
A New Look at Blockchain Leader Election:
Simple, Efficient, Sustainable and Post-Quantum

Muhammed F. Esgin∗†, Oğuzhan Ersoy‡, Veronika Kuchta§, Julian Loss¶, Amin Sakzad∗,
Ron Steinfeld∗, Wayne Yang∗ and Raymond K. Zhao∗

∗Monash University, Australia
†CSIRO’s Data61, Australia

‡Radboud University and Delft University of Technology, The Netherlands
§The University of Queensland, Australia

¶CISPA Helmholtz Center for Information Security, Germany

Abstract—In this work, we study the blockchain leader elec-
tion problem. The purpose of such protocols is to elect a leader
who decides on the next block to be appended to the blockchain,
for each block proposal round. Solutions to this problem are
vital for the security of blockchain systems. We introduce an
efficient blockchain leader election method with security based
solely on standard assumptions for cryptographic hash functions
(rather than public-key cryptographic assumptions) and that
does not involve a racing condition as in Proof-of-Work based
approaches. Thanks to the former feature, our solution provides
the highest confidence in security, even in the post-quantum era.
A particularly scalable application of our solution is in the Proof-
of-Stake setting, and we investigate our solution in the Algorand
blockchain system. We believe our leader election approach can
be easily adapted to a range of other blockchain settings.

At the core of Algorand’s leader election is a verifiable
random function (VRF). Our approach is based on introduc-
ing a simpler primitive which still suffices for the blockchain
leader election problem. In particular, we analyze the con-
crete requirements in an Algorand-like blockchain setting to
accomplish leader election, which leads to the introduction of
indexed VRF (iVRF). An iVRF satisfies modified uniqueness and
pseudorandomness properties (versus a full-fledged VRF) that
enable an efficient instantiation based on a hash function without
requiring any complicated zero-knowledge proofs of correct PRF
evaluation. We further extend iVRF to an authenticated iVRF with
forward-security, which meets all the requirements to establish
an Algorand-like consensus. Our solution is simple, flexible
and incurs only a 32-byte additional overhead when combined
with the current best solution to constructing a forward-secure
signature (in the post-quantum setting).

We implemented our (authenticated) iVRF proposal in C
language on a standard computer and show that our proposal
significantly outperforms other quantum-safe VRF proposals in
almost all metrics. Particularly, iVRF evaluation and verification
can be executed in 0.02 ms, which is even faster than ECVRF
used in Algorand.

Keywords—Blockchain, Leader Election, Verifiable Random
Function, Post-Quantum, Algorand

I. INTRODUCTION

In a blockchain system, a number of block creators work
collectively on producing new blocks and appending them to
the blockchain. Such systems rely on consensus protocols to
agree on the proper sequencing of blocks. The main purpose
of a consensus protocol is to elect a leader, who decides on the

new block to be appended, and in some cases, to additionally
elect a committee, who validates newly produced blocks. In
Proof-of-Stake consensus protocols, for example, the leader is
elected among the stakeholders with probability proportional
to the amount of owned stakes.

Due to their critical roles, it is vital for the security of
a blockchain system that leaders are elected from a set of
honest users that may not be easily corrupted by an adversary.
To accomplish such security requirements, there are various
cryptographic techniques employed by different blockchain
environments, e.g., [1]–[5]. For example, Algorand, aiming
for an environment-friendly solution, employs a cryptographic
sortition technique, where a user self-determines if they are
elected as a leader using a Verifiable Random Function (VRF)
[6]. The goal of the VRF is to introduce a way for each
user to produce a unique lottery ticket whose validity can be
publicly verified via a proof shared by the user. In the case a
user has a winning ticket, they publish the ticket as well as a
certifying proof, which together constitute the VRF output. The
use of VRF in consensus protocols supports scaling and high
performance, and allows the Algorand blockchain to support
millions of users. VRFs are also used as a core cryptographic
primitive in other blockchain systems such as Ouroboros Praos
[1] (used in Cardano), Dfinity [4], Rangers Protocol [7] and
Filecoin [8].

The VRF and signature solutions employed by Algorand,
namely ECVRF [9] and Ed25519 [10], rely on the hardness
of discrete logarithm problem (DLP), which is susceptible
to quantum attacks. As discussed in [11], the lack of post-
quantum security in an Algorand-like blockchain context may
be catastrophic, leading to a complete adversarial re-write
of the blockchain history. Particularly, the authors in [11]
discuss that even if a forward-secure signature is used to
secure the blockchain system, a quantum adversary may break
DLP to recover users’ master secret keys from their master
public keys. As such, the adversary can corrupt any user
at any time (including previous rounds) by generating the
round keys from the master secret key even when the round
secret keys are physically deleted by the users. Hence, it is
important to migrate to post-quantum solutions, particularly
for the consensus part, to make sure at least that the security

of prior rounds cannot be compromised1.

A major bottleneck against making Algorand-like consen-
sus protocols post-quantum is the lack of an efficient post-
quantum replacement of its VRF. There have been attempts to
construct practically efficient post-quantum VRFs, but all of
them have significant disadvantages compared to our solution,
which we discuss next.

The first practical post-quantum VRF proposal, named LB-
VRF, was introduced by Esgin et al. in [11]. This construction
is based on (module) lattices and is relatively efficient for
the lattice setting. In particular, an LB-VRF proof is about
5 KB, which is somewhat larger than an ordinary signature
based on the same assumptions (at around 2.5–3 KB). A
significant limitation of LB-VRF is that it is only few-time,
meaning that each VRF key pair can only be used to generate
a few VRF outputs, particularly just one for the most efficient
instantiation. This leads to significant issues because one has to
find custom-designed methods to handle key refreshing almost
every round (i.e., every 5 seconds). Moreover, since the new
key needs to be communicated almost every round, the actual
communication cost rises by the size of a public key to more
than 8.3 KB. Another lattice-based VRF proposal, named LaV,
was recently introduced by Esgin et al. in [12]. Despite the fact
that LaV is a standard VRF (i.e., can directly replace ECVRF
used in Algorand in terms of functionality), its main drawback
is the proof size at 12 KB.

By employing hash-based cryptography, Buser et al. [13]
introduced X-VRF, a post-quantum VRF construction based on
the XMSS signature [14]. This VRF proposal is stateful (like
XMSS), but this limitation is not a significant concern in the
blockchain applications (at least for its use in Algorand). The
main drawback of X-VRF (compared to our solution) is the
significant communication overhead at about 3 KB. Another
solution in [13] is a standard VRF proposal, named SL-VRF,
but its communication cost is significantly larger, at about 40
KB. A summary of the performance of these existing VRF
proposals is provided in Table I.

Given the above state of affairs for post-quantum VRFs, a
natural question that we ask in this work is the following.

Do we really need a full VRF to realize an Algorand-like
consensus? If not, what is precisely the tool needed for that
purpose and how can we construct it from the most basic

cryptographic primitives?

We emphasize the importance of simplicity, efficiency, sustain-
ability and (long-term) reliability as we are after a solution
that (i) can be readily deployed into Algorand’s network, (ii)
does not require wasting natural resources, and (iii) offers the
strongest security in the post-quantum era. As a result, we
build our solution for the VRF functionality based solely on
hash functions.

