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Abstract

In this paper, we aim to present a quantum setting oriented preimage
attack against 4-round Keccak-224. An important technique we called
the allocating rotational cryptanalysis takes the preimage attack into
the situation of 2-block preimage recovery. With the conditions on the
middle state proposed by Li et al., we use the generic quantum preim-
age attack to deal with the finding of first preimage block. By using
the newly explored propagation of rotational relations, we significantly
increase the number of eigenpoints at the end of 4-round modified Kec-
cak-f from 0 to 32, and therefore improving the accuracy of determining
the rotational number for a certain rotational counterpart in the quan-
tum setting by more than 10 orders of magnitude. On the basis of the
above, we design an efficient unitary oracle operator with only twice
calling of the 4-round modified Keccak-f , which costs half of previous
results, to mark a rotational counterpart of the second preimage block
in order that the second preimage block can be found indirectly from
a quickly generated specified search space. As a result on the 4-round
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Keccak-224: In the classical setting, the preimage attack with the com-
plexity decreased to 2218 is better than the result based on the pioneered
rotational cryptanalysis. In the quantum setting, the amplitude ampli-
fication driven preimage attack with a complexity of 2110 is by far the
best dedicated quantum preimage attack. Additionally, the SKW algo-
rithm is applied to the dedicated quantum preimage attack against the
4-round Keccak-224 for the first time, which is exponentially easier to
implement in quantum circuit than the former, with a complexity of 2111.

Keywords: Keccak, Rotational Cryptanalysis, Linearization of Keccak-f ,
Preimage Attack, Amplitude Amplification, SKW Algorithm

1 Introduction

In view of a series of breakthrough attack methods [1–4] proposed by wang
et al. for MD5, SHA-1 and other hash function standards, the National Insti-
tute of standards and Technology (NIST) announced the public collection of
the next generation encryption hash standard SHA-3 in 2007. The Keccak
sponge function [5] became the candidate scheme of SHA-3 competition in
2008 [6], and was finally selected as the final standard of SHA-3 in 2012. In
2015, Keccak was officially recognized as a federal information processing
standard (FIPS) by NIST as SHA-3 [7]. Since Keccak was published in 2008,
the properties of its hash function have been widely studied. Some progress
has been made in cryptanalysis, including Keccak’s keyed mode and keyless
mode. Here, we mainly review the research progress of preimage attack against
the round-reduced Keccak.

In the field of the classical cryptanalysis, many good conclusions have
emerged from the discussion on the preimage recovery of round reduced
Keccak. In the [8], Bernstein et al. proposed a preimage attack for the
round-reduced Keccak, which requires higher computation and memory con-
sumption compared with the parallel exhaustive search, to reach up to 8-round.
For the frst time, Morawiecki et al. applied the rotational cryptanalysis to the
preimage recovery against 3-round / 4-round Keccak in [9]. By tracking the
propagation of the bits relations between the state array and its rotational
counterparts, they provided an indirect idea to find the preimage. After that,
many cryptologists have turned to the algebraic attacks to solve the preimage
for a given hash value. Guo et al. proposed a new linear structure for Keccak
in [10]. They introduced the linearization for the permutation of 3-round Kec-
cak, and demonstrated the 3-round / 4-round preimage attack strategy with
the linear structure. In [11], Li et al. proposed a technique called cross-linear
structures, which helps them to obtain several linear equations by guessing
the value of a linear polynomial, to improved the works [10]. Later in [12], Li
et al. demonstrated a new preimage attack technology against 3-round / 4-
round Keccak called the allocating approach, which finds a 2-block preimage
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instead of a 1-block one. By establishing a set of weaker constraints on the
middle state compared into those brought by the initial values and the hash
values, they succeeded in reducing the complexity of finding the preimage in
two separate stages. Besides taking the approach of solving the linear system,
in recent years, there have been many efforts to save more degrees of freedom
by using the method of solving the nonlinear system to carry out the preimage
attack. In [13], Liu et al. made full use of the equations derived from hash value
by constructing Boolean quadratic system. They use the relinearization tech-
nique to solve the quadratic system, and thus improving the preimage attack
on Keccak-384/512. Later in [14], Dinur et al. gave the specific complexity of
polynomial method for solving multivariate equation systems [15], and applied
this method to the preimage attack on round-reduced Keccak. The latest
relevant research result is [16], Wei et al. revisited the Crossbred algorithm
for Solving Boolean multivariate quadratic (MQ) systems, and shown that in
the case of D = 2 the Crossbred algorithm is superior to brute force theo-
retically and practically under the feasible memory costs. By solving the new
constructed Boolean MQ system, Wei et al. successfully reached the preim-
age attacks on Keccak-224/256 up to 4 rounds, and obtained the best attack
complexity so far.

The development of quantum cryptanalysis is accompanied by the itera-
tive updating of quantum computing hardware and software. It is more urgent
than ever to evaluate the security of traditional cryptographic primitives in
quantum setting, and this has become the consensus of the cryptographic com-
munity. In recent years, the efforts related to the quantum cryptanalysis are
mainly classified into two models[17–19]: Q1 and Q2 models. Under the Q2
model, the attacker can not only use the quantum computer to gain the advan-
tage of quantum computing, but also use it to perform online superposition
queries to the target primitives. Among the many Q2 model studies, the works
[20] with milestone significance is proposed by Leander et al., which used the
Simon’s algorithm to build the unitary oracle operator for the Grover’s algo-
rithm to greatly reduce the effective key-length of FX-construction. However,
the motivation of the designers of cryptographic primitives to disclose inter-
faces supporting online superposition queries to an attacker is questionable.
Therefore, more recently, cryptologists began to carry out cryptanalysis[21–
24] under the more reasonable Q1 model, where is assumed that the attacker
is equipped with a quantum computer that can only provide offline computing
and can not access the target primitives in superposition. Unfortunately, one
of the most actively researched subjects in the classical cryptanalysis — SHA-3
hash standards are rarely discussed in the quantum setting. In order to analyze
the ability of SHA-3 to resist the preimage recovery in the quantum setting,
Amy et al. in [25] evaluated the attack cost of the generic quantum preimage
attack which is assumed to run on a surface code based fault-tolerant quan-
tum computer. The latest research about dedicated quantum preimage attack
against the round-reduced Keccak is shown in [26], Wang et al. constructed a
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feasible method to bring the rotational cryptanalysis technology into the quan-
tum setting, and achieved better results than the generic quantum preimage
attack.

Our contributions. To obtain a quantum setting oriented dedicated
preimage attack against 4-round Keccak-224, this paper mainly makes
contributions in following three aspects.

• One critical technique we used in the preimage attack is the allocating
rotational cryptanalysis which introduces the idea of two-block attack on
standard Keccak-224 into the rotational cryptanalysis and makes a great
improvements on the propagation of the rotational relations. Specifically,
we mainly focus on a state array that satisfies two sets of constraints which
were once used by Li et al. in [12] to linearize Keccak-f . By exploring
how the 4-round Keccak-f changes the rotational relations between this
kind of state array and the corresponding rotational counterparts, we gain
a whole new way of the propagation of rotational relations which has up to
32 eigenpoints at the end of the 4-round Keccak and takes the results of
Morawiecki et al. in [9] a big step forward.

• In order that the newly found propagation of rotational relations and 32
eigenpoints can be used to mount a improved preimage attack, we develope
a good method to quickly expand this kind of state array into a large enough
specified search space for finding the second preimage block indirectly. More
specifically, we theoretically relate the second set of constraints to the state
array that serves as the input to the second hash process. It is worth noting
that the second set of constraints is used to limit the output of 1-round
Keccak-f . Therefore, our process of building the specified search space
does not involve the running of Keccak-f , reducing a significant amount
of computational overhead.

• Taking above work to the quantum setting and obtaining a good perfor-
mance dedicated quantum preimage attack on the 4-round Keccak-224 is
dependent on the design of an efficient unitary oracle operator which can
mark the rotational counterpart of the second preimage block from other
random state arrays with a high accuracy. By using the newly obtained
32 eigenpoints, we first designed a quantum search algorithm with high
accuracy for finding the rotational number of the rotational counterpart.
Through embedding this quantum algorithm into the design of the unitary
oracle operator, we successfully reduced the computational complexity of
the unitary oracle operator to only twice calling of the 4-round modified
Keccak-f while improving its accuracy. Our efficient unitary oracle oper-
ator working with different quantum search algorithm will have different
advantageous tendencies.

The best known preimage attacks on the 4-round Keccak-224 have been
summarized in the following Table 1. In the classical setting, the classical
counterpart of our preimage attack decreases the complexity to 2218, which
is better than the result based on the pioneered rotational cryptanalysis [9],
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but still not up to the excellent work of wang et al. in [16]. In the quantum
setting, by making the amplitude amplification work with the unitary oracle
operator, we gain the best dedicated quantum preimage attack on the 4-round
Keccak-224 with a complexity of 2110 by far. Compared to results of wang et
al. in the [26] and the generic quantum preimage attack, our result has roughly
6 times and 8 times better attack effect, respectively. More importantly, we
succeeded for the first time in bringing the SKW quantum algorithm, which is
exponentially easy to build on the quantum circuits, into the preimage attack
against the 4-round Keccak-224 with a complexity of 2111. Compared to the
generic quantum preimage attack, our dedicated preimage attack based on the
SKW algorithm has roughly 4 times better attack effect. Note that due to the
low accuracy of the unitary oracle operator designed by Wang et al. in [26]
when marking the rotational counterpart of the preimage, the SKW algorithm
cannot be applied to their attack against 4-round Keccak-224.

Table 1: The best-known preimage attacks on the 4-round Keccak-224.
Setting Rounds Variants Time RAM qRAM Reference

Classical
4 224 2221 Negligible 0 [9]

4 224 1stblock:2129 2ndblock:2218 Negligible 0 Sect.3.4
4 224 2182 Negligible 0 [16]

Quantum

4 224 2113 0 Negligible Grover Search
4 224 2112.57 0 Negligible [26]

4 224 1stblock:298 2ndblock:2110 0 Negligible Sect.4.2(The amplitude amplification)

4 224 1stblock:299 2ndblock:2111 0 Negligible Sect.4.2(The SKW algorithm)

2 Preliminaries

Here, we give some backgrounds for a better presentation of the contents shown
later. We first define some necessary notations to unify the meaning of symbols
throughout our work. Then, reviewing the detail of the hash function — Kec-
cak, the core permutation of the SHA-3, is indispensable. Next, we recall the
core points of the rotational cryptanalysis and the linearization of Keccak-f
proposed in [9] and [12], respectively. After summarizing the search tools in
the quantum setting, we end this section by discussing the common technique
— the uncompute trick and the controversial technique — qRAM.
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2.1 Notations

r The rate of a sponge function.
c The capatity of a sponge function.
b The width of a Keccak-f permutation in bits.
nr The number of rounds for a Keccak-f permutation.
Rnd The round function of a Keccak-f permutation.
θ, ρ, π, χ, ι The five step mappings of Rnd.
M i The message state of ith block.
Ai The messaged state of ith block, which is the result of XORing

the latest output state with the ith message block Mi.←−
A i The rotational counterpart of the ith messaged state Ai.
H The hash value.
Θi The output state of the θ in the ith round, and similarly have

P i, Πi, Xi, and Ii.
Aix,y,z The bit value at the position (x, y, z) of the messaged state Ai.

This method will be applied to any state array.
Γ The specified search space for searching the rotational coun-

terparts of preimage A2.

2.2 The Keccak hash function

Figure 1 shows the sponge construction adopted in the Keccak hash. There
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Fig. 1: Sponge construction.

are two processing phases(the absorbing phase and the sequeezing phase) in
generating the hash values. In the absorbing phase, the padded r bits message
block M i will be XORed the latest hash block Hi−1(H0 is the all ’0’ IV), and
then inputed to the permutation Keccak-f . The absorbing behavior will keep
until all the message blocks M i are processed. In the sequeezing phase, each
time of executing the permutation Keccak-f will return an r bits value as
one part of the hash value H until H is fully constructed.
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As the core of the Keccak hash, above mentioned permutation Keccak-
f maps b ∈ {25, 50, 100, 200, 400, 800, 1600} bits string to another b bits string.
Here, we keep up with the parameter b adopted in SHA-3 standard, that is,
b = 1600. The b bits inner state of Keccak-f can be organized as a 5×5×64
state array. Each bit is denoted as Ax,y,z, where 0 ≤ x, y < 5, and 0 ≤ z < 64.
Figure 2 gives a clear view for the array construction, and several parts of the
state array used in our work are also listed here.
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Fig. 2: State array and the parts of that.

