then, S computes a threshold encryption ψ on a dummy value as plaintext.
It computes T by randomly selecting zs

$←− Zp and let Ts ← gzs .
S sets xs ←

(
ψs, acc

new,B
s , σRnd

s,M,Ts

)
.

44 Kiayias, Kohlweiss, Sarencheh

Emulating FSoK, the simulator computes σs(ψr)← Simsign(ψr, xs). The simulator records
the entry (ψr, xs, σs(ψr)).
Therefore, Us’s transaction information TIs is simulated by S which is of the form
TIs =

(
ψs, ψr, σs(ψr), acc

new,B
s , σRnd

s,M,Ts

)
.

The simulator gives (Send, sid,Mj ,TIs,mid′s) to A as leakage of F sa
C .

Finally, A (malicious maintainer) receives (Received, sid,TIs,mid′s) from S once S re-
ceives (Ok, sid,mid′s) from A. To do so, S uses the above simulated values for TIs.

4. Communication among honest and malicious maintainers:
S has already emulated the honest sender Us and honest receiver Ur, and FSoK (it has
stored (ψr, xs, σs(ψr)) and (ψs, xr, σr(ψs))).
Hence, once A (malicious maintainer) calls FSoK with (Verify, sid, ψr, xs, σs(ψr)) and
(Verify, sid, ψs, xr, σr(ψs)), the simulator outputs (Verified, sid, ψr, xs, σs(ψr), 1) and
(Verified, sid, ψs, xr, σr(ψs), 1) respectively to A.
As soon as one honest maintainer receives both TIs and TIr, the simulator submits
(GenTnx, sid, pid, tid) to FCBDC where tid = (ψs, ψr,Ts,Tr) (note that pid is unique per
transaction hence FCBDC can distinguishes payment and issuance transactions based on
tables it has generated with respect to pid). The values of ψs, ψr,Ts and Tr are simulated
by S as described above.
For each maintainer (either honest or malicious) who generates a valid signature on
sender and receiver’s account S submits (GenTnx, sid, pid,Mk) to FCBDC where Mk is the
identifier of that maintainer.

5. Communication from M to Us and Ur:
S sends (Send, sid,Mj , σ

new,B
s,j ,mid′s) and (Send, sid,Mj , σ

new,B
r,j ,mid′r) to A as leakages of

F sa
C in which σnew,B

w for w ∈ H is simulated by S and σnew,B
t for t ∈ C is obtained from

the A (malicious maintainer).

Malicious Us, honest Ur and at most t malicious maintainers: S receives (GenTnxSnd,
sid, pid) from FCBDC (similarly, if the sender Us has already been traced, S receives (AcceptIss,
sid, pid,Us) from FCBDC). A on behalf of malicious Us, initiates Payment protocol.

1. Communication from Us to Ur:
A initiates the protocol on behalf of Us by calling F fa

C with input (Send, sid,U∗
r , (ρs, v

∗)).
Hence, emulating F fa

C the simulator knows U∗
r and v∗ and sends (Send, sid, | (ρs, v∗) |,mids)

to A as the leakage of F fa
C .

The simulator submits a payment transaction to FCBDC with input (GenTnxSnd, sid,U∗
r , v

∗)
on behalf of malicious Us.
If S receives (GenTnxRcv, sid, pid) (or (GenTnxRcv, sid, pid,Ur)) from FCBDC, it concludes
that sent values by A, namely U∗

r and v∗ are the same as corresponding values in honest
Ur’s message which is (GenTnxRcv, sid, pid,Us, v). In other words, U∗

r = Ur and v∗ = v
hold.
Hence, it continues the protocol otherwise it ignores15.

2. Communication from Ur to Us:
S emulates Ur and the simulation process is similar to the case of honest Us and honest
Ur.
In addition, emulating F fa

C the simulator sends (Received, sid,Ur, ρr) to A in which ρr
is chosen randomly by S once S receives (Ok, sid,midr) from A.

