
An O(n) Algorithm for Coefficient Grouping
Fukang Liu, Libo Wang

University of Hyogo, Hyogo, Japan
liufukangs@gmail.com

Abstract. In this note, we study a specific optimization problem arising in the
recently proposed coefficient grouping technique, which is used for the algebraic
degree evaluation. Specifically, we show that there exists an efficient algorithm
running in time O(n) to solve this basic optimization problem relevant to upper
bound the algebraic degree. Moreover, the main technique in this efficient algorithm
can also be used to further improve the performance of the off-the-shelf solvers to
solve other optimization problems in the coefficient grouping technique. We expect
that some results in this note can inspire more studies on the coefficient grouping
technique.
Keywords: coefficient grouping · set equivalence · optimization problem

1 Notation
The following notations will be used throughout this paper.

1. |S| denotes the size of the set S.

2. a%b represents a mod b.

3. a|b denotes that a divides b.

4. [a, b] is a set of integers i satisfying a ≤ i ≤ b.

5. H(a) is the hamming weight of a ∈ [0, 2n − 1].

6. The function Mn(x) (x ≥ 0) is defined as follows:

Mn(x) =
{

2n − 1 if 2n − 1|x, x ≥ 2n − 1,

x%(2n − 1) otherwise.

By the definition of Mn(x), we have Mn(x1 + x2) =Mn(Mn(x1) +Mn(x2)), Mn(2i) =
2i%n and Mn(2ix) =Mn(2i%nMn(x)) for i ≥ 0.

2 Motivation
We have recently developed a technique called coefficient grouping to upper bound the
algebraic degree for ciphers defined over F2n . The main idea of that technique is to
convert the degree evaluation into some optimization problems. Among them, one basic
optimization problem can be described as follows:

maximize H(Mn(
n−1∑
i=0

2iγi)),

mailto:liufukangs@gmail.com

subject to γi ∈ N, 0 ≤ γi ≤ Ni for i ∈ [0, n− 1],

where (Nn−1, Nn−2, . . . , N0) ∈ Nn.
A more general problem related to upper bounding the algebraic degree in the multi-

variate case with m variables is

maximize H(Mn(
n−1∑
i=0

2iγ1,i)) + H(Mn(
n−1∑
i=0

2iγ2,i)) + · · ·+ H(Mn(
n−1∑
i=0

2iγm,i)),

subject to γj,i ∈ N, 0 ≤ γ1,i + γ2,i + · · ·+ γm,i ≤ Ni for i ∈ [0, n− 1].

where (Nn−1, Nn−2, . . . , N0) ∈ Nn.
In [1], the above problems are first encoded as an MILP problem and then solved with

an off-the-shelf solver Gurobi. Using a general-purpose blackbox solver is indeed very
convenient but we may lose some insight into these special problem.

Regarding why we do not put this note in [1], we just cannot find a good place. First,
we feel it not suitable to place this note at the Appendix of [1] as few people may read
it and then its importance will be neglected. Placing it at the main content of [1] also
looks inappropriate because it may destroy the simplicity and structure of [1]. The most
important reason is that we can only find an efficient algorithm for the above optimization
problems, while there are other different optimization problems related to computing more
accurate upper bounds for the algebraic degree in [1], for which we cannot find an efficient
ad-hoc algorithm.

One purpose of this note is thus to share our ideas of some special optimization
problems and we expect that they can inspire more studies. The technique in this note is
of independent interest.

3 The Studied Optimization Problems
Let us formally state the studied problems in this paper. We study 2 problems called
Problem-U and Problem-M. Specifically, given a vector of integers (Nn−1, Nn−2, . . . , N0) ∈
Nn, Problem-U is defined as follows:

maximize H(Mn(
n−1∑
i=0

2iγi)),

subject to 0 ≤ γi ≤ Ni for i ∈ [0, n− 1].

Problem-M with dimension m is defined as follows:

maximize H(Mn(
n−1∑
i=0

2iγ1,i)) + H(Mn(
n−1∑
i=0

2iγ2,i)) + · · ·+ H(Mn(
n−1∑
i=0

2iγm,i)),

subject to 0 ≤ γ1,i + γ2,i + · · ·+ γm,i ≤ Ni for i ∈ [0, n− 1].

Obviously, Problem-U is a special case of Problem-M with m = 1. For convenience, in
the following, we will omit the constraints γj,i ∈ N and γi ∈ N.

4 On Set Equivalence
Problem-U can be equivalently stated as finding an element e with the maximal hamming
weight from the following set

SU = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ Ni for i ∈ [0, n− 1]}.

2

where (Nn−1, Nn−2, . . . , N0) is a given vector.
Similarly, Problem-M with dimension m can be equivalently stated as finding a tuple

(e1, e2, . . . , em) with
∑m

i=1 H(ei) maximal from the following set

SM = {(e1, e2, . . . , em)|ej =Mn(
n−1∑
i=0

2iγj,i),

0 ≤
m∑

j=1
γj,i ≤ Ni for i ∈ [0, n− 1], j ∈ [1, m]}.

To solve Problem-U, our main idea is to find an equivalent set S ′
U such that SU = S ′

U

and we can simply find the solution by directly studying S ′
U .

To solve Problem-M, similarly, we aim to find another set S ′
M such that SM = S ′

M and
S ′

M is much easier to study.

4.1 The Set Equivalence Theorem for Problem-U
To find the desired equivalent sets, we first build some theorems to ensure the correctness.

Lemma 1. Let

S1 = {e|e = a + 2b, 0 ≤ a ≤ c1, 0 ≤ b ≤ c2},
S2 = {e|e = a + 2b, 0 ≤ a ≤ c′

1, 0 ≤ b ≤ c′
2},

where 2c2 + c1 = 2c′
2 + c′

1. Then, when one of the following conditions hold:

1. c1 > 0, c′
1 > 0,

2. c1 = c′
1 = 0,

we have S1 = S2.

Proof. When c1 > 0, the set S1 indeed corresponds to the set of numbers 0, 1, 2, . . . , 2c2+c1,
i.e.

S1 = {e|0 ≤ e ≤ 2c2 + c1}.

When c′
1 > 0, we also have

S2 = {e|0 ≤ e ≤ 2c′
2 + c′

1}.

Since 2c2 + c1 = 2c′
2 + c′

1, we have S1 = S2 when c1 > 0 and c′
1 > 0.

When c1 = c′
1 = 0, we have c2 = c′

2 and hence S1 = S2.

Theorem 1. Let t be a given positive integer. Let (N ′
n−1, N ′

n−2, . . . , N ′
0) ∈ Nn and

(Nn−1, Nn−2, . . . , N0) ∈ Nn be two given vectors where N ′
i = Ni for i ∈ I = {0, 1, . . . , n−

1} \ {j, (j + 1)%n} and Nj ≥ t > 0. Moreover, when (Nj − t)%2 = 1,
N ′

j = t + 1,

N ′
(j+1)%n = Nj − t− 1

2 + N(j+1)%n.
(1)

When (Nj − t)%2 = 0,
N ′

j = t,

N ′
(j+1)%n = Nj − t

2 + N(j+1)%n.
(2)

3

Then, for

S1 = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ Ni for i ∈ [0, n− 1]},

S2 = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ N ′
i for i ∈ [0, n− 1]},

we have S1 = S2.

Proof. Let

S3 = {e|e = a + 2b, 0 ≤ a ≤ Nj , 0 ≤ b ≤ N(j+1)%n},
S4 = {e|e = a + 2b, 0 ≤ a ≤ N ′

j , 0 ≤ b ≤ N ′
(j+1)%n}.

Then, S1 and S2 can be rewritten as

S1 = {e|e =Mn(2je0 +
∑
i∈I

2iγi), 0 ≤ γi ≤ Ni for i ∈ I, e0 ∈ S3},

S2 = {e|e =Mn(2je1 +
∑
i∈I

2iγi), 0 ≤ γi ≤ Ni for i ∈ I, e1 ∈ S4},

respectively.
Since Nj > 0 and N ′

j > 0, 2N(j+1)%n + Nj = 2N ′
(j+1)%n + N ′

j when either Equation 6
or Equation 7 holds, according to Lemma 1, we have S3 = S4. Hence, S1 = S2.

Algorithm 1 Finding equivalent sets for Problem-U
1: procedure REDUCE(Nn−1, Nn−2, . . . , N0)
2: for i in range (n) do
3: if Ni ≥ 1 and (Ni − 1)%2 = 1 then
4: N(i+1)%n = N(i+1)%n + (Ni − 2)/2
5: Ni = 2
6: else if Ni ≥ 1 and (Ni − 1)%2 = 0 then
7: N(i+1)%n = N(i+1)%n + (Ni − 1)/2
8: Ni = 1
9: return (Nn−1, Nn−2, . . . , N0)

Application of Theorem 1. By consecutively applying Theorem 1 with t = 1, an equivalent
set of SU can be easily found with the reduction algorithm, as shown in Algorithm 1.
Specifically, let (N ′

n−1, N ′
n−2, . . . , N ′

0)← REDUCE(Nn−1, Nn−2, . . . , N0). Then, we have

SU = {e|e =Mn(
n−1∑
i=0

2iγi), 0 ≤ γi ≤ Ni for i ∈ [0, n− 1]}

= S ′
U = {e|e =Mn(

n−1∑
i=0

2iγi), 0 ≤ γi ≤ N ′
i for i ∈ [0, n− 1]}.

Let us analyze S ′
U . By following Algorithm 1, we can observe that N ′

i ∈ {0, 1, 2} for
i ∈ [1, n− 1]. However, N ′

0 may be still large because at the last step we may update N ′
0

with N ′
0 = N ′

0 + (Nn−1 − 1)/2, N ′
n−1 = 1 or N ′

0 = N ′
0 + (Nn−1 − 2)/2, N ′

n−1 = 2.

4

Then, let us consider the case when the reduction algorithm is applied twice to the
vector (Nn−1, Nn−2, . . . , N0), i.e. we consider

(N ′
n−1, N ′

n−2, . . . , N ′
0) ← REDUCE(Nn−1, Nn−2, . . . , N0),

(N ′′
n−1, N ′′

n−2, . . . , N ′′
0) ← REDUCE(N ′

n−1, N ′
n−2, . . . , N ′

0).

In this way, we can find that there are at most two possible forms for (N ′′
n−1, N ′′

n−2, . . . , N ′′
0),

as shown below:

Form 1: N ′′
i ∈ {0, 1, 2},∀i ∈ [0, n− 1].

Form 2: N ′′
i > 0,∀i ∈ [0, n− 1].

Form 1 is easy to explain. The main problem is how to explain Form 2. As already stated
above, we have N ′

i ∈ {0, 1, 2},∀i ∈ [1, n − 1]. If N ′
0 is too large, then at the reduction

phase, each N ′′
i with 1 ≤ i ≤ n− 1 will be updated to either 1 or 2 and N ′′

0 can be still
very large, which explains Form 2. Note that if each element in the vector is either 1 or 2,
the vector can be either Form 1 or Form 2.

Due to this property, we compute the equivalent set S′
U by always running Algorithm

1 twice, i.e. we consider

(N ′
n−1, N ′

n−2, . . . , N ′
0)← REDUCE(REDUCE(Nn−1, Nn−2, . . . , N0)),

S ′
U = {e|e =Mn(

n−1∑
i=0

2iγi), 0 ≤ γi ≤ N ′
i for i ∈ [0, n− 1]}.

4.2 Extending the Set Equivalence Theorem for Problem-M
For Problem-M with dimension m, we need to consider a set SM where each of its elements
is a tuple of m natural numbers. Intuitively, finding such an equivalent set S ′

M = SM

becomes much harder when m > 1.

Lemma 2. Let t be a given positive integer. Let

S = {e|e = a + 2b, 0 ≤ a ≤ f1 −
t∑

i=1
ci, 0 ≤ b ≤ f2 −

t∑
i=1

di},

S ′ = {e|e = a + 2b, 0 ≤ a ≤ f ′
1 −

t∑
i=1

c′
i, 0 ≤ b ≤ f ′

2 −
t∑

i=1
d′

i}},

where

2f2 + f1 = 2f ′
2 + f ′

1,

ci + 2di = c′
i + 2d′

i,∀i ∈ [1, t],

0 ≤
t∑

i=1
ci≤f1, 0 ≤

t∑
i=1

di ≤ f2,

0 ≤
t∑

i=1
c′

i<f ′
1, 0 ≤

t∑
i=1

d′
i ≤ f ′

2.

Then, S ⊆ S ′.

Proof. Note that due to the specified conditions, we always have

2(f2 −
t∑

i=1
di) + (f1 −

t∑
i=1

ci) = 2f2 + f1 − (
t∑

i=1
(ci + 2di))

5

= 2f ′
2 + f ′

1 − (
t∑

i=1
(c′

i + 2d′
i)) = 2(f ′

2 −
t∑

i=1
d′

i) + (f ′
1 −

t∑
i=1

c′
i).

Due to the condition 0 ≤
∑t

i=1 ci ≤ f1, we cannot directly use Lemma 1. Hence,
we consider two cases. First, when 0 ≤

∑t
i=1 ci = f1, we have 2(f2 −

∑t
i=1 di) =

2(f ′
2 −

∑t
i=1 d′

i) + (f ′
1 −

∑t
i=1 c′

i) and hence

S = {e|e = 2b, 0 ≤ b ≤ f2 −
t∑

i=1
di},

S ′ = {e|0 ≤ e ≤ 2(f2 −
t∑

i=1
di)},

which implies S ⊆ S ′.
Second, when 0 ≤

∑t
i=1 ci < f1, due to Lemma 1, we directly have S ′ = S. Therefore,

S ⊆ S ′ always holds.

Lemma 3. Let m be a given positive integer. Let

S = {(e1, e2, . . . , em)|et = at + 2bt, 0 ≤
m∑

t=1
at ≤ f1, 0 ≤

m∑
t=1

bt ≤ f2, t ∈ [1, m]},

S ′ = {(e1, e2, . . . , em)|et = at + 2bt, 0 ≤
m∑

t=1
at ≤ f ′

1, 0 ≤
m∑

t=1
bt ≤ f ′

2, t ∈ [1, m]},

where 2f2 + f1 = 2f ′
2 + f ′

1 and f1 ≥ m, f ′
1 ≥ m. Then, S = S ′.

Proof. We prove Lemma 3 by induction. Let Ei and E ′
i be the sets of all possible values of

(e1, e2, . . . , ei) in S and S ′, respectively. The proof by induction is to first prove E1 = E ′
1

and then prove Et = E ′
t under the condition Et−1 = E ′

t−1 where t ∈ [1, m]. Note that
S = Em and S ′ = E ′

m by definition.
First, we prove E1 = E ′

1. In this case, we have

E1 = {e1|e1 = a1 + 2b1, 0 ≤ a1 ≤ f1, 0 ≤ b1 ≤ f2},
E ′

1 = {e1|e1 = a1 + 2b1, 0 ≤ a1 ≤ f ′
1, 0 ≤ b1 ≤ f ′

2}.

Since f1 ≥ m > 0, f ′
1 ≥ m > 0 and 2f2 + f1 = 2f ′

2 + f ′
1 always hold, according to Lemma

1, we have E1 = E ′
1.

Next, we prove Et = E ′
t under the condition Et−1 = E ′

t−1 where t ∈ [1, m]. Denote the
set of all possible values of et in Et with the same prefix (e1, e2, . . . , et−1) by S(e1,e2,...,et−1),
i.e.

Et = {(e1, e2, . . . , et)|(e1, e2, . . . , et−1) ∈ Et−1, et ∈ S(e1,e2,...,et−1)}

For each (e1, e2, . . . , et−1) ∈ Et−1, we associate a vector

(Ct−1, Dt−1) = (c1, c2, . . . , ct−1, d1, d2, . . . , dt−1)

where

ei = ci + 2di, ∀i ∈ [1, t− 1],

0 ≤
t−1∑
i=1

ci ≤ f1, 0 ≤
t−1∑
i=1

di ≤ f2,

In this case, we can have

S(e1,e2,...,et−1) ⊇ {e|e = 2a + b, 0 ≤ a ≤ f1 −
t−1∑
i=1

ci, 0 ≤ b ≤ f2 −
t−1∑
i=1

di}.

6

Case-1. If
∑t−1

i=1 ci = f1 and
∑t−1

i=1 di = f2, we have

S(e1,e2,...,et−1) ⊇ {0}.

Case-2. If
∑t−1

i=1 ci = f1 and
∑t−1

i=1 di < f2, since f1 ≥ m > t − 1, there must exist an
index h such that ch ≥ 2. In this case, we can make

(C ′′
t−1, D′′

t−1) = (c′′
1 , c′′

2 , . . . , c′′
t−1, d′′

1 , d′′
2 , . . . , d′′

t−1),
ci′′ = ci, d′′

i = di,∀i ∈ [1, h− 1] ∪ [h + 1, t− 1],
ch′′ = ch − 2, d′′

h = dh + 1,

due to
∑t−1

i=1 c′′
i = (

∑t−1
i=1 ci)− 2<f1 and

∑t−1
i=1 d′′

i = 1 +
∑t−1

i=1 di ≤ f2. Note that we still
have

ei = c′′
i + 2d′′

i , ∀i ∈ [1, t− 1].

According to Lemma 2, we have

S(e1,e2,...,et−1) ⊇ {e|e = 2a + b, 0 ≤ a ≤ f1 −
t−1∑
i=1

c′′
i , 0 ≤ b ≤ f2 −

t−1∑
i=1

d′′
i }

⊇ {e|e = 2a + b, 0 ≤ a ≤ f1 −
t−1∑
i=1

ci, 0 ≤ b ≤ f2 −
t−1∑
i=1

di}

⊇ {0}.

The above two cases imply that to construct S(e1,e2,...,et−1) for each (e1, e2, . . . , et−1) ∈
Et−1 , it is sufficient to consider the associated vector

(Ct−1, Dt−1) = (c1, c2, . . . , ct−1, d1, d2, . . . , dt−1)

where
ei = ci + 2di, ∀i ∈ [1, t− 1],

0 ≤
t−1∑
i=1

ci<f1, 0 ≤
t−1∑
i=1

di ≤ f2.
(3)

In other words, we can just ignore those associated vectors which satisfy
∑t−1

i=1 ci = f1.
In this way, we can interpret S(e1,e2,...,et−1) from another perspective. Denote the set

of all possible et in S under the associated vector (Ct−1, Dt−1) satisfying Equation 3 by
P(Ct−1,Dt−1), i.e.

P(Ct−1,Dt−1) = {e|e = a + 2b, 0 ≤ a ≤ f1 −
t−1∑
i=1

ci, 0 ≤ b ≤ f2 −
t−1∑
i=1

di}.

Moreover, denote the set of all possible vectors (Ct−1, Dt−1) satisfying Equation 3 by VC,D.
Then, we have

S(e1,e2,...,et−1) =
⋃

(Ct−1,Dt−1)∈VC,D

P(Ct−1,Dt−1).

Due to the symmetry between S and S ′, we can also interpret E ′
t as

Et = {(e′
1, e′

2, . . . , e′
t)|(e′

1, e′
2, . . . , e′

t−1) ∈ E ′
t−1, e′

t ∈ S ′
(e′

1,e′
2,...,e′

t−1)},

7

where S ′
(e′

1,e′
2,...,e′

t−1) denotes the set of all possible e′
t in E ′

t under the same prefix (e′
1, e′

2, . . . , e′
t−1).

Moreover, we can associate each (e′
1, e′

2, . . . , e′
t−1) ∈ E ′

t with a vector

(C ′
t−1, D′

t−1) = (c′
1, c′

2, . . . , c′
t−1, d′

1, d′
2, . . . , d′

t−1)

where
e′

i = c′
i + 2d′

i, ∀i ∈ [1, t− 1],

0 ≤
t−1∑
i=1

c′
i<f ′

1, 0 ≤
t−1∑
i=1

d′
i ≤ f ′

2.
(4)

Denote the set of all possible vectors (C ′
t−1, D′

t−1) satisfying Equation 4 by V ′
C,D. Then,

we have

S ′
(e′

1,e′
2,...,e′

t−1) =
⋃

(C′
t−1,D′

t−1)∈V′
C,D

P ′
(C′

t−1,D′
t−1),

where P ′
(C′

t−1,D′
t−1) is defined as follows:

P ′
(C′

t−1,D′
t−1) = {e|e = a + 2b, 0 ≤ at ≤ f ′

1 −
t−1∑
i=1

c′
i, 0 ≤ b ≤ f ′

2 −
t−1∑
i=1

d′
i}.

Note that our aim is to prove E ′
t = Et under the condition E ′

t−1 = Et−1. In other words,
we need to prove that for each

(e′
1, e′

2, . . . , e′
t−1) = (e1, e2, . . . , et−1) ∈ Et−1 = Et−1,

there is

S ′
(e′

1,e′
2,...,e′

t−1) = S(e1,e2,...,et−1)

⇔
⋃

(Ct−1,Dt−1)∈VC,D

P(Ct−1,Dt−1) =
⋃

(C′
t−1,D′

t−1)∈V′
C,D

P ′
(C′

t−1,D′
t−1)

This can be further reduced to proving that for any (Ct−1, Dt−1) and (C ′
t−1, D′

t−1) satisfying

ei = ci + 2di = c′
i + 2d′

i = e′
i, ∀i ∈ [1, t− 1],

0 ≤
t−1∑
i=1

ci<f1, 0 ≤
t−1∑
i=1

di ≤ f2,

0 ≤
t−1∑
i=1

c′
i<f ′

1, 0 ≤
t−1∑
i=1

d′
i ≤ f ′

2,

(5)

there is always P(Ct−1,Dt−1) = P ′
(C′

t−1,D′
t−1) where

P(Ct−1,Dt−1) = {e|e = a + 2b, 0 ≤ a ≤ f1 −
t−1∑
i=1

ci, 0 ≤ b ≤ f2 −
t−1∑
i=1

di},

P ′
(C′

t−1,D′
t−1) = {e|e = a + 2b, 0 ≤ at ≤ f ′

1 −
t−1∑
i=1

c′
i, 0 ≤ b ≤ f ′

2 −
t−1∑
i=1

d′
i}.

Due to Equation 5 and 2f2 + f1 = 2f ′
2 + f ′

1, according to Lemma 1, P(Ct−1,Dt−1) =
P ′

(C′
t−1,D′

t−1) always holds. Hence, we complete the proof.

8

Theorem 2. Let (N ′
n−1, N ′

n−2, . . . , N ′
0) ∈ Nn and (Nn−1, Nn−2, . . . , N0) ∈ Nn be two

given vectors where N ′
i = Ni for i ∈ I = {0, 1, . . . , n− 1} \ {j, (j + 1)%n} and Nj ≥ m > 0.

Moreover, when (Nj −m)%2 = 1,
N ′

j = m + 1,

N ′
(j+1)%n = Nj −m− 1

2 + N(j+1)%n.
(6)

When (Nj −m)%2 = 0,
N ′

j = m,

N ′
(j+1)%n = Nj −m

2 + N(j+1)%n.
(7)

Then, for

SM = {(e1, e2, . . . , em)|et =Mn(
n−1∑
i=0

2iγt,i), 0 ≤
m∑

t=1
γt,i ≤ Ni for i ∈ [0, n− 1], t ∈ [1, m]},

S ′
M = {(e1, e2, . . . , em)|et =Mn(

n−1∑
i=0

2iγt,i), 0 ≤
m∑

t=1
γt,i ≤ N ′

i for i ∈ [0, n− 1], t ∈ [1, m]},

we have SM = S ′
M .

Proof. Let

S5 = {(k1, k2, . . . , km)|kt = at + 2bt, 0 ≤
m∑

t=1
at ≤ Nj , 0 ≤

m∑
t=1

bt ≤ N(j+1)%n, t ∈ [1, m]},

S6 = {(k1, k2, . . . , km)|kt = at + 2bt, 0 ≤
m∑

t=1
at ≤ N ′

j , 0 ≤
m∑

t=1
bt ≤ N ′

(j+1)%n, t ∈ [1, m]},

Due to the specified conditions on (Nj , N(j+1)%n), according to Lemma 3, we have S5 = S6.
Then, we can rewrite SM and S ′

M as follows:

SM = {(e1, e2, . . . , em)|et =Mn(2jkt +
∑
i∈I

2iγt,i), 0 ≤
m∑

t=1
γt,i ≤ Ni for i ∈ I, (k1, k2, . . . , km) ∈ S5},

S ′
M = {(e1, e2, . . . , em)|et =Mn(2jkt +

∑
i∈I

2iγt,i), 0 ≤
m∑

t=1
γt,i ≤ Ni for i ∈ I, (k1, k2, . . . , km) ∈ S6},

Hence, we have SM = S ′
M .

Application of Theorem 2. With similar analysis as for Algorithm 1, by running Algo-
rithm 2 twice, i.e. we consider

(N ′
n−1, N ′

n−2, . . . , N0)← REDUCE-M(m, REDUCE-M(m, Nn−1, Nn−2, . . . , N0)),

the output will be of the following two possible forms:

Form 1: N ′
i ∈ [0, m + 1], ∀i ∈ [0, n− 1].

Form 2: N ′
i ≥ m, ∀i ∈ [0, n− 1].

In other words, we find an equivalent set S ′
M for SM where

S ′
M = {(e1, e2, . . . , em)|et =Mn(

n−1∑
i=0

2iγt,i), 0 ≤
m∑

t=1
γt,i ≤ N ′

i for i ∈ [0, n− 1], t ∈ [1, m]}.

9

Algorithm 2 Finding equivalent sets for Problem-M with dimension m

1: procedure REDUCE-M(m, Nn−1, Nn−2, . . . , N0)
2: for i in range (n) do
3: if Ni ≥ m and (Ni −m)%2 = 1 then
4: N(i+1)%n = N(i+1)%n + (Ni −m− 1)/2
5: Ni = m + 1
6: else if Ni ≥ m and (Ni −m)%2 = 0 then
7: N(i+1)%n = N(i+1)%n + (Ni −m)/2
8: Ni = m

9: return (Nn−1, Nn−2, . . . , N0)

5 Solving Optimal Problems By Processing Equivalent Sets
It is now clear that Problem-U is just a special case of Problem-M with m = 1. Hence, in
this section, we only focus on how to solve Problem-M with dimension m.

According to the above explanation, after running Algorithm 2 twice, we can find a
“reduced” vector (Nn−1, Nn−2, . . . , N0) to equivalently describe the set SM and there are
two possible forms of (Nn−1, Nn−2, . . . , N0):

Form 1: Ni ∈ [0, m + 1], ∀i ∈ [0, n− 1].

Form 2: Ni ≥ m, ∀i ∈ [0, n− 1].

5.1 Proceeding Form 2
For Form 2, according to Lemma 4 specified below, we can directly obtain that the solution
to the Problem-M with dimension m is nm.

Lemma 4. For a given vector (Nn−1, Nn−2, . . . , N0) ∈ Nn where Ni ≥ m for ∀i ∈ [0, n−1],
there exists an element (e1, e2, . . . , em) ∈ SM where

SM = {(e1, e2, . . . , em)|et =Mn(
n−1∑
i=0

2iγt,i), 0 ≤
m∑

t=1
γt,i ≤ Ni for i ∈ [0, n− 1], t ∈ [1, m]},

such that
m∑

i=1
H(ei) = nm.

Hence, the solution to Problem-M with dimension m in this case is nm.

Proof. By assigning γt,i = 1 for ∀i ∈ [0, n− 1], t ∈ [1, m], we obtain an element

(e1, e2, . . . , em) = (2n − 1, 2n − 1, . . . , 2n − 1) ∈ SM

due to

2n − 1 = Mn(
n−1∑
i=0

2i).

Hence,
∑m

i=1 H(ei) = nm. As the upper bound for Problem-M with dimension m is nm
and we find an assignment to satisfy this upper bound in this case, the solution to this
optimization problem is nm.

10

5.2 Proceeding Form 1
Next, we describe how to solve Problem-M when the vector (Nn−1, Nn−2, . . . , N0) is of
Form 1.

Lemma 5. For any a, b ∈ [0, 2n − 1], we have H(Mn(a + b)) ≤ H(a) + H(b).

This lemma is critical to finding the upper bound for the optimization problem.
Although it looks obvious, the proof requires significant efforts and we put it at Appendix
due to its length.

Theorem 3. For any m1, m2, . . . , mt ∈ [0, 2n − 1], we have

H(Mn(m1 + m2 + · · ·+ mt)) ≤ H(m1) + H(m2) + · · ·+ H(mt).

Proof. According to Lemma 5, we have

H(Mn(m1 + m2 + · · ·+ mt))

= H(Mn(m1 +Mn(
t∑

i=2
mi)))

≤ H(m1) + H(Mn(
t∑

i=2
mi))

≤ H(m1) + H(m2) + H(Mn(
t∑

i=3
mi))

· · ·
≤ H(m1) + H(m2) + · · ·+ H(mt).

Lemma 6. For any natural number a, we have H(a) ≤ a. If a ≥ 2, we further have
H(a) ≤ a− 1.

Proof. For any i ≥ 0 and 2i ≤ a ≤ 2i+1 − 1, we have H(a) ≤ i + 1 ≤ 2i ≤ a. Therefore,
H(a) ≤ a always holds. Moreover, for any 2i ≤ a ≤ 2i+1 − 1 where i ≥ 2, we have
H(a) ≤ i + 1 ≤ 2i − 1 ≤ a − 1. In addition, H(2) ≤ 2 − 1 and H(3) ≤ 3 − 1. Hence,
H(a) ≤ a− 1 for a ≥ 2.

Lemma 7. Let m1, m2, . . . , mt ∈ N and t be a positive integer. If
t∑

i=1
mi = k ≤ t,

we have
∑t

i=1 H(mi) ≤ k.
If

t∑
i=1

mi = t + 1,

we have
∑t

i=1 H(mi) ≤ t.

Proof. According to Lemma 6, we always have
t∑

i=1
H(mi) ≤

t∑
i=1

mi.

11

If
∑t

i=1 mi = k ≤ t holds, we immediately obtain
∑

i=1 H(mi) ≤
∑t

i=1 mi = k.
If

∑t
i=1 mi = t + 1 holds, there will exist an index i′ such that mi′ ≥ 2. Hence,

according to Lemma 6, we have
∑

i=1 H(mi) ≤ (
∑t

i=1 mi)− 1 = t.

Theorem 4. Let (Nn−1, Nn−2, . . . , N0) be a vector where Ni ∈ [0, m+1] for ∀i ∈ [0, n−1]
and m + 1 ≤ 2n − 1. Let I be a set of indices such that i ∈ I if Ni = m + 1. Then, the
solution to the following optimization problem

maximize H(Mn(
n−1∑
i=0

2iγ1,i)) + H(Mn(
n−1∑
i=0

2iγ2,i)) + · · ·+ H(Mn(
n−1∑
i=0

2iγm,i)),

subject to 0 ≤ γ1,i + γ2,i + · · ·+ γm,i ≤ Ni for i ∈ [0, n− 1].

is

(
n−1∑
i=0

Ni)− |I|.

Proof. According to Theorem 3, we have

H(Mn(
n−1∑
i=0

2iγ1,i)) + H(Mn(
n−1∑
i=0

2iγ2,i)) + · · ·+ H(Mn(
n−1∑
i=0

2iγm,i))

≤
n−1∑
i=0

H(Mn(2iγ1,i)) +
n−1∑
i=0

H(Mn(2iγ2,i)) + . . . +
n−1∑
i=0

H(Mn(2iγm,i))

=
n−1∑
i=0

H(Mn(γ1,i)) +
n−1∑
i=0

H(Mn(γ2,i)) + . . . +
n−1∑
i=0

H(Mn(γm,i))

=
n−1∑
i=0

m∑
j=1

H(Mn(γj,i)).

Since

0 ≤
m∑

j=1
γj,i ≤ Ni ≤ m + 1 ≤ 2n − 1,

we can remove the modular operation and obtain

n−1∑
i=0

m∑
j=1

H(Mn(γj,i)) =
n−1∑
i=0

m∑
j=1

H(γj,i)

Let I ′ be another set such that i ∈ I ′ if Ni ≤ m. Then, we further have

n−1∑
i=0

m∑
j=1

H(γj,i) =
∑
i∈I

m∑
j=1

H(γj,i) +
∑
i∈I′

m∑
j=1

H(γj,i)

According to Lemma 7, we then have

∑
i∈I

m∑
j=1

H(γj,i) +
∑
i∈I′

m∑
j=1

H(γj,i)

≤ |I| ×m +
∑
i∈I′

Ni

12

= |I| × (m + 1)− |I|+
∑
i∈I′

Ni

= (
n−1∑
i=0

Ni)− |I|.

Therefore, we obtain

H(Mn(
n−1∑
i=0

2iγ1,i)) + H(Mn(
n−1∑
i=0

2iγ2,i)) + · · ·+ H(Mn(
n−1∑
i=0

2iγm,i))

≤ (
n−1∑
i=0

Ni)− |I|,

which implies the upper bound for the optimization problem is (
∑n−1

i=0 Ni)− |I|.
For each i ∈ I, we can assign γj,i = 1 for each j ∈ [1, m]. For each i ∈ I ′, we can assign

γj,i = 1 for each j ∈ [1, Ni] and γj,i = 0 for each j ∈ [Ni + 1, m]. In this way, we find an
element (e1, e2, . . . , em) belonging to the following set

SM = {(e1, e2, . . . , em)|ej =Mn(
n−1∑
i=0

2iγj,i), 0 ≤
m∑

j=1
γj,i ≤ Ni for i ∈ [0, n− 1], j ∈ [1, m]}

such that
∑m

i=1 H(ei) = (
∑n−1

i=0 Ni)− |I| because for the above assignment, we have
m∑

i=1
H(ei) = H(Mn(

n−1∑
i=0

2iγ1,i)) + H(Mn(
n−1∑
i=0

2iγ2,i)) + · · ·+ H(Mn(
n−1∑
i=0

2iγm,i))

= H(
n−1∑
i=0

2iγ1,i) + H(
n−1∑
i=0

2iγ2,i) + · · ·+ H(
n−1∑
i=0

2iγm,i)

=
n−1∑
i=0

γ1,i +
n−1∑
i=0

γ2,i + · · ·+
n−1∑
i=0

γm,i

= (
n−1∑
i=0

Ni)− |I|.

Hence, the solution to the optimization problem is (
∑n−1

i=0 Ni)− |I|.

5.3 The O(n) Algorithm
Based on the above analysis, we can write a simple algorithm to solve the general optimiza-
tion problem Problem-M with dimension m, as shown in Algorithm 3. Since REDUCE-M
runs in time O(n), Algorithm 3 also runs in time O(n).

6 Other Applications
We show how the idea to construct equivalent sets can be used to improve the performance
of the off-the-shelf solvers for other optimization problems in [1]. Specifically, to compute
more accurate upper bounds for the algebraic degree, we need to solve the following
optimization problem:

maximize H(Mn(
n−1∑
i=0

2ir1γ1,i)) + H(Mn(
n−1∑
i=0

2ir2γ2,i)) + · · ·+ H(Mn(
n−1∑
i=0

2irmγm,i)),

13

Algorithm 3 Finding the solution to Problem-M with dimension m

1: procedure DEGREE(m, Nn−1, Nn−2, . . . , N0)
2: (Nn−1, Nn−2, . . . , N0)← REDUCE-M(m, Nn−1, Nn−2, . . . , N0)
3: (Nn−1, Nn−2, . . . , N0)← REDUCE-M(m, Nn−1, Nn−2, . . . , N0)
4: a = 0
5: b = 0
6: f = 0
7: for i in range (n) do
8: b = b + Ni

9: if Ni = m + 1 then
10: a = a + 1
11: if Ni = 0 then
12: f = 1
13: if f = 1 then
14: return b− a (Theorem 4)
15: else
16: return n×m (Lemma 4)

subject to 0 ≤ γ1,i + γ2,i + · · ·+ γm,i ≤ Ni for i ∈ [0, n− 1].

where (Nn−1, Nn−2, . . . , N0) ∈ Nn and (r1, r2, . . . , rm) ∈ Zm
+ are given vectors. Note that

in [1], since the algebraic degree of the S-box is 2, there is 1 ≤ H(ri) ≤ 2 for ∀i ∈ [1, m].
We emphasize that we will consider generic (r1, r2, . . . , rm) ∈ Zm

+ in the following. In [1],
after obtaining the vector (Nn−1, Nn−2, . . . , N0), the problem is directly encoded to an
MILP problem and solved with the off-the-shelf solvers.

We find that the performance can be significantly improved if we first apply the
reduction algorithm REDUCE-M twice to the original vector (Nn−1, Nn−2, . . . , N0) and then
construct the MILP model for the new vector

(N ′
n−1, N ′

n−2, . . . , N ′
0)← REDUCE-M(m, REDUCE-M(m, Nn−1, Nn−2, . . . , N0)).

To show its correctness, we should observe that the above optimization problem is
equivalent to finding an element (e1, e2, . . . , em) with

∑m
i=1 H(riei) maximal from the

following set

SM = {(e1, e2, . . . , em)|ej =Mn(
n−1∑
i=0

2iγj,i),

0 ≤
m∑

j=1
γj,i ≤ Ni for i ∈ [0, n− 1], j ∈ [1, m]}.

With the set equivalence theorem, it has been proved that

SM = S ′
M = {(e1, e2, . . . , em)|ej =Mn(

n−1∑
i=0

2iγj,i),

0 ≤
m∑

j=1
γj,i ≤ N ′

i for i ∈ [0, n− 1], j ∈ [1, m]}.

Hence, we can indeed consider the following equivalent optimization problem

maximize H(Mn(
n−1∑
i=0

2ir1γ1,i)) + H(Mn(
n−1∑
i=0

2ir2γ2,i)) + · · ·+ H(Mn(
n−1∑
i=0

2irmγm,i)),

14

subject to 0 ≤ γ1,i + γ2,i + · · ·+ γm,i ≤ N ′
i for i ∈ [0, n− 1].

If N ′
i ≥ m for ∀i ∈ [0, n − 1], the solution is also directly n × m. This is due

to (e1, e2, . . . , em) = (2n − 1, 2n − 1, . . . , 2n − 1) ∈ S ′
M in this case, which results in∑m

i=1 H(riei) = n×m.
In practical cryptographic applications, m is very small. If N ′

i ∈ [0, m + 1], i.e. the
maximal value of N ′

i is not larger than m+1, we find that the solver can solve such instances
much faster than solving the problem with the original vector (Nn−1, Nn−2, . . . , N0) ∈
Nn where many Ni are very large. This further shows the benefits to study the basic
optimization problem, i.e. how to construct equivalent sets.

Acknowledgements. We thank Clémence Bouvier and Willi Meier for discussing the
preliminary version of this note.

A Proof
The proof of Lemma 5 is shown below.

Proof. Let (an−1, an−2, . . . , a) ∈ Fn
2 and (bn−1, bn−2, . . . , b0) ∈ Fn

2 be the binary represen-
tations of a and b, respectively. Let I0 = {i0,1, i0,2, . . . , i0,p0} and I1 = {i1,1, j1,2, . . . , i1,p1}
be the sets of indices such that ai = 1 and bj = 1 for i ∈ I0 and j ∈ I1. In other words,
H(a) = p0 and H(b) = p1. Let

I2 = I0 ∩ I1 = {i2,1, i2,2, . . . , i2,p2}.

Then, we have

p2 ≤ min{p0, p1}.

In this way, we have

Mn(a + b) = Mn(
∑

i∈I0\I2

2i +
∑

i∈I1\I2

2i + 2
∑
i∈I2

2i) =Mn(α3 + α4),

α3 =
∑

i∈I0\I2

2i +
∑

i∈I1\I2

2i,

α4 =
∑
i∈I2

2(i+1)%n.

Hence, we have

H(α3) = p0 + p1 − 2p2,

H(α4) = p2 ≤ min{p0, p1}.

Repeating the same analysis, i.e. for k ≥ 1, let

I3k = (I3(k−1) ∪ I3(k−1)+1) \ I3(k−1)+2 = {i3k,1, i3k,2, . . . , i3k,p3k
},

I3k+1 = {j|j = (i + 1)%n, i ∈ I3(k−1)+2} = {i3k+1,1, i3k+1,2, . . . , i3k+1,p3k+1},
I3k+2 = I3k ∩ I3k+1 = {i3k+2,1, i3k+2,2, . . . , i3k+2,p3k+2}.

Then, we have

Mn(a + b) = Mn(α3k + α3k+1)

15

= Mn(
∑

i∈I3k\I3k+2

2i +
∑

i∈I3k+1\I3k+2

2i + 2
∑

i∈I3k+2

2i)

= Mn(α3(k+1) + α3(k+1)+1),

α3(k+1) =
∑

i∈I3k\I3k+2

2i +
∑

i∈I3k+1\I3k+2

2i,

α3(k+1)+1 =
∑

i∈I3k+2

2(i+1)%n.

Moreover,

p3(k+1) = p3k + p3k+1 − 2p3k+2,

p3(k+1)+1 = p3k+2,

p3(k+1)+2 ≤ min{p3k + p3k+1 − 2p3k+2, p3k+2} ≤ p3k+2,

p3(k+1) + p3(k+1)+1 ≤ p3k + p3k+1 ≤ . . . ≤ p0 + p1.

Therefore, p3(k+1)+2 ≤ p3k+2 ≤ . . . ≤ p2 ≤ min{p0, p1} must hold. Moreover, it is
impossible to have a sequence p3(s+ℓ)+2 = · · · = p3(s+1)+2 = p3s+2 > 0 for s ≥ 0 and
ℓ ≥ p0 + p1. If there is, we have

p3(s+ℓ)+2 = p3(s+ℓ−1)+2 ≤ min{p3(s+ℓ−1) + p3(s+ℓ−1)+1 − 2p3(s+ℓ−1)+2, p3(s+ℓ−1)+2}
⇒ p3(s+ℓ−1) + p3(s+ℓ−1)+1 ≥ 3p3(s+ℓ−1)+2 = 3p3(s+ℓ−2)+2

⇒ p3(s+ℓ−2) + p3(s+ℓ−2)+1 − p3(s+ℓ−2)+2 ≥ 3p3(s+ℓ−2)+2

⇒ p3(s+ℓ−2) + p3(s+ℓ−2)+1 ≥ 4p3(s+ℓ−2)+2 = 4p3(s+ℓ−3)+2

⇒ p3(s+ℓ−3) + p3(s+ℓ−3)+1 − p3(s+ℓ−3)+2 ≥ 4p3(s+ℓ−3)+2

⇒ p3(s+ℓ−3) + p3(s+ℓ−3)+1 ≥ 5p3(s+ℓ−3)+2 = 5p3(s+ℓ−4)+2

⇒ · · ·
⇒ p3(s+1) + p3(s+1)+1 ≥ (ℓ + 1)p3s+2 ≥ ℓ + 1 ≥ p0 + p1 + 1

However, we also have p3(s+1)+p3(s+1)+1 ≤ p0+p1, which causes a contradiction. Therefore,
p3k+2 cannot always remain the same value and it must decrease at some k. Hence, there
must exist k̂ such that p3k̂+2 = 0, i.e. I3k̂ ∩ I3k̂+1 = ∅. In particular, in this case, we have

Mn(a + b) =Mn(α3 + α4) = · · · =Mn(α3k̂ + α3k̂+1) = α3k̂ + α3k̂+1.

As H(α3k̂) = p3k̂, H(α3k̂+1) = p3k̂+1, I3k̂ ∩ I3k̂+1 = ∅ and p3k̂ + p3k̂+1 ≤ p0 + p1, we have
H(Mn(a + b)) = p3k̂ + p3k̂+1 ≤ p0 + p1 = H(a) + H(b).

References
[1] F. Liu, R. Anand, L. Wang, W. Meier, and T. Isobe. Coefficient Grouping: Breaking

Chaghri and More. 2022. https://eprint.iacr.org/2022/991.

16

https://eprint.iacr.org/2022/991

	Notation
	Motivation
	The Studied Optimization Problems
	On Set Equivalence
	The Set Equivalence Theorem for Problem-U
	Extending the Set Equivalence Theorem for Problem-M

	Solving Optimal Problems By Processing Equivalent Sets
	Proceeding Form 2
	Proceeding Form 1
	The O(n) Algorithm

	Other Applications
	Proof