The permutation Keccak-f consists of 24 rounds of function Rnd which
is consisted of 5 sub-step θ, ρ, π, χ and ι as follows:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ,

θ : Ax,y,z = Ax,y,z ⊕
⊕
j=0∼4

Ax−1,j,z

⊕
j=0∼4

Ax+1,j,z−1,

ρ : Ax,y,z = Ax,y,z ≪ Tx,z,

π : Ay,2x+3y,z = Ax,y,z,

χ : Ax,y,z = Ax,y,z ⊕ (Ax+1,y,z ⊕ 1) ·Ax+2,y,z,

ι : A0,0,z = A0,0,z ⊕RCiz,

where ′⊕′ denotes the bitwise XOR operation, ′ ≪′ denotes rotating the
bits Ax,y,z forward by Tx,z(the offset) bits, ′·′ denotes the bitwise AND oper-
ation and RCiz denotes the zth bit value of the round constant RC in the
corresponding round.
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2.3 The rotational cryptanalysis

Rotational cryptanalysis, improved by morawiecki et al., is an increasingly
important cryptanalysis technique in recent years. In this kind of technique,

a main concept is the rotational counterpart
←−
A which is obtained by rotat-

ing every bit Ax,y,z of state array A forward by a certain number n called the
rotational number along the lane Ax,y. The main idea of the rotational crypt-
analysis is tracking the propagation of rotational relations(a set of probability
values):

Px,y,z[Ax,y,z 6=
←−
Ax,y,z+n]; 0 6 x, y < 5, 0 6 z < 64

between the state array A and the rotational counterpart
←−
A which are setted

as the inputs of the round-reduced Keccak simultaneously.
Morawiecki et al. have shown how the bitwise operations involved in Kec-

cak change the rotational relations in [9]. Let α, β be the input bits and out
be the output bit, the bitwise AND operation changes the rotational relations
according to Pout = 1

2 (Pa+Pb−PaPb) and the bitwise XOR operation changes
the rotational relations according to Pout = Pa + Pb − 2PaPb. The remaining
bitwise opertors don’t affect the rotational relations. To delay the rotational

relations being independent(Px,y,z[Ax,y,z 6=
←−
Ax,y,z+n] → 1/2), Morawiecki et

al. used rotational counterpart
←−
A as the input of the modified Keccak that

does not involve the step ι.
After applying same rounds Keccak and modified Keccak on the state

array A and rotational counterpart
←−
A respectively, in the case of that there

are several tracked rotational relations Px,y,z equal to 0 or 1, these coordinates
(x, y, z) can be used as the eigenpoints to mount a preimage attack; in the situ-
ation of that a certain tracked rotational relations Px,y,z deviates slightly from
0.5, this coordinates (x, y, z) can be used as the key to make a distinguisher
for the Keccak-f permutation.

2.4 The linearization of Keccak-f

In the work of [12], Li et al. introduced a good method to linearize the per-
mutation Keccak-f in the 2-block preimage attack against Keccak-224/256.
According to the inherent relationship between the hash block Hi−1 and the
next messaged block Ai, where the latest r bits in Hi−1 and Ai are identical, Li
et al. build a set of middle constraints for the 4-round Keccak-224 as follows:

H ′3,3,z ⊕ 1 = H ′3,4,z, H
′
4,3,z ⊕ 1 = H ′4,4,z,

⊕
x,z

H ′x,4,z = 0, (1)

where 0 6 x < 5 and 0 6 z < 64. Backward to the first preimage block A1,
the constraints 1 is much weaker than that of a 224-bit hash value, resulting
in a lower complexity to search one of the proper preimage. Forward to the
second preimage block A2, the constraints 1 ensures the existence of preimage
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A2 featured by the following constraints:

A2
x,1,z = A2

x,3,z = A2
x,4,z ⊕ 1;

⊕
x,z

A2
x,4,z = 0, (2)

where 0 ≤ x < 5 and 0 ≤ z < 64. As shown in the Figure 3, Li et al. use the
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Fig. 3: The 2.5 rounds linear structure in [12].

constraints 2 to linearize the Keccak-f up to 2.5 rounds while preserving up
to 194 degrees of freedom which are used to establish a linear algebraic system
to solve the preimage A2 at low cost.

2.5 The quantum search

As an extension of the Grover’s search algorithm [27], the amplitude amplifi-
cation [28] is expected to find one of the solutions for a certain search problem
with providing a quadratic speedup. Given a database D = {x1, · · · , x2n} that
containing N = 2n elements, a boolean function c(x) : {0, 1}n → {0, 1} is mod-
eled to divide the database D into good subset A : {x|c(x) = 1} and bad subset
B : {x|c(x) = 0}. In quantum setting, we can design an oracle Uc to act func-

tion c on a superposition state
∑N

x=1 αx|x〉 in O(1) time, where αx′ denotes
the probability amplitude corresponding to the state x′. Work on the equal
superposition state |ψ〉 = 1√

N

∑N
α=1 |α〉, with the help of the phase kickback

protocol, every time applying the oracle Uc followed by a diffusion operator
Uψ⊥ = −I + 2|ψ〉〈ψ|, a step known by the Grover iteration G = Uψ⊥Uc, the
amplitudes of all the elements in subset A will be be slightly amplified. After
repeating this process about t =

√
N/|A| times, we can obtain a solution

x ∈ A theoretically by measuring the superposition state.
In [29], Shenvi et al. presented a quantum walk based search algorithm

called SKW algorithm, which can also be viewed as a rotation in a two-
dimensional subspace. Compared with the amplitude amplification, in addition
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to providing a quadratic speedup, that can exponentially reduce the implemen-
tation difficulty of the search algorithm. The only drawback of SKW algorithm
is that the probability of finding a correct solution is about 1

2 .

2.6 The uncompute trick and qRAM

Here, we first talk the uncompute trick. The no-deleting theorem[30] tells us
that there is no single-qubit unitary operator which can set an arbitrary qubit
state to |0〉. Based on this point, one common technique that always be used
to carry out a certain computation on a quantum register and then retrieve
the initial state |0〉 is the uncompute trick, which can be found in the designs
of many quantum attacks [21–23]. Specifically, For the given classifier c(x)
mentioned in previous section 2.5, there exists a corresponding classifier oracle
Uc to enact the mapping |x〉 → |c(x)〉 which can be represented more precisely
as |x〉|0〉|0〉 to |x〉|g(x)〉|c(x)〉, where the |g(x)〉 is a garbage state. Through the
uncompute trick, we can return the garbage state |g(x)〉 to the initial state
|0〉, in order that the later computations, such as the next Grover iteration,
will not be interrupted. See [31] for a more detailed discussion.

As an important question of loading data into a quantum computer, qRAM
is non-trivial to implement. In [32, 33], Giovannetti et al. and Park et al. focu
on the possible memory structure of quantum random memory access. Given
that the attackers assumed in cryptanalysis are powerful, many works such as
[21–23] are based on an assumption that the attackers are equiped quantum
computer with qRAM. Later, a negligible cost of qRAM is also required in our
allocating rotational cryptanalysis based preimage attack.

3 The allocating rotational cryptanalysis

In this section, we focus on the presentation of new cryptanalysis technique
which we called the allocating rotational cryptanalysis. We first propose new
observations of the rotational cryptanalysis based preimage attack on 4-round
Keccak-224/256 both in the classical setting and quantum setting. Subse-
quently, the allocating rotational cryptanalysis will be introduced to mount a
new 2-block preimage attack, and the main idea of the attack is elaborated
in detail. We are committed to showing that how to weaken the operators θ
and χ on the first two rounds of second hash process under a specified search
space where the rotational counterparts of preimage can be found. Then, one
way to reduce the complexity of precomputation is shown in order that the
complexity of preimage attack based on the allocating rotational cryptanal-
ysis is low enough. Finally, the theoretical preimage attack against 4-rounds
Keccak-224 is shown at the end of this section.

3.1 New observations

When using rotational cryptanalysis [9] to find the preimage of 4-round Kec-
cak, which only considing 1-block preimage, the attack complexity is expected
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to be one-sixty-fourth of that of random preimage attack. However, since
there are not enough eigenpoints after the propagation of 3.5 rounds, attacker
needs to perform a large number of 4-round Keccak to verify the correctness
of guessed rotational counterpart. Especially, in the cases of variants Kec-
cak-256 and Keccak-224, the advantages of rotational cryptanalysis driven
preimage attacks over generic preimage attack are not obvious. Under the
quantum counterpart of rotational cryptanalysis [26], the remaining eigen-
points after the propagation of 3.5 rounds are used to build the oracle operator
to mark the possible rotational number of guessed rotational counterpart. The
fewer eigenpoints, the lower accuracy of the oracle operator as a classifier, and
resulting in a higher computing cost in the qunatum preimage attack. In short,
if we can obtain as many eigenpoints as possible after the propagation of 3.5-
round or even 4-round Keccak, we can make an improvement on the preimage
attacks in both classical and quantum setting. Given that the research about
1-block preimage attack based on the rotational cryptanalysis seems to have
entered a bottleneck, here we combine the linearization of Keccak-f with the
rotational cryptanalysis to present a new 2-block preimage attack as follows,
which can obtain more eigenpoints after the propagation of 4-round Keccak
in the online phase.

Block-1 Block-2

!!

4-round Keccak-!

"⃖"

""

Checking with more eigenpoints.

!"

4-round Keccak-!

find find

hash

The preparation phase

4-round Keccak-!0

The online phase

"! ""

4-round M-Keccak-!

4-round Keccak-!"! %#

Checking with middle constraints.

!

!

!

%#

Fig. 4: The Allocating Rotational Cryptanalysis based Preimage Attack.

As shown in the Figure 4, for a given hash value H, we are aiming to find
two preimage: A1(the first messaged block) and A2(the second messaged block)
in their respective blocks instead of a 1-block one. Specifically, for the block-1,
the output state of preimage A1 must meets the constraints 1: H ′3,3,z ⊕ 1 =
H ′3,4,z, H

′
4,3,z ⊕ 1 = H ′4,4,z,

⊕
x,zH

′
x,4,z = 0. We use the generic preimage

attack to find a desired preimage A1 with low complexity. For the block-2,
owing to the last 7 lanes in the output state H ′ of block-1 and the second
messaged state A2 are identical, we can make a lot of candidate messaged states
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A2 by choosing the second message blocks M2 carefully in order that all the
candidate messaged states A2 meet the conditions 2: A2

x,1,z = A2
x,3,z = A2

x,4,z⊕
1,
⊕

x,z A
2
x,4,z = 0. It is noting that these candidate messaged states A2 form

the specified search space for us to look for the correct second preimage A2 via
the rotational cryptanalysis, which is totally different from the [12] that solving
the linear equations system to work out the proper second messaged block A2.
And we will show later that the propagation of the rotational relations between
the each state of the specified search space and their rotational counterparts
will leave more eigenpoints through the 4-round modified Keccak.

3.2 Explore the new propagations of the rotational relat-
ions.

Before mounting a preimage attack on the Keccak−224, we need to first
analyze how and why these candidate messaged states A2 with their rotational
counterparts make a good propagation of rotational relations. In the work [12],
the given values of constant bits A2

x,1,z, A
2
x,3,z, and A2

x,4,z, which satisfy the
equqtions 2: A2

x,1,z = A2
x,3,z = A2

x,4,z ⊕ 1;
⊕

x,z A
2
x,4,z = 0, make sure the

following equations have certain solutions for {Sx,z},

A2
x,4,z ⊕ Sx−1,z ⊕ Sx+1,z−1 = 1 (3)

where 0 ≤ x < 5 and 0 ≤ z < 64. That means the sum value of column Ax,z
can be work out as follows:

A2
x,0,z ⊕A2

x,1,z ⊕A2
x,2,z ⊕A2

x,3,z ⊕A2
x,4,z = A2

x,0,z ⊕A2
x,2,z ⊕A2

x,4,z = Sx,z;

and
A2
x,0,z ⊕A2

x,2,z = A2
x,4,z ⊕ Sx,z.

Note that the A2
x,4,z and Sx,z are constant bits, and therefore the unknown

bits pair (A2
x,0,z, A

2
x,2,z) has only two possible values to match with these con-

straints: A2
x,4,z⊕Sx−1,z⊕Sx+1,z−1 = 1. Without loss of generality, we suppose

the A2
x′ ,4,z′

= 1 and Sx′ ,z′ = 0, then the (A2
x′ ,0,z′

, A2
x′ ,2,z′

) = (0, 1) or (1, 0).

Recall that we have 5 × 64 = 320 columns, and the number of the candidate
messaged states A2 that match all these constraints 3 is 2320.

Then, let’s talk about how the first operator θ of block-2 has been disturbed
under these 2320 candidate messaged states A2 for the better propagation of
the rotational relations. According to the definition of operator θ, we have:

Θ1
x,y,z = A2

x,y,z ⊕ Sx−1,z ⊕ Sx+1,z−1

= A2
x,y,z ⊕A2

x,4,z ⊕A2
x,4,z ⊕ Sx−1,z ⊕ Sx+1,z−1

= A2
x,y,z ⊕A2

x,4,z ⊕ 1.

Figure 5 intuitively reflects what happened on messaged states A2, and the
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!! ""

!

= 0 = 1 = unknown = random const = restricted const 

Fig. 5: What happened on the second messaged block A2 after the first θ.

first map θ of the block-2 applied on these special messaged statesA2 is actually
equivalent to the following:

Θ1
x,y,z = A2

x,y,z ⊕A2
x,4,z ⊕ 1. (4)

Note that we no longer consider the linearity of bits throughout our work, and
any XOR operation between constant bits and unknown bits obviously results
in unknown bits. To distinguish, we use a blue cube to indicate that this bit
is unknown.