3. Communication from Us and Ur to M:
The simulation of communications between Ur and M is similar to the case of honest Us

and honest Ur.
15 Doing so, S captures the fact that if malicious Us tries to make a payment that breaks regulatory

rules related to the account of honest Ur the transaction will be failed. Because, in the real world,
Ur will not engage in a Payment protocol when it knows that doing so will not be in compliant
with system’s rules.

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 45

A (malicious Us) calls F sa
C with input (Send, sid,Mj ,TIs).

Emulating F sa
C , the simulator leaks (Send, sid,Mj ,TIs,mid′s) to A.

Upon receiving (Ok.Snd, sid,mid′s) from A, S sends (Continue, sid) to A (malicious Us).
Finally, A (malicious maintainer) receives (Received, sid,TIs,mid′s) from S. To do so, S
uses A’s sent information TIs once it receives (Ok, sid,mid′s) from A.

4. Communication among honest and malicious maintainers:
Having TIs =

(
ψs, ψr, σs(ψr), acc

new,B
s , σRnd

s,M,Ts

)
generated by A, the simulator checks

if ψs and ψr equal the values that S has generated internally or not (using v and the
random values exchanged between A and S). If they are not the same, S ignores.
Then, verifies whether Ts exists in one of the saved tid arrays in Listtid.
If not checks whether (ψr, xs, σ

′) such that xs =
(
ψs, acc

new,B
s , σRnd

s,M,Ts

)
is stored for some

σ′ or not. Else emulating FSoK, lets ws ← Extract(ψr, xs, σs(ψr)). Then, if (xs, ws) ∈ R

proceeds as follows else ignores.
S saves tid = (ψs, ψr,Ts,Tr) in Listtid.
As soon as one honest maintainer receives both TIs and TIr, the simulator submits
(GenTnx, sid, pid, tid) to FCBDC where tid = (ψs, ψr,Ts,Tr). The values of ψs, ψr and Tr

are simulated by S (the first two also are given by A to S) and Ts is sent by A to S.
For each maintainer (either honest or malicious) who generates a valid signature on
sender and receiver’s account S submits (GenTnx, sid, pid,Mk) to FCBDC where Mk is the
identifier of that maintainer.

5. Communication from M to Us and Ur:
S sends (Send, sid,Mj , σ

new,B
s,j ,mid′s) and (Send, sid,Mj , σ

new,B
r,j ,mid′r) to A as leakages of

F sa
C in which σnew,B

w for w ∈ H is simulated by S (as described in the sequences of games
Sec. 4.1) and σnew,B

t for t ∈ C is obtained from the A (malicious maintainer).
S also sends (Received, sid,Mj , σ

new,B
s,j) to A (malicious Us) once it receives (Ok.End, sid,

mid′s) from A.

Honest Us, malicious Ur and at most t malicious maintainers: S on behalf of honest
Us, initiates Payment protocol. In this case, S receives (GenTnxSnd, sid, pid,Us,Ur, v) from
FCBDC.

1. Communication from Us to Ur:
S initiates the protocol on behalf of Us. The simulator emulates F fa

C and sends (Send, sid,
| (ρs, v) |,mids) to A as the leakage of F fa

C such that ρs is chosen randomly by S. The
real world adversary also receives (Received, sid,Us, ρs, v) and S sends this message to
A using the leaked information from FCBDC once it receives (Ok, sid,mids) from A.

2. Communication from Ur to Us:
Emulating F fa

C , the simulator receives A’s message of the form (Send, sid,Us, ρr). Then,
S leaks (Send, sid, |ρr|,midr) to A as leakage of F fa

C . Once S receives (Ok, sid,midr) from
A continues. Else, ignores.

3. Communication from Us and Ur to M:
The simulation of communications between Us and M is similar to the case of honest Us

and honest Ur.
The simulation of communications between Ur and M is similar to the case of malicious
Us and honest Ur, however, for malicious Ur rather than malicious Us.

4. Communication among honest and malicious maintainers:
The simulation of this part is similar to the case of malicious Us and honest Ur, however,
for malicious Ur rather than malicious Us.

