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Abstract. We propose an efficient technique called coefficient grouping
to evaluate the algebraic degree of the FHE-friendly cipher Chaghri, which
has been accepted for ACM CCS 2022. It is found that the algebraic
degree increases linearly rather than exponentially. As a consequence, we
can construct a 13-round distinguisher with time and data complexity of
263 and mount a 13.5-round key-recovery attack with time complexity of
about 2119.6. In particular, a higher-order differential attack on 8 rounds
of Chaghri can be achieved with time and data complexity of 238. Hence,
it indicates that the full 8 rounds are far from being secure. Furthermore,
we also demonstrate the application of our coefficient grouping technique
to the design of secure cryptographic components. As a result, a counter-
measure is found for Chaghri and it has little overhead compared with
the original design. Since more and more symmetric primitives defined
over a large finite field are emerging, we believe our new technique can
have more applications in the future research.
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1 Introduction

In recent years, there is a new trend to design symmetric-key primitives for
advanced protocols like secure multi-party computation (MPC), fully homomor-
phic encryption (FHE) and zero-knowledge proof systems (ZK) [2,3,4, 5, 10,12,
14, 15, 16, 19, 20, 22, 28]. This is mainly motivated by the fact that traditional
symmetric-key primitives like AES and SHA-2/SHA-3 are not efficient in these
protocols. Therefore, when designing new symmetric-key primitives for them,
designers need to be aware of the features of the target MPC/FHE/ZK schemes,
e.g. which operations are cost-free and which are costly. For example, for many
FHE schemes, a symmetric-key primitive with low multiplicative depth is desired.

It has been noticed by Canteaut et al. [10] that stream ciphers are a practical
solution for efficient homomorphic ciphertext compression and many such stream



ciphers have been proposed since then, like Kreyvrium [10], FLIP [28], Rasta [14],
Dasta [22], Fasta [12], Masta [20] and Pasta [16]. Among them, Kreyvrium, FLIP,
Rasta, Dasta, Fasta are designed over F2 while Masta and Pasta are designed over
Fp where p is large prime number. At ACM CCS 2022, an FHE-friendly block
cipher called Chaghri [6] defined over F263 was proposed and it can outperform
AES by about 65%.

Along with the new proposals, new cryptanalytic techniques have also been
developed. There are some practical examples that several such primitives are
broken with new cryptanalytic techniques. Specifically, the variant of MiMC
designed over F2n is vulnerable against the higher-order differential attack [18].
Jarvis and Friday designed over a large finite field can be broken by Gröbner basis
attacks [1]. The first version of FLIP can be practically broken by guess-and-
determine attacks [17]. Some important parameters of LowMC and Agrasta are
also shown to be insecure against algebraic attacks [13,25,26,27,29].

Due to the above design-and-break game, cryptographers have started to
realize the importance to enrich the pool of cryptanalytic techniques for these new
designs. Especially, as many such primitives are defined over a large finite field,
it has become urgent to fill the shortcomings of the corresponding cryptanalytic
techniques. At CRYPTO 2020, a major breakthrough was made where the higher-
order differential attack was extended to finite fields of any characteristics [7].
At the same time, a more refined higher-order differential attack over F2n was
discovered at ASIACRYPT 2020 [18]. These higher-order differential attacks rely
on the degree evaluation. However, in both [7] and [18], the degree is computed
in a rather straightforward way and they mainly exploit the low degree of the
S-box, i.e. the S-box x 7→ x3. Although there are some follow-up works [9,11], the
corresponding general results still have some limitations and the degree evaluation
still seems somewhat straightforward.

Some related works. Let us consider a MiMC-like construction defined over
F2n with an S-box x 7→ xd where d = 2j + 1. Then, the general results in [9] show
that the algebraic degree after r rounds is upper bounded by ⌊rlog2d⌋ − j + 1 ≈
(r − 1)j + 1. This is obviously ineffective when j is large and n is small as
n < ⌊rlog2d⌋ − j + 1 needs to hold to construct a meaningful higher-order
differential distinguisher. However, as (n, d) = (129, 3) is one parameter of MiMC,
this is indeed quite effective and it implies that the algebraic degree increases
linearly. Note that this was first observed in [18] and later generalized in [9].

It is found that the work [11] also gives a very similar upper bound for the
algebraic degree when the S-box is x 7→ xd, though it considers the SPN structure.
Although Chaghri is also based on the SPN structure, we emphasize that our
method is still quite different from [11] and this will be very clear later. This is
because we use a much more refined method to evaluate the algebraic degree
for any such (n, d) while [11] still relies on a very similar bound as in [9] which
cannot be effective for large d and small n. Since in Chaghri (n, d) = (63, 232 + 1),
we cannot obtain efficient attacks by simply using the bound given in [9, 11].

Another related work seems to be the division property [30, 31], which is
a powerful method for the degree evaluation. However, it is useful for F2 and
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generalizing it to F2n is still challenging due to the huge size of the S-box. Here,
we emphasize that our method is in nature very different from the concept of
division property.

Our contributions. We mainly focus on the higher-order differential attacks
on Chaghri. As mentioned above, due to the usage of (n, d) = (63, 232 + 1) in
Chaghri, existing methods to bound the algebraic degree become ineffective and
we almost cannot violate the designers’ claim that the algebraic degree of Chaghri
increases exponentially with them. Hence, new techniques are required to break
Chaghri. The contributions of this paper are summarized below.

1. A novel and efficient technique called coefficient grouping is proposed for the
degree evaluation of Chaghri. The core idea of this technique is to describe a
set of exponents with only a single vector of integers. In this way, studying
the propagation of the exponents is reduced to studying the propagation
of the vectors. The efficiency of this method comes from the fact that the
propagation of the vectors is deterministic and the time complexity to compute
them increases linearly in the number of attacked rounds. After computing
the vectors, bounding the algebraic degree is then reduced to a natural
optimization problem and can be solved with any solvers, though we choose to
use MILP for its simplicity. As far as we can understand, these features make
our method different from all existing methods for the degree evaluation [7,
8, 9, 11,18,30,31].

2. For SPN-based ciphers over F2n , i.e. Chaghri, we demonstrate that it is
necessary to first study the increase of the algebraic degree in the univariate
case and then study it in the multivariate case. With this strategy and our
method to evaluate the algebraic degree, we can break the full 8 rounds of
Chaghri with a low data and time complexity of 238. Moreover, the attack can
reach up to 13.5 rounds and this reveals that the original design of Chaghri
is flawed. Our results are summarized in Table 1.

3. It is found that the vulnerability of Chaghri exists in the usage of a sparse
affine transform (an F2-linearized affine polynomial), i.e. B(x) = c1x23 + c2,
where c1, c2 ∈ F263 are constants. This can be well explained by our coefficient
grouping technique and further shows the advantage of our technique. Hence,
we are motivated to design a slightly denser affine transform and further
motivated to generalize our coefficient grouping technique to a more complex
design. Based on it, we succeed in finding a new affine transform to achieve an
almost exponential increase of the algebraic degree. The new affine transform
is B′(x) = c′

1x + c′
2x22 + c′

3x28 + c′
4. By replacing B(x) with B′(x), we can

keep the number of rounds of Chaghri unchanged and this has little overhead
compared with the original design.

Based on the above results, we believe our coefficient technique is useful for both
cryptanalysis and design and worth further investigation.

Organization. In Sect. 2, we describe the used notations, the block cipher
Chaghri and some basic knowledge related to this work. In Sect. 3, the coefficient
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grouping technique for Chaghri is described. Then, in Sect. 4, we give more details
of our attacks on Chaghri in both the univariate and multivariate settings. In Sect.
5, the coefficient grouping technique is further generalized to a more complex
design and we describe how to search for a secure affine transform with it. Finally,
we conclude the paper in Sect. 6.

Table 1: Summary of our attacks on Chaghri
Attack Type Rounds Time Data Reference

Distinguisher
8 (full) 238 238 Sect. 4

13 263 263 Sect. 4
13.5 2123 2123 Sect. 4.3

Key recovery 13.5 2119.6 263 Sect. 4.1

2 Preliminaries

2.1 Notation

The following notations will be used throughout this paper.

1. |S| denotes the size of the set S.
2. a%b represents a mod b.
3. a|b denotes that a divides b.
4. [a, b] is a set of integers i satisfying a ≤ i ≤ b.
5. H(a) is the hamming weight of a.
6. The function Mn(x) (x ≥ 0) is defined as follows:

Mn(x) =
{

2n − 1 if 2n − 1|x, x ≥ 2n − 1,

x%(2n − 1) otherwise.

By the definition of Mn(x), we have Mn(x1 + x2) = Mn(Mn(x1) + Mn(x2)),
Mn(2i) = 2i%n and Mn(2ix) = Mn(2i%nMn(x)) for i ≥ 0.

2.2 On Finite Field Fpn

For a prime number p and a positive integer n, the finite field Fpn is a set of
numbers of size pn. Let α be a primitive element of Fpn . Then each element x in
the finite field Fpn can be written as

x =
n−1∑
i=0

βiα
i,
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where βi ∈ [0, p−1]. Moreover, the set {1, α, . . . , αn−1} is said to be a polynomial
basis of Fpn .

For the element x ∈ Fpn , it is well-known that{
xpn

= x ∀x ∈ Fpn ,

xpn−1 = 1 ∀x ∈ Fpn and x ̸= 0.

Hence, for two monomials Xa and Xb in the polynomial ring F2n [X], there is
Xa · Xb = XMn(a+b), which is the main reason to define the function Mn(x).

Moreover, it is also well-known that

(x + y)pi

= xpi

+ ypi

for ∀x, y ∈ Fpn and i ≥ 0.

The higher-order differential attack over F2n. Throughout this paper, we
mainly utilize the idea described in [18] to analyze Chaghri. Specifically, for a
given function F : F2n → F2n , there always exists a vectorial Boolean function
G : Fn

2 → Fn
2 such that

σ :
n−1∑
i=0

βiα
i 7→ (β0, β1, . . . , βn−1) ∈ Fn

2 ,

σ(F(x)) = G(σ(x)) ∀x ∈ F2n ,

where {1, α, . . . , αn−1} is a polynomial basis of F2n . Let deg(G) be the algebraic
degree of G. For the higher-order differential attack, given any affine vector
subspace V of dimension deg(G) + 1 from Fn

2 , there is
∑

v∈V G(v) = 0, which
implies

∑
(β0,β1,...,βn−1)∈V

F(
n−1∑
i=0

βiα
i) = 0.

It is well-known that deg(G) is related to the univariate representation of F , as
stated below:

Definition 1 (Univariate degree and algebraic degree). Let F and G be as
above. The univariate representation of F is

F =
2n−1∑
i=0

uiX
i,

where ui ∈ F2n for i ∈ [0, 2n − 1]. The univariate degree of F denoted by Du
F is

defined as:

Du
F = max{i : i ∈ [0, 2n − 1], ui ̸= 0}.
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Then, deg(G) can be computed as follows:

deg(G) = max{H(i) : i ∈ [0, 2n − 1], ui ̸= 0}.

max{H(i) : i ∈ [0, 2n − 1], ui ̸= 0} is also called the algebraic degree of F denoted
by Da

F .

Examples. Consider two univariate polynomials F1, F2 ∈ F263 [X], where

F1 = X230+231
+ X21+23+24

, F2 = X260+231+22+23
+ X261+231

.

Then, we have

Du
F1

= 230 + 231, Da
F1

= 3, Du
F2

= 261 + 231, Da
F2

= 4.

The multivariate case. The above higher-order differential attack can also be
extended to the multivariate case. Specifically, let F(X1, X2, . . . , Xt) : Ft

2n → F2n

be a multivariate function in variables (X1, X2, . . . , Xt). Then, its multivariate
representation is

F =
2n−1∑
i1=0

2n−1∑
i2=0

· · ·
2n−1∑
it=0

ui1,i2,...,it
Xi1

1 Xi2
2 · · · Xit

t .

The algebraic degree is then defined as

Da
F = max{

t∑
j=1

H(ij) : ij ∈ [0, 2n − 1], ui1,i2,...,it ̸= 0}.

Hence, by choosing an affine subspace V of dimension dim(V ) = Da
F + 1 from

Ft
2n , there will be

∑
v∈V F(v) = 0, which is trivial extension of the univariate

case. Specifically, for any monomial Xρ1
1 Xρ2

2 · · · Xρt

t , there is
∑t

i=1 H(ρi) ≤ Da
F

by definition. Then, for any affine subspace V of dimension Da
F + 1 from Ft

2n , we
can denote the corresponding affine subspace of Xi by Vi (1 ≤ i ≤ t) and denote
the dimension of Vi by dim(Vi). Then, there is

∑t
i=1 dim(Vi) = Da

F + 1 ≥ 1 +∑t
i=1 H(ρi). Therefore, there must exist an index i such that dim(Vi) ≥ H(ρi)+1,

which implies ∑
X1∈V1

∑
X2∈V2

· · ·
∑

Xi∈Vi

· · ·
∑

Xt∈Vt

Xρ1
1 Xρ2

2 · · · Xρt

t = 0.

Hence,
∑

v∈V F(v) = 0 when dim(V ) = Da
F + 1.

Examples. For the multivariate polynomials F3 = X220+215

1 X260

2 +X220+215+240

1 X260

2 +
X220+215+240

1 and F4 = X220+215+240

1 X260

2 +X220+215+240+250+260

1 in F263 [X1, X2],
we have Da

F3
= 4 and Da

F4
= 5, respectively.
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2.3 Description of Chaghri

The FHE-friendly block cipher Chaghri [6] is defined over a large finite field.
There are in total 8 rounds and each round is composed of two steps. Denote
the state of Chaghri by a = (a1, a2, a3) ∈ F3

263 . The round function R(a) of its
decryption is described in Algorithm 1. Note that throughout this paper, we are
considering the decryption of Chaghri because the designers choose the secure
number of rounds for Chaghri by mainly analyzing the security of decryption.

Algorithm 1 The round function of Chaghri at the (j + 1)th round where
0 ≤ j ≤ 7
1: procedure R(a)
2: ai = G(ai) for i ∈ {1, 2, 3}
3: ai = B(ai) for i ∈ {1, 2, 3}
4: a = M · (a1, a2, a3)T

5: ai = ai + RK[2j + 1]i for i ∈ {1, 2, 3}
6: ai = G(ai) for i ∈ {1, 2, 3}
7: ai = B(ai) for i ∈ {1, 2, 3}
8: a = M · (a1, a2, a3)T

9: ai = ai + RK[2j + 2]i for i ∈ {1, 2, 3}

In Algorithm 1, the round key RK[j] = (RK[j]1, RK[j]2, RK[j]3) ∈ F3
263 is

generated from a master key K = (K1, K2, K3) ∈ F3
263 . The whitening key is

RK[0] = (RK[0]1, RK[0]2, RK[0]3). We omit the key schedule function as it is
not relevant to our attacks. In the following, we explain each component used in
the round function, namely G, B and M .

The nonlinear function G(x) : F263 → F263. G(x) is defined as G(x) = x232+1.

The affine transform B(x) : F263 → F263. B(x) is defined as B(x) = c1x23 +c2
where c1, c2 ∈ F263 are constants.

The linear transform M : F3
263 → F3

263. M is a 3 × 3 MDS matrix. The
designers do not specify a concrete choice for M and they claim any MDS matrix
is suitable. We note here that our attacks apply to any choice of M .

Definition of one step. According to the round function described in Algorithm
1, the round function is R(a) = AK ◦ M ◦ B ◦ S ◦ AK ◦ M ◦ B ◦ S(a). Similar
to [6], one step of Chaghri is defined as AK ◦ M ◦ B ◦ S(a) and we call it the step
function of Chaghri.

Notation for the internal state. We denote the internal state after i steps
by (zi,1, zi,2, zi,3). For example, the input state is (z0,1, z0,2, z0,3), the internal
state after 1 step is (z1,1, z1,2, z1,3), and the internal state after 1 round is
(z2,1, z2,2, z2,3).
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Throughput this paper, we consider R steps of Chaghri. Since the total number
of steps is 16, R ≤ 16 should hold. However, our attack can even apply to R > 16.
Hence, we do not restrict the maximal value of R.

3 The Coefficient Grouping Technique

We give the intuitive explanation of our new technique with its application
to Chaghri. For better understanding, we first only focus on its application to
the univariate polynomial and then we discuss how it can be extended to the
multivariate case.

Without loss of generality, we consider a general form of S(x) and B(x), as
shown below:

S(x) = x2k0 +2k1
, B(x) = c1x2k2 + c2.

Moreover, we consider the finite field F2n , i.e. the internal state a = (a1, a2, a3)
of Chaghri satisfies ai ∈ F2n for i ∈ [1, 3]. It should be emphasized that there are
constraints on (k0, k1, n) to ensure that S(x) is a permutation. Here we only care
about its general form of algebraic degree 2. For Chaghri, (k0, k1, k2) = (32, 0, 3)
and n = 63.

The main idea of our attacks. We consider an input state which can be
represented as univariate polynomials in the variable X ∈ F2n , as shown below:

z0,1 = A0,1X + B0,1, z0,2 = A0,2X + B0,2, z0,3 = A0,3X + B0,3, (1)

where A0,i, B0,i ∈ F2n (1 ≤ i ≤ 3) are randomly chosen constants. In this way,
after an arbitrary number of steps, each state word can always be represented as
a univariate polynomial in X. Our aim is to compute the upper bound Dr,i for
the algebraic degree of the univariate polynomial Pr,i(X) where zr,i = Pr,i(X)
(1 ≤ i ≤ 3). We say the upper bound for the algebraic degree5 of r-step Chaghri
is Dr where Dr = max{Dr,1, Dr,2, Dr,3}. Hence, if Dr < n, there exists a higher-
order differential attack on r steps of Chaghri with time and data complexity
2Dr+1.

In particular, this attack can be trivially extended for 1 more step by using
2n data. Specifically, we can consider an input state of the following form:

z0,1 = X1, z0,2 = A2, z0,3 = A3,

where A2, A3 ∈ F2n are randomly chosen constants and X is the variable. Then,
by making X = B ◦ S(X1 + RK[0]1), the state (z1,1, z1,2, z1,3) will be of the same
5 From the perspective of attackers, Dr can be defined as min{Dr,1, Dr,2, Dr,3}

to reduce the time complexity of the attacks. However, due to the strong diffu-
sion of the MDS matrix, using Dr = max{Dr,1, Dr,2, Dr,3} is reasonable and can
greatly simplify the attack. This can also be observed from our later analysis of
the evolution of the polynomials through the step function of Chaghri, i.e. using
Dr = max{Dr,1, Dr,2, Dr,3} is indeed tight according to the experiments.
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form as in Equation 1. For such a state (z1,1, z1,2, z1,3), after r more steps, the
algebraic degree of the univariate polynomials in X is upper bounded by Dr.
Since Dr < n and X will traverse all the 2n possible values when X1 takes all
the 2n possible values, the higher-order differential attack indeed can reach r + 1
steps with time and data complexity of 2n.

3.1 Tracing the Form of the Univariate Polynomial

With the input form shown in Equation 1, the state words (zr,1, zr,2, zr,3) can
always be represented as univariate polynomials of the following form:

zr,1 =
|wr|∑
i=1

Ar,iX
wr,i , zr,2 =

|wr|∑
i=1

Br,iX
wr,i , zr,3 =

|wr|∑
i=1

Cr,iX
wr,i

where Ar,i, Br,i, Cr,i ∈ F2n are constants depending on the key and we call the
set

wr = {wr,1, wr,2, . . . , wr,|wr|}

the set of exponents for the univariate polynomials after r steps. It should be
mentioned that for r = 0, we have

w0 = {0, 1}, (2)

which corresponds to the input form specified in Equation 1.
According to the definition of the algebraic degree of a univariate polynomial,

we have

Dr ≤ max{H(wr,i) : 1 ≤ i ≤ |wr|}. (3)

Analyzing the evolution of the polynomial representations. We are
interested in the univariate polynomials to represent (zr+1,1, zr+1,2, zr+1,3), i.e.
how the polynomials evolve through the step function of Chaghri.

For G(zr,1), there is

G(zr,1) = (
|wr|∑
i=1

Ar,iX
wr,i)2k0 +2k1

= (
|wr|∑
i=1

Ar,iX
wr,i)2k0 (

|wr|∑
j=1

Ar,jXwr,j )2k1 =
|wr|∑
i=1

|wr|∑
j=1

Ar,i,jXMn(2k0 wr,i+2k1 wr,j),

where Ar,i,j ∈ F2n are still constants depending on the key.
For B ◦ G(zr,1), there is

B ◦ G(zr,1) = c1(
|wr|∑
i=1

|wr|∑
j=1

Ar,i,jXMn(2k0 wr,i+2k1 wr,j))2k2 + c2
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=
|wr|∑
i=1

|wr|∑
j=1

A′
r,i,jXMn(2k0+k2 wr,i+2k1+k2 wr,j),

where A′
r,i,j ∈ F263 are constants depending on the key.

Similarly, it can be found that

B ◦ G(zr,2) =
|wr|∑
i=1

|wr|∑
j=1

B′
r,i,jXMn(2k0+k2 wr,i+2k1+k2 wr,j),

B ◦ G(zr,3) =
|wr|∑
i=1

|wr|∑
j=1

C ′
r,i,jXMn(2k0+k2 wr,i+2k1+k2 wr,j),

where B′
r,i,j , C ′

r,i,j ∈ F2n are constants depending on the key.
Therefore, we can obtain

zr+1,1 =
|wr|∑
i=1

|wr|∑
j=1

Ar+1,i,jXMn(2k0+k2 wr,i+2k1+k2 wr,j),

zr+1,2 =
|wr|∑
i=1

|wr|∑
j=1

Br+1,i,jXMn(2k0+k2 wr,i+2k1+k2 wr,j),

zr+1,3 =
|wr|∑
i=1

|wr|∑
j=1

Cr+1,i,jXMn(2k0+k2 wr,i+2k1+k2 wr,j),

where Ar+1,i,j , Br+1,i,j , Cr+1,i,j ∈ F263 are constants depending on the key.
Hence, we obtain a relation between the sets wr and wr+1, as shown below:

wr+1 = {e|e = Mn(2k0+k2wr,i + 2k1+k2wr,j), 1 ≤ i, j ≤ |wr|},

In this way, for each element e ∈ wr+2, there must exist (i, j, s, t) where
1 ≤ i, j, s, t ≤ |wr| such that

e = Mn(2k0+k2(2k0+k2wr,i + 2k1+k2wr,j) + 2k1+k2(2k0+k2wr,s + 2k1+k2wr,t)).

In other words,

wr+2 = {e|e = Mn(22k0+2k2wr,i + 2k0+k1+2k2(wr,j + wr,s) + 22k1+2k2wr,t),
1 ≤ i, j, s, t ≤ |wr|}.

For the concrete parameters of Chaghri, we have

wr+1 = {e|e = M63(235wr,i + 23wr,j), 1 ≤ i, j ≤ |wr|},

wr+2 = {e|e = M63(27wr,i + 238(wr,j + wr,s) + 26wr,t), 1 ≤ i, j, s, t ≤ |wr|}.
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Another representation of the set wr+ℓ. Based on the above discussions,
it is now clear that there exists another general representation of the set wr+ℓ.
Specifically, it must be of the following form:

wr+ℓ = {e|e = Mn(
Nn−1∑
i=1

2n−1wr,di,n−1 +
Nn−2∑
i=1

2n−2wr,di,n−2 + . . . +
N0∑
i=1

20wr,di,0),

where 1 ≤ di,j ≤ |wr| for 0 ≤ j ≤ n − 1}

Proof. Proving this form is simple. Specifically, by induction, we only need to
prove wr+ℓ+1 is also of this form when wr+ℓ is as above. This is because w0 is of
this form, i.e. for w0 = {w0,1, w0,2} = {0, 1} = {e|e = 20w0,i, 1 ≤ i ≤ 2}, there is

N0 = 1, Ni = 0 (1 ≤ i ≤ n − 1). (4)

Considering the relation between wr+ℓ and wr+ℓ+1, we have

wr+ℓ+1 = {e|e = Mn(2k0+k2wr+ℓ,i + 2k1+k2wr+ℓ,j), 1 ≤ i, j ≤ |wr+ℓ|}.

Hence, we have

wr+ℓ+1 = {e|e = Mn(
N ′

n−1∑
i=1

2n−1wr,d′
i,n−1

+
N ′

n−2∑
i=1

2n−2wr,d′
i,n−2

+ . . . +
N ′

0∑
i=1

20wr,d′
i,0

),

where 1 ≤ d′
i,j ≤ |wr| for 0 ≤ j ≤ n − 1},

where

N ′
i = N(i−k1−k2)%n + N(i−k0−k2)%n for 0 ≤ i ≤ n − 1. (5)

This completes the proof.

In other words, each set wr can be fully described with a vector of integers
(Nr

n−1, Nr
n−1, . . . , Nr

0 ). For w0, this vector is

N0
0 = 1, N0

i = 0 (1 ≤ i ≤ n − 1).

Then, based on the recursive relation specified in Equation 5, i.e.

Nr+1
i = Nr

(i−k1−k2)%n + Nr
(i−k0−k2)%n for 0 ≤ i ≤ n − 1, r ≥ 0, (6)

for any wr, the corresponding vector of integers (Nr
n−1, Nr

n−1, . . . , Nr
0 ) can be

computed in linear time, i.e. with rn times of simple integer additions. Then, the
set wr can be described as follows:

wr = {e|e = Mn(
Nr

n−1∑
i=1

2n−1w0,di,n−1 +
Nr

n−2∑
i=1

2n−2w0,di,n−2 + . . . +
Nr

0∑
i=1

20w0,di,0),

where 1 ≤ di,j ≤ |w0| for 0 ≤ j ≤ n − 1}. (7)
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Application to the Chaghri parameters. For the concrete parameters of
Chaghri, the corresponding (N1

62, N1
61, . . . , N1

0 ) for w1 is

N1
3 = 1, N1

35 = 1, N1
i = 0 (i /∈ {3, 35}, 0 ≤ i ≤ 62).

While for w2, the corresponding (N2
62, N2

61, . . . , N2
0 ) is

N2
6 = 1, N2

7 = 1, N2
38 = 2, N2

i = 0 (i /∈ {6, 7, 38}, 0 ≤ i ≤ 62).

For any wr, we can compute the corresponding (Nr
62, Nr

61, . . . , Nr
0 ) in linear time.

3.2 A Natural Optimization Problem
The last problem we need to deal with is how to compute Dr after giving the
vector of integers (Nr

n−1, Nr
n−2, . . . , Nr

0 ). For our representation of wr, it can be
equivalently interpreted in the way that there are in total Nr

n−1 +Nr
n−2 + . . .+Nr

0
possible variables that can independently take values from w0 = {0, 1}. Hence,
the problem to bound Dr becomes a natural optimization problem, as shown
below:

maximize H(Mn(
n−1∑
i=0

2iγi)),

subject to 0 ≤ γi ≤ Nr
i for i ∈ [0, n − 1].

Specifically, for each coefficient 2i, as there are Nr
i corresponding independent

variables taking values from w0 = {0, 1}, we can choose γi variables taking the
value 1 and the remaining Nr

i − γi variables taking the value 0. Therefore, we
have the constraints 0 ≤ γi ≤ Nr

i . Note that γi indeed represents that number of
variables which take nonzero values.

After computing Nr
i for i ∈ [0, n − 1], which can be finished in linear time,

this problem6 can be easily encoded as an MILP problem. Specifically, for each
integer m ∈ [0, 2n − 1], we can assign a bit vector (mn−1, mn−2, . . . , m0) for m,
i.e. m =

∑n−1
i=0 2imi. Then, M(2j · m) just makes m become

(m(n−1−j)%n, m(n−2−j)%n, . . . , m(0−j)%n),

i.e. a change of the order of variables.
The addition is trivial. Specifically, for the addition Mn(x + y) = q where x =

(xn−1, xn−2, . . . , x0), y = (yn−1, yn−2, . . . , y0) and q = (qn−1, qn−2, . . . , q0), by in-
troducing two (n+1)-bit vectors g = (gn, gn−1, . . . , g0) and g′ = (g′

n, g′
n−1, . . . , g′

0)
as well as an n-bit vector q′ = (q′

n−1, q′
n−2, . . . , q′

0) to represent the intermediate
value, we have{

g0 = 0, 2gi+1 + q′
i = xi + yi + gi for i ∈ [0, n − 1],

g′
0 = gn, 2g′

i+1 + qi = q′
i + g′

i for i ∈ [0, n − 1].
6 The author also developed an ad-hoc algorithm [24] to solve the above optimization

problem in timeO(n). However, in this following, we still have some other optimization
problems which cannot be handled by that O(n) algorithm [24]. Hence, we only
consider the general-purpose solvers for the optimization problems in this paper.
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For the comparison m ≤ b where b = (bn−1, bn−2, . . . , b0) ∈ Fn
2 is a known

integer, it can also be simply described with linear inequalities. Specifically,
supposing bi = 1 for any i ∈ {i1, i2, . . . , il−1, il} and 0 ≤ i1 < i2 < . . . < il ≤ n−1.
Then m ≤ b can be described with the following n − l linear (in)equalities:

mj = 0 for il < j ≤ n − 1,

(1 − mil
) − mj ≥ 0 for il−1 < j < il,

l∑
s=l−1

(1 − mis) − mj ≥ 0 for il−2 < j < il−1,

· · ·
l∑

s=1
(1 − mis) − mj ≥ 0 for 0 ≤ j < i1.

To maximize H(m), we simply write

maximize m0 + m1 + . . . + mn−1.

In this way, a simple MILP model can be constructed and the solution of the
model is exactly Dr according to Equation 3.

Differences from other MILP/SAT-based methods. Different from almost
all existing MILP/SAT models to evaluate the algebraic degree based on division
property [21,23,32], our method does not rely on the infeasibility of the model
or the number of solutions. Instead, the solution of the optimization problem
is directly the upper bound for the algebraic degree. Moreover, the scale of our
model, i.e. the number of variables and the number of inequalities, is almost stable,
while for many MILP/SAT-based methods, the scale of the models increases
linearly as the number of analyzed rounds increases due to the introduction of
intermediate variables at each round.

A useful theorem.

Theorem 1 For a given vector of integers (Nn−1, Nn−2, . . . , N0), if the solution
to the following optimization problem called Problem 1 is hn:

maximize
h∑

j=1
H(Mn(

n−1∑
i=0

2iγj,i)),

subject to C1(γ1,0, γ1,1, . . . , γh,n−1, N0, N1, . . . , Nn−1),

the solution to the following optimization problem called Problem 2 must also
be hn:

maximize
h∑

j=1
H(Mn(

n−1∑
i=0

2i(
ν∑

s=1
2tsγj,i)),

13



subject to C1(γ1,0, γ1,1, . . . , γh,n−1, N0, N1, . . . , Nn−1),

where ts ≥ 0 for s ∈ [1, ν] and C1(γ1,0, γ1,1, . . . , γh,n−1, N0, N1, . . . , Nn−1) denotes
the set of constraints.

Proof. Since the solution to Problem 1 is hn, for each j ∈ [1, h], there exists an
assignment to (γj,n−1, γj,n−2, . . . , γj,0) denoted by ( ˆγj,n−1, ˆγj,n−2, . . . , ˆγj,0) such
that

Mn(
n−1∑
i=0

2i ˆγj,i) = 2n − 1.

Hence, for each j ∈ [1, h], we have

Mn(
n−1∑
i=0

2i(
ν∑

s=1
2ts ˆγj,i)) = Mn(

ν∑
s=1

2ts%nMn(
n−1∑
i=0

2i ˆγj,i)) = 2n − 1.

As the upper bound for the solution to Problem 2 is hn and we find an
assignment to make its solution be hn, the solution to Problem 2 is hn. This
completes the proof.

Generalization to an arbitrary power function. In the above, we mainly
analyze a power function x 7→ x2k0 +2k1 with algebraic degree 2. It is easy to
observe that a similar procedure can be applied to any power function x 7→
x

∑ρ

i=1
2ϕi over F2n with algebraic degree ρ. This is due to the following simple

relation:

(
|wr|∑
j=1

AjXwr,j )
∑ρ

i=1
2ϕi =

|wr|∑
j1=1

|wr|∑
j2=1

· · ·
|wr|∑
jρ=1

Aj1,j2,...,jρ
X2ϕ1 wr,j1 +2ϕ2 wr,j2 +···+2ϕρ wr,jρ .

By using the same B(x) = c1x2k2 + c2, we still can simply use a vector of integers
to represent the set of possible exponents. In addition, the recursive relation
between the vectors (Nr+1

n−1, Nr+1
n−2, . . . , Nr+1

0 ) and (Nr
n−1, Nr

n−2, . . . , Nr
0 ) can be

described as below:

Nr+1
j =

ρ∑
i=1

Nr
(j−ϕi−k2)%n for j ∈ [0, n − 1],

which implies that these vectors can be computed in linear time. With these
vectors, bounding the algebraic degree is then reduced to the same optimiza-
tion problem. This obviously shows the effectiveness of our coefficient grouping
technique.

4 Cryptanalysis of Full-round Chaghri

With the above model, the upper bounds for Dr are obtained in seconds, as listed
in Table 2.
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Table 2: The upper bounds for Dr

r 0 2 4 6 8 10 12 14 16 18 20 22 24 25 26

Dr 1 3 7 12 17 22 27 32 37 42 47 52 58 60 63

Consequently, we can mount a higher-order differential attack on full 8 rounds
of Chaghri with data and time complexity of 238. It also suggests that there
is a higher-order differential distinguisher for 12.5 rounds with time and data
complexity of 261. Indeed, as mentioned previously, one can append 0.5 round (1
step) before this distinguisher to obtain a 13-round distinguisher with time and
data complexity of 263. Specifically, by choosing an input set for (z0,1, z0,2, z0,3)
such that z0,1 traverses all the elements in F263 and (z0,2, z0,3) are constants, the
state words (z1,1, z1,2, z1,3) can still be represented as linear polynomials in X.
Then, since X also takes all the 263 possible values and the upper bound for the
algebraic degree after 12.5 more rounds is 60, we obtain a 13-round higher-order
differential distinguisher with time and data complexity of 263.

4.1 The Key-recovery Attack on 13.5 Rounds of Chaghri

We have constructed a 13-round distinguisher with data and time complexity of
263. Then, we can append 0.5 round for the key recovery. To recover the round
key RK[27], an equivalent round key RK[27]′ = (RK[27]′1, RK[27]′2, RK[27]′3) is
considered, where

(RK[27]′1, RK[27]′2, RK[27]′3)T = M−1 × (RK[27]1, RK[27]2, RK[27]3)T .

Since the operations B−1 and G−1 work on the internal state in a parallel
way, the naive method is to independently guess RK[27]′i (1 ≤ i ≤ 3) and
compute the corresponding z26,i and check the sum of z26,i. If the sum is zero,
the guess is correct. Hence, the time complexity of this key-recovery attack is
about 3 × 263 × 263 < 2128. Note that after recovering RK[27]′, we can compute
RK[27] and deduce the master key according to the key schedule function.

Indeed, the key-recovery attack can be more efficient by treating B−1(RK[27]′i)
(1 ≤ i ≤ 3) as a variable Yi. Note that B(x) is an affine transform over F263 and
hence B−1(x) is also an affine transform. Then, we can construct a univariate
polynomial Pi(Yi) in terms of Yi using the condition that the sum of z26,i is 0.
The degree of Pi denoted by D is the degree of the inverse of G, which satisfies
230 < D < 231 because 230 × (232 + 1) < 263 and 231 × (232 + 1) > 263. Then,
similar to the idea in [18], recovering Yi is reduced to finding the roots of the
univariate polynomial Pi, the time complexity of which can be estimated as
O(D × log(D) × loglog(D) × log(D) × log(263D)) field operations. Since 230 <
D < 231, we estimate the time complexity to find the roots as 255. Hence, the
time complexity and data complexity of our key-recovery attack on 13.5 rounds
of Chaghri are 3 × 263 × 255 = 2119.6 and 263, respectively.
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4.2 Further Refining the Upper Bounds

In this section, we show that before reaching the maximal degree 63, it is possible
to refine Dr with more careful analysis. Consider the input state of the following
form

z0,1 = X1, z0,2 = A2, z0,3 = A3, (8)

where A2, A3 ∈ F2n are randomly chosen constants and X1 is the variable. Let
X = X1 + RK[0]1. In this way, for any number of steps, each state word of
Chaghri can be represented as a univariate polynomial in X. For (z1,1, z1,2, z1,3),
we have

z1,1 = A1,1XMn(2k0+k2 +2k1+k2 ) + B1,1,

z1,2 = A1,2XMn(2k0+k2 +2k1+k2 ) + B1,2,

z1,3 = A1,3XMn(2k0+k2 +2k1+k2 ) + B1,3,

where A1,i, B1,i (i ∈ [1, 3]) are constants depending on the key.
Hence, for w1, we have

w1 = {Mn(2k0+k2 + 2k1+k2), 0}.

Then, we have

wr = {e|e = Mn(
Nr

n−1∑
i=1

2n−1w1,di,n−1 +
Nr

n−2∑
i=1

2n−2w1,di,n−2 + . . . +
Nr

0∑
i=1

20w1,di,0),

where 1 ≤ di,j ≤ 2 for 0 ≤ j ≤ n − 1}.

By making N1
0 = 1 and N1

i = 0 for i ∈ [1, n−1], we can compute the corresponding
(Nr

n−1, Nr
n−1, . . . , Nr

0 ) for r ≥ 1 with the recursive relation specified in Equation 6.
Computing Dr is then equivalent to the following optimization problem:

maximize H(Mn(
n−1∑
i=0

2i(2k0+k2γi + 2k1+k2γi))),

subject to 0 ≤ γi ≤ Nr
i for i ∈ [0, n − 1].

Table 3: The refined upper bounds for Dr in the univariate case
r 0 2 4 6 8 10 12 14 16 18 20 22 24 26 27

Dr 1 3 7 11 16 21 26 32 37 42 47 52 57 62 63
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Refined or unrefined? This refined model is only slightly slower and all the
results can still be obtained in seconds as well. The refined upper bounds are
shown in Table 3. It can be found that although the upper bound is slightly
better for r ≤ 12, the complexity to break 8 rounds of Chaghri remains the same.
Moreover, the longest higher-order differential distinguisher still only covers 26
steps, which is indeed a direct result of Theorem 1. Specifically, for the refined
model for r′ steps, the vector (Nr′

63, Nr′

62, . . . , Nr′

60) is identical to the vector in the
unrefined model for r′ − 1 steps. In the unrefined model, we reach the maximal
value 63 at r = 26. Hence, in the refined model we must reach the maximal value
63 at r = 27 according to Theorem 1. Due to the high efficiency of the unrefined
model, to detect how long a higher-order differential distinguisher can reach, we
prefer the unrefined model.

Experiments. We have practically verified our attacks on Chaghri for up to 7
rounds. It is found that our refined bounds are correct and tight.

4.3 On the Multivariate Case

After understanding our attack in the univariate case, it is natural to ask whether
the distinguisher can be further extended for more steps with a larger set of
inputs, e.g. a set of 22n different inputs. Specifically, with the following input
form

z0,1 = X1, Z0,2 = X2, Z0,3 = A3,

where A3 ∈ F2n is a randomly chosen constant and X1, X2 are variables, whether
the attack can be extended for more steps?

Let X = B ◦ S(X1 + RK[0]0) and Y = B ◦ S(X2 + RK[0]1). The state
(z1,1, z1,2, z1,3) can be represented as multivariate polynomials in (X, Y ) as below:

z1,1 = A1,1X + B1,1Y + C1,1, z1,2 = A1,2X + B1,2Y + C1,2,

z1,3 = A1,3X + B1,3Y + C1,3.

Note that in the following, we will not repeat emphasizing which are constants
in the polynomial representation. Instead, we only say which are variables.

To construct the longest higher-order differential distinguisher with at most
22n data, it suffices to compute the maximal number of steps r where the maximal
algebraic degree 2n is first reached for the following input state

z0,1 = A0,1X + B0,1Y + C0,1, z0,2 = A0,2X + B0,2Y + C0,2,

z0,3 = A0,3X + B0,3Y + C0,3, (9)

where X, Y are variables. As in the univariate case, 1 more step can always be
appended before this distinguisher by using 22n data. This will result in an r-step
distinguisher with data and time complexity of 22n.
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For the input form specified in Equation 9, the general form of (zr,1, zr,2, zr,3)
can be written down, as shown below:

zr,1 =
|Wr|∑
i=1

Ar,iX
wr,iY ur,i , zr,2 =

|Wr|∑
i=1

Br,iX
wr,iY ur,i , zr,3 =

|Wr|∑
i=1

Cr,iX
wr,iY ur,i

,

where

Wr = {(wr,1, ur,1), (wr,2, ur,2), . . . , (wr,|Wr|, ur,|Wr|)}.

For W0, we have

W0 = {(1, 0), (0, 1), (0, 0)},

which corresponds to the input state specified in Equation 9.
With similar analysis to trace the evolution of the polynomials through S

and B, we have

Wr+1 = {(e0, e1)|e0 = Mn(2k0+k2wr,i + 2k1+k2wr,j), e1 = Mn(2k0+k2ur,i + 2k1+k2ur,j),
1 ≤ i, j ≤ |Wr|}.

Specifically, we have

B ◦ S(zr,1)

= c1(
|Wr|∑
i=1

Ar,iX
wr,iY ur,i)Mn(2k0+k2 +2k1+k2 ) + c2

= (
|Wr|∑
i=1

A′
r,iX

Mn(2k0+k2 wr,i)Y Mn(2k0+k2 ur,i))(
|Wr|∑
i=1

A′′
r,iX

Mn(2k1+k2 wr,i)Y Mn(2k1+k2 ur,i)) + c2

=
|Wr|∑
i=1

|Wr|∑
j=1

Ar+1,i,jXMn(2k0+k2 wr,i+2k0+k2 wr,j)Y Mn(2k0+k2 ur,i+2k0+k2 ur,j).

With our coefficient grouping technique and a similar deduction as in the uni-
variate case, Wr can also be represented using a vector of integers (Nr

n−1, Nr
n−1, . . . , Nr

0 ),
as shown below:

Wr = {(e0, e1)|

e0 = Mn(
Nr

n−1∑
i=1

2n−1w0,di,n−1 +
Nr

n−2∑
i=1

2n−2w0,di,n−2 + . . . +
Nr

0∑
i=1

20w0,di,0 ,

e1 = Mn(
Nr

n−1∑
i=1

2n−1u0,di,n−1 +
Nr

n−2∑
i=1

2n−2u0,di,n−2 + . . . +
Nr

0∑
i=1

20u0,di,0 ,

where 1 ≤ di,j ≤ |W0| = 3 for 0 ≤ j ≤ n − 1},
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where {
N0

0 = 1, N0
i = 0 for i ∈ [1, n − 1],

Nr
i = Nr−1

(i−k1−k2)%n + Nr−1
(i−k0−k2)%n for 0 ≤ i ≤ n − 1, r ≥ 1.

Since

W0 = {(1, 0), (0, 1), (0, 0)},

i.e. (w0
i , u0

i ) ̸= (1, 1) for i ∈ [1, 3], computing the upper bound of the algebraic
degree for the multivariate case is also a natural optimization problem, as shown
below:

maximize H(Mn(
n−1∑
i=0

2iγi)) + H(Mn(
n−1∑
i=0

2iλi)),

subject to 0 ≤ γi + λi ≤ Nr
i for i ∈ [0, n − 1].

Why 0 ≤ γi + λi ≤ Nr
i should hold is due to (w0

di,j
, u0

di,j
) ̸= (1, 1) for any index

di,j ∈ [1, 3].
It is easy to observe that this model is almost the same as that for the uni-

variate case. Applying it to the Chaghri parameters (k0, k1, k2, n) = (32, 0, 3, 63),
we obtain the following upper bound for the algebraic degree Dr after r steps, as
shown in Table 4. Note that we still use Dr to denote the upper bound for the
algebraic degree for r-step Chaghri in the multivariate case. This indicates that
the higher-order differential distinguisher can reach at most 26 + 1 = 27 steps
(i.e. 13.5 rounds) using 2126 data.

Table 4: The upper bounds for Dr in the multivariate case
r 0 2 4 6 8 10 12 14 16 18 20 22 24 26 27

Dr 1 4 10 20 30 40 50 60 70 80 90 100 111 121 126

The refined upper bounds. Similar to the refined upper bounds for the
univariate case, we are interested whether the data complexity of the 13.5-round
higher-order differential attack can be further optimized. Specifically, we re-
evaluate the upper bound for the algebraic degree by considering the following
input form:

z0,1 = X1, z0,2 = X2, z0,3 = A3. (10)

where only X1, X2 are variables. Moreover, we consider the case when X1 traverses
all the 2n possible values because only in this case will we need to consider the
multivariate polynomials to attack more steps. In this case, let X = B ◦ S(X1 +
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RK[0]1) and Y = X2 + RK[0]2. Hence, X will traverse all the 2n possible values.
In this way, we have

z1,1 = A1,1X + B1,1Y Mn(2k0+k2 +2k1+k2 ) + C1,1,

z1,2 = A1,2X + B1,2Y Mn(2k0+k2 +2k1+k2 ) + C1,2,

z1,3 = A1,3X + B1,3Y Mn(2k0+k2 +2k1+k2 ) + C1,3,

where only X, Y are variables. Hence, we have

W1 = {(0, 0), (1, 0), (0, Mn(2k0+k2 + 2k1+k2))}.

Moreover, we have

Wr = {(e0, e1)|

e0 = Mn(
Nr

n−1∑
i=1

2n−1w1,di,n−1 +
Nr

n−2∑
i=1

2n−2w1,di,n−2 + . . . +
Nr

0∑
i=1

20w1,di,0 ,

e1 = Mn(
Nr

n−1∑
i=1

2n−1u1,di,n−1 +
Nr

n−2∑
i=1

2n−2u1,di,n−2 + . . . +
Nr

0∑
i=1

20u1,di,0 ,

where 1 ≤ di,j ≤ |W1| = 3 for 0 ≤ j ≤ n − 1},

where {
N1

0 = 1, N1
i = 0 for i ∈ [1, n − 1],

Nr
i = Nr−1

(i−k1−k2)%n + Nr−1
(i−k0−k2)%n for 0 ≤ i ≤ n − 1, r ≥ 2.

In this way, computing Dr is equivalent to solving the following optimization
problem:

maximize H(Mn(
n−1∑
i=0

2iγi)) + H(Mn(
n−1∑
i=0

2i(2k0+k2λi + 2k1+k2λi))),

subject to H(Mn(
n−1∑
i=0

2iγi)) = n, 0 ≤ γi + λi ≤ Nr
i for i ∈ [0, n − 1].

Note that γi represents that we assign nonzero values to γi variables w1,dj,i

and λi represents that we assign nonzero values to λi variables u1,dj,i . Since
(w1,dj,i , u1,dj,i) cannot be assigned to nonzero values at the same time due to W1 =
{(0, 0), (1, 0), (0, Mn(2k0+k2 +2k1+k2))}, we have the constraint 0 ≤ γi +λi ≤ Nr

i .
Moreover, since X will take all the 2n possible values, we only feel interested
in the monomials of the form Xρ1Y ρ2 where H(ρ1) ≥ n, i.e. H(ρ1) = n. This is
because

∑
X∈F2n

Xρ1Y ρ2 = 0 for monomials Xρ1Y ρ2 with H(ρ1) < n. Hence, we
add the constraint H(Mn(

∑n−1
i=0 2iγi)) = n.

With this model for Chaghri, we obtain in seconds that

D27 = 122, D28 = 126,
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which are indeed consistent with Theorem 1, i.e. we cannot increase the length of
the distinguisher with the refined model. However, D27 = 122 indicates that the
data and time complexity of the 13.5-round distinguisher are both 2123, which
improves the results obtained from the unrefined model by a factor of 23.

5 Achieving an Almost Exponential Increase

Based on our degree evaluation, it can be observed that the algebraic degree of
Chaghri increases linearly in both the univariate case and multivariate case, which
contradicts the designers’ expectation that it increases exponentially. Therefore,
it is natural to ask what countermeasures can be used to achieve an exponential
increase of the algebraic degree. In this section, we focus on this problem.

For FHE-friendly ciphers, reducing the multiplicative depth is of great im-
portance. Hence, we still keep the S-box of the form S(x) = x2k0 +2k1 , which has
algebraic degree 2. For the affine transform B(x), as it is linear over F2n and
it is almost cost-free for FHE protocols, we are interested whether choosing a
different B(x) can achieve an exponential increase of the algebraic degree.

In appendix A, a concrete example is given to explain the influence of the
affine transform on the increase of the algebraic degree. In the following, we
mainly deal with a general affine transform.

5.1 Searching for Secure Affine Transforms B(x)

We consider a general form of B(x), as shown below:

B(x) =
|L|∑
i=1

c′
ix

2φi
,

where (c′
1, c′

2, . . . , c′
|L|) are constants in F263 such that B(x) is a permutation and

L = {φ1, φ2, . . . , φ|L|}. For the S-box, we keep using S(x) = x232+1.
To utilize our coefficient grouping technique for the above general B(x), we

need to adjust the general polynomial representation of (zr,1, zr,2, zr,3). First,
consider the univariate case and the form of (zr,1, zr,2, zr,3) can be written as
follows where only X is the variable:

zr,1 =
|Er,1|∑
i=1

A1,iX
ωr,1,i +

|Er,2|∑
i=1

A2,iX
ωr,2,i + . . .

|Er,lr |∑
i=1

A3,iX
ωr,lr,i ,

zr,2 =
|Er,1|∑
i=1

B1,iX
ωr,1,i +

|Er,2|∑
i=1

B2,iX
ωr,2,i + . . .

|Er,lr |∑
i=1

B3,iX
ωr,lr,i ,

zr,3 =
|Er,1|∑
i=1

C1,iX
ωr,1,i +

|Er,2|∑
i=1

C2,iX
ωr,2,i + . . .

|Er,lr |∑
i=1

C3,iX
ωr,lr,i ,
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where

Er,j = {ωr,j,1, ωr,j,2, . . . , ωr,j,|Er,j |} for 1 ≤ j ≤ lr.

In this way, the set of all possible exponents for (zr,1, zr,2, zr,3) denoted by
Er can be written as

Er =
lr⋃

i=1
Er,i.

For the initial input (z0,1, z0,2, z0,3), we use the same form as specified in
Equation 1. In this way, we have

E0 = w0 = {0, 1} = {w0,1, w0,2}.

Next, we study how the new general polynomial representation evolves through
1 step of Chaghri. First,

G(zr,i) = (
lr∑

i=1

|Er,i|∑
j=1

Ai,jXωr,i,j )232+1

=
lr∑

i=1

|Er,i|∑
j=1

lr∑
s=1

|Er,s|∑
t=1

Ai,j,s,tX
M63(232ωr,i,j+ωr,s,t).

Then,

B ◦ G(zr,1) =
lr∑

i=1

|Er,i|∑
j=1

lr∑
s=1

|Er,s|∑
t=1

|L|∑
u=1

Ai,j,s,t,uXM63(232+φu ωr,i,j+2φu ωr,s,t)

Hence,

Er+1 = {e|e = M63(232+φuωr,i,j + 2φuωr,s,t),
1 ≤ i, s ≤ lr, 1 ≤ j ≤ |Er,i|, 1 ≤ t ≤ |Er,s|, 1 ≤ u ≤ |L|}.

Based on the above recursive relation between Er and Er+1, with the coeffi-
cient grouping technique, Er can be represented as follows:

Er =
lr⋃

j=1
Er,j ,

Er,j = {e|e = M63(
Nr,j

62∑
i=1

262w0,di,62 +
Nr,j

61∑
i=1

261w0,di,61 + . . . +
Nr,j

0∑
i=1

20w0,di,0),

where 1 ≤ di,i0 ≤ |w0| for 0 ≤ i0 ≤ 62}.
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Proof. For E0, there are

E0 = E0,1 = w0,

w0 = {0, 1} = {w0,1, w0,2},

E0,1 = {e|e = M63(20w0,i), 1 ≤ i ≤ |w0|}.

Hence, it holds for r = 0. Supposing the above new representation of Er holds,
we now prove by induction that it also holds for Er+1. In particular, a similar
useful recursive relation can be derived.

Since

Er+1 = {e|e = M63(232+φuωr,i,j + 2φuωr,s,t),
1 ≤ i, s ≤ lr, 1 ≤ j ≤ |Er,i|, 1 ≤ t ≤ |Er,s|, 1 ≤ u ≤ |L|},

we have

Er+1 =
lr⋃

i=1

lr⋃
s=1

|L|⋃
u=1

Er+1,i,s,u,

Er+1,i,s,u = {e|e = M63(232+φuωr,i,j + 2φuωr,s,t), 1 ≤ j ≤ |Er,i|, 1 ≤ t ≤ |Er,s|}.

Since

Er,j = {e|e = M63(
Nr,j

62∑
i=1

262w0,di,62 +
Nr,j

61∑
i=1

261w0,di,61 + . . . +
Nr,j

0∑
i=1

20w0,di,0),

where 1 ≤ di,i0 ≤ |w0| for 0 ≤ i0 ≤ 62},

we have

Er+1,i,s,u = {e|e = M63(
Nr+1,i,s,u

62∑
j=1

262w0,dj,62 +
Nr+1,i,s,u

61∑
j=1

261w0,dj,61 + . . . +
Nr+1,i,s,u

0 ∑
j=1

20w0,dj,0),

where 1 ≤ dj,j0 ≤ |w0| for 0 ≤ j0 ≤ 62},

where

Nr+1,i,s,u
t = Nr,i

(t−32−φu)%63 + Nr,s
(t−φu)%63 for t ∈ [0, 62]. (11)

This completes the proof.

With the above critical observation, we can always decompose Er as a
union of sets, each of which can be solely described with a vector of integers
(N62, N61, . . . , N0). Moreover, since

E0 = w0,

a single vector of integers (N0,1
62 , N0,1

61 , . . . , N0,1
61 ) is sufficient to describe E0 where

N0,1
0 = 1, N0,1

i = 0 for i ∈ [1, 62].
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Algorithm 2 Enumerating vectors to represent Er+1

1: procedure ENU(Nr, Nr+1,L)
2: clear Nr+1

3: for i in range (Nr.size()) do
4: (N0

62, N0
61, . . . , N0

0 )← Nr[i]
5: for s in range (Nr.size()) do
6: (N1

62, N1
61, . . . , N1

0 )← Nr[s]
7: for u ∈ [1, |L|]) do
8: for t ∈ [0, 62] do
9: Nt = N0

(t−32−φu)%63 + N1
(t−φu)%63

10: if REDUCE(N62, N61, . . . , N0, Nr+1)=1 then
11: add (N62, N61, . . . , N0) to Nr+1

12: procedure REDUCE(N62, N61, . . . , N0, N)
13: for i in range (N.size()) do
14: (N ′

62, N ′
61, . . . , N ′

0)← N[i]
15: if Nj ≥ N ′

j for all j ∈ [0, 62] then
16: N[i] = (N62, N61, . . . , N0)
17: return 0
18: else if N ′

j ≥ Nj for all j ∈ [0, 62] then
19: return 0
20: return 1

Then, based on the recursive relation specified in Equation 11, for each Er (r ≥ 1),
we can compute the corresponding sets of vectors of integers to represent Er. The
algorithm is shown in Algorithm 2, where Nr and Nr+1 are the sets of possible
vectors of integers describing Er and Er+1, respectively.

In Algorithm 2, there is a function named REDUCE. This is used to re-
move the redundant vectors based on the fact that when there are two vectors
(N62, N61, . . . , N0) and (N ′

62, N ′
61, . . . , N ′

0) such that Ni ≥ N ′
i for each i ∈ [0, 62],

the set described with (N ′
62, N ′

61, . . . , N ′
0) is just a subset of the set described

with (N62, N61, . . . , N0).

The main idea to search for a good affine transform. With Algorithm
2, it is now possible to describe how to search for a better affine transform.
Specifically, for each Er, there exist lr vectors of integers (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 ) to
describe Er,i for i ∈ [1, lr]. Moreover, if there exists a vector (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 )
where there are D nonzero elements, it implies the upper bound for the algebraic
degree after r steps is larger than D. This is because it implies that there exists
an element e ∈ Er such that H(e) = D. Hence, to achieve an exponential increase
for the first r (1 ≤ r ≤ 5) steps, we need to ensure that there exists at least
one vector (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 ) where there are 2r nonzero elements. For r = 6,
we can slightly relax the constraint and expect that after 7 steps, the maximal
degree 63 is reached, i.e. there exists a vector (N7,i

62 , N7,i
61 , . . . , N7,i

0 ) where all the
elements are nonzero or there exists a vector (N7,i

62 , N7,i
61 , . . . , N7,i

0 ) such that the
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solution to the following optimization problem is 63:

maximize H(M63(
n−1∑
j=0

2jγj)),

subject to 0 ≤ γj ≤ N7,i
j for j ∈ [0, 62].

Searching with heuristic strategies. For r = 0, there are

l0 = 1, N0 = {(0, 0, . . . , 0, 1)}.

Then, based on Algorithm 2, for any r ≥ 1, we can always compute Nr for any
given L. However, the time complexity to compute Nr becomes exponential in
r when |L| > 1 due to the fast diffusion of the monomials. Even for small r,
e.g. r = 5, if we aim to compute the full set of vectors, it cannot be finished in
practical time. However, since we are only interested in vectors where there are a
desired number of nonzero elements, we can use some heuristic strategies when
computing Nr.

Specifically, for the first r steps (1 ≤ r ≤ 5), we only add the vectors
where there are 2r nonzero elements to Nr when running Algorithm 2. The
underlying reason is that to generate a monomial whose exponent is of hamming
weight 2r at step r, it is required to have two monomials (Xe0 , Xe1) where
H(e0) = H(e1) = 2r−1 at step r − 1. When there exists an empty set Nr for
1 ≤ r ≤ 5, we abandon the current L and try another L since it implies we cannot
reach the algebraic degree 2r with the current L. Based on this strategy, we find
no candidates for L when |L| = 2.

Hence, |L| = 3 is taken into account. For 1 ≤ r ≤ 5, we still use the above
strategies. However, the size of Nr will increase exponentially. Hence, we further
restrict that when the size of Nr is larger than 213, exit Algorithm 2 and compute
Nr+1. For r = 6, we only add the vectors where there are at least 55 nonzero
elements to N6. For r = 7, when computing N7 with Algorithm 2, we test
whether there is one (N7,i

62 , N7,i
61 , . . . , N7,i

0 ) which can lead to the maximal degree
63. If there is, exit and treat the current L as a good affine transform. It is found
that L = {0, 2, 8} is such a candidate.

With L = {0, 2, 8}, for the input of the form specified in Equation 1, the
algebraic degree can reach 63 after 7 steps. Therefore, for the input of the form
specified in Equation 8, the algebraic degree can reach 63 after 8 steps, which is
a direct application of Theorem 1. In this way, an almost exponential increase of
the algebraic degree is achieved in the univariate setting.

5.2 Evaluating the Algebraic Degree for the Multivariate Case

After obtaining a good affine transform B(x) which can ensure an almost expo-
nential increase of the algebraic degree in the univariate setting, we need study
how the algebraic degree increases in the multivariate setting. In general, after
we reach the maximal algebraic degree in the univariate case, due to the strong
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diffusion of the MDS matrix and the affine transform, the maximal algebraic
degree in the multivariate case can be reached in a few more steps. For Chaghri,
we only care about the distinguisher with data complexity and time complexity
below 2128 since Chaghri only provides 128-bit security. Hence, we only care about
when the algebraic degree 128 is reached.

On two variables. We first consider the input of the form specified in Equation 9.
Then, similar to the above analysis, the general polynomial representation of
(zr,1, zr,2, zr,3) can be written as follows:

zr,1 =
lr∑

i=1

|Ur,i|∑
j=1

Ai,jXωr,i,j Y µr,i,j , zr,2 =
lr∑

i=1

|Ur,i|∑
j=1

Bi,jXωr,i,j Y µr,i,j ,

zr,3 =
lr∑

i=1

|Ur,i|∑
j=1

Ci,jXωr,i,j Y µr,i,j ,

where

Ur,i = {(ωr,i,1, µr,i,1), (ωr,i,2, µr,i,2), . . . , (ωr,i,|Ur,i|, µr,i,|Ur,i|)} for i ∈ [1, lr]

and

Ur =
lr⋃

i=1
Ur,i

is the set of all possible exponents for (zr,1, zr,2, zr,3).
For the input form specified in Equation 9, we have

l0 = 1, U0 = U0,1 = W0,

W0 = {(0, 1), (1, 0), (0, 0)} = {(w0,1, u0,1), (w0,2, u0,2), (w0,3, u0,3)}.

Then, by tracing the evolution of the polynomials through 1 step of Chaghri,
we can similarly derive

Ur+1 = {(e0, e1)|e0 = M63(232+φuωr,i,j + 2φuωr,s,t), e1 = M63(232+φuµr,i,j + 2φuµr,s,t),
1 ≤ i, s ≤ lr, 1 ≤ j ≤ |Ur,i|, 1 ≤ t ≤ |Ur,s|, 1 ≤ u ≤ |L|}.

With the coefficient grouping technique, similarly, Ur,j (1 ≤ j ≤ lr) can be
represented as

Ur,j = {(e0, e1)|e0 = M63(
Nr,j

62∑
i=1

262w0,di,62 +
Nr,j

61∑
i=1

261w0,di,61 + . . . +
Nr,j

0∑
i=1

20w0,di,0),

e1 = M63(
Nr,j

62∑
i=1

262u0,di,62 +
Nr,j

61∑
i=1

261u0,di,61 + . . . +
Nr,j

0∑
i=1

20u0,di,0),
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1 ≤ di,i0 ≤ |W0|, 0 ≤ i0 ≤ 62},

where W0 = {(w0,1, u0,1), (w0,2, u0,2), (w0,3, u0,3)} = {(0, 1), (1, 0), (0, 0)}. More-
over, the recursive relation remains the same as in the univariate case, i.e.
Equation 11. In other words, it is sufficient to describe Ur with a set of vectors of
integers and we still denote the set by Nr to avoid the abuse of notation. Then,

N0 = {(0, 0, . . . , 0, 1)}

and Algorithm 2 can be directly used to compute Nr for r ≥ 1.
Supposing there exists a vector (Nr,i

62 , Nr,i
61 , . . . , Nr,i

0 ) in Nr such that the
solution to the following optimization problem is 126, we reach the maximal
degree for the input of the form in Equation 9 after r steps.

maximize H(M63(
n−1∑
j=0

2jγj)) + H(M63(
n−1∑
j=0

2jλj)),

subject to 0 ≤ γj + λj ≤ Nr,i
j for j ∈ [0, 62].

Moreover, for the input of the form specified in Equation 10, the degree 126 can
be reached after r + 1 steps by applying Theorem 1.

For L = {0, 2, 8}, the maximal degree 126 can be reached at r = 9 for the
input specified in Equation 10. This implies that 9 steps are secure against
the higher-order differential distinguishing attack with complexity below 2126.
Compared with the univariate case, only at most 1 more step can be reached.
This is indeed as expected due to the strong diffusion effect of the affine transform
and MDS matrix.

On three variables. Since the algebraic degree will reach 126 after 9 steps
when there are 2 variables, we can argue that the algebraic degree will be much
larger than 128 after 9 or 10 steps when considering 3 variables. For completeness,
we also consider the case when there are 3 variables.

Consider the following input of the form:

z0,1 = A0,1X + B0,1Y + C0,1Z, z0,2 = A0,2X + B0,2Y + C0,2Z,

z0,3 = A0,3X + B0,3Y + C0,3Z,

where X, Y, Z are variables.
Then, we will have an initial set U0 of all possible exponents where

U0 = W0 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0)}.

To avoid the abuse of notation, we use the same notation as in the case for 2
variables. Then, it can be similarly derived that Ur can be fully described with
a set of vectors of integers denoted by Nr where N0 = {(0, 0, . . . , 0, 1)} and Nr

(r ≥ 1) can be computed with Algorithm 2. With Nr (r ≥ 1), it is possible to
give a lower bound for the algebraic degree after r steps for the above input
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polynomials in (X, Y, Z). Specifically, if there exists a vector (Nr,i
62 , Nr,i

61 , . . . , Nr,i
0 )

in Nr such that the solution to the following optimization problem is SOL, the
lower bound is SOL:

maximize H(M63(
n−1∑
j=0

2jγj)) + H(M63(
n−1∑
j=0

2jλj)) + H(M63(
n−1∑
j=0

2jχj)),

subject to 0 ≤ γj + λj + χj ≤ Nr,i
j for j ∈ [0, 62].

As Chaghri only provides 128-bit security, we only need to ensure SOL ≥ 128. It
is found that SOL = 189 = 63 × 3 when r = 8, which implies 9 steps are secure
against our higher-order differential distinguishing attack.

5.3 New Parameters for Chaghri
According to [6], the total number of rounds T is chosen with the formula
T = 1.5 × max{5, η}, where η is the maximal number of rounds that can be
attacked with time complexity below 2128. With L = {0, 2, 8}, we have η = 4
and hence the total number of rounds T can be kept unchanged, i.e. T = 8. In
Appendix B, we give an optional assignment to (c′

1, c′
2, c′

3, c′
4) such that B(x) =

c′
1x + c′

2x4 + c′
3x256 + c′

4 is a permutation.

6 Conclusion

We perform an in-depth study on the increase of the algebraic degree of Chaghri
by proposing a novel efficient technique called coefficient grouping. This technique
can well capture how the exponents of the polynomials propagate through the
round function of Chaghri. The core idea of the coefficient grouping technique is
to use a vector of integers to describe a set. It is found that such a vector can
always be computed in linear time. After obtaining such a vector, the problem
to bound the algebraic degree is reduced to a natural optimization problem.
These features make our technique in nature different from all the existing work
to bound the algebraic degree. Moreover, from this paper, it is not difficult to
observe that this technique is rather generic and can have more applications.

As a consequence of this technique, we can break the full 8 rounds of Chaghri
with a practical time and data complexity and can even break up to 13.5 rounds.
This is in a way indicates that the lack of new techniques to analyze symmetric
primitives defined over a large field is still a major issue. With the coefficient
grouping technique, we further make a step towards this important question.
Specifically, we not only attack a cipher with it, but also describe how to use it
to search for secure cryptographic components. We thus believe this technique is
worth further investigation.
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A Influence of the Affine Transform

We use the same S-box S(x) = x232+1 while we use a different affine transform
B(x) = c′

1x8 + c′
2x + c′

3, where c′
1, c′

2, c′
3 ∈ F263 are some constants making B(x)

a permutation.
Consider an input state (z0,1, z0,2, z0,3) of the following form:

z0,1 = A0,1X + A0,2, z0,2 = B0,1X + B0,2, z0,3 = C0,1X + C0,2,

where X is the variable. Then, we have

G(z0,1) = A′
0,1X232+1 + A′

0,2,

B ◦ G(z0,1) = c′
1(A′

0,1X232+1 + A′
0,2)8 + c′

2(A′
0,1X232+1 + A′

0,2) + c′
3

= (A′′
0,1X235+23

+ A′′
0,2) + (A′′′

0,3X232+1 + A′′′
0,4).

Similar to the previous analysis, we have

z1,1 = A1,1X235+23
+ A1,2X232+1 + A1,3,

z1,2 = B1,1X235+23
+ B1,2X232+1 + B1,3,

z1,3 = C1,1X235+23
+ C1,2X232+1 + C1,3.

Then, we consider one more step, i.e. we consider G(z1,1) and B ◦ G(z1,1). For
G(z1,1), we have

G(z1,1) = (A1,1X235+23
+ A1,2X232+1 + A1,3)232

(A1,1X235+23
+ A1,2X232+1 + A1,3)

= (A′
1,1X235+24

+ A′
1,2X232+1 + A′

1,3)(A1,1X235+23
+ A1,2X232+1 + A1,3)

= A′′
1,1X236+23+24

+ A′′
1,2X235+24+232+1 + A′′

1,3X235+24

+A′′
1,4X232+1+235+23

+ A′′
1,5X233+2 + A′′

1,6X232+1

+A′′
1,7X235+23

+ A′′
1,8X232+1 + A′′

1,9.

For B ◦ G(z1,1), we have

B ◦ G(z1,1) = A′′′
1,1X236+23+24

+ A′′′
1,2X235+24+232+1 + A′′′

1,3X235+24

+A′′′
1,4X232+1+235+23

+ A′′′
1,5X233+2 + A′′′

1,6X232+1

+A′′′
1,7X235+23

+ A′′′
1,8X232+1 + A′′′

1,9

+A′′′
1,10X239+26+27

+ A′′′
1,11X238+27+235+23

+ A′′′
1,12X238+27

+A′′′
1,13X235+23+238+26

+ A′′′
1,14X236+24

+ A′′′
1,15X235+23

+A′′′
1,16X238+26

+ A′′′
1,17X235+23
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Therefore, for (z2,1, z2,2, z2,3), we have

z2,1 = A2,1X236+23+24
+ A2,2X235+24+232+1 + A2,3X235+24

+A2,4X232+1+235+23
+ A2,5X233+2 + A2,6X232+1

+A2,7X235+23
+ A2,8X232+1 + A2,9

+A2,10X239+26+27
+ A2,11X238+27+235+23

+ A2,12X238+27

+A2,13X235+23+238+26
+ A2,14X236+24

+ A2,15X235+23

+A2,16X238+26
+ A2,17X235+23

,

z2,2 = B2,1X236+23+24
+ B2,2X235+24+232+1 + B2,3X235+24

+B2,4X232+1+235+23
+ B2,5X233+2 + B2,6X232+1

+B2,7X235+23
+ B2,8X232+1 + B2,9

+B2,10X239+26+27
+ B2,11X238+27+235+23

+ B2,12X238+27

+B2,13X235+23+238+26
+ B2,14X236+24

+ B2,15X235+23

+B2,16X238+26
+ B2,17X235+23

,

z2,1 = C2,1X236+23+24
+ C2,2X235+24+232+1 + C2,3X235+24

+C2,4X232+1+235+23
+ C2,5X233+2 + C2,6X232+1

+C2,7X235+23
+ C2,8X232+1 + C2,9

+C2,10X239+26+27
+ C2,11X238+27+235+23

+ C2,12X238+27

+C2,13X235+23+238+26
+ C2,14X236+24

+ C2,15X235+23

+C2,16X238+26
+ C2,17X235+23

.

Hence, for the new affine transform B(x), after 2 steps, the algebraic degree
becomes 4 in the univariate case. While for the original B(x) in Chaghri, the
algebraic degree is only 3 after 2 steps. This is mainly because the new affine
transform can make more different non-zero monomials appear in its output.
Then, due to the S-box operation, much more possible monomials will appear in
its output and the probability that there exists a monomial whose exponent is of
hamming weight 4 increases.

B Constants for the New Affine Transform

One optional assignment to (c′
1, c′

2, c′
3, c′

4) such that B(x) = c′
1x+c′

2x4+c′
3x256+c′

4
is a permutation is shown below:

c′
1 = α61 + α57 + α56 + α55 + α54 + α52 + α50 + α49 + α45 + α44 + α41

+α37 + α34 + α32 + α31 + α30 + α29 + α27 + α26 + α25 + α24 + α23

+α22 + α19 + α16 + α12 + α11 + α10 + α8 + α6 + α5 + α4 + α3 + 1,
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c′
2 = α60 + α57 + α52 + α47 + α44 + α41 + α39 + α37 + α35 + α34 + α31

+α30 + α29 + α28 + α24 + α23 + α21 + α20 + α19 + α18 + α14 + α13

+α11 + α10 + α8 + α6 + α5 + α3 + α2 + 1,

c′
3 = α60 + α58 + α53 + α50 + α49 + α48 + α47 + α44 + α43 + α42 + α40

+α38 + α37 + α36 + α34 + α33 + α29 + α28 + α27 + α24 + α22 + α21

+α18 + α13 + α12 + α8 + α3 + α2 + α,

c′
4 = α62 + α55 + α54 + α52 + α50 + α49 + α43 + α40 + α39 + α38 + α37

+α36 + α35 + α34 + α32 + α31 + α29 + α26 + α25 + α24 + α23 + α22

+α21 + α18 + α15 + α12 + α11 + α10 + α5 + α2 + α.
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