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Abstract. In this note, we study a specific optimization problem arising
in the recently proposed coefficient grouping technique, which is used for
the degree evaluation. Specifically, we show that there exists an efficient
algorithm running in time O(n) to solve a basic optimization problem
relevant to upper bound the algebraic degree. We expect that some results
in this note can inspire more studies on other optimization problems in
the coefficient grouping technique.
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1 Notation

The following notations will be used throughout this paper.

1. a%b represents a mod b.
2. a|b denotes that a divides b.
3. [a, b] is a set of integers i satisfying a ≤ i ≤ b.
4. H(a) is the hamming weight of a ∈ [0, 2n − 1].
5. The function Mn(x) (x ≥ 0) is defined as follows:

Mn(x) =
{

2n − 1 if 2n − 1|x, x ≥ 2n − 1,

x%(2n − 1) otherwise.

By the definition of Mn(x), we have Mn(x1 + x2) =Mn(Mn(x1) +Mn(x2)),
Mn(2i) = 2i%n and Mn(2ix) =Mn(2i%nMn(x)) for i ≥ 0.

2 Motivation

We have recently developed a technique called coefficient grouping to upper
bound the algebraic degree for ciphers defined over F2n . The main idea of that
technique is to convert the degree evaluation into some optimization problems.
Among them, one basic optimization problem can be described as follows:

maximize H(Mn(
n−1∑
i=0

2iγi)),

subject to γi ∈ N, 0 ≤ γi ≤ Ni for i ∈ [0, n− 1],



where (Nn−1, Nn−2, . . . , N0) is a known vector of nonnegative integers. Note that
throughout this paper, we always consider integers and hence we omit γi ∈ N
later.

In [1], this problem is first encoded as an MILP problem and then solved with
an off-the-shelf solver Gurobi. Using a general-purpose blackbox solver is indeed
very convenient but we may lose some insight into this special problem.

Regarding why we do not put this note in [1], we just cannot find a good
place. First, we feel it not suitable to place this short note at the Appendix of [1]
as few people may read it and then neglect its importance. Placing it at the main
content of [1] also looks inappropriate because it may destroy the simplicity and
structure of [1]. The most important reason is that we can only find an efficient
algorithm for one specific optimization problem, while there are several different
optimization problems in [1] and they all can be handled by solvers.

One purpose of this note is thus to share our ideas of one specific optimization
problem and we expect that they can inspire more studies. The technique in this
note is of independent interest.

3 An Efficient Algorithm for the Optimization Problem

Our aim is to solve the following optimization problem when given a vector of
nonnegative integers (Nn−1, Nn−2, . . . , N0):

maximize H(Mn(
n−1∑
i=0

2iγi)),

subject to 0 ≤ γi ≤ Ni for i ∈ [0, n− 1].

Or equivalently, we want to find an element e with the maximal hamming
weight from the following set

S = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ Ni for i ∈ [0, n− 1]}.

In this note, we show an efficient algorithm to solve the above optimization
problem in time O(n), as shown in Algorithm 1. In the following, we mainly
focus on how to prove its correctness.

Lemma 1 If there exists an index i such that Ni ≥ 2n − 1, the solution to the
above problem is directly n. Moreover, if Ni ≥ 1 for all i ∈ [0, n− 1], the solution
to the above problem is also n.

Proof. For both cases, we can trivially find an assignment to (γn−1, γn−2, . . . , γ0)
such that

2n − 1 =Mn(
n−1∑
i=0

2iγi).
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Algorithm 1 Compute the solution to the optimization problem
1: procedure DEGREE(Nn−1, Nn−2, . . . , N0)
2: finish = 0
3: while finish = 0 do
4: finish = 1
5: nonzero = 1
6: for i in range (n) do
7: if Ni ≥ 2n − 1 then
8: return n
9: else if Ni ≥ 3 then

10: finish = 0
11: else if Ni = 0 then
12: nonzero = 0
13: if nonzero = 1 then
14: return n
15: if finish = 0 then
16: for i in range (n) do
17: if Ni%2 = 1 then
18: N(i+1)%n = N(i+1)%n + (Ni − 1)/2
19: Ni = 1
20: else if Ni > 0 and Ni%2 = 0 then
21: N(i+1)%n = N(i+1)%n + (Ni − 2)/2
22: Ni = 2
23: d = 0
24: for i in range (n) do
25: if Ni > 0 then
26: d++
27: return d
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Hence, we find an assignment to make H(Mn(
∑n−1

i=0 2iγi)) = n. As n is the
upper bound for the solution, the solution to this optimization problem is n. ⊓⊔

Theorem 1 (Equivalence.) Let (N ′
n−1, N ′

n−2, . . . , N ′
0) and (Nn−1, Nn−2, . . . , N0)

be two vectors of nonnegative integers such that N ′
i = Ni for i ∈ I = {0, 1, . . . , n−

1} \ {j, (j + 1)%n} and Nj > 0. Moreover, when Nj%2 = 1,
N ′

j = 1,

N ′
(j+1)%n = Nj − 1

2 + N(j+1)%n.
(1)

When Nj%2 = 0, 
N ′

j = 2,

N ′
(j+1)%n = Nj − 2

2 + N(j+1)%n.
(2)

Then, for

S1 = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ Ni for i ∈ [0, n− 1]},

S2 = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ N ′
i for i ∈ [0, n− 1]},

we have S1 = S2.

Proof. For the given index j where Nj > 0 and (Nj , N(j+1)%n, N ′
j , N ′

(j+1)%n)
satisfying either Equation 1 or Equation 2, we first prove that S3 = S4, where

S3 = {e|e = a + 2b, 0 ≤ a ≤ Nj , 0 ≤ b ≤ N(j+1)%n},
S4 = {e|e = a + 2b, 0 ≤ a ≤ N ′

j , 0 ≤ b ≤ N ′
(j+1)%n}.

When (Nj , Nj+1, N ′
j , N ′

j+1) satisfies Equation 1, we have

S3 = {e|0 · 0 ≤ e ≤ Nj + 2N(j+1)%n},
S4 = {e|0 ≤ e ≤ N ′

j + 2N ′
(j+1)%n}

= {e|0 ≤ e ≤ 1 + 2(Nj − 1
2 + N(j+1)%n)}

= {e|0 ≤ e ≤ Nj + 2N(j+1)%n}
= S3.

When (Nj , Nj+1, N ′
j , N ′

j+1) satisfies Equation 2, we have

S3 = {e|0 ≤ e ≤ Nj + 2N(j+1)%n},
S4 = {e|0 ≤ e ≤ 2N ′

j + 2N ′
(j+1)%n}

= {e|0 ≤ e ≤ 2 + 2(Nj − 2
2 + N(j+1)%n)}
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= {e|0 ≤ e ≤ Nj + 2 ·N(j+1)%n}
= S3.

Hence, S3 = S4 is proved. As S1 and S2 can also be represented as follows:

S1 = {e|e =Mn(2je0 +
∑
i∈I

2iγi), 0 ≤ γi ≤ Ni for i ∈ I, e0 ∈ S3},

S2 = {e|e =Mn(2je1 +
∑
i∈I

2iγi), 0 ≤ γi ≤ Ni for i ∈ I, e1 ∈ S4},

we have S1 = S2. ⊓⊔

3.1 Explaining Our Algorithm

The correctness of Algorithm 1 highly relies on the consecutive applications of
Theorem 1. Specifically, in the loop from Line 16 − Line 22, we always find an
index j such that Nj > 0 and then convert (Nn−1, Nn−2, . . . , N0) in the following
way.

When Nj is an odd number, we do the following conversion:

(Nn−1, . . . , N(j+1)%n, Nj , . . . , N0)← . . . , N(j+1)%n + Nj − 1
2 , 1, . . . , N0).

When Nj is an even number, we do the following conversion:

(Nn−1, . . . , N(j+1)%n, Nj , . . . , N0)← (Nn−1, . . . , N(j+1)%n + Nj − 2
2 , 2, . . . , N0)

Let us denote the output vector after the loop by (N ′
n−1, N ′

n−2, . . . , N ′
0). Based

on Theorem 1, the original optimization problem is reduced to an equivalent
optimization problem:

maximize H(Mn(
n−1∑
i=0

2iγi)),

subject to 0 ≤ γi ≤ N ′
i for i ∈ [0, n− 1].

This is because S1 = S2 where

S1 = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ Ni for i ∈ [0, n− 1]},

S2 = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ N ′
i for i ∈ [0, n− 1]}.

Moreover, the output vector (N ′
n−1, N ′

n−2, . . . , N ′
0) must be of the following 4

possible forms:
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Form 1: ∃i ∈ [0, n− 1], N ′
i ≥ 2n − 1.

Form 2: ∀i ∈ [0, n− 1], N ′
i > 0.

Form 3: ∀i ∈ [0, n− 1], N ′
i ∈ [0, 2] and ∃j ∈ [0, n− 1], N ′

j = 0.
Form 4: ∀i ∈ [1, n− 1], N ′

i ∈ [0, 2], 2 < N ′
0 < 2n − 1 and ∃j ∈ [0, n− 1], N ′

j = 0.

For the first two forms, according to Lemma 1, the solution to the equivalent
optimization problem is n and hence the solution to the original optimization
problem is also n. This corresponds to Line 7 − Line 8 and Line 13 − Line 14 of
Algorithm 1.

For Form 3, we will terminate the While loop and computes the number of
nonzero elements in (N ′

n−1, N ′
n−2, . . . , N ′

0) denoted by d.
For Form 4, we will again move to the loop from Line 16 − Line 22. Since

the input vector (Nn−1, Nn−2, . . . , N0) now satisfies

∀i ∈ [1, n− 1], Ni ∈ [0, 2], 2 < N0 < 2n − 1 and ∃j ∈ [0, n− 1], Nj = 0,

the output vector after this loop, which is still denoted by (N ′
n−1, N ′

n−2, . . . , N ′
0),

must be of Form 2 or 3.
Hence, we are left to prove that the solution to the following optimization

problem is d when there are d nonzero elements in the vector (Nn−1, Nn−2, . . . , N0)
where ∀i ∈ [0, n− 1], Ni ∈ [0, 2]:

maximize H(Mn(
n−1∑
i=0

2iγi)),

subject to 0 ≤ γi ≤ Ni for i ∈ [0, n− 1].

If this is proved, the correctness of Line 23 − Line 27 is proved and hence the
correctness of Algorithm 1 is proved. Moreover, according to the above analysis,
it runs in time O(n). In the following, we focus on the proof.

Lemma 2 For any a, b ∈ [0, 2n − 1], we have H(Mn(a + b)) ≤ H(a) + H(b).

Proof. Let (an−1, an−2, . . . , a) ∈ Fn
2 and (bn−1, bn−2, . . . , b0) ∈ Fn

2 be the binary
representations of a and b, respectively. Let I0 = {i0,1, i0,2, . . . , i0,p0} and I1 =
{i1,1, j1,2, . . . , i1,p1} be the sets of indices such that ai = 1 and bj = 1 for i ∈ I0
and j ∈ I1. In other words, H(a) = p0 and H(b) = p1. Let

I2 = I0 ∩ I1 = {i2,1, i2,2, . . . , i2,p2}.

Then, we have

p2 ≤ min{p0, p1}.

In this way, we have

Mn(a + b) =Mn(
∑

i∈I0\I2

2i +
∑

i∈I1\I2

2i + 2
∑
i∈I2

2i) =Mn(α3 + α4),
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α3 =
∑

i∈I0\I2

2i +
∑

i∈I1\I2

2i,

α4 =
∑
i∈I2

2(i+1)%n.

Hence, we have

H(α3) = p0 + p1 − 2p2,

H(α4) = p2 ≤ min{p0, p1}.

Repeating the same analysis, i.e. for k ≥ 1, let

I3k = (I3(k−1) ∪ I3(k−1)+1) \ I3(k−1)+2 = {i3k,1, i3k,2, . . . , i3k,p3k
},

I3k+1 = {j|j = (i + 1)%n, i ∈ I3(k−1)+2} = {i3k+1,1, i3k+1,2, . . . , i3k+1,p3k+1},
I3k+2 = I3k ∩ I3k+1 = {i3k+2,1, i3k+2,2, . . . , i3k+2,p3k+2}.

Then, we have

Mn(a + b) =Mn(α3k + α3k+1)
=Mn(

∑
i∈I3k\I3k+2

2i +
∑

i∈I3k+1\I3k+2

2i + 2
∑

i∈I3k+2

2i)

=Mn(α3(k+1) + α3(k+1)+1),

α3(k+1) =
∑

i∈I3k\I3k+2

2i +
∑

i∈I3k+1\I3k+2

2i,

α3(k+1)+1 =
∑

i∈I3k+2

2(i+1)%n.

Moreover,

p3(k+1) = p3k + p3k+1 − 2p3k+2,

p3(k+1)+1 = p3k+2,

p3(k+1)+2 ≤ min{p3k + p3k+1 − 2p3k+2, p3k+2} ≤ p3k+2,

p3(k+1) + p3(k+1)+1 ≤ p3k + p3k+1 ≤ . . . ≤ p0 + p1.

Therefore, p3(k+1)+2 ≤ p3k+2 ≤ . . . ≤ p2 ≤ min{p0, p1} must hold. Moreover,
it is impossible to have a sequence p3(s+ℓ)+2 = · · · = p3(s+1)+2 = p3s+2 > 0 for
s ≥ 0 and ℓ ≥ p0 + p1. If there is, we have

p3(s+ℓ)+2 = p3(s+ℓ−1)+2 ≤ min{p3(s+ℓ−1) + p3(s+ℓ−1)+1 − 2p3(s+ℓ−1)+2, p3(s+ℓ−1)+2}
⇒ p3(s+ℓ−1) + p3(s+ℓ−1)+1 ≥ 3p3(s+ℓ−1)+2 = 3p3(s+ℓ−2)+2

⇒ p3(s+ℓ−2) + p3(s+ℓ−2)+1 − p3(s+ℓ−2)+2 ≥ 3p3(s+ℓ−2)+2

⇒ p3(s+ℓ−2) + p3(s+ℓ−2)+1 ≥ 4p3(s+ℓ−2)+2 = 4p3(s+ℓ−3)+2

⇒ p3(s+ℓ−3) + p3(s+ℓ−3)+1 − p3(s+ℓ−3)+2 ≥ 4p3(s+ℓ−3)+2
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⇒ p3(s+ℓ−3) + p3(s+ℓ−3)+1 ≥ 5p3(s+ℓ−3)+2 = 5p3(s+ℓ−4)+2

⇒ · · ·
⇒ p3(s+1) + p3(s+1)+1 ≥ (ℓ + 1)p3s+2 ≥ ℓ + 1 ≥ p0 + p1 + 1

However, we also have p3(s+1) +p3(s+1)+1 ≤ p0 +p1, which causes a contradiction.
Therefore, p3k+2 cannot always remain the same value and it must decrease at
some k. Hence, there must exist k̂ such that p3k̂+2 = 0, i.e. I3k̂ ∩ I3k̂+1 = ∅. In
particular, in this case, we have

Mn(a + b) =Mn(α3 + α4) = · · · =Mn(α3k̂ + α3k̂+1) = α3k̂ + α3k̂+1.

As H(α3k̂) = p3k̂, H(α3k̂+1) = p3k̂+1, I3k̂ ∩I3k̂+1 = ∅ and p3k̂ + p3k̂+1 ≤ p0 + p1,
we have H(Mn(a + b)) = p3k̂ + p3k̂+1 ≤ p0 + p1 = H(a) + H(b). ⊓⊔

Theorem 2 For any m1, m2, . . . , mt ∈ [0, 2n − 1], we have

H(Mn(m1 + m2 + · · ·+ mt)) ≤ H(m1) + H(m2) + · · ·+ H(mt).

Proof. According to Lemma 2, we have

H(Mn(m1 + m2 + · · ·+ mt))

= H(Mn(m1 +Mn(
t∑

i=2
mi)))

≤ H(m1) + H(Mn(
t∑

i=2
mi))

≤ H(m1) + H(m2) + H(Mn(
t∑

i=3
mi))

· · ·
≤ H(m1) + H(m2) + · · ·+ H(mt).

⊓⊔

Theorem 3 Let (Nn−1, Nn−2, . . . , N0) be such a vector that ∀i ∈ [0, n− 1], Ni ∈
[0, 2] and it has in total d nonzero elements. Then, the solution to the following
optimization problem

maximize H(Mn(
n−1∑
i=0

2iγi)),

subject to 0 ≤ γi ≤ Ni for i ∈ [0, n− 1]

is d.

Proof. Let J = {j1, j2, . . . , jd} be the set of indices such that Nj > 0 for j ∈ J
and Nj = 0 for j /∈ J .
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Since

Ni ∈ {0, 1, 2} for i ∈ [0, n− 1],

for each (γn−1, γn−2, . . . , γ0) satisfying γi ≤ Ni for i ∈ [0, n − 1], we have
H(Mn(2jγj)) ≤ 1 for j ∈ J and H(Mn(2jγj)) = 0 for j /∈ J . According
to Theorem 2, we immediately obtain

H(Mn(
n−1∑
i=0

2iγi))

= H(Mn(
n−1∑
i=0
Mn(2iγi))) ≤

n−1∑
i=0

H(Mn(2iγi)) =
∑
j∈J

H(Mn(2jγj)) ≤ d.

In other words, the upper bound for the solution to the optimization problem is
d. By making γj = 1 for j ∈ J , we have

H(Mn(
n−1∑
i=0

2iγi)) = d.

In other words, we find an assignment to make the solution to the optimization
problem be d. Hence, the solution to the optimization problem is d. ⊓⊔
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