5. Communication from M to Us and Ur:
The simulation of this part is similar to the case of malicious Us and honest Ur, however,
for malicious Ur rather than malicious Us.

46 Kiayias, Kohlweiss, Sarencheh

Malicious Us, malicious Ur, and at most t malicious maintainers: In this case,
exchanging information between Us and Ur namely communication from Us to Ur and
communication from Ur to Us is done by A. If A uses communication channel functionalities
to exchange information between Us and Ur, the simulator leaks whatever real-world A sees
as the leakage of channels to the dummy A similar to the associated simulations in the cases
of malicious Us and honest Ur, and honest Us and malicious Ur described above.

1. Communication from Us and Ur to M:
Communications from Us to M is similar to the associated communications in case
of malicious Us and honest Ur, and communications from Ur to M is similar to the
associated communications in the case of honest Us and malicious Ur.

2. Communication among honest and malicious maintainers:
S checks if (ψs, ψr) in TIs equals to (ψs, ψr) in TIr. If it is not, S ignores.
After extracting the witnesses ws and wr (similar to what was described before), the
simulator submits a payment (GenTnxSnd, sid,Ur, v) to FCBDC on behalf of Us.
The rest of the simulation of this step of protocol is similar to the associated simulations
in the cases of malicious Us and honest Ur, and honest Us and malicious Ur (e.g., upon
receiving (GenTnxSnd, sid, pid,Us,Ur, v) from FCBDC the simulator starts emulating M
and so on).

3. Communication from M to Us and Ur:
This simulation is similar to the associated simulations in the cases of malicious Us and
honest Ur, and honest Us and malicious Ur

C.4 Simulation of Abort Transaction

Honest U, and at most t malicious maintainers: In this case, S receives (AbrTnx, sid, tid)
from FCBDC.

1. Communication from U to M:
Considering U’s communications with M, the adversary A sees (Send, sid,Mj ,AR,mid)
as leakage of F sa

C . Once S receives (Ok.Snd, sid,mid) from A it leaks the next leakage
(Send, sid,Mj+1,AR,mid′).
Hence, S is supposed to simulate the view of dummy A with respect to the information
real-world A sees without knowing the identity of U, however, by having the leaked T
included in tid given by FCBDC.
First of all, based on PrepareBlindSign, S selects random values to compute accr,B.
Then, computes σRnd

M in a way described in Sec. 4.1.
Using the leaked T included in tid, S sets x←

(
accr,B, σRnd

M ,T
)
.

Emulating FNIZK, the simulator sends (Prove, sid, x) to A.
The simulator receives (Proof, sid, π) from A and records (x, π).
S sends (Send, sid,Mj ,AR,mid) to A such that AR =

(
accr,B, σRnd

M ,T, π
)
.

Finally, A (malicious maintainer) receives (Received, sid,AR,mid) from the channel (em-
ulated by S) once dummy A sends (Ok, sid,mid) to S.

2. Communication among honest and malicious maintainers:
S has already emulated the honest user and FNIZK by storing (x, π). Hence, upon call-
ing FNIZK with (Verify, sid, x, π) via A (malicious maintainer), the simulator outputs
(Verification, sid, 1) to A.
Emulating Byzantine Agreement functionality FBA, S should leak (Agree, sid, dj ,Mj)
to A where for malicious maintainers S uses dt received by A (malicious maintainer
Mt). On behalf of honest maintainers S checks its table to see whether it sees a tid (for
issuance or payment transaction) that contains T in Listtid or not. In case it sees it
sets the value of dw to 1 (on behalf of honest maintainer Mw).
S keeps track of adversary’s blockage on the message each honest maintainer receives.
As soon as one honest maintainer receives AR the simulator submits (AbrTnx.Ok, sid, tid)
to FCBDC.
The simulator simulates the rest of the protocol based on the output of FBA as follows:

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 47

3. If Q = 1:
In this case, there exists at least one honest maintainer (e.g., Mw) who is emulated by
S.
S leaks (Send, sid,Mi,Mj , (TIs,TIr) ,mid) to A.
Also, it sends (Received, sid,Mi, (TIs,TIr)) to A (malicious maintainer) once it receives
(Ok, sid,mid) from A.
Emulating FSoK, S outputs (Verified, sid, ψ, x, σ(ψ),Verify(ψ, x, σ(ψ))) to A once A
calls FSoK with (Verify, sid, ψ, x, σ(ψ)).
S saves tid = (ψs, ψr,Ts,Tr) in Listtid.
(a) Communication from M to U:
S sends (Send, sid,Mk, σ

new,B
s,k ,mid′s) and (Send, sid,Mk, σ

new,B
r,k ,mid′r) to A as leak-

ages of F sa
C in which mid′s and mid′r are included in TIs and TIr. σ

new,B
k (for both Us

and Ur) parses as σnew,B
w and σnew,B

t (for both Us and Ur). Also, σnew,B
w for w ∈ H is

simulated by S and σnew,B
t for t ∈ C is obtained from the A (malicious maintainer).

4. If Q = 0:
Emulating honest maintainers who have had tid = (ψs, ψr,Ts,Tr), the simulator deletes
the saved tid entry.
S saves tid = (Aborted,T) in Listtid.
(a) Communication from M to U:
S sends (Send, sid,Mj , σ

r,B
j ,mid′s) to A as leakages of F sa

C in which σr,B
j parses as

σr,B
w and σr,B

t . Also, σr,B
w for w ∈ H is simulated by S and σr,B

t for t ∈ C is obtained
from the A (malicious maintainer).

C.5 Simulation of Privacy Revocation

S receives (RvkAnm, sid, tjid,Mj) from FCBDC and starts emulating honest maintainers.

Honest Us, honest Ur, and at most t malicious maintainers for both Currency
Issuance and Payment protocols: In the following, for simplicity we describe S for
payment transactions (issuance transactions are similar and more straightforward).
S uses its internally maintained list Listtid to find out the associated ciphertext (ψs, ψr) of
the received tid from FCBDC.
S submits (RvkAnm.Ok, sid, tid) to FCBDC and waits for the message (AnmRevoked, sid, tid,Us,Ur,
v) from FCBDC.
Once S receives that message it starts faking the threshold decryption of ciphertexts based
on keys it has registered for honest Us and honest Ur. Specifically, S computes shares of
honest maintainers in a way that threshold decryption of (ψs, ψr) result in associated values
received from FCBDC, pks and pkr registered for Us and Ur and v as described in details in
Sec. 4.1.
The real-world A sees the leakages of FNIZK when honest maintainer (e.g., Mw) generates
proof which is (Prove, sid, xw) for xw =

(
cs,1, cr,1, c

sk1,w
s,1 c

sk2,w
s,1 , c

sk1,w
r,1

)
. In xw, the values cs,1

and cr,1 are from (ψs, ψr), however, the values of csk1,ws,1 c
sk2,w
s,1 and c

sk1,w
r,1 are computed as it

is described detailedly in Sec. 4.1.
S outputs the leakage of authenticated channel Fac

C which is (Send, sid,Mw,Mi, (xw, πw),mid)
to A which is related to the calls honest maintainers make.
Emulating Fac

C , upon receiving the message (Send, sid,Mi, (xt, πt)) from A (malicious main-
tainer Mt), S outputs (Send, sid,Mt,Mi, (xt, πt),mid′) to A.
Upon receiving messages of the form (Ok, sid,mid) and (Ok, sid,mid′) fromA, S sends (Received,
sid,Mj , (xj , πj)) to A (or malicious maintainer Mt) where Mj includes honest maintainer Mw

and malicious maintainer Mt respectively.
Moreover, upon receiving (Ok.Snd, sid,mid′) from A, S sends (Continue, sid) to Mt.
S also leaks (RetrieveID, sid, pks,Mj) and (RetrieveID, sid, pkr,Mj) to A upon receiving
the associated calls from maintainer Mj .