As shown in Figure 6, after the candidate messaged states A2 throughing
the maps θ, ρ and π of first round, the states Π1 have a good property which
the unknown bits are separated into discontinuities by the constant bits 0
or 1 in each row. So, according to the definition of the map χ : Xx,y,z =

!!

! ∘ #

"!

Fig. 6: The maps ρ and π only
change the position of bits.

!

!! "!

Fig. 7: The columns 1, 3 and 4
keep unchanged.

Πx,y,z ⊕ (Πx+1,y,z ⊕ 1) ·Πx+2,y,z, the first operator χ of the block-2 works as
follows:

X1
0,y,z = Π1

0,y,z ⊕ (0⊕ 1) ·Π1
2,y,z = Π1

0,y,z ⊕Π1
2,y,z;

X1
1,y,z = 0⊕ (Π1

2,y,z ⊕ 1) · 0 = 0;

X1
2,y,z = Π1

2,y,z ⊕ (0⊕ 1) · 1 = Π1
2,y,z ⊕ 1;

X1
3,y,z = 0⊕ (1⊕ 1) ·Π1

0,y,z = 0;

X1
4,y,z = 1⊕ (Π1

0,y,z ⊕ 1) · 0 = 1.

In fact, as shown in Figure 7, at this point the first χ only change the first and
third columns of each slice, and no operations AND are involved between the
unknown bits. Therefore, the effect of χ corresponds to the following:

X1
0,j,z = Π1

0,j,z ⊕Π1
2,j,z; X1

1,j,z = Π1
1,j,z; X1

2,j,z = Π1
2,j,z ⊕ 1;
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X1
3,j,z = Π1

3,j,z; X1
4,j,z = Π1

3,j,z. (5)

Now, we focus on the maps in the second round. We first select a 5 × 64
constant array C randomly, and use Cx,y to denote the element of C, where
x ∈ {0, 2} and 0 ≤ z < 64. To weaken the second θ and χ in the block-2,
we need to make sure that the first round output states I1 of these candidate
messaged states A2 satisfy the following 128 constraints:

4⊕
j=0

I1
0,j,z = C0,z;

4⊕
j=0

I1
2,j,z = C2,z, (6)

where 0 ≤ z < 64. Namely, for a output state I1 we require the sums of bits in
column 0 of slice z is equal to constant C0,z. Therefore, the second θ of block-2
can be reduced as follows:

Θ2
0,y,z = I1

0,y,z ⊕
4⊕
j=0

I1
4,j,z ⊕

4⊕
j=0

I1
1,j,z−1 = I1

0,y,z ⊕ 1;

Θ2
1,y,z = I1

1,y,z ⊕
4⊕
j=0

I1
0,j,z ⊕

4⊕
j=0

I1
2,j,z−1 = I1

1,y,z ⊕ C0,z ⊕ C2,z−1;

Θ2
2,y,z = I1

2,y,z ⊕
4⊕
j=0

I1
1,j,z ⊕

4⊕
j=0

I1
3,j,z−1 = I1

2,y,z;

Θ2
3,y,z = I1

3,y,z ⊕
4⊕
j=0

I1
2,j,z ⊕

4⊕
j=0

I1
4,j,z−1 = I1

3,y,z ⊕ C2,z ⊕ 1;

Θ2
4,y,z = I1

4,y,z ⊕
4⊕
j=0

I1
3,j,z ⊕

4⊕
j=0

I1
0,j,z−1 = I1

4,y,z ⊕ C0,z−1.

In other words, for this special case the equivalent of map θ can be described
by the following formulas:

Θ2
0,y,z = I1

0,y,z ⊕ 1; Θ2
1,y,z = I1

1,y,z ⊕ C0,z ⊕ C2,z−1; Θ2
2,y,z = I1

2,y,z

Θ2
3,y,z = I1

3,y,z ⊕ C2,z ⊕ 1; Θ2
4,y,z = I1

4,y,z ⊕ C0,z−1, (7)

and shown the form of states Θ2 in the Figure 8. Finally, we need to focus
on how the second χ changes the bits Π2

x,y,z indeed. As shown in the Figure
9, the obtained states Π2 from states Θ2 still keep the good properties that
is the unknowns bits in each row are discontinuous. Therefore, like the first χ
shown in the formulas 5, there sill are no operations AND involved between
the unknown bits for the second χ. However, the constant bits of each row in
states Π2 are deeply bound to the constant array C we selected in formulas 6.
For a set of given constants Cx,z, the specific forms of map χ are different in
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!!

!

""

Fig. 8: All the bits of columns
1, 3 and 4 are constant.

!!

! ∘ #

"!!!

Fig. 9: The unknown bits of
states Π2 keep the discontinuity

in each row.

each row. Between different sets of constants Cx,z, the specific forms of map χ
in a same row are still different. Therefore, we cannot give a unified algebraic
form of the second reduced χ here. For a given set of constants Cx,z, we will use
the program to simulate the second χ of block-2 and calculate the states X2.

Summarily, when the candidate messaged states A2 that have the form 2
and meet two sets of constraints 3, 6 are used as the input of 4-round Kec-
cak, the maps θ in the first two rounds are equivalent to the formulas: 4 and
7, respectively, and both maps χ in the first two round do not involve the
operation AND. Now, the last thing we need to do before tracking the prop-
agation of rotational relations between the candidate messaged state A2 and

the corresponding rotational counterpart
←−
A 2 is to make sure that the

←−
A 2 is

running on the same mappings θ and χ as A2. To achieve this, there are only
four possible choices for the constant array C mentioned above:

C1 =

(
0 0 · · · 0
0 0 · · · 0

)
; C2 =

(
0 0 · · · 0
1 1 · · · 1

)
;

C3 =

(
1 1 · · · 1
1 1 · · · 1

)
; C4 =

(
1 1 · · · 1
0 0 · · · 0

)
.

Note that for any rotational number, the rotational counterparts correspond-
ing to these canstant arrays are themselves. The following Theorem 3.1 ensures
that the candidate messaged state A2 and the corresponding rotational coun-

terparts
←−
A 2 share the same set of maps involved in the first two round when

the constant array C is chosen from one of above arrays.

Theorem 3.1 Let the constant array C be one of the four we found, then, for

any rotational number n, the rotational counterparts
←−
A2 still satisfy the two set

constraints 3 and 6, and therefore shares the same maps with the candidate messaged
states A2.

Now, we can explore four new propagations of rotational relations, and we
expect the eigenpoints to be better retained. In fact, the following Theorem
3.2 theoretically guarantees that all the eigenpoints in each newly explored
propagation are fully preserved at the end of the 2.5-round Keccak. The
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relevant proofs of Theorem 3.1 and Theorem 3.2 can be found in the Appendix
A.

Theorem 3.2 ∀ (x, y, z) ∈ {0, · · · , 4}×{0, · · · , 4}×{0, · · · , 63}, the rotational rela-
tion Px,y,z between any state array A2 selected from the specified search space Γ and

the corresponding rotational counterpart
←−
A2 can be used as an eigenpoint after 2.5

rounds Rnd.

Here, the following Figure 10 shows all 4 improved propagations of rota-
tional relations while the constant array C is chosen to be C1, C2, C3 and C4,
respectively. Note that the white block denotes the eigenpoint for Px,y,z = 0,

Round 1

Round 2

Round 3

Round 4 (after !)

Round 3 (after !)

Round 4 

(a) For the C1.

Round 1

Round 2

Round 3

Round 3 (after !)

Round 4 

Round 4 (after !)

(b) For the C2.

Round 1

Round 2

Round 3

Round 3 (after !)

Round 4 

Round 4 (after !)

(c) For the C3.

Round 1

Round 2

Round 3

Round 3 (after !)

Round 4 

Round 4 (after !)

(d) For the C4.

Fig. 10: The improved propagations for different constant arrays.

the black block denotes the eigenpoint for Px,y,z = 1 and the gray block
denotes the rotational relation for 0 < Px,y,z < 1 which cannot provide a
clear information between the bit value A2

x,y,z and the corresponding bit value
←−
A 2
x,y,z. Fortunately, it’s quite obvious that our experimental results strongly

support our theoretical analysis. Specifically, at the end of the 2.5-round, only
white blocks and black blocks as eigenpoints are involved, and at the end of
3.5-round, there are 125, 114, 107 and 99 eigenpoints in the first 3.5 lanes,
respectively. As shown in the Figure 11, the number of eigenpoints remaining
at the end of the 3.5-round shown on the left is approximately 40 times higher
compared to the work of Morawiecki et al. shown on the right. Furthermore,
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Round 1

Round 2

Round 3

Round 4 (after !)

Round 3 (after !)

Round 4 

(a) The best one.

Round 1

Round 2

Round 3

Round 4 (after !)

Round 3 (after !)

Round 4 

(b) The original one.

Fig. 11: Compared to the original propagation introduced in [9]

we succeeded in keeping the eigenpoints to the end of 4-round Keccak-224
with 32, 21, 16 and 12 respectively. Contrarily, the original propagation of
Morawiecki et al no longer has any usable information at the same rounds.

Another interesting point we found is that the later and fewer eigenpoints
for Px,y,z = 1 appear will allow a better propagation of the rotational relations,
resulting in keeping more eigenpoints at the end. For instance, the number
of eigenpoints for Px,y,z = 1 at the end round 2 in the Figure 10(c) is only
one more than that in the Figure 10(a), yet after the propagation of round 3
and 4, the final number of eigenpoints in the Figure 10(c) is only half of that
in the Figure 10(a). Therefore, we believe that the propagation of rotational
relations is still consistent with the avalanche effect in cryptography.

3.3 Match the constant array C without running Keccak

Here, we focus on the preparation of the the specified search space Γ for the
searching of second message block at a low cost. Recall that each element of
the specified search space Γ has 640 unknown bits and must meet two sets
of constraints. First, at the beginning of block-2, the 320 linear constraints
3 are satisfied. Second, all the output states I1 of the first Rnd satisfy the
128 linear constraints 6. In the previous section, we have discussed a feasible
method to quickly generate a large number of state arrays A2 that meet the
first set of constraints. However, one way to efficiently obtain the second-
constraints-satisfied candidate messaged states A2 is not obvious. A direct
approach is taking all the 2320 state arrays A2 as inputs of first Rnd and
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calculating 2320 output states I1. After checking every I1 whether meets the
constraints 6, we can obtain 2320−128 = 2192 candidate messaged states A2

which meet all the two sets of constraints, and finally form the specified search
space Γ . Unfortunately, this method needs to apply a large number of 1-round
Keccak, and the computational cost is unbearable. The work we show here
puts forward a new idea: For any given constant array C, we successfully find
a set of new linear constraints which are used to describe the relations between
the unknown bits of candidate messaged states A2 and the bit values Cx,y.
This allows us to use these new constraints at the beginning of the block-2 to
quickly generate a large number of candidate messaged states A2, resulting in
the corresponding outputs of 1-round Keccak just meet the constraints 6.

According to the equivalent 5 of first χ, only the column 0 and column 3
of each slice are changed as follows:

X1
0,j,z = Π1

0,j,z ⊕Π1
2,j,z; X1

2,j,z = Π1
2,j,z ⊕ 1;

Then we have:

C2,z =

4⊕
j=0

X1
2,j,z =

4⊕
j=0

Π1
2,j,z ⊕ 1,

4⊕
j=0

Π1
2,j,z = C2,z ⊕ 1.

So,

C0,z =

4⊕
j=0

X1
2,j,z =

4⊕
j=0

(Π1
0,j,z ⊕Π1

2,j,z)

=

4⊕
j=0

Π1
0,j,z ⊕

4⊕
j=0

Π1
2,j,z =

4⊕
j=0

Π1
0,j,z ⊕ C2,z ⊕ 1,

and
4⊕
j=0

Π1
0,j,z = C0,z ⊕ C2,z ⊕ 1.

For the sake of uniformity, here we ignore the effect of first ι that only flips
the bit value X1

0,0,0, and the case of involved column X1
0,y,0 can be handled

similarly.
Then, we need to find out the relations between the inputs Px,y,z of π and

these constants Cx,z. According to the definition of π, for all triples (x, y, z),
the π works as follows Πx,y,z = P(x+3y)mod 5,x,z. Therefore, we have:

4⊕
j=0

Π1
0,j,z =

4⊕
j=0

P 1
j,0,z = C0,z ⊕ C2,z ⊕ 1;

4⊕
j=0

Π1
2,j,z =

4⊕
j=0

P 1
j,2,z = C2,z ⊕ 1.
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Now, we focus on the relations between the inputs Θ1 of ρ and these
constants Cx,z. The following Table 2 lists the offset involved here, while
Px,y,z = Θx,y,(z +offset)mod 64. Without loss of generality, we take the case of

Table 2: The offsets in the row 0 and row 2.
x = 0 x = 1 x = 2 x = 3 x = 4

y = 0 0 1 190 28 91
y = 2 3 10 171 153 231

z = 2 as an example shown as follows:

4⊕
j=0

P 1
j,0,2 = P 1

0,0,2 ⊕ P 1
1,0,2 ⊕ P 1

2,0,2 ⊕ P 1
3,0,2 ⊕ P 1

4,0,2

= Θ1
0,0,2 ⊕Θ1

1,0,1 ⊕Θ1
2,0,4 ⊕Θ1

3,0,38 ⊕Θ1
4,0,39 = C0,2 ⊕ C2,2 ⊕ 1

Similarly, we have:

Θ1
0,2,63 ⊕Θ1

1,2,56 ⊕Θ1
2,2,23 ⊕Θ1

3,2,41 ⊕Θ1
4,2,27 = C2,2 ⊕ 1.

Recall that first θ works as 4, we can therefore finally find out the new linear
constraints for the second messaged states A2 as follows:

A2
0,0,2 ⊕A2

1,0,1 ⊕A2
2,0,4 ⊕A2

3,0,38 ⊕A2
4,0,39 ⊕

A2
0,4,2 ⊕A2

1,4,1 ⊕A2
2,4,4 ⊕A2

3,4,38 ⊕A2
4,4,39

= C0,2 ⊕ C2,2;

A2
0,2,63 ⊕A2

1,2,56 ⊕A2
2,2,23 ⊕A2

3,2,41 ⊕A2
4,2,27 ⊕

A2
0,4,63 ⊕A2

1,4,56 ⊕A2
2,4,23 ⊕A2

3,4,41 ⊕A2
4,4,27

= C2,2,

and the complete constraints are shown in the Appendix B. It is worth remem-
bering that all the bits located in the plane 4 of candidate messaged states A2

and random bits Cx,z are constants, and all the unknown bits are located in
the plane 0 and plane 2 of candidate messaged states A2.

In the block-2, recall that the last 7 lanes in the output state H ′ of latest
block and the second messaged state A2 are identical. By using two set of
constraints, the linear constraints 3 and the new explored constraints shown
in Appendix B, we can therefore efficiently obtain totall 2640−320−128 = 2192

candidate messaged states A2 for a candidate preimage A1. In order to be
able to find the preimage A2 of the hash value H, we need the specified search
space Γ which consists of at least 2224 candidate messaged states A2. That’s
why we need to execute the preparation phase 2224−192 = 232 times to get 232

different candidate preimages A1.
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3.4 The preimage attack on 4-round Keccak-224

Now, we describe our preimage attack on the 4-round Keccak-224 in detail
and give a complete complexity analysis. It is worth mentioning here that we
consider the cost of running once 4-round Keccak-224 is equal to O(1) both in
the classical setting and the later quantum setting. As shown in Figure 4, our
preimage attack is divided into two phases. In the preparation phase, we first
need to use the generic preimage attacks to find 232 candidate preimages A1 to
ensure that all these corresponding middle states meet the constraints 1. For a
random state array of A1, the probability of satisfying all the 2× 64 + 1 = 129
constraints is equal to 2−129. Therefore, we can expect to obtain one desired
preimage A1 form searching 2129 random values of A1, and the cost of the
preparation phase is equal to 2129 × 232 = 2161.

With the help of all the 232 candidate preimages A1, we quickly gener-
ate the specified search space Γ which has 2224 candidate messaged states
A2 in total. According to the rotational cryptanalysis, given a 224 bits hash

value, the probability that we guess one of the rotational counterpart
←−
A 2 is

2−224 × 64 = 2−218. Thus we need to select 2218 state arrays
←−
A 2 which are

the rotational counterparts for some candidate messaged states A2 to search a
correct rotational counterpart of the certain second preimage state A2. Here,
we still use the Algorithm 1 proposed by Morawiecki et al [9] to find the

corresponding rotational counterpart
←−
A 2:

Algorithm 1 Search for the second messaged block A2

Input: given a hash value
Output: the second preimage A2

1: Randomly select a state array
←−
A 2 as the input;

2: Run 4-round modified Keccak on the state array
←−
A 2;

3: for n = 0 to n < 64 do
4: Set flag = 1;
5: for all 32 eigenponts (x, y, z) do
6: if Bit I4

x,y,z+n and bit Hx,y,z satisfy the relation as the eigenpoint
(x, y, z) then

7: flag = ( flag +1) mod2;
8: end if
9: end for

10: if flag == 1 then
11: Rotate back the randomly select state by n bits and run 4-round

Keccak-224 on it to check whether the state is the the second preimage A2

of a given hash B.
12: end if
13: end for
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After repeating the Algorithm 1 2218 times, we expect to obtain the second
messaged block A2, and by using these bit values of the latest 7 lanes in A2, we
can easily find the first messaged block A1 from the 232 candidate preimages
of A1. Compared to Morawiecki et al.’s attack on the 4-round Keccak-224,
our improvement is that: thanks to the 32 eigenpoints we obtained in the

previous section, the probability that the corresponding output state
←−
H of a

random state array
←−
A 2 matches the hash value H at all these eigenpoints is

greatly reduced from 2−3 to 2−32, which pushes forward the Morawiecki et al.’s
conclusions. Therefore, there will be only around 2224/232 = 2192 false state
arrays A2 that need to be checked in step 11 by running the 4-round Keccak-
224, resulting in a lower computational cost. Summing up, the workload of
the attack is 2161 (the preparation phase) + (2218 + 2192) (the online phase),
and the complexity of the attack is roughly 2218 times of 4-round Keccak-224
calls, which is about 64 times better than the generic preimage attack. It is
worth mentioning that we will not discuss the case where the second messaged
block A2 is a cyclic pattern with less than 64 rotational counterparts, which
has almost no effect on our preimage attack.

4 The new preimage attack in the quantum se-
tting

In this section, we mainly show the detail implementation of quantum theo-
retical preimage attack driven by our allocating rotational cryptanalysis. We
first design several unitary oracle operators as the classifiers to help us mark
the desired preimage blocks A1 and A2 at their respective phase. Then, we
show how the quantum search algorithms work with these classifiers to find the
proper preimage blocks A1 and A2 for a hash value H of 4-round Keccak-224,
and give the complexity analysis of our preimage attack.

4.1 Designing the oracle operators for rotational allocat-
ing approach

For searching the first preimage block A1, we choose the generic quantum
preimage attack. Recall that the probability of satisfying all the 2×64+1 = 129
constraints 1 is equal to 2−129. Therefore, we need a unitary oracle operator to
distinguish the proper preimage block A1 from a superposition state composed
of 2129 state arrays. The constraints 1 can obviously be used as the key to
classification criteria, and we give a feasible definition of the oracle function
f(A1) : {0, 1}129 → {0, 1} for the unitary oracle operator Uf : |x〉|y〉 → |x〉|y⊕
f(x)〉 which is committed to marking the proper preimage block A1. As shown
in Algorithm 2, the pseudo-codes of the implementation of oracle operator Uf
is given below:
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Algorithm 2 Implementation of the oracle operator Uf

Input: |A1〉|y〉
Output: |A1〉|y ⊕ f(A1)〉

1: For a given state array A1, set flag = 0;
2: Run 4-round Keccak-224 on the state array A1;
3: Check whether the output state satisfying all the constraints 1; If so, set

the flag = 1; Do nothing otherwise;
4: Return 1 as the value of f(A1) if and only if flag = 1; Return 0 otherwise;
5: Uncompute Steps 2− 3.

It is worth mentioning that the ancillary qubit |y〉 is usually in the

state: |−〉 = |0〉−|1〉√
2

. After applying the oracle Uf , we have the state

|A1〉 |0⊕f(A1)〉−|1⊕f(A1)〉√
2

= (−1)
f(A1)|A1〉|−〉. Therefore, the oracle Uf can only

be used to mark a state |A1〉 which are acted as the proper preimage A1. This
efficient classification method is known as “Phase Kickback” in the quantum
computing, and will be used frequently later. The detailed quantum circuit
model of the oracle operator Uf is shown in the Figure 12. Here, we use the

|"!⟩ |"!⟩

|$⟩ |$	or	$⨁1⟩

4-Keccak 4−Keccak"*ℎ,-.! Check!
"

flipping

Fig. 12: The quantum circuit model of the unitary oracle operator Uf .

block ”Check1” to denote the step 3 of Algorithm 2, and the block “flipping”
to represent the process of phase kickback. Note that the blocks with † are the
uncomputing counterparts of those without the †, and this will be used again
later.

Now let’s focus on the marking of second preimage block A2. We want

to find one of the corresponding rotational counterparts
←−
A 2 to obtain the

second preimage block A2 indirectly. To judge whether a state array
←−
A 2 is a

rotational counterpart of A2, we must rotate back the state array
←−
A 2 by using

a proper rotational number n. Therefore, our first job is to find the proper
rotational number n for a rotational counterpart by using the 32 eigenpoints

found in the section 3.2. Concretely, for a rotational counterpart
←−
A 2 acted as

the input of 4-round modified Keccak-224, the proper rotational number n

ensures that the corresponding output state
←−
H and the hash value H satisfy

all the relations determined by these eigenpoints. Here, we define an oracle

function N(n,
←−
H ) : {0, 1}112 → {0, 1} to help the unitary oracle operator

UN : |n〉|
←−
H 〉|y〉 → |n〉|

←−
H 〉|y ⊕N(n,

←−
H )〉 mark the proper rotational number n
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of the rotational counterpart
←−
A 2, and the following Algorithm 3 spreads the

implementation details of UN .

Algorithm 3 Implementation of oracle operator UN .

Input: |n〉|
←−
H 〉|y〉

Output: |n〉|
←−
H 〉|y ⊕N(n,

←−
H )〉

1: For a given rotational number n, set flag = 0;

2: if 0 ≤ n < 64 then Check if these matched values of
←−
H satisfy all the 32

relations with the corresponding values of H by accessing these eigenpoints
stored in the qRAM. If so, set flag = 1. Do nothing otherwise;

3: else Do nothing;
4: end if
5: Return 1 as the value of oracle function N

(
n,
←−
H
)

if and only if flag = 1,

and return 0 otherwise;
6: Uncompute the Steps 2− 4.

Note that throughout this process, the given state value
←−
H is a constant

value and the rotational number n is the variable. The following Theorem
4.1 makes sure that the oracle UN can flip the phase of the proper rotational

number |n〉 for the rotational counterpart
←−
A 2 by using the phase kickback

with high efficiency.

Theorem 4.1 Given a superposition state
∑
n∈{0,1}112 αn|n〉, the oracle UN marks

the state |n〉 only if n is the rotational number of rotational counterpart
←−
A2

corresponding to the preimage block A2.

The proofs about this theorem can be found in Appendix A. As what we
have down for the oracle Uf , the detailed quantum circuit model of the oracle
operator Uf is shown in the Figure below 13, where the block ”Check2” is
used to denote the step 2 of Algorithm 3.

|"⟩ |"⟩
|"$ |"$

|%⟩ |%⟩
|&⟩ |&	or	&⨁1⟩

,ℎ./0! Check!
"

flipping

Fig. 13: The quantum circuit model of the unitary oracle operator UN .

After having the ability to find the proper rotational number n, we now con-

centrate on marking the
←−
A 2 of preimage block A2. Recall that for a given state

array there are up to 64 possible rotational counterparts. We have prepared the
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specified search space Γ which has total 2224 state array to search the preim-
age A2 for a given 224 bits hash value H. Furthermore, we only need to build a

superposition state composed of 2224/64 = 2218 state arrays
←−
A 2 obtained from

the elements of Γ . Similarly, a boolean function F (
←−
A 2) : {0, 1}218 → {0, 1} for

the unitary oracle operator UF : |
←−
A 2〉|y〉 → |

←−
A 2〉|y ⊕ F (

←−
A 2)〉 is defined here

to mark one of the rotational counterparts
←−
A 2 for the second preimage A2.

The Algorithm 4 listed below gives the pseudo-codes of the implementation of
oracle UF .

Algorithm 4 Implementation of oracle operator UF .

Input: |
←−
A 2〉|y〉

Output: |
←−
A 2〉|y ⊕ F (

←−
A 2)〉

1: For the given state array
←−
A 2, set flag1 = flag2 = 0;

2: Run 4-round modified Keccak-224 on the state array
←−
A 2 to obtain the

output state
←−
H ;

3: Run the amplitude amplification on the oracle UN to find the proper
rotational number n; If 0 ≤ n < 64, set flag1 = 1, else, set flag1 = 0;

4: Rotate back the state array
←−
A 2 by n bits to obtain the state array A2,

and verify if all the 112 equations are satisfied; If so, set flag2 = 1, else,
set flag2 = 0;

5: Return 1 as the value of oracle function F (
←−
A 2) if and only if flag1 =

flag2 = 1, and return 0 otherwise;
6: Uncompute the Steps 2− 4.

It is worth mentioning that in the step 3 of Algorithm 4, we embed the
amplitude amplification running on the oracle UN into the implementation of
the unitary oracle operator UF . Similar oracle design schemes also appeared
in [20, 22, 26]. The following Theorem 4.2 shows that this method requires less
computational cost than the way adopted by Wang et al. in [26].

Theorem 4.2 The oracle operator UF can work both on the rotational counterpart←−
A2 of the second preimage A2 and other random string with only twice running the
4-round modified Keccak-224.

For a more detailed discussion, see the proofs of Theorem 4.2 in Appendix
A. The final detailed quantum circuit model for the oracle operator UF is shown
in the Figure 14, where the block ”Check3” denotes the step 4 of Algorithm

4. Note that the operation of the state array
←−
A 2 is still involved in the step 4

of Algorithm 4, which makes it impossible for us to directly run the 4-round

modified Keccak-224 on state array
←−
A 2 in the step 2 of Algorithm 4. That’s
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why we need to allocate auxiliary qubits |0〉⊗1600 to run the 4-round modified

Keccak-224 with state array
←−
A 2 as input.

|0⟩⨂"#$$
|$⃖%&

|'⟩ |'	or	'⨁1⟩

|-⟩ |-⟩

|0⟩⨂"#$$ Grover-on-.& Grover−on−.&'4-M-Keccak 4−M−Keccak'

flipping

|$⃖%&/ℎ123( Check(
'

Fig. 14: The quantum circuit model of the unitary oracle operator UF .

4.2 Quantum Preimage Attack on 4-round Keccak-224

In the quantum setting, we use the generic quantum preimage attacks to find
232 candidate preimages A1 for the preparation phase. Specifically, prepare
the initial 130-qubit state |0〉 first. After applying Hadamard H⊕130, an equal
superposition state |ψ〉 =

∑
A1∈{0,1}130 |A1〉 build on these qubits, where we

omit the amplitudes 2−65 for ease of exposition. Now, by using the amplitude
amplification on the oracle Uf to this equal superposition state |ψ〉, we can

obtain a superposition state
∑

A1∈0,1129(−1)f(A1)|A1〉. In each time of Grove

iteration, the correct candidate preimage A1 is marked out and its amplitude
is slightly increased. After about O(265) Grover iterations, we can expect to
obtain a correct candidate preimage A1 by measuring the final superposition
state. Since the single call to the oracle Uf contains two executions of 4-round
Keccak-224, we believe that the cost of the preparation phase is around
2× 265 × 232 = O(298).

Concretely in the online phase, we require about 224 + 218 + 1600 qubits
for the other half attack. After simple processing, our attack will start from

the equal superposition state |ψ〉 =
∑
←−
A2∈{0,1}218 |H〉⊗ |

←−
A 2〉⊗ |0〉⊗1600. While

applying the oracle UF , the middle 218 qubits of |
←−
A 2〉 acted as the input

value to help us write the output value |
←−
H 〉 of 4-round modified Keccak-

224 to the last 1600 qubits of |0〉⊗1600, then the |
←−
H 〉 and the hash value |H〉

are matched to find a possible rotational number n for the |
←−
A 2〉, and finally

the oracle UF can mark the correct second preimage block
←−
A 2. Similar to the

previous preparation phase, after about 2218/2 = O(2109) Grover iterations of

the oracle UF , the desired
←−
A 2 can be obtained by measuring the middle 218

qubits. Thanks to the oracle UF still contains only two executions of 4-round
modified Keccak-224, which is about half the cost of Wang et al. in [26], the
cost of the online phase is estimated to be around 2 × 2109 = O(2110). It is
easy to get the second preimage block A2 from a correct rotational counterpart←−
A 2, and we can use the method in section 3.4 to finally determine the first
preimage block A1 from the 232 possible values.
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The SKW quantum algorithm can also be used for the preparation phase
and the online phase to greatly reduce the difficulty of building quantum cir-
cuits for our preimage attack. In the work of Wang et al. in [26], the oracle
operator only has less than 1/8 chance of successfully marking the rotational
counterpart of preimage, as a result of few eigenpoints they found. Since the
oracle operator UF introduced in our attack works with more than 30 newly
explored eigenpoints, the possibility of marking the correct rotational coun-

terpart
←−
A 2 is almost 1, and therefore the SKW based preimage attack still

costs(the preparation phase: O(299); the online phase: O(2111)) less than the
generic quantum preimage attack.

5 Conclusion

In this paper we have presented an allocating rotational cryptanalysis based
preimage attack on the 4-round Keccak-224, which has a good performance
in quantum setting. By using more than 30 eigenpoints supported by the bet-
ter propagation of rotational relations, an improvement of about 10 orders of
magnitude on the accuracy of determining the rotational number of rotational
counterpart has been achieved in the quantum setting. At the same time,
we have proposed a method to quickly expand the state arrays that follow
the new propagation into a specified search space in which the second preim-
age state can be found indirectly. As an outcome, an efficient oracle operator
that requires only twice calling of the 4-round modified Keccak-f has been
designed at the end of this paper to mark the rotational counterpart of the
second preimage state, which leads to the best amplitude amplification based
dedicated quantum preimage attack to date against the 4-round Keccak-224.
Even the SKW algorithm, easy to achieve but low probability of success, has
been given the ability to work with the efficient oracle operator with good
complexity.

Our work shown here will promote the future research on the Keccak
from at least three aspects: First, the newly explored propagation of rotational
relations can be easily extended to a good distinguisher for the Keccak-f ,
which is not developed in detail in this work given the length of the paper.
Second, this work essentially establishes an important connection between the
linearization of Keccak-f and the rotational cryptanalysis for the first time.
A better linearization of Keccak-f in the future will make it possible to
keep enough eigenpoints even at the end of 4.5 rounds Keccak-f , which will
improve the preimage attack against Keccak-224 up to 5 rounds. Finally, the
introduction of the Harrow-Hassidim-Lloyd(HHL) quantum algorithm in the
quantum counterpart of the algebraic attack, which provides an exponential
speed-up for solving linear systems, will make it interesting to further improve
the preimage recovery against the Keccak variants in the field of quantum
cryptanalysis.



Runsong Wang, Xuelian Li, Juntao Gao, Hui Li and Baocang Wang 27

Acknowledgement

This work is supported in part by the Key Research and Development Program
of Shaanxi (No. 2021ZDLGY06-04), Guangxi Key Laboratory of Cryptography
and Information Security (No. GCIS201802).

Appendix A

Proof of Theorem 3.1.

To illustrate the candidate messaged state A2 and the corresponding rotational

counterparts
←−
A 2 share the same maps, here we only need to prove that the

rotational counterparts
←−
A 2 still keep two sets of constraints 3 and 6 mentioned

in section 3.2. For a given candidate messaged state A2, we have:

A2
x,4,z ⊕ Sx−1,z ⊕ Sx+1,z−1 = 1,

where 0 ≤ x < 5 and 0 ≤ z < 64. Consider the rotational counterpart
←−
A 2 of

this element A2 with the rotational number n, we have:

←−
A 2
x,4,z ⊕

←−
S x−1,z ⊕

←−
S x+1,z−1

= A2
x,4,z−n ⊕ Sx−1,z−n ⊕ Sx+1,z−1−n = 1,

where 0 ≤ x < 5 and 0 ≤ z < 64, which is exactly the same as the previous
set of constraints 3. For the second set of constraints 6, we have the state I1

corresponded to the element A2 keeps the following constraints:

4⊕
j=0

I1
0,j,z = C0,z;

4⊕
j=0

I1
2,j,z = C2,z,

where 0 ≤ z < 64. For the rotational counterpart
←−
A 2 that meets the

constraints 6, we have:

4⊕
j=0

←−
I 1

0,j,z =

4⊕
j=0

I1
0,j,z−n = C0,z;

4⊕
j=0

←−
I 1

2,j,z =

4⊕
j=0

I1
2,j,z−n = C2,z;

where 0 ≤ z < 64. Owing to each rotational counterpart of the constant
array C used in the section 3.2 is still the constant array C, the rotational

counterpart
←−
A 2 obviously also meets the above constraints.
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Proof of Theorem 3.2.

Recall that the XOR operation changes the rotational relations as: Pout =
Pa+Pb−2PaPb. Let the intputs a and b be 0 or 1, which means the rotational
relations of the inputs are eigenpoints, there are only 4 possible combinations
(0, 0), (0, 1), (1, 0) and (1, 1) for inputs pair (a, b). The corresponding outputs
are listed below

Pout[(a, b) = (0, 0)] = 0 + 0− 2× 0× 0 = 0;

Pout[(a, b) = (0, 1)] = 0 + 1− 2× 0× 1 = 1;

Pout[(a, b) = (1, 0)] = 1 + 0− 2× 1× 0 = 1;

Pout[(a, b) = (1, 1)] = 1 + 1− 2× 1× 1 = 0.

Therefore, the output of the XOR operation between the bits corresponding
to the eigenpoints is still an eigenpoint. Fot the AND operation, we have
Pout = 1

2 (Pa + Pb − PaPb), and do the same as above.

Pout[(a, b) = (0, 0)] =
1

2
(0 + 0− 0× 0) = 0;

Pout[(a, b) = (0, 1)] =
1

2
(0 + 1− 0× 1) =

1

2
;

Pout[(a, b) = (1, 0)] =
1

2
(1 + 0− 1× 0) =

1

2
;

Pout[(a, b) = (1, 1)] =
1

2
(1 + 1− 1× 1) =

1

2
.

We find that the AND operation stinctively makes the rotational relations

acted as eigenpoints tend to be independent(Px,y,z[A
2
x,y,z 6=

←−
A 2
x,y,z+n] → 1

2 ).
For other bitwise operations and XORed-with-constant operations involved in
Keccak-f , the eigenpoints are obviously not be affected.

According to the definition of rotational counterpart, all the rotational

relations between the state array A2 and its rotational counterpart
←−
A 2 at the

beginning are essentially eigenpoints. Specifically,

∀n ∈ {0, · · · , 63}, Px,y,z[A2
x,y,z 6=

←−
A 2
x,y,z+n] = 0,

where 0 ≤ x, y < 5 and 0 ≤ z < 64. On the one hand, it is noting that the
diffusion of maps θ 4 and 7 are greatly reduced. That why there are fewer
eigenpoints Px,y,z = 1 after 2.5 rounds Rnd, which will greatly improve the
retention of eigenpoints in later Rnd. On the other hand, the special maps χ
mentioned in section 3.2 does not involve the operation AND, which further
leads to the fact that the first 2.5 rounds do not involve the AND operation.
Therefore, all the eigenpoints can pass through the 2.5 rounds Rnd without
any reduction.
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Proof of Theorem 4.1.

Suppose
←−
A 2 is a rotational counterpart of

←−
H ’s preimage A2, and the corre-

sponding rotational number is n = i. According to the Figure 10(a), we have
obtained 32 eigenpoints from the first 3.5 lanes. Therefore, for a random rota-
tional number n excluded the right one i will be marked with probability of
2−32 → 0, and the right one i will be marked with probability of 1. That

means for the right
←−
H , there are 1 + 63× 2−32 → 1 rotational number candi-

date can be marked in every iteration, which further means that only the right
rotational number can be marked. After 258 iterations, we can find out the

correct rotational number for the right rotational counterpart
←−
A 2 with prob-

ability p = 1. Suppose
←−
A 2 is not a rotational counterpart of

←−
H ’s preimage A2

and therefore there is not a meaningful rotational number n for the random

value
←−
H . So, there are 64 × 2−32 → 0 can be marked in any iteration. After

258 iterations, the output n < 64 with probability p = 2−112.

Proof of Theorem 4.2.

Let the state array
←−
A 2 be one of the rotational counterparts corresponding

to the second preimage
←−
A 2. According to the definition of the oracle operator

UN mentioned in the section 4.1, we can use the amplitude amplification to

find the rotational number is n = i of rotational counterpart
←−
A 2 in the step

2. Owing to a valid rotational number n is less than 64, in the step 3 the
first flag flag1 will be set to 1 with probability of 100%. After rotating back

the rotational counterpart
←−
A 2 by n = i bits, we are expected to obtain the

second preimage A2. Therefore, all the 112 equations describing the relations
between the bits of second preimage A2 and any 112 bits of hash value will
pass the verification in the step 4, and the second flag flag2 will also be set to
1 with probability of 100%. By using the phase kickback technique, the oracle

operator UF can certainly flip the phase of the rotational counterpart
←−
A 2 of

second preimage A2.

In most cases, input state array
←−
A 2 is a random string that has nothing

to do with the second preimage A2. Therefore, the value n we obtained in the
step 3 is a random value uniformly distributed from 0 to 2112−1, and the first
flag flag1 will be set to 1 with probability of 64/2112 = 2−104. Later in the

step 4, the obtained value A2 from rotating back the random string
←−
A 2 by n

bits still has nothing to do with the second preimage A2, and passes through
the verification of 112 equations with probability of 2−112. This means that

the probability of oracle operator UF flipping the phase of random string
←−
A 2

is only 2−112 × 2−104 = 2−216 → 0.
What is worth mentioning is that the method of using 112 equations to

verify the correctness of second preimage A2, both the scale of quantum cir-
cuit implementation and the consumption of calculation are far less than
the method of calling 4-round modified Keccak-224. Therefore, we only use
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the running of 4-round modified Keccak-224 twice(include the uncomputing
counterpart) throughout the entire process, which is better than that of Wang
et al. in [26].
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Appendix B

A0,0,0 ⊕ A1,0,63 ⊕ A2,0,2 ⊕ A3,0,36 ⊕ A4,0,37 ⊕ A0,4,0 ⊕ A1,4,63 ⊕ A2,4,2 ⊕ A3,4,36 ⊕ A4,4,37

= C0,0 ⊕ C2,0;

A0,2,61 ⊕ A1,2,54 ⊕ A2,2,21 ⊕ A3,2,39 ⊕ A4,2,25 ⊕ A0,4,61 ⊕ A1,4,54 ⊕ A2,4,21 ⊕ A3,4,39 ⊕ A4,4,25

= C2,0

A0,0,1 ⊕ A1,0,0 ⊕ A2,0,3 ⊕ A3,0,37 ⊕ A4,0,38 ⊕ A0,4,1 ⊕ A1,4,0 ⊕ A2,4,3 ⊕ A3,4,37 ⊕ A4,4,38

= C0,1 ⊕ C2,1;

A0,2,62 ⊕ A1,2,55 ⊕ A2,2,22 ⊕ A3,2,40 ⊕ A4,2,26 ⊕ A0,4,62 ⊕ A1,4,55 ⊕ A2,4,22 ⊕ A3,4,40 ⊕ A4,4,26

= C2,1

A0,0,2 ⊕ A1,0,1 ⊕ A2,0,4 ⊕ A3,0,38 ⊕ A4,0,39 ⊕ A0,4,2 ⊕ A1,4,1 ⊕ A2,4,4 ⊕ A3,4,38 ⊕ A4,4,39

= C0,2 ⊕ C2,2;

A0,2,63 ⊕ A1,2,56 ⊕ A2,2,23 ⊕ A3,2,41 ⊕ A4,2,27 ⊕ A0,4,63 ⊕ A1,4,56 ⊕ A2,4,23 ⊕ A3,4,41 ⊕ A4,4,27

= C2,2

A0,0,3 ⊕ A1,0,2 ⊕ A2,0,5 ⊕ A3,0,39 ⊕ A4,0,40 ⊕ A0,4,3 ⊕ A1,4,2 ⊕ A2,4,5 ⊕ A3,4,39 ⊕ A4,4,40

= C0,3 ⊕ C2,3;

A0,2,0 ⊕ A1,2,57 ⊕ A2,2,24 ⊕ A3,2,42 ⊕ A4,2,28 ⊕ A0,4,0 ⊕ A1,4,57 ⊕ A2,4,24 ⊕ A3,4,42 ⊕ A4,4,28

= C2,3

A0,0,4 ⊕ A1,0,3 ⊕ A2,0,6 ⊕ A3,0,40 ⊕ A4,0,41 ⊕ A0,4,4 ⊕ A1,4,3 ⊕ A2,4,6 ⊕ A3,4,40 ⊕ A4,4,41

= C0,4 ⊕ C2,4;

A0,2,1 ⊕ A1,2,58 ⊕ A2,2,25 ⊕ A3,2,43 ⊕ A4,2,29 ⊕ A0,4,1 ⊕ A1,4,58 ⊕ A2,4,25 ⊕ A3,4,43 ⊕ A4,4,29

= C2,4

A0,0,5 ⊕ A1,0,4 ⊕ A2,0,7 ⊕ A3,0,41 ⊕ A4,0,42 ⊕ A0,4,5 ⊕ A1,4,4 ⊕ A2,4,7 ⊕ A3,4,41 ⊕ A4,4,42

= C0,5 ⊕ C2,5;

A0,2,2 ⊕ A1,2,59 ⊕ A2,2,26 ⊕ A3,2,44 ⊕ A4,2,30 ⊕ A0,4,2 ⊕ A1,4,59 ⊕ A2,4,26 ⊕ A3,4,44 ⊕ A4,4,30

= C2,5

A0,0,6 ⊕ A1,0,5 ⊕ A2,0,8 ⊕ A3,0,42 ⊕ A4,0,43 ⊕ A0,4,6 ⊕ A1,4,5 ⊕ A2,4,8 ⊕ A3,4,42 ⊕ A4,4,43

= C0,6 ⊕ C2,6;

A0,2,3 ⊕ A1,2,60 ⊕ A2,2,27 ⊕ A3,2,45 ⊕ A4,2,31 ⊕ A0,4,3 ⊕ A1,4,60 ⊕ A2,4,27 ⊕ A3,4,45 ⊕ A4,4,31

= C2,6

A0,0,7 ⊕ A1,0,6 ⊕ A2,0,9 ⊕ A3,0,43 ⊕ A4,0,44 ⊕ A0,4,7 ⊕ A1,4,6 ⊕ A2,4,9 ⊕ A3,4,43 ⊕ A4,4,44

= C0,7 ⊕ C2,7;

A0,2,4 ⊕ A1,2,61 ⊕ A2,2,28 ⊕ A3,2,46 ⊕ A4,2,32 ⊕ A0,4,4 ⊕ A1,4,61 ⊕ A2,4,28 ⊕ A3,4,46 ⊕ A4,4,32

= C2,7

A0,0,8 ⊕ A1,0,7 ⊕ A2,0,10 ⊕ A3,0,44 ⊕ A4,0,45 ⊕ A0,4,8 ⊕ A1,4,7 ⊕ A2,4,10 ⊕ A3,4,44 ⊕ A4,4,45

= C0,8 ⊕ C2,8;

A0,2,5 ⊕ A1,2,62 ⊕ A2,2,29 ⊕ A3,2,47 ⊕ A4,2,33 ⊕ A0,4,5 ⊕ A1,4,62 ⊕ A2,4,29 ⊕ A3,4,47 ⊕ A4,4,33

= C2,8

A0,0,9 ⊕ A1,0,8 ⊕ A2,0,11 ⊕ A3,0,45 ⊕ A4,0,46 ⊕ A0,4,9 ⊕ A1,4,8 ⊕ A2,4,11 ⊕ A3,4,45 ⊕ A4,4,46

= C0,9 ⊕ C2,9;

A0,2,6 ⊕ A1,2,63 ⊕ A2,2,30 ⊕ A3,2,48 ⊕ A4,2,34 ⊕ A0,4,6 ⊕ A1,4,63 ⊕ A2,4,30 ⊕ A3,4,48 ⊕ A4,4,34

= C2,9

A0,0,10 ⊕ A1,0,9 ⊕ A2,0,12 ⊕ A3,0,46 ⊕ A4,0,47 ⊕ A0,4,10 ⊕ A1,4,9 ⊕ A2,4,12 ⊕ A3,4,46 ⊕ A4,4,47

= C0,10 ⊕ C2,10;

A0,2,7 ⊕ A1,2,0 ⊕ A2,2,31 ⊕ A3,2,49 ⊕ A4,2,35 ⊕ A0,4,7 ⊕ A1,4,0 ⊕ A2,4,31 ⊕ A3,4,49 ⊕ A4,4,35

= C2,10

A0,0,11 ⊕ A1,0,10 ⊕ A2,0,13 ⊕ A3,0,47 ⊕ A4,0,48 ⊕ A0,4,11 ⊕ A1,4,10 ⊕ A2,4,13 ⊕ A3,4,47 ⊕ A4,4,48

= C0,11 ⊕ C2,11;

A0,2,8 ⊕ A1,2,1 ⊕ A2,2,32 ⊕ A3,2,50 ⊕ A4,2,36 ⊕ A0,4,8 ⊕ A1,4,1 ⊕ A2,4,32 ⊕ A3,4,50 ⊕ A4,4,36

= C2,11

A0,0,12 ⊕ A1,0,11 ⊕ A2,0,14 ⊕ A3,0,48 ⊕ A4,0,49 ⊕ A0,4,12 ⊕ A1,4,11 ⊕ A2,4,14 ⊕ A3,4,48 ⊕ A4,4,49

= C0,12 ⊕ C2,12;
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A0,2,9 ⊕ A1,2,2 ⊕ A2,2,33 ⊕ A3,2,51 ⊕ A4,2,37 ⊕ A0,4,9 ⊕ A1,4,2 ⊕ A2,4,33 ⊕ A3,4,51 ⊕ A4,4,37

= C2,12

A0,0,13 ⊕ A1,0,12 ⊕ A2,0,15 ⊕ A3,0,49 ⊕ A4,0,50 ⊕ A0,4,13 ⊕ A1,4,12 ⊕ A2,4,15 ⊕ A3,4,49 ⊕ A4,4,50

= C0,13 ⊕ C2,13;

A0,2,10 ⊕ A1,2,3 ⊕ A2,2,34 ⊕ A3,2,52 ⊕ A4,2,38 ⊕ A0,4,10 ⊕ A1,4,3 ⊕ A2,4,34 ⊕ A3,4,52 ⊕ A4,4,38

= C2,13

A0,0,14 ⊕ A1,0,13 ⊕ A2,0,16 ⊕ A3,0,50 ⊕ A4,0,51 ⊕ A0,4,14 ⊕ A1,4,13 ⊕ A2,4,16 ⊕ A3,4,50 ⊕ A4,4,51

= C0,14 ⊕ C2,14;

A0,2,11 ⊕ A1,2,4 ⊕ A2,2,35 ⊕ A3,2,53 ⊕ A4,2,39 ⊕ A0,4,11 ⊕ A1,4,4 ⊕ A2,4,35 ⊕ A3,4,53 ⊕ A4,4,39

= C2,14

A0,0,15 ⊕ A1,0,14 ⊕ A2,0,17 ⊕ A3,0,51 ⊕ A4,0,52 ⊕ A0,4,15 ⊕ A1,4,14 ⊕ A2,4,17 ⊕ A3,4,51 ⊕ A4,4,52

= C0,15 ⊕ C2,15;

A0,2,12 ⊕ A1,2,5 ⊕ A2,2,36 ⊕ A3,2,54 ⊕ A4,2,40 ⊕ A0,4,12 ⊕ A1,4,5 ⊕ A2,4,36 ⊕ A3,4,54 ⊕ A4,4,40

= C2,15

A0,0,16 ⊕ A1,0,15 ⊕ A2,0,18 ⊕ A3,0,52 ⊕ A4,0,53 ⊕ A0,4,16 ⊕ A1,4,15 ⊕ A2,4,18 ⊕ A3,4,52 ⊕ A4,4,53

= C0,16 ⊕ C2,16;

A0,2,13 ⊕ A1,2,6 ⊕ A2,2,37 ⊕ A3,2,55 ⊕ A4,2,41 ⊕ A0,4,13 ⊕ A1,4,6 ⊕ A2,4,37 ⊕ A3,4,55 ⊕ A4,4,41

= C2,16

A0,0,17 ⊕ A1,0,16 ⊕ A2,0,19 ⊕ A3,0,53 ⊕ A4,0,54 ⊕ A0,4,17 ⊕ A1,4,16 ⊕ A2,4,19 ⊕ A3,4,53 ⊕ A4,4,54

= C0,17 ⊕ C2,17;

A0,2,14 ⊕ A1,2,7 ⊕ A2,2,38 ⊕ A3,2,56 ⊕ A4,2,42 ⊕ A0,4,14 ⊕ A1,4,7 ⊕ A2,4,38 ⊕ A3,4,56 ⊕ A4,4,42

= C2,17

A0,0,18 ⊕ A1,0,17 ⊕ A2,0,20 ⊕ A3,0,54 ⊕ A4,0,55 ⊕ A0,4,18 ⊕ A1,4,17 ⊕ A2,4,20 ⊕ A3,4,54 ⊕ A4,4,55

= C0,18 ⊕ C2,18;

A0,2,15 ⊕ A1,2,8 ⊕ A2,2,39 ⊕ A3,2,57 ⊕ A4,2,43 ⊕ A0,4,15 ⊕ A1,4,8 ⊕ A2,4,39 ⊕ A3,4,57 ⊕ A4,4,43

= C2,18

A0,0,19 ⊕ A1,0,18 ⊕ A2,0,21 ⊕ A3,0,55 ⊕ A4,0,56 ⊕ A0,4,19 ⊕ A1,4,18 ⊕ A2,4,21 ⊕ A3,4,55 ⊕ A4,4,56

= C0,19 ⊕ C2,19;

A0,2,16 ⊕ A1,2,9 ⊕ A2,2,40 ⊕ A3,2,58 ⊕ A4,2,44 ⊕ A0,4,16 ⊕ A1,4,9 ⊕ A2,4,40 ⊕ A3,4,58 ⊕ A4,4,44

= C2,19

A0,0,20 ⊕ A1,0,19 ⊕ A2,0,22 ⊕ A3,0,56 ⊕ A4,0,57 ⊕ A0,4,20 ⊕ A1,4,19 ⊕ A2,4,22 ⊕ A3,4,56 ⊕ A4,4,57

= C0,20 ⊕ C2,20;

A0,2,17 ⊕ A1,2,10 ⊕ A2,2,41 ⊕ A3,2,59 ⊕ A4,2,45 ⊕ A0,4,17 ⊕ A1,4,10 ⊕ A2,4,41 ⊕ A3,4,59 ⊕ A4,4,45

= C2,20

A0,0,21 ⊕ A1,0,20 ⊕ A2,0,23 ⊕ A3,0,57 ⊕ A4,0,58 ⊕ A0,4,21 ⊕ A1,4,20 ⊕ A2,4,23 ⊕ A3,4,57 ⊕ A4,4,58

= C0,21 ⊕ C2,21;

A0,2,18 ⊕ A1,2,11 ⊕ A2,2,42 ⊕ A3,2,60 ⊕ A4,2,46 ⊕ A0,4,18 ⊕ A1,4,11 ⊕ A2,4,42 ⊕ A3,4,60 ⊕ A4,4,46

= C2,21

A0,0,22 ⊕ A1,0,21 ⊕ A2,0,24 ⊕ A3,0,58 ⊕ A4,0,59 ⊕ A0,4,22 ⊕ A1,4,21 ⊕ A2,4,24 ⊕ A3,4,58 ⊕ A4,4,59

= C0,22 ⊕ C2,22;

A0,2,19 ⊕ A1,2,12 ⊕ A2,2,43 ⊕ A3,2,61 ⊕ A4,2,47 ⊕ A0,4,19 ⊕ A1,4,12 ⊕ A2,4,43 ⊕ A3,4,61 ⊕ A4,4,47

= C2,22

A0,0,23 ⊕ A1,0,22 ⊕ A2,0,25 ⊕ A3,0,59 ⊕ A4,0,60 ⊕ A0,4,23 ⊕ A1,4,22 ⊕ A2,4,25 ⊕ A3,4,59 ⊕ A4,4,60

= C0,23 ⊕ C2,23;

A0,2,20 ⊕ A1,2,13 ⊕ A2,2,44 ⊕ A3,2,62 ⊕ A4,2,48 ⊕ A0,4,20 ⊕ A1,4,13 ⊕ A2,4,44 ⊕ A3,4,62 ⊕ A4,4,48

= C2,23

A0,0,24 ⊕ A1,0,23 ⊕ A2,0,26 ⊕ A3,0,60 ⊕ A4,0,61 ⊕ A0,4,24 ⊕ A1,4,23 ⊕ A2,4,26 ⊕ A3,4,60 ⊕ A4,4,61

= C0,24 ⊕ C2,24;

A0,2,21 ⊕ A1,2,14 ⊕ A2,2,45 ⊕ A3,2,63 ⊕ A4,2,49 ⊕ A0,4,21 ⊕ A1,4,14 ⊕ A2,4,45 ⊕ A3,4,63 ⊕ A4,4,49

= C2,24

A0,0,25 ⊕ A1,0,24 ⊕ A2,0,27 ⊕ A3,0,61 ⊕ A4,0,62 ⊕ A0,4,25 ⊕ A1,4,24 ⊕ A2,4,27 ⊕ A3,4,61 ⊕ A4,4,62

= C0,25 ⊕ C2,25;
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A0,2,22 ⊕ A1,2,15 ⊕ A2,2,46 ⊕ A3,2,0 ⊕ A4,2,50 ⊕ A0,4,22 ⊕ A1,4,15 ⊕ A2,4,46 ⊕ A3,4,0 ⊕ A4,4,50

= C2,25

A0,0,26 ⊕ A1,0,25 ⊕ A2,0,28 ⊕ A3,0,62 ⊕ A4,0,63 ⊕ A0,4,26 ⊕ A1,4,25 ⊕ A2,4,28 ⊕ A3,4,62 ⊕ A4,4,63

= C0,26 ⊕ C2,26;

A0,2,23 ⊕ A1,2,16 ⊕ A2,2,47 ⊕ A3,2,1 ⊕ A4,2,51 ⊕ A0,4,23 ⊕ A1,4,16 ⊕ A2,4,47 ⊕ A3,4,1 ⊕ A4,4,51

= C2,26

A0,0,27 ⊕ A1,0,26 ⊕ A2,0,29 ⊕ A3,0,63 ⊕ A4,0,0 ⊕ A0,4,27 ⊕ A1,4,26 ⊕ A2,4,29 ⊕ A3,4,63 ⊕ A4,4,0

= C0,27 ⊕ C2,27;

A0,2,24 ⊕ A1,2,17 ⊕ A2,2,48 ⊕ A3,2,2 ⊕ A4,2,52 ⊕ A0,4,24 ⊕ A1,4,17 ⊕ A2,4,48 ⊕ A3,4,2 ⊕ A4,4,52

= C2,27

A0,0,28 ⊕ A1,0,27 ⊕ A2,0,30 ⊕ A3,0,0 ⊕ A4,0,1 ⊕ A0,4,28 ⊕ A1,4,27 ⊕ A2,4,30 ⊕ A3,4,0 ⊕ A4,4,1

= C0,28 ⊕ C2,28;

A0,2,25 ⊕ A1,2,18 ⊕ A2,2,49 ⊕ A3,2,3 ⊕ A4,2,53 ⊕ A0,4,25 ⊕ A1,4,18 ⊕ A2,4,49 ⊕ A3,4,3 ⊕ A4,4,53

= C2,28

A0,0,29 ⊕ A1,0,28 ⊕ A2,0,31 ⊕ A3,0,1 ⊕ A4,0,2 ⊕ A0,4,29 ⊕ A1,4,28 ⊕ A2,4,31 ⊕ A3,4,1 ⊕ A4,4,2

= C0,29 ⊕ C2,29;

A0,2,26 ⊕ A1,2,19 ⊕ A2,2,50 ⊕ A3,2,4 ⊕ A4,2,54 ⊕ A0,4,26 ⊕ A1,4,19 ⊕ A2,4,50 ⊕ A3,4,4 ⊕ A4,4,54

= C2,29

A0,0,30 ⊕ A1,0,29 ⊕ A2,0,32 ⊕ A3,0,2 ⊕ A4,0,3 ⊕ A0,4,30 ⊕ A1,4,29 ⊕ A2,4,32 ⊕ A3,4,2 ⊕ A4,4,3

= C0,30 ⊕ C2,30;

A0,2,27 ⊕ A1,2,20 ⊕ A2,2,51 ⊕ A3,2,5 ⊕ A4,2,55 ⊕ A0,4,27 ⊕ A1,4,20 ⊕ A2,4,51 ⊕ A3,4,5 ⊕ A4,4,55

= C2,30

A0,0,31 ⊕ A1,0,30 ⊕ A2,0,33 ⊕ A3,0,3 ⊕ A4,0,4 ⊕ A0,4,31 ⊕ A1,4,30 ⊕ A2,4,33 ⊕ A3,4,3 ⊕ A4,4,4

= C0,31 ⊕ C2,31;

A0,2,28 ⊕ A1,2,21 ⊕ A2,2,52 ⊕ A3,2,6 ⊕ A4,2,56 ⊕ A0,4,28 ⊕ A1,4,21 ⊕ A2,4,52 ⊕ A3,4,6 ⊕ A4,4,56

= C2,31

A0,0,32 ⊕ A1,0,31 ⊕ A2,0,34 ⊕ A3,0,4 ⊕ A4,0,5 ⊕ A0,4,32 ⊕ A1,4,31 ⊕ A2,4,34 ⊕ A3,4,4 ⊕ A4,4,5

= C0,32 ⊕ C2,32;

A0,2,29 ⊕ A1,2,22 ⊕ A2,2,53 ⊕ A3,2,7 ⊕ A4,2,57 ⊕ A0,4,29 ⊕ A1,4,22 ⊕ A2,4,53 ⊕ A3,4,7 ⊕ A4,4,57

= C2,32

A0,0,33 ⊕ A1,0,32 ⊕ A2,0,35 ⊕ A3,0,5 ⊕ A4,0,6 ⊕ A0,4,33 ⊕ A1,4,32 ⊕ A2,4,35 ⊕ A3,4,5 ⊕ A4,4,6

= C0,33 ⊕ C2,33;

A0,2,30 ⊕ A1,2,23 ⊕ A2,2,54 ⊕ A3,2,8 ⊕ A4,2,58 ⊕ A0,4,30 ⊕ A1,4,23 ⊕ A2,4,54 ⊕ A3,4,8 ⊕ A4,4,58

= C2,33

A0,0,34 ⊕ A1,0,33 ⊕ A2,0,36 ⊕ A3,0,6 ⊕ A4,0,7 ⊕ A0,4,34 ⊕ A1,4,33 ⊕ A2,4,36 ⊕ A3,4,6 ⊕ A4,4,7

= C0,34 ⊕ C2,34;

A0,2,31 ⊕ A1,2,24 ⊕ A2,2,55 ⊕ A3,2,9 ⊕ A4,2,59 ⊕ A0,4,31 ⊕ A1,4,24 ⊕ A2,4,55 ⊕ A3,4,9 ⊕ A4,4,59

= C2,34

A0,0,35 ⊕ A1,0,34 ⊕ A2,0,37 ⊕ A3,0,7 ⊕ A4,0,8 ⊕ A0,4,35 ⊕ A1,4,34 ⊕ A2,4,37 ⊕ A3,4,7 ⊕ A4,4,8

= C0,35 ⊕ C2,35;

A0,2,32 ⊕ A1,2,25 ⊕ A2,2,56 ⊕ A3,2,10 ⊕ A4,2,60 ⊕ A0,4,32 ⊕ A1,4,25 ⊕ A2,4,56 ⊕ A3,4,10 ⊕ A4,4,60

= C2,35

A0,0,36 ⊕ A1,0,35 ⊕ A2,0,38 ⊕ A3,0,8 ⊕ A4,0,9 ⊕ A0,4,36 ⊕ A1,4,35 ⊕ A2,4,38 ⊕ A3,4,8 ⊕ A4,4,9

= C0,36 ⊕ C2,36;

A0,2,33 ⊕ A1,2,26 ⊕ A2,2,57 ⊕ A3,2,11 ⊕ A4,2,61 ⊕ A0,4,33 ⊕ A1,4,26 ⊕ A2,4,57 ⊕ A3,4,11 ⊕ A4,4,61

= C2,36

A0,0,37 ⊕ A1,0,36 ⊕ A2,0,39 ⊕ A3,0,9 ⊕ A4,0,10 ⊕ A0,4,37 ⊕ A1,4,36 ⊕ A2,4,39 ⊕ A3,4,9 ⊕ A4,4,10

= C0,37 ⊕ C2,37;

A0,2,34 ⊕ A1,2,27 ⊕ A2,2,58 ⊕ A3,2,12 ⊕ A4,2,62 ⊕ A0,4,34 ⊕ A1,4,27 ⊕ A2,4,58 ⊕ A3,4,12 ⊕ A4,4,62

= C2,37



34 Preimage Recovery of Round-Reduced Keccak

A0,0,38 ⊕ A1,0,37 ⊕ A2,0,40 ⊕ A3,0,10 ⊕ A4,0,11 ⊕ A0,4,38 ⊕ A1,4,37 ⊕ A2,4,40 ⊕ A3,4,10 ⊕ A4,4,11

= C0,38 ⊕ C2,38;

A0,2,35 ⊕ A1,2,28 ⊕ A2,2,59 ⊕ A3,2,13 ⊕ A4,2,63 ⊕ A0,4,35 ⊕ A1,4,28 ⊕ A2,4,59 ⊕ A3,4,13 ⊕ A4,4,63

= C2,38

A0,0,39 ⊕ A1,0,38 ⊕ A2,0,41 ⊕ A3,0,11 ⊕ A4,0,12 ⊕ A0,4,39 ⊕ A1,4,38 ⊕ A2,4,41 ⊕ A3,4,11 ⊕ A4,4,12

= C0,39 ⊕ C2,39;

A0,2,36 ⊕ A1,2,29 ⊕ A2,2,60 ⊕ A3,2,14 ⊕ A4,2,0 ⊕ A0,4,36 ⊕ A1,4,29 ⊕ A2,4,60 ⊕ A3,4,14 ⊕ A4,4,0

= C2,39

A0,0,40 ⊕ A1,0,39 ⊕ A2,0,42 ⊕ A3,0,12 ⊕ A4,0,13 ⊕ A0,4,40 ⊕ A1,4,39 ⊕ A2,4,42 ⊕ A3,4,12 ⊕ A4,4,13

= C0,40 ⊕ C2,40;

A0,2,37 ⊕ A1,2,30 ⊕ A2,2,61 ⊕ A3,2,15 ⊕ A4,2,1 ⊕ A0,4,37 ⊕ A1,4,30 ⊕ A2,4,61 ⊕ A3,4,15 ⊕ A4,4,1

= C2,40

A0,0,41 ⊕ A1,0,40 ⊕ A2,0,43 ⊕ A3,0,13 ⊕ A4,0,14 ⊕ A0,4,41 ⊕ A1,4,40 ⊕ A2,4,43 ⊕ A3,4,13 ⊕ A4,4,14

= C0,41 ⊕ C2,41;

A0,2,38 ⊕ A1,2,31 ⊕ A2,2,62 ⊕ A3,2,16 ⊕ A4,2,2 ⊕ A0,4,38 ⊕ A1,4,31 ⊕ A2,4,62 ⊕ A3,4,16 ⊕ A4,4,2

= C2,41

A0,0,42 ⊕ A1,0,41 ⊕ A2,0,44 ⊕ A3,0,14 ⊕ A4,0,15 ⊕ A0,4,42 ⊕ A1,4,41 ⊕ A2,4,44 ⊕ A3,4,14 ⊕ A4,4,15

= C0,42 ⊕ C2,42;

A0,2,39 ⊕ A1,2,32 ⊕ A2,2,63 ⊕ A3,2,17 ⊕ A4,2,3 ⊕ A0,4,39 ⊕ A1,4,32 ⊕ A2,4,63 ⊕ A3,4,17 ⊕ A4,4,3

= C2,42

A0,0,43 ⊕ A1,0,42 ⊕ A2,0,45 ⊕ A3,0,15 ⊕ A4,0,16 ⊕ A0,4,43 ⊕ A1,4,42 ⊕ A2,4,45 ⊕ A3,4,15 ⊕ A4,4,16

= C0,43 ⊕ C2,43;

A0,2,40 ⊕ A1,2,33 ⊕ A2,2,0 ⊕ A3,2,18 ⊕ A4,2,4 ⊕ A0,4,40 ⊕ A1,4,33 ⊕ A2,4,0 ⊕ A3,4,18 ⊕ A4,4,4

= C2,43

A0,0,44 ⊕ A1,0,43 ⊕ A2,0,46 ⊕ A3,0,16 ⊕ A4,0,17 ⊕ A0,4,44 ⊕ A1,4,43 ⊕ A2,4,46 ⊕ A3,4,16 ⊕ A4,4,17

= C0,44 ⊕ C2,44;

A0,2,41 ⊕ A1,2,34 ⊕ A2,2,1 ⊕ A3,2,19 ⊕ A4,2,5 ⊕ A0,4,41 ⊕ A1,4,34 ⊕ A2,4,1 ⊕ A3,4,19 ⊕ A4,4,5

= C2,44

A0,0,45 ⊕ A1,0,44 ⊕ A2,0,47 ⊕ A3,0,17 ⊕ A4,0,18 ⊕ A0,4,45 ⊕ A1,4,44 ⊕ A2,4,47 ⊕ A3,4,17 ⊕ A4,4,18

= C0,45 ⊕ C2,45;

A0,2,42 ⊕ A1,2,35 ⊕ A2,2,2 ⊕ A3,2,20 ⊕ A4,2,6 ⊕ A0,4,42 ⊕ A1,4,35 ⊕ A2,4,2 ⊕ A3,4,20 ⊕ A4,4,6

= C2,45

A0,0,46 ⊕ A1,0,45 ⊕ A2,0,48 ⊕ A3,0,18 ⊕ A4,0,19 ⊕ A0,4,46 ⊕ A1,4,45 ⊕ A2,4,48 ⊕ A3,4,18 ⊕ A4,4,19

= C0,46 ⊕ C2,46;

A0,2,43 ⊕ A1,2,36 ⊕ A2,2,3 ⊕ A3,2,21 ⊕ A4,2,7 ⊕ A0,4,43 ⊕ A1,4,36 ⊕ A2,4,3 ⊕ A3,4,21 ⊕ A4,4,7

= C2,46

A0,0,47 ⊕ A1,0,46 ⊕ A2,0,49 ⊕ A3,0,19 ⊕ A4,0,20 ⊕ A0,4,47 ⊕ A1,4,46 ⊕ A2,4,49 ⊕ A3,4,19 ⊕ A4,4,20

= C0,47 ⊕ C2,47;

A0,2,44 ⊕ A1,2,37 ⊕ A2,2,4 ⊕ A3,2,22 ⊕ A4,2,8 ⊕ A0,4,44 ⊕ A1,4,37 ⊕ A2,4,4 ⊕ A3,4,22 ⊕ A4,4,8

= C2,47

A0,0,48 ⊕ A1,0,47 ⊕ A2,0,50 ⊕ A3,0,20 ⊕ A4,0,21 ⊕ A0,4,48 ⊕ A1,4,47 ⊕ A2,4,50 ⊕ A3,4,20 ⊕ A4,4,21

= C0,48 ⊕ C2,48;

A0,2,45 ⊕ A1,2,38 ⊕ A2,2,5 ⊕ A3,2,23 ⊕ A4,2,9 ⊕ A0,4,45 ⊕ A1,4,38 ⊕ A2,4,5 ⊕ A3,4,23 ⊕ A4,4,9

= C2,48

A0,0,49 ⊕ A1,0,48 ⊕ A2,0,51 ⊕ A3,0,21 ⊕ A4,0,22 ⊕ A0,4,49 ⊕ A1,4,48 ⊕ A2,4,51 ⊕ A3,4,21 ⊕ A4,4,22

= C0,49 ⊕ C2,49;

A0,2,46 ⊕ A1,2,39 ⊕ A2,2,6 ⊕ A3,2,24 ⊕ A4,2,10 ⊕ A0,4,46 ⊕ A1,4,39 ⊕ A2,4,6 ⊕ A3,4,24 ⊕ A4,4,10

= C2,49

A0,0,50 ⊕ A1,0,49 ⊕ A2,0,52 ⊕ A3,0,22 ⊕ A4,0,23 ⊕ A0,4,50 ⊕ A1,4,49 ⊕ A2,4,52 ⊕ A3,4,22 ⊕ A4,4,23

= C0,50 ⊕ C2,50;

A0,2,47 ⊕ A1,2,40 ⊕ A2,2,7 ⊕ A3,2,25 ⊕ A4,2,11 ⊕ A0,4,47 ⊕ A1,4,40 ⊕ A2,4,7 ⊕ A3,4,25 ⊕ A4,4,11

= C2,50
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A0,0,51 ⊕ A1,0,50 ⊕ A2,0,53 ⊕ A3,0,23 ⊕ A4,0,24 ⊕ A0,4,51 ⊕ A1,4,50 ⊕ A2,4,53 ⊕ A3,4,23 ⊕ A4,4,24

= C0,51 ⊕ C2,51;

A0,2,48 ⊕ A1,2,41 ⊕ A2,2,8 ⊕ A3,2,26 ⊕ A4,2,12 ⊕ A0,4,48 ⊕ A1,4,41 ⊕ A2,4,8 ⊕ A3,4,26 ⊕ A4,4,12

= C2,51

A0,0,52 ⊕ A1,0,51 ⊕ A2,0,54 ⊕ A3,0,24 ⊕ A4,0,25 ⊕ A0,4,52 ⊕ A1,4,51 ⊕ A2,4,54 ⊕ A3,4,24 ⊕ A4,4,25

= C0,52 ⊕ C2,52;

A0,2,49 ⊕ A1,2,42 ⊕ A2,2,9 ⊕ A3,2,27 ⊕ A4,2,13 ⊕ A0,4,49 ⊕ A1,4,42 ⊕ A2,4,9 ⊕ A3,4,27 ⊕ A4,4,13

= C2,52

A0,0,53 ⊕ A1,0,52 ⊕ A2,0,55 ⊕ A3,0,25 ⊕ A4,0,26 ⊕ A0,4,53 ⊕ A1,4,52 ⊕ A2,4,55 ⊕ A3,4,25 ⊕ A4,4,26

= C0,53 ⊕ C2,53;

A0,2,50 ⊕ A1,2,43 ⊕ A2,2,10 ⊕ A3,2,28 ⊕ A4,2,14 ⊕ A0,4,50 ⊕ A1,4,43 ⊕ A2,4,10 ⊕ A3,4,28 ⊕ A4,4,14

= C2,53

A0,0,54 ⊕ A1,0,53 ⊕ A2,0,56 ⊕ A3,0,26 ⊕ A4,0,27 ⊕ A0,4,54 ⊕ A1,4,53 ⊕ A2,4,56 ⊕ A3,4,26 ⊕ A4,4,27

= C0,54 ⊕ C2,54;

A0,2,51 ⊕ A1,2,44 ⊕ A2,2,11 ⊕ A3,2,29 ⊕ A4,2,15 ⊕ A0,4,51 ⊕ A1,4,44 ⊕ A2,4,11 ⊕ A3,4,29 ⊕ A4,4,15

= C2,54

A0,0,55 ⊕ A1,0,54 ⊕ A2,0,57 ⊕ A3,0,27 ⊕ A4,0,28 ⊕ A0,4,55 ⊕ A1,4,54 ⊕ A2,4,57 ⊕ A3,4,27 ⊕ A4,4,28

= C0,55 ⊕ C2,55;

A0,2,52 ⊕ A1,2,45 ⊕ A2,2,12 ⊕ A3,2,30 ⊕ A4,2,16 ⊕ A0,4,52 ⊕ A1,4,45 ⊕ A2,4,12 ⊕ A3,4,30 ⊕ A4,4,16

= C2,55

A0,0,56 ⊕ A1,0,55 ⊕ A2,0,58 ⊕ A3,0,28 ⊕ A4,0,29 ⊕ A0,4,56 ⊕ A1,4,55 ⊕ A2,4,58 ⊕ A3,4,28 ⊕ A4,4,29

= C0,56 ⊕ C2,56;

A0,2,53 ⊕ A1,2,46 ⊕ A2,2,13 ⊕ A3,2,31 ⊕ A4,2,17 ⊕ A0,4,53 ⊕ A1,4,46 ⊕ A2,4,13 ⊕ A3,4,31 ⊕ A4,4,17

= C2,56

A0,0,57 ⊕ A1,0,56 ⊕ A2,0,59 ⊕ A3,0,29 ⊕ A4,0,30 ⊕ A0,4,57 ⊕ A1,4,56 ⊕ A2,4,59 ⊕ A3,4,29 ⊕ A4,4,30

= C0,57 ⊕ C2,57;

A0,2,54 ⊕ A1,2,47 ⊕ A2,2,14 ⊕ A3,2,32 ⊕ A4,2,18 ⊕ A0,4,54 ⊕ A1,4,47 ⊕ A2,4,14 ⊕ A3,4,32 ⊕ A4,4,18

= C2,57

A0,0,58 ⊕ A1,0,57 ⊕ A2,0,60 ⊕ A3,0,30 ⊕ A4,0,31 ⊕ A0,4,58 ⊕ A1,4,57 ⊕ A2,4,60 ⊕ A3,4,30 ⊕ A4,4,31

= C0,58 ⊕ C2,58;

A0,2,55 ⊕ A1,2,48 ⊕ A2,2,15 ⊕ A3,2,33 ⊕ A4,2,19 ⊕ A0,4,55 ⊕ A1,4,48 ⊕ A2,4,15 ⊕ A3,4,33 ⊕ A4,4,19

= C2,58

A0,0,59 ⊕ A1,0,58 ⊕ A2,0,61 ⊕ A3,0,31 ⊕ A4,0,32 ⊕ A0,4,59 ⊕ A1,4,58 ⊕ A2,4,61 ⊕ A3,4,31 ⊕ A4,4,32

= C0,59 ⊕ C2,59;

A0,2,56 ⊕ A1,2,49 ⊕ A2,2,16 ⊕ A3,2,34 ⊕ A4,2,20 ⊕ A0,4,56 ⊕ A1,4,49 ⊕ A2,4,16 ⊕ A3,4,34 ⊕ A4,4,20

= C2,59

A0,0,60 ⊕ A1,0,59 ⊕ A2,0,62 ⊕ A3,0,32 ⊕ A4,0,33 ⊕ A0,4,60 ⊕ A1,4,59 ⊕ A2,4,62 ⊕ A3,4,32 ⊕ A4,4,33

= C0,60 ⊕ C2,60;

A0,2,57 ⊕ A1,2,50 ⊕ A2,2,17 ⊕ A3,2,35 ⊕ A4,2,21 ⊕ A0,4,57 ⊕ A1,4,50 ⊕ A2,4,17 ⊕ A3,4,35 ⊕ A4,4,21

= C2,60

A0,0,61 ⊕ A1,0,60 ⊕ A2,0,63 ⊕ A3,0,33 ⊕ A4,0,34 ⊕ A0,4,61 ⊕ A1,4,60 ⊕ A2,4,63 ⊕ A3,4,33 ⊕ A4,4,34

= C0,61 ⊕ C2,61;

A0,2,58 ⊕ A1,2,51 ⊕ A2,2,18 ⊕ A3,2,36 ⊕ A4,2,22 ⊕ A0,4,58 ⊕ A1,4,51 ⊕ A2,4,18 ⊕ A3,4,36 ⊕ A4,4,22

= C2,61

A0,0,62 ⊕ A1,0,61 ⊕ A2,0,0 ⊕ A3,0,34 ⊕ A4,0,35 ⊕ A0,4,62 ⊕ A1,4,61 ⊕ A2,4,0 ⊕ A3,4,34 ⊕ A4,4,35

= C0,62 ⊕ C2,62;

A0,2,59 ⊕ A1,2,52 ⊕ A2,2,19 ⊕ A3,2,37 ⊕ A4,2,23 ⊕ A0,4,59 ⊕ A1,4,52 ⊕ A2,4,19 ⊕ A3,4,37 ⊕ A4,4,23

= C2,62

A0,0,63 ⊕ A1,0,62 ⊕ A2,0,1 ⊕ A3,0,35 ⊕ A4,0,36 ⊕ A0,4,63 ⊕ A1,4,62 ⊕ A2,4,1 ⊕ A3,4,35 ⊕ A4,4,36

= C0,63 ⊕ C2,63;

A0,2,60 ⊕ A1,2,53 ⊕ A2,2,20 ⊕ A3,2,38 ⊕ A4,2,24 ⊕ A0,4,60 ⊕ A1,4,53 ⊕ A2,4,20 ⊕ A3,4,38 ⊕ A4,4,24

= C2,63
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Here, we list the set of new linear constraints that act on the candidate
messaged state A2.
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