Before going into more details of our solution, we present
independent views on Bitcoin’s, Algorand’s, and our ap-

1In recognition of the importance of post-quantum security, Algorand has
recently (concurrent to our work) introduced post-quantum secure state proofs.
See https://developer.algorand.org/docs/get-details/algorand consensus/#state
-proof-keys (accessed on July 26, 2022).

proaches to solving the leader election2/lottery problem on
blockchain. These will be helpful in understanding our high-
level approach without getting into technical details.

A view of Bitcoin’s approach. A common feature of all
three approaches that we discuss now is that the blockchain
protocol generates a random “magic” number, say Qn, at each
protocol round n. In Bitcoin’s approach, this magic number
is used to select a random function HQn from a large family
of hash functions. Then, the idea of Bitcoin’s Proof-of-Work
(PoW) approach is to have users race real-time to find a
“lucky” input, x, that maps under HQn to one of the target
values such as HQn

(x) < v for some threshold v. The main
drawback, well-known in the community, is the tremendous
energy consumption and the waste of resources due to the
real-time racing as the more computational power one spends,
the more chance they have in winning the race.

A view of Algorand’s approach. Algorand aims to solve the
unsustainability issue of Bitcoin’s PoW by moving to a Proof-
of-Stake (PoS) based approach. In Algorand, users fix their
key pairs in advance of participating in the consensus, say
(pki, ski) for user i. Effectively, fixing the keys seals every-
one’s fate in that now each user has an internal secret function
Hski , which they cannot change since the corresponding public
key pki acts as a commitment to Hski . When the blockchain
protocol generates the random magic number Qn for round n,
then each user locally computes Hski(Qn) and checks whether
the result is a “winning ticket”. The probability of success in
the latter check is based on the amount of stake one has. If the
check is successful, then they can generate a (zero-knowledge)
proof to show that they are indeed a winner of the lottery for
round n.

Views of our approach. Our approach in a way is a new look
at a combination of the above two approaches. In particular,
we first want to deviate from real-time racing in Bitcoin while
still making use of the magic number Qn to choose a random
function HQn

at each block generation round. Since we have
these functions chosen at each round without a particular user’s
control,3 what we do is simply ask every user (participating in
the consensus) to commit to an input of their choice in advance
of that round. In particular, at some round t < n (or earlier),
each user i commits to their input xi on blockchain and simply
wins the lottery if HQn(xi) = v for a target value v. To prove
that user i indeed won the lottery, they simply publish xi and
everyone can straightforwardly check the claim by calculating
HQn

(xi). Overall, for improved efficiency, we ask users to
commit to a set of inputs xi,j’s early on and use the n-th
value xi,n at round n, where the use of the n-th value can be
verified so that users do not get to choose between multiple
xi,j’s.

2We note that the high-level approaches we discuss (Bitcoin’s, Algorand’s
and ours) do not guarantee a single leader election (and hence, the term ‘leader
election’ is not used to mean ‘single leader election’). Thanks to the flexibility
of our approach, if multiple potential leaders arise in our protocol, one can
employ, for example, the techniques in Algorand (discussed in Sec. VII) to
recognise one of them as the true leader.

3Here, we are assuming the ideal case where Qn is generated truly at
random by some means. Of course, this is not possible to achieve in practice,
but this issue is outside of our simplified discussion here. In our actual
protocol, the magic number will be generated similar to Algorand and our
approach is flexible enough to support different ways to generate Qn.

2

https://developer.algorand.org/docs/get-details/algorand_consensus/#state-proof-keys
https://developer.algorand.org/docs/get-details/algorand_consensus/#state-proof-keys

TABLE I. PERFORMANCE COMPARISON OF OUR IVRF IN SEC. IV-A (WITH N = 218 EVALUATIONS) TO OTHER QUANTUM-SAFE VRF PROPOSALS AND
(NON-QUANTUM-SAFE) ECVRF. THE SIZES ARE GIVEN IN BYTES AND THE TIMES ARE IN MILLISECONDS. FOR ECVRF, WE TAKE THE RESULTS

REPORTED IN [13]. FOR OUR IVRF, THE VRF VALUE CAN BE COMPUTED FROM THE PROOF AND HENCE ITS SIZE IS GIVEN AS ZERO.

Scheme Pub. Key Size Proof Size VRF Size Keygen Time Eval Time Verify Time # of Evaluations Security Basis

SL-VRF [13] 48 40000 32 0.38 765.00 475.00 Unlimited LowMC block cipher [15]
LaV [12] 6420 11980 124 - - - Unlimited Lattices
LB-VRF [11] 3320 4940 84 0.33 3.10 1.30 1 Lattices
X-VRF [13] 64 2720 32 426000.00 0.74 0.90 N = 218 Hash
Our iVRF 32 608 0 < 3087.00 0.01 0.02 N = 218 Hash

ECVRF 32 80 32 0.05 0.10 0.10 Unlimited Discrete log. (not quantum-safe)

A “dual” view of our approach is that each user i commits
to a one-time function Hxi,n

for each round n in advance,
and just evaluates Hxi,n

(Qn) to check lottery winning similar
to Algorand. However, the major difference of our approach
from Algorand’s is that we do not require a (zero-knowledge)
proof to show the validity of computation and simply ask
users to publish Hxi,n . The latter approach of ours significantly
simplifies the functionality required from the cryptographic
tool to accomplish leader election and enables a very efficient
instantiation from the most basic primitives. We discuss our
approach in more detail in Sec. I-B.

Forward security. Many blockchain systems such as Algo-
rand and Ouroboros Praos [1] employ forward-secure digital
signatures to maintain the security of prior rounds in case some
stored user key is compromised at some point. Existing generic
approaches to achieving forward security can be straightfor-
wardly realized in the post-quantum setting by instantiating
the underlying ordinary signatures using post-quantum ones.

One such generic approach is known as the MMM ap-
proach [16]. In the MMM ‘sum’ composition, a user creates N
key pairs (pk1, sk1), . . . , (pkN , skN) of an ordinary signature
and constructs a Merkle tree using the public keys as the tree
leaves. To sign a message at a particular time i, the user
communicates pki and an authentication path in addition to
a signature on the actual message.

An alternative generic approach, adopted by Algorand,
works as follows. A user first generates a key pair (mpk,msk)
of an ordinary signature, and similarly round key pairs
(pk1, sk1), . . . , (pkN , skN). Then, each round public key is
signed with msk, denoted as σ′

i, and at a round i, the user com-
municates (σ′

i, pki) in addition to the signature on the actual
message. Therefore, the communication difference between the
Algorand’s approach vs the MMM approach is the cost of a
signature (σ′

i) vs an authentication path. The smallest signature
length among the schemes selected for standardization by
NIST for Post-Quantum Cryptography4 is at about 700 bytes,
which means even an authentication path for a Merkle tree with
220 leaves is cheaper than such a post-quantum signature. Note
that the latter Algorand approach also incurs more computation
due to signing of round public keys.

Another alternative approach to constructing forward-
secure post-quantum signature could be to use a post-quantum
Identity-Based Signature (IBS) scheme. In this case, the IBS
master secret key is used to derive signing keys for the
round keys, where each round is assigned a different ID. The
master secret key is deleted and round keys are stored and

4https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorith
ms-2022

used to sign messages, and then each one is deleted as the
corresponding round period expires. It is well known that such
IBS can be constructed from a two-level Hierarchical Identity-
Based Encryption (HIBE) scheme. An improved variant of the
post-quantum lattice-based LATTE HIBE scheme [17] and its
practical implementation are reported in a recent work [18].
However, the user private keys in the latter scheme are already
longer than 3 KB (even for a one-level HIBE), and signa-
tures will be even longer. This approach to forward security
therefore leads to a longer communication cost compared
to an MMM-based solution, which can be instantiated with
communication of less than 2.2 KB for each message signed
using the Falcon signature scheme [19]. We further note that
Algorand’s approach described above is an application of a
folklore generic IBS construction via certification described,
e.g., in [20].

Overall, in the post-quantum setting, the MMM approach
already stands out as one of the best options and we adopt it
in our work.

A. Our Contributions

Our main contribution in this work is the introduction of
a simple, efficient, sustainable and post-quantum solution to
blockchain leader election problem. We start by formalizing
the concrete requirements of this problem, specifically tailored
to the blockchain setting. This leads to notions of (many-time)
indexed VRF (iVRF) and authenticated iVRF with forward
security (‘authenticated MT-iVRF’ or ‘authenticated iVRF’, in
short). The former is targeted at the blockchain leader election
problem alone, while the latter combines all requirements
to accomplish an Algorand-like consensus, where a forward-
secure signature is needed. We believe our definitions capture
the requirements in a real-life blockchain setting more closely,
particularly matching the sequential (i.e., “indexed”) nature of
blockchain protocols.

Then, we introduce our solutions for (many-time) iVRF
and authenticated iVRF that build on a cryptographic hash
function, ordinary (t-time) signature (for a parameter t) and
pseudorandom generator (PRG), which can be built from a
hash function. We prove the security of our instantiations
assuming the existence of a secure hash function, digital
signature and PRG satisfying natural security requirements
in the standard model (without random oracles). Since we
do not require a random oracle, there is no complicated
quantum random oracle model (QROM) analysis needed to
argue security against (full) quantum adversaries.

We implemented our construction in C language on a stan-
dard computer using Falcon [19] as the post-quantum signature
scheme (see Sec. V for more details). The performance results

3

https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

together with a comparison with other practical post-quantum
VRF proposals are provided in Table I. In the table, we
also include ECVRF (used by Algorand) performance results
as a reference point even though ECVRF is not quantum-
safe. We can see from the table that our iVRF enjoys the
smallest sizes across all components compared to other post-
quantum schemes. Its evaluation and verification times also
outperform all proposals in the table, including ECVRF. The
only downside of our approach is its key generation time linear
in the total number of allowed evaluations N , but this can be
amortized over time and is only a one-time computation per
N evaluations that can be straightforwardly parallelized. In
Sec. V, we discuss a parameter setting of our iVRF, where
the key generation takes about 10 hours on a single core and
only needs to be done once a year in the Algorand setting. We
now provide an overview of our solution and then discuss its
advantages.

B. Overview of Solution

This section discusses an overview of how our final authen-
ticated iVRF construction works in the Algorand setting. As
mentioned earlier, our solution relies on having users commit
to an ordered set of inputs (i.e., random strings), where the
index of each input can be verified. We already know an
excellent tool for this purpose: Merkle tree! More generally,
we can use any (static) vector commitment.

Let us set N (a power of two) as a parameter that
defines the number of rounds before a user key is refreshed.
This parameter can be adjusted as desired, but users’ (local)
key generation time is linear in N due to the Merkle tree
construction (see Table I for a concrete key generation time).
We envision key refreshments of all users are synchronized in
the following sense. The time periods are split into epochs,
composed of N consecutive rounds, and d rounds before an
epoch starts, for a delay parameter d, nodes wanting to get
involved in consensus in that epoch are expected to commit to
their Merkle tree root on blockchain. If a user performs this
commitment at a later time, they still need to wait for d rounds
before being able to join the consensus and their Merkle tree
still needs to have N leaves5.

Let us now see how the key generation is done. A user,
Alice, generates N pseudorandom values x0,0, . . . , xN−1,0

from a random seed s using a pseudorandom generator (PRG)
and computes xi,j = Hj(xi,0) (i.e., j recursive application of
H on xi,0) for j = 1, . . . , t − 1 and i = 0, . . . , N − 1, where
t is a parameter denoting the number of iterations needed to
reach agreement within a round (with high probability). She
also generates N key pairs (pk0, sk0), . . . , (pkN−1, skN−1) of
an ordinary (t-time) signature Σ using another random seed
s′ with the PRG. With these values, Alice now computes
xi,t = H(xi,t−1, pki) and constructs a Merkle tree with
(x0,t, . . . , xN−1,t) as the leaves (depicted in Fig. 1). Alice
publishes the Merkle tree root on blockchain as her public

5If a user joins late, they can actually leave a bottom left sub-tree ‘empty’
as that part will not be needed. For example, if a user joins 16 rounds late,
then they can just pick the left-most tree node at level 4 (from the bottom)
and N − 16 leaves to construct the Merkle tree. The sub-tree consisting of
the first 16 leaves will not be needed.

key6 (or commitment) and keeps the seeds (s, s′) and the
intermediate Merkle tree nodes as her secret key.

Now suppose we are at the j-th iteration of the i-th round
of consensus in an epoch that Alice is able to participate.
Let n denote the actual block round number with a “magic
number” Qn (note that i ≡ n mod N). To generate an
authenticated iVRF output on an input message µ to be authen-
ticated/signed, she outputs v = H(xi,j , Qn) as the VRF value,
σ = Σ.Signski(µ) as the signature and π = (xi,j , pki,APi) as
the proof where APi denotes the Merkle tree authentication
path w.r.t. the index i.7

Upon receiving an authenticated iVRF output
(v, σ, (x, pk,AP)), the verification of iVRF works by
first checking if v = H(x,Qn) and v is below a threshold.
Furthermore, it checks that σ is a valid signature on µ under
pk. Finally, for x′ := H(Hj(x), pk), it checks that the Merkle
tree root computed via x′ and AP is equal to Alice’s public
key (or commitment) on blockchain for that epoch.

The intuition behind security is quite simple. Alice gener-
ated and committed to xi,j’s before seeing Qn. So, she cannot
choose them to bias the output of HQn(xi,n) := H(xi,j , Qn).
Merkle tree commitment also ensures (computationally) that
there is only a single valid xi,j that Alice can use at round n.
Hence, assuming the randomness of Qn, no user has a better
advantage of winning the lottery. Of course, as in Algorand,
we can adjust the winning condition based on the amount of
stake to establish a PoS-based setting or the adjustment can
be w.r.t. any other publicly available information.

The forward security of our approach is inherited from the
‘sum’ composition in the MMM paper [16]. Particularly, as in
Algorand, we assume that the adversary cannot corrupt a user
within a round (i.e., in 4-5 seconds). To allow such corruptions,
we can simply ask users to build a Merkle tree with N ·t leaves
in the first place and consume t leaves at each round (even if
the actual number of iterations in a round is less than t).

As mentioned above, we note that our approach in general
can work with any (static) vector commitment, which would
replace the role of Merkle tree in our description. Therefore,
our approach can benefit from further improvements in the
context of vector commitments.

C. Advantages of Our Approach

Simplicity and flexibility. Our approach supports the use
of any ordinary signature and any hash function (satisfying
natural properties), which are already supported by almost all
blockchain applications. These tools have been studied for a
long time, and their post-quantum variants are either already
standardized or in standardization. Thanks to its simplicity and
flexibility, we believe our approach can be easily adapted to
work for a range of blockchain systems, for example, Cardano,
Dfinity and Rangers Protocol. Note that our approach does
not necessarily require the consensus protocol to be based on

6To prevent Alice from publishing multiple Merkle roots, we can simply
have a flag bit in each account that states whether a user has published their
Merkle root for that epoch. If that is the case, the verifiers would reject
subsequent Merkle root commitments on blockchain.

7In the actual protocol, Alice in fact does not need to communicate v since
it can be computed from xi,j and the public Qn.

4

Proof-of-Stake, and it may be possible, for example, to adapt
it to the Proof-of-Storage setting in Filecoin [8].

Confidence in (post-quantum) security. Hash functions (and
symmetric primitives in general) are considered to be the
most reliable solution to building quantum-safe cryptosystems.
Therefore, our leader election solution is built on the safest
alternative. For our full solution with authentication, one can
choose the best tradeoff between security and efficiency for a
specific system thanks to the flexibility of our approach.

Sustainability. Our approach does not have any racing con-
dition and, therefore, does not lead to a tremendous waste of
natural resources like Bitcoin.

Efficiency. Combined with one of the best solutions (i.e.,
the MMM approach) to achieving forward security in the
post-quantum setting, the only additional communication cost
of our iVRF-based approach is 32 bytes (i.e. the cost of
sending the relevant round’s xi,j), which is a minimal cost
one could expect to have. In comparison, combining an MMM-
style forward-secure post-quantum signature with X-VRF [13],
the smallest post-quantum VRF proposal, (under a common
hash tree) would give an additional overhead due to the VRF
functionality of about 2100 bytes. This overhead is almost two
orders of magnitude more than the 32 byte overhead in our
iVRF-based construction.

II. PRELIMINARIES

For a finite set S, we denote by x
$← S the sampling of

a uniformly random element x of S. For a security parameter
λ, we denote by negl(λ) a negligible function in λ, where
negl(λ) := O(poly(λ)/2λ).

A. Hash Functions and Merkle Tree

Definition 1 (Hash-Function Family): A (cryptographic)
hash function family with security parameter λ is a set H of
polynomial-time computable functions H : {0, 1}∗ → {0, 1}2λ
that map an arbitrary-length message to an 2λ-bit hash value
(digest). We define the following desirable security properties
for a cryptographic hash family H:

Everywhere Preimage Resistance (ePre): For this notion,
we treat the domain of H as {0, 1}2λ × {0, 1}ℓ(λ).
Let v ∈ {0, 1}2λ. We define the following experiment
Exp-ePre with any PPT adversary A = (A1,A2): Let
(v, st) ← A1(H) for H

$← H, µ
$← {0, 1}ℓ(λ) and

y ← A2(µ, st). A wins game Exp-ePre if H(y, µ) = v.
We say that H satisfies Everywhere Preimage Resistance
(ePre) if for any PPT adversary A,

AdvePre(A) := Pr[A wins Exp-ePre] ≤ 2−ℓ(λ)+negl(λ).

Collision Resistance (CR): We say that H satisfies Colli-
sion Resistance if, on input H

$← H, a probabilistic
polynomial-time (PPT) adversary A outputs (m, m̂) such
that H(m) = H(m̂) but m ̸= m̂, with at most negl(λ)
probability.

Pseudorandom Function (PRF): For this notion, we treat
the domain of H as {0, 1}2λ×{0, 1}∗ (note that the second

input can be the empty string). Let A be a PPT adversary
playing the following experiment Exp-PRF:

1) Let H $← H.

2) Let y $← {0, 1}2λ.

3) Let F be a function chosen uniformly at random from
the set of all functions from {0, 1}∗ to {0, 1}2λ.

4) Let b $← {0, 1}.
5) b′ ← AOb(·)(H).

where Ob(·) is an oracle that on input µ ∈ {0, 1}∗
returns H(y, µ) ∈ {0, 1}2λ if b = 0 and F (µ) ∈ {0, 1}2λ
if b = 1. The adversary wins the game if b = b′.

We say thatH satisfies the Pseudorandom Function (PRF)
property if any PPT adversary A wins Exp-PRF with
probability at most 1

2 + negl(λ).

We remark that all the above security properties are natural
and standard assumptions on cryptographic hash functions
used in practice. The flavour of Everywhere Preimage Re-
sistance above (ePre) is a variant of the ePre one-wayness
notion defined in [21], where the input µ above corresponds
to the hash key in the ePre definition in [21]. In our variant,
the adversary commits to the output value v before getting
the hash key µ, whereas in [21] the value v is fixed at the
beginning of the game.

We recall the construction of a Merkle Tree hash from
a collision resistant hash family H. Given a hash function
family H of hash functions H : {0, 1}2λ × {0, 1}2λ →
{0, 1}2λ, a Merkle Tree hash MT consists of the following
probabilistic polynomial-time (PPT) algorithms (MT.Setup,
MT.Eval,MT.AP,MT.EvalAP):

(pk, sk)← MT.Setup(1λ, N = 2ℓ): Given the security pa-
rameter 1λ and the power-of-2 number of Merkle tree
leaves N = 2ℓ, sample a hash function H ← H and
output the public parameters pp = (H, N).

(root, T)← MT.Eval(x0, . . . , xN−1): Given as input N
Merkle tree leaf values (x0, . . . , xN−1), compute the
Merkle tree root (root) and other tree node values (T) as
follows:
• (x

(ℓ)
0 , . . . , x

(ℓ)
N−1)← (x0, . . . , xN−1)

• for j = ℓ− 1 down to 0 (level index)
• for i = 0, . . . , N/2ℓ−j (node index)
• Let x(j)

i ← H(x
(j+1)
2i , x

(j+1)
2i+1)

• end for
• end for
• root← x

(0)
0

• T ← (x
(j)
i)i,j

Return (root, T).
For every j ∈ {0, . . . , ℓ−1} and i ∈ {0, N/2ℓ−j−1}, the
pair (x(j+1)

2i , x
(j+1)
2i+1) are called sibling node values in the

Merkle tree, and the node value x
(j)
i = H(x

(j+1)
2i , x

(j+1)
2i+1)

is called the parent node value of those sibling node
values.

APi ← MT.AP(i, T): Given as input a leaf node index i ∈
{0, . . . , N − 1} and a node value tree T = (x

(j)
i)i,j ,

5

compute the list of ℓ node values on the path Pi from
the leaf node value x

(ℓ)
i to the root node value x

(0)
0 (not

including the root), and return the authentication path APi

consisting of ℓ sibling node values of the nodes in Pi.
root← MT.EvalAP(i, xi,APi): Given as input a leaf node

index i ∈ {0, . . . , N − 1}, an i’th leaf node value xi

and an authentication path APi of ℓ sibling node values
along the path Pi from the i’th leaf node to the root node,
compute the node values of the nodes in Pi and return
the root value root.

Lemma 1 (Merkle Tree Collision Resistance): If H is a
collision-resistant hash family, then the Merkle Tree hash
MT built from H satisfies the following collision-resistance
property:

EvalAP Collision Resistance. Let pp ← MT.Setup(1λ, N).
On input pp, a polynomial-time adversary A outputs
(i, xi,APi, x

′
i,AP

′
i) such that i ∈ {0, . . . , N−1}, x′

i ̸= xi

but root′ = root with at most negl(λ) probability,
where root′ ← MT.EvalAP(i, x′

i,AP
′
i) and root ←

MT.EvalAP(i, xi,APi).

B. Pseudorandom Generator

We start with the following definition.

Definition 2: A (stateful) pseudorandom number gener-
ator G with security parameter λ is a pair of algorithms
(G.Key,G.Next) and an integer Q, where G.Key is a prob-
abilistic algorithm which takes no input and outputs an initial
state s ∈ {0, 1}ℓ, G.Next is a deterministic algorithm which,
given the current state s, outputs a pair (s′, r) ← G.Next(s),
where s′ is the new state and r ∈ {0, 1}λ is the output and Q
is the maximal number of outputs the pseudorandom number
generator is allowed to produce.

The following security properties are desirable for a stateful
pseudorandom generator G:

Pseudorandomness of G: A challenger first lets s $← {0, 1}λ,
b

$← {0, 1}. All successive quires to OG.Next(s) should
be indistinguishable from random, where OG.Next(·) uses
either (s′, r0) ← G.Next(s) or a random string r1

$←
{0, 1}λ to respond rb to A. The adversary A returns b′

and wins the game if b′ = b.
Forward security of G: The challenger generates a random

initial secret input s and challenges the adversary A on
its capacity to distinguish the real output of the pseudo-
random number generator from random. In addition to the
usual procedures detailed in the above pseudorandomness
game, the adversary A has access to an oracle OGetState in
which A has access to the current value of the state s. A
G is called (T,Q, ε)-forward-secure, if for any adversary
A running in time at most T , making at most Q calls to
OG.Next(·), followed by one call to an oracle, which is
the last call A is allowed to make and gets the last state
s, the advantage of A in this game is at most ε.

C. Digital Signatures and Forward Security

Definition 3 (Digital Signature): A signature scheme Σ
consists of three probabilistic polynomial-time (PPT) algo-
rithms (Σ.Keygen,Σ.Sign,Σ.Verify) satisfying the following:

(pk, sk)← Σ.Keygen(1λ): Given the security parameter 1λ,
output a public-secret key pair (pk, sk).

(σ, µ)← Σ.Signsk(µ): Given as input a secret key sk and a
message µ, output a signature-message pair (σ, µ).

0/1← Σ.Verifypk(σ, µ): Given as input a public key pk, a
signature σ and a message µ it outputs a bit b = 1 if the
signature is valid and b = 0 otherwise.

It is required that for every λ, every key pair (pk, sk) output by
the key generation algorithm, and every message µ ∈ {0, 1}∗
it holds that Σ.Verifypk(Σ.Sign(sk, µ), µ) = 1.

a) Unforgeability against Chosen-Message
Attacks (UF-CMA): A signature scheme Σ =
(Σ.Keygen,Σ.Sign,Σ.Verify) is unforgeable against chosen-
message attacks if for all probabilistic polynomial-time
adversaries, the probability to win the following experiment
Exp-UF-CMA is negl(λ) :

1) (pk, sk)← Σ.Keygen(1λ)

2) (σ, µ)← AOΣ.Sign(sk,·)(pk)

3) If 1 ← Σ.Verify(σ, µ, pk) and µ has not been queried to
OΣ.Sign(sk, ·) return 1,
else return 0.

We write Σ.Keygen(1λ; r) to denote that the key generation
function is run using a randomness r.

In [16], the authors showed a way of constructing a
forward-secure signature from any (ordinary) signature using
a ‘sum’ composition. Let N be the total time period for the
forward-secure signature and assume for simplicity that N is
a power of two. We recall below how this ‘MMM approach’
works for a given (one-time) signature scheme Σ.

MMM forward-secure signature approach (sum composi-
tion).

(p̃k, s̃k0)← FSS.Keygen(1λ, N) :
1) Set up s← G.Key(1λ)
2) Compute (si, ri)← G.Next(si−1) for i = 0, . . . , N−1

where s−1 := s
3) Compute (pki, ski) ← Σ.Keygen(1λ; ri) for i =

0, . . . , N − 1.
4) Create a Merkle tree using (pk0, . . . , pkN−1) as the

leaves and denote its root by root.
5) Return (p̃k, s̃k0) = (root, (s, 0)).

s̃ki ← FSS.Update(s̃ki−1) : Parse s̃ki−1 = (si−1, ri−1) and
return G.Next(si−1).

σ̂ ← FSS.Signs̃ki(µ, i) : Parse s̃ki = (si, ri) and de-
rive (pk, sk) ← Σ.Keygen(1λ; ri). Compute σ ←
Σ.Signsk(µ). Return σ̂ = (σ, pk,AP) where AP is the
authentication path for index i.

0/1← FSS.Verifyp̃k(σ̂, µ, i) :
1) Parse σ̂ = (σ, pk,AP).
2) If Σ.Verifypk(σ, µ) = 0, return 0.
3) Using pk and AP, compute a Merkle root root′ w.r.t.

the index i.
4) If root′ = p̃k, return 1. Otherwise, return 0.

In [16], the authors prove that the above construction is a
proper forward-secure signature scheme. For a digital signature

6

scheme to be forward-secure, it should be computationally
infeasible to forge a signature for a new message in a time
period earlier than a time period, when a secret key was
given/leaked to the adversary.

III. FORMAL DEFINITIONS OF MANY-TIME INDEXED
VRF (MT-IVRF)

In this section, we discuss the formal definitions of a Many-
Time Indexed VRF (MT-iVRF) and authenticated MT-iVRF
with forward security. Particularly, we discuss the definitions of
an authenticated MT-iVRF with forward security, and an MT-
iVRF is simply a special case of that. For simplicity, we refer
to our constructions as MT-iVRF and authenticated MT-iVRF
(omitting ‘with forward security’ or even ‘MT-’ sometimes).

Our definitions are adapted from those of an ordinary
VRF [6] and a forward-secure (or key-evolving) signature
[22]. We also adapt the unbiasability definition of [11] into
our setting. An important feature of our definitions is that
we capture more closely the real-life setting in blockchain,
where the protocol is inherently stateful and indexed (by
round/iteration numbers). Our modifications over the prior
definitions allow us to construct the desired tool efficiently
from simple cryptographic primitives.

A. Syntax

Let N be the parameter denoting the maximum number
of time periods (i.e., ‘rounds’) allowed (i.e., the iVRF is N -
time), and t be the parameter denoting the maximum number
of ‘iterations’ allowed within any given time period/round. In
particular, we are here assuming a more generalized setting
where each time period is split into further ‘iterations’, where
the forward security will be required w.r.t. to the time periods
(not iterations). Note that fixing t = 1 leads to the standard
forward security setting in [22]. In our definitions of the au-
thenticated MT-iVRF, we let iAV.Eval take two input messages
µ1, µ2 to allow verifiable VRF evaluation on one message (µ1)
and authentication of another message (µ2). The above two
generalizations to the formal definitions are done to properly
capture an Algorand-like blockchain setting.

In the functions below, we do not index the secret key
in order not to clutter the presentation and the key update
function iAV.KeyUpd simply periodically updates the secret
key. The time period index i is clear from the descriptions
of iAV.Eval and iAV.Verify functions as it is part of the
input. An authenticated many-time indexed VRF, iAV, is given
by the following five algorithms (iAV.ParamGen, iAV.Keygen,
iAV.KeyUpd, iAV.Eval, iAV.Verify):

pp← iAV.ParamGen(1λ) : Given the security parameter λ,
set up and return public parameters pp containing N . We
assume that pp is an implicit input to the other algorithms.

(pkav, skav)← iAV.Keygen(pp) : Given the public parameters
pp, return a public-secret key pair (pkav, skav).

skav ← iAV.KeyUpd(skav) : Given the given secret key skav
for the previous period, update (overwrite) skav for the
current time period.

(v, σ, π)← iAV.Evalskav(µ1, µ2, (i, j)) : Given input messages
µ1, µ2 ∈ {0, 1}ℓ(λ) and a pair of indices (i, j) with 0 ≤
i < N and 0 ≤ j < t, return a VRF value v ∈ {0, 1}m(λ)

w.r.t. µ1, a signature σ w.r.t. µ2 and an accompanying
proof π.

0/1← iAV.Verifypkav(µ1, µ2, (i, j), v, σ, π) : Given input
messages µ1, µ2, a pair of indices (i, j) with 0 ≤ i < N
and 0 ≤ j < t, a VRF value v, a signature σ and a
purported proof π, check using π if (v, σ) is correctly
generated for the given (µ1, µ2, (i, j)) and pkav.

The (non-authenticated) MT-iVRF construction (in Sec.
IV-A) does not have a signature σ and a second message
µ2. Hence, it only serves the VRF functionality without any
authentication. The purpose of the parameters t and j is to
formally match our application setting to Algorand. For appli-
cations not requiring them, one may simply fix (t, j) = (1, 0).

B. Correctness and Security Definitions

Compared to an ordinary VRF, there are two main dis-
tinctions of our security definitions. First, uniqueness holds in
the case of any (arbitrarily-generated) fixed input-index pair
(µ1, (i, j)), rather than just any (arbitrarily-generated) fixed
input µ1. Secondly, pseudorandomness is satisfied against any
challenge input-index pair (µ1, i), where the index i is never
queried to the iAV.Eval oracle OiAV.Eval. In the case of ordinary
VRFs, the adversary is not allowed to query theOiAV.Eval oracle
on the challenge input µ1.

Provability. For any (v, σ, π) ← iAV.Evalskav(µ1, µ2, (i, j))
with (pkav, skav) ← iAV.Keygen(pp), skav ←
iAV.KeyUpdi(skav) and pp ← iAV.ParamGen(1λ), the
algorithm iAV.Verifypkav(µ1, µ2, (i, j), v, σ, π) outputs 1.

Computational Full Uniqueness (CFU). Let A be a
polynomial-time adversary playing the following
experiment Exp-CFU:

1) pp← iAV.ParamGen(1λ).
2) (µ1, i, j, pkav, µ2, v, σ, π, µ̂2, v̂, σ̂, π̂)← A(pp).
The adversary A wins the game if
iAV.Verifypkav(µ1, µ2, (i, j), v, σ, π) =
iAV.Verifypkav(µ1, µ̂2, (i, j), v̂, σ̂, π̂) = 1 and v ̸= v̂,
with 0 ≤ i < N and 0 ≤ j < t. An (N -time)
authenticated MT-iVRF with forward security is said to
satisfy computational full uniqueness, if the adversary A
wins the above game with at most negl(λ) probability.

Pseudorandomness. Let A = (A1,A2) be a polynomial-time
adversary playing the following experiment Exp-PRand:

1) pp← iAV.ParamGen(1λ),
2) (pkav, skav)← iAV.Keygen(pp),
3) (µ∗

1, µ
∗
2, i

∗, j∗, st)← AOiAV.Eval(·)
1 (pkav),

4) skav ← iAV.KeyUpdi
∗
(skav),

5) (v0, σ0, π0)← iAV.Evalskav(µ
∗
1, µ

∗
2, (i

∗, j∗)),
6) v1

$← {0, 1}m(λ),
7) b

$← {0, 1},
8) b′ ← AOiAV.Eval(·)

2 (vb, st),
where OiAV.Eval(·) is an oracle that on input a message-
index tuple (µ1, µ2, (i, j)) outputs a VRF value v, a
signature σ and a corresponding proof of correctness
π. The adversary is restricted querying OiAV.Eval(·) on
index pairs (i, j) for j sequentially incrementing (i.e.,
A must query (i, j) first before being able to query
(i, j + 1)). Let I be the set of all index pairs queried
by the adversary. The adversary wins the game if b = b′

7

and (i∗, j∗) /∈ I.

We say that an authenticated MT-iVRF with forward
security is pseudorandom if any PPT adversary A wins
Exp-PRand with probability at most 1

2 + negl(λ).
Forward-Secure Unforgeability. Let A = (A1,A2) be a

polynomial-time adversary playing the following exper-
iment Exp-Forge:

1) pp← iAV.ParamGen(1λ),
2) (pkav, skav)← iAV.Keygen(pp),
3) Set i = 0,
4) Until A stops or i reaches N − 1: increment i

by 1; set skav ← iAV.KeyUpd(skav) and sti ←
AOiAV.Eval(i;·)

1 (pp, pkav),
5) (µ1, µ2, k, j, v, σ, π)← A2(pp, pkav, skav, st1, . . . , sti),
6) b← iAV.Verifypkav(µ1, µ2, (k, j), v, σ, π),
where OiAV.Eval(i; ·) is an oracle that returns an iAV.Eval
output w.r.t. the i-th secret key skav and time period i.
A wins if b = 1, 1 ≤ k < i, 0 ≤ j < t and µ2 was
not queried to OiAV.Eval. We say that an indexed VRF is
forward-secure unforgeable if

Pr[A wins Exp-Forge] ≤ negl(λ).

Unbiasability. Let A = (A1,A2) be a polynomial-time ad-
versary playing the following experiment Exp-Bias:

1) pp← iAV.ParamGen(1λ),
2) (pkav, µ2, v, i, j, st)← A1(pp),
3) µ1

$← {0, 1}ℓ(λ),
4) (σ, π)← A2(µ1, st),
5) b← iAV.Verifypkav(µ1, µ2, (i, j), v, σ, π).
A wins if b = 1. We say that an authenticated MT-iVRF
with forward security is unbiasable if

Pr[A wins Exp-Bias] ≤ 2−ℓ(λ) + negl(λ).

IV. OUR CONSTRUCTIONS

We first introduce our many-time indexed VRF (MT-iVRF)
which is constructed from a secure Merkle hash tree and which
can evaluate up to N time periods (i.e., rounds). This scheme
allows multiple iterations within a single round, matching
the Algorand setting. After that, we present our final MT-
iVRF scheme which also provides authentication and forward
security.

A. Many-Time indexed VRF (MT-iVRF)

As discussed, the index has two parts as (i, j), where i =
0, . . . , N − 1 and j = 0, . . . , t for some public parameters
t,N ≥ 1. This construction is the setting depicted in Fig. 1
with no pki’s. We use a cryptographic hash family H and a
PRG G : {0, 1}λ → ({0, 1}λ)N .

iVRF.ParamGen(1λ) : Pick a hash function H
$← H. Set

parameters t and N for a power-of-2 N . Return pp =
(H,G, N, t).

iVRF.Keygen(pp) :

1) Set up s← G.Key(1λ).
2) Derive pseudorandom values (x0,0, . . . , xN−1,0) by

running G.Next iteratively on s.

Fig. 1. Overall structure of our Authenticated MT-iVRF with Forward
Security. The term xi,0’s are pseudorandom strings generated from a seed.
The pki’s are (independent) public keys of an ordinary (t-time) signature.

3) Compute xi,j+1 = H(xi,j) for i = 0, . . . , N − 1 and
j = 0, . . . , t− 1.

4) Construct a Merkle tree using (x0,t, . . . , xN−1,t). Let
root be the root of the tree.

Return (pkv, skv) = (root, s).
iVRF.Evalskv(µ, (i, j)) :

1) Derive xi,0 from s = skv and update the state of the
PRG G.

2) Compute y = Ht−1−j(xi,0).
3) Compute v = H(y, µ).
4) Compute an authentication path APi w.r.t. the leaf

index i.
Return v as the VRF value along with a proof π =
(y,APi).

iVRF.Verifypkv(µ, (i, j), v, π) :

1) Parse π = (y,AP).
2) If v ̸= H(y, µ), return 0.
3) Compute xi,t = Hj+1(y).
4) Compute a Merkle root, root′, using xi,t and AP w.r.t.

the leaf index i.
If root′ = pkv, return 1. Otherwise, return 0.

B. Authenticated MT-iVRF with Forward Security

In the MMM (recursive) sum composition approach [16],
described in Sec. II-C, to construct a forward-secure (FS)
signature for N time periods, one makes use of a Merkle tree
with N leaves, where each leaf corresponds to a random (one-
time) signature key pair with the public keys used to construct
the Merkle tree. Therefore, our MT-iVRF instantiation can be
naturally combined with the MMM approach. The advantage
in this case is that we will have a single Merkle tree (and a
single tool) to realize both the VRF functionality as well as
the forward-secure signature. This means that it is sufficient to
communicate a single authentication path to authenticate both
the keys for the FS signature and the evaluator’s committed

8

values y used to compute the VRF value v = H(y, µ) (where
µ is the VRF input/message). As a result, the additional
communication overhead of our final authenticated MT-iVRF
construction over the MMM approach is minimal at just 32
bytes (recall that v = H(y, µ) can be computed in the Algorand
application, so need not be communicated).

Concretely, when constructing the Merkle tree, we set
xi,t = H(xi,t−1, pki) (instead of xi,t = H(xi,t−1)) in key
generation, where pk0, . . . , pkN−1 are independent public keys
of a (t-time) signature scheme. As with the previous con-
struction, we use a cryptographic hash family H of functions
H : {0, 1}∗ → {0, 1}2λ and a PRG G : {0, 1}λ → ({0, 1}λ)N .

iAV.ParamGen(1λ) : Pick hash function H
$← H. Set param-

eters t = poly(λ) and N = poly(λ) for a power-of-2 N .
Return pp = (H,G, N, t).

iAV.Keygen(pp) :

1) Set up seeds s, s′ ← G.Key(1λ).
2) Derive pseudorandom values (x0,0, . . . , xN−1,0) by

running G.Next iteratively on s.
3) Compute xi,j+1 = H(xi,j) for i = 0, . . . , N − 1 and

j = 0, . . . , t− 2.
4) Derive pseudorandom values (r0, . . . , rN−1) by run-

ning G.Next iteratively on s′.
5) (pki, ski)← Σ.Keygen(pp; ri) for i = 0, . . . , N − 1.
6) Compute xi,t = H(xi,t−1, pki) for i = 0, . . . , N − 1.
7) Construct a Merkle tree using (x0,t, . . . , xN−1,t). Let

root be the root of the tree.
Return (pkav, skav) = (root, (s, 0, s′, 0)).

iAV.KeyUpd(skav) : Parse skav = (s, x, s′, r) and update skav
as (G.Next(s),G.Next(s′)).

iAV.Evalskav(µ1, µ2, (i, j)) :

1) Parse skav = (si, xi,0, s
′
i, ri).

2) Compute y = Ht−1−j(xi,0)
3) Compute v = H(y, µ1).
4) Compute pk← Σ.Keygen(pp; ri)
5) Compute σ ← Σ.Signsk(µ2)
6) Compute an authentication path APi w.r.t. the leaf

index i.
Return v as the VRF value, σ as the signature and π =
(y, pk,APi) as the accompanying proof.

iAV.Verifypkav(µ1, µ2, (i, j), v, σ, π) :

1) Parse π = (y, pk,AP).
2) If v ̸= H(y, µ1), return 0.
3) If Σ.Verifypk(σ, µ2) = 0, return 0.
4) Compute y′ = Hj(y)
5) Compute xi = H(y′, pk)
6) Compute a Merkle root, root′, using xi and AP w.r.t.

the leaf index i.
If root′ = pkav, return 1. Otherwise, return 0.

V. PERFORMANCE ANALYSIS AND IMPLEMENTATION

Thanks to the simplicity of our scheme, the performance
analysis can straightforwardly be done by counting the number
of operations. For the hash operations, we look at the amount
of bytes to be hashed rather than how many H(·) operations
appear in the description to capture a more accurate result, and
consider 32-byte values for xi,j’s, µi’s and the hash output. We
write |σ|B and |pk|B to denote the byte-lengths of the ordinary
signature and its public key.

iAV.Keygen consists of the following main operations:

1) 2N PRG iterations,
2) less than (t + 2) · N · 32 + N · |pk|B bytes of hash

calculations, and
3) N (ordinary) signature key generations.

Therefore, iAV.Keygen runtime is likely to be dominated by
N (ordinary) signature key generations (for reasonable values
of t), which is consistent with our implementation results
discussed further below in this section. Note that key genera-
tion of Algorand’s approach to forward security (as discussed
in the introduction) involves invoking ordinary signature key
generation and signing algorithms N times each. Hence, our
iAV.Keygen runtime is likely to closely match (or may even
be faster than) Algorand’s approach. Note also that in the
context of Algorand, keys for the next epoch can be generated
progressively in the current epoch so that the key generation
runtime is amortized.

Next, iAV.Eval consists of the following main operations:

1) at most (t+ 1) · 32 bytes of hash calculations,
2) 1 (ordinary) signature key generation, and
3) 1 (ordinary) signing.

Note that the authentication path in iAV.Eval can simply be
retrieved when the Merkle tree is stored.

Finally, iAV.Verify consists of the following main opera-
tions:

1) at most (2 logN + t + 2) · 32 + |pk|B bytes of hash
calculations, and

2) 1 (ordinary) signature verification.

In terms of communication, iAV.Eval requires transmission
of an ordinary signature σ, an ordinary signature public key
pk, an authentication path (logN 32-byte strings) and a 32-
byte string (and another 32-byte string if v needs to be
communicated). So, in total, |σ|B + |pk|B + (logN + 1) · 32
bytes of communication is needed.

The storage requirement by the evaluator is heavily dom-
inated by the storage of the Merkle tree nodes (if they are
stored). If the whole tree is stored, then about 32 · 2N = 64N
bytes of storage is needed. However, standard optimizations
such as partial tree storage (together with progressive com-
putation of missing nodes and deletion of used nodes) can be
adopted. For example, by computing the two sibling leaf nodes
together every two time periods, we can avoid storage of leaf
nodes and reduce the storage requirement to 32N bytes.

We implemented our authenticated MT-iVRF with forward
security (from Sec. IV-B) in C language (on a single Intel
i7-7700K core at 4.2GHz).8 We used Falcon-512 [19] to
instantiate the post-quantum signature, SHA-256 for the hash
function H, and AES-256 with the CTR-DRBG mode [23]
(implemented by using the AES-NI hardware instructions [24])
for the PRG G. Falcon-512 has a public key of 897 bytes and
a signature of 666 bytes. We used the Falcon variant with the
ChaCha20 [25] seed expander provided by the latest Falcon

8The source code is available at https://gitlab.com/raykzhao/ivrf.

9

https://gitlab.com/raykzhao/ivrf

TABLE II. PERFORMANCE OF OUR AUTHENTICATED MT-IVRF WITH
FORWARD SECURITY IN SEC. IV-B FOR DIFFERENT PARAMETERS.

(N, t) Proof Size Keygen Eval Verify Key Lifetime
in Algorand

(218, 16) 608 bytes 19.44 mins 4.63 ms 0.046 ms 2 weeks
(218, 100) 608 bytes 19.82 mins 4.72 ms 0.088 ms 2 weeks
(223, 16) 768 bytes 10.40 hours 4.63 ms 0.049 ms > 1 year
(223, 100) 768 bytes 10.45 hours 4.67 ms 0.092 ms > 1 year

TABLE III. RUNTIMES OF OUR EXECUTION OF FALCON SIGNATURE.

Keygen Time Signing Time Verify Time

4.45 ms 0.18 ms 0.023 ms

reference implementation9, with both AVX2 and FMA instruc-
tions enabled. Clang 14.0.6 compiler was used to compile
the code, with optimisation flags -O3 -march=native.
We disabled Hyper-threading and Turbo Boost during the
benchmarks.

In Tables II and III, we summarize the concrete perfor-
mance results of our authenticated MT-iVRF with forward
security proposal and our execution of Falcon-512 signature,
respectively. When computing the proof sizes in Table II, we
remove the costs due to the signature scheme to clearly show
the impact of varying parameters since the cost due to the
signature is fixed and arises from authentication, not the VRF
functionality. We also note that when running iAV.Eval and
iAV.Verify, we set j = 0 and j = t−1, respectively, to capture
the worst-case running times.

Let us first analyze the impact of the parameter t. It is easy
to see that the proof size is independent of t (as also evident
from the theoretical analysis above) and that iAV.Keygen
runtime increases very little even when t is increased to a
large value like 100. The parameter t has also little impact on
the iAV.Eval runtime, and iAV.Verify is still very fast even in
the worst case with t = 100. Therefore, we believe there is a
lot of freedom for the choice of t.

Using the results of Tables II and III, it is easy to derive
that the vast majority of iAV.Keygen time is spent on Falcon
key generations. Similarly, the vast majority of iAV.Eval time
is spent of Falcon key generation and signing. In fact, the slight
variations in iAV.Eval for different N values are mainly due
to the variations in the Falcon signature runtimes as iAV.Eval
runtime is (almost) independent of N (neglecting the minor
cost of retrieving logN tree nodes).

The runtimes of our execution of Falcon-512 (see Table
III) are close to the reported runtimes on the official Falcon
website10. Note that some of our runtimes in Table III are
faster, due to the ChaCha20 seed expander (up to 8% faster
for Keygen on Intel CPUs, as reported by the latest Falcon
reference implementation) and higher CPU frequency in our
benchmark platform (4.2GHz compared to 2.3GHz).

VI. SECURITY ANALYSIS

Provability of our authenticated MT-iVRF (with forward
security) construction follows via straightforward investigation.

9https://falcon-sign.info/Falcon-impl-20211101.zip
10https://falcon-sign.info/

Theorem 1 (Computational Full Uniqueness): The
authenticated MT-iVRF construction of Subsection IV-B
satisfies Computational Full Uniqueness, if the hash function
family H is Collision Resistant.

Proof: Let Game denote the Exp-CFU game running
with a PPT adversary A on input pp = (H,G, N, t) ←
iAV.ParamGen(1λ). We denote the adversary run time
by TA. The adversary returns (µ1, i, j, pkav, µ2, v, σ, π =
(y, pk,AP), µ̂2, v̂, σ̂, π̂ = (ŷ, p̂k, ÂP)). Let W denote the event
that A wins in Game, i.e. we have (1) v ̸= v̂, where
v := H(y, µ1), v̂ := H(ŷ, µ1), and (2) root = ˆroot = pkav,
where root := MT.EvalAP(i, xi,AP), xi := H(y′, pk), y′ :=
Hj(y) and ˆroot := MT.EvalAP(i, x̂i, ÂP), x̂i := H(ŷ′, p̂k),
ŷ′ := Hj(ŷ). If W happens, then from (1), we have y ̸= ŷ.

We define three subevents that partition the event W . The
subevent W1 occurs if W occurs and y′ = ŷ′. The subevent
W2 occurs if W occurs, W1 does not occur (so y′ ̸= ŷ′) and
xi = x̂i. Finally, the subevent W3 occurs if W occurs and W1

and W0,2 do not occur (so xi ̸= x̂i).

Subevent W1 implies that Hj(y) = Hj(ŷ) whereas y ̸= ŷ.
Let j′ ≤ j denote the smallest positive integer such that
Hj′(y) = Hj′(ŷ). Then (Hj′−1(y),Hj′−1(ŷ)) is a collision
for H. It follows that there exists an adversary breaking the
collision-resistance of H with run-time at most TA and success
probability ≥ Pr[W1], so Pr[W1] ≤ εH,CR = negl(λ), where
the latter equality is from the assumed collision-resistance of
H, where εH,CR is the maximal advantage of an adversary
with run time TA against collision-resistance of H.

Similarly, subevent W2 implies that H(y′, pk) = H(ŷ′, p̂k)
whereas y′ ̸= ŷ′. Then ((y′, pk), (ŷ′, p̂k)) is a collision for
H, so Pr[W2] ≤ εH,CR = negl(λ).

Finally, subevent W3 implies that MT.EvalAP(i, xi,AP) =
MT.EvalAP(i, x̂i, ÂP) whereas xi ̸= x̂