48 Kiayias, Kohlweiss, Sarencheh

Honest (resp. malicious) Us and malicious (resp. honest) Ur, or malicious Us and
malicious Ur; and at most t malicious maintainers for both Currency Issuance
and Payment protocols: The simulation of this case is similar to the case of honest Us

and honest Ur except the fact that there is no need for changing the shares. The reason is
that in this case S knows the identities of participants Us and Ur, and also transaction value
v.
S on behalf of honest maintainers computes decryption shares and all participant maintainers
in the Privacy Revocation protocol use their decryption shares to obtain the associated public
keys and value as described in the construction details.

C.6 Simulation of Tracing

S receives (Trace, sid,Uj ,Mj) from FCBDC and emulates honest maintainers.

Honest U and at most t malicious maintainers for both Currency Issuance
and Payment protocols: S submits (Trace.Ok, sid,U) to FCBDC and upon receiving
(Traced, sid, {tτid, role

τ}xτ=1) gets to know {tτid, role
τ}xτ=1 which are required for simulating

honest maintainers’ shares such that tracing tag computation results in tags (that are ran-
dom values that were selected by S in issuance and payment transactions) associated to
{tτid}

x
τ=1.

In the Simulation of Currency Issuance and Simulation of Payment we described that S
randomly selects z. Hence, S should simulate the result of threshold tag computation to be
consistent with values {gzτ }xτ=1. The simulator does so as described in the Sec. 4.1.
S uses its internally maintained list ListUR to retrieve UR = (aj , rj ,Mj ,U). Then, com-
putes comw (on behalf of the honest maintainer Mw). It outputs (Prove, sid, xw) to A where
xw = (comw, ġ

aw , ġ) see Sec. 4.1 for details of computing ġaw .
S outputs the leakage of authenticated channel Fac

C which is (Send, sid,Mw,Mi, (xw, πw),mid)
to A which is related to the calls honest maintainers make.
Emulating Fac

C , upon receiving the message (Send, sid,Mi, (xt, πt)) from A (malicious main-
tainer Mt), S outputs (Send, sid,Mt,Mi, (xt, πt),mid′) to A.
Upon receiving messages of the form (Ok, sid,mid) and (Ok, sid,mid′) fromA, S sends (Received,
sid,Mj , (xj , πj)) to A (or malicious maintainer Mt) where Mj includes honest maintainer Mw

and malicious maintainer Mt respectively.
Moreover, upon receiving (Ok.Snd, sid,mid′) from A, S sends (Continue, sid) to Mt.
Emulation of Fac

C for the rest of the protocol (e.g., calls with input (Send, sid,Mi, (0, ġ
a))) is

similar to the calls above.

Malicious U and less than min (α, β) malicious maintainers for both Currency
Issuance and Payment protocols: The simulation of this case is similar to the case
above except the fact that there is no need for changing the shares of honest maintainers.
S on behalf of honest maintainers participate at computing the tracing tags as described in
the construction.

D Security Definitions of PEReDi’s Building Blocks

D.1 d-sDDH Assumption

Definition 2. We say that the d-strong Diffie-Hellman problem is hard relative to G if for
any PPT adversary A there exists a negligible function negl(.) such that:

Advd-sDDH
A =

∣∣∣Pr [A(G, p, g, gx, gx2

, . . . , gx
d
)
= 1
]
− Pr [A (G, p, g, gx1 , gx2 , . . . , gxd) = 1]

∣∣∣

PEReDi: Privacy-Enhanced, Regulated and Distributed CBDC 49

≤ negld-sDDH(λ)

where (G, p, g)← G
(
1λ
)

and the probabilities are taken over the choices of (x, x1, . . . , xd)
$←−

Zp.

D.2 Security Properties of Commitment Scheme

Let com = (com.Setup,Commit, com.Vrf) be a commitment scheme.

Definition 3. For any PPT adversary A, the hiding property is defined as the following
security experiment between A and a challenger parameterized by a bit b ∈ {0, 1}:

Hid-com(A, λ):

1. The challenger runs PubPar
$←− com.Setup(1λ) and outputs PubPar to A.

2. A gives two messages (m0,m1) such that m0 ∧m1 ∈M to the challenger.
3. The challenger computes (comb; r) = Commit(mb) and outputs comb to A.
4. A outputs a bit b′ to the challenger.

AdvHid-comA =

∣∣∣∣12 − Pr[Hid-com(A, λ) s.t. b′ = b]

∣∣∣∣ ≤ neglcom(λ)

We say that commitment scheme com is perfectly hiding if AdvHid-comA = 0.

Definition 4. For any PPT adversary A, the binding property is defined as the following
security experiment between A and a challenger parameterized by a bit b ∈ {0, 1}:

Bind-com(A, λ):

1. The challenger runs PubPar
$←− com.Setup(1λ) and outputs PubPar to A.

2. A outputs (com,m0,m1, r0, r1).

AdvBind-comA = Pr[Bind-com(A, λ) s.t. com.Vrf(com,m0, r0) = 1 ∧ com.Vrf(com,m1, r1) =
1 ∧ m0 ̸= m1] ≤ neglcom(λ)

We say that commitment scheme com is perfectly binding if AdvBind-comA = 0.

D.3 CPA Security of Public Key Encryption Scheme

Definition 5. Let PKE = (PKE.Gen,Enc,Dec) be a public key encryption scheme. The fol-
lowing security experiment between PPT adversary A and a challenger is parameterized by
a bit b ∈ {0, 1}:

IND-CPAb
PKE(A, λ):

1. The challenger runs (pk, sk)
$←− PKE.Gen(1λ) and outputs pk to A.

2. A gives two messages (m0,m1) such that |m0| = |m1| to the challenger.
3. The challenger computes cb = Encpk(mb) and outputs cb to A.
4. A outputs a bit b′ to the challenger (if A aborts without giving any output, we set b′ ← 0).

AdvIND-CPA
A =

∣∣Pr[IND-CPA1
PKE(A, λ) = 1]− Pr[IND-CPA0

PKE(A, λ) = 1]
∣∣ ≤ neglPKE(λ)

50 Kiayias, Kohlweiss, Sarencheh

D.4 Existential Unforgeability of Digital Signature Scheme

Definition 6. Let DS = (DS.Gen,Sign,Verify) be a digital signature scheme. Existential Un-
forgeability under Chosen-Message Attack (EUF-CMA) is defined using the following game
between PPT adversary A and the challenger:

EUF-CMADS(A, λ):

1. The challenger runs (vk, sk)
$←− DS.Gen(1λ) and gives the adversary A the resulting

verification key vk and keeps the secret key sk to itself.
2. The adversary A submits signature queries for {mτ}qτ=1. To each query mτ the chal-

lenger responds by running Sign to generate a signature στ of mτ and sending στ to the
adversary A.

3. The adversary A outputs a pair (m,σ) and wins if σ is a valid signature of m according
to Verify and (m,σ) is not among the pairs (mτ , στ) generated during the query phase.

AdvEUF-CMA
A = Pr[EUF-CMADS(A, λ)] ≤ neglDS(λ)

D.5 Bilinear Maps

The threshold blind signature employed in PEReDi uses bilinear maps. Assuming that
(G, G̃,Gt) are groups of prime order p, we define a map e : G × G̃ → Gt with the fol-
lowing properties:

– Bilinearity: for all g ∈ G, g̃ ∈ G̃, and (x, y) ∈ F2
p, e(gx, g̃y) = e(g, g̃)xy holds.

– Non-degeneracy: for all generators g ∈ G and g̃ ∈ G̃, e(g, g̃) generates Gt.
– Efficiency: there exists an efficient algorithm G

(
1λ
)

that outputs the pairing group setup(
p,G, G̃,Gt, e, g, g̃

)
and an efficient algorithm to compute e(g, g̃) for any g ∈ G and g̃ ∈

G̃. In type 3 pairings, G ̸= G̃ and there exists no efficiently computable homomorphism
f : G̃→ G.

	PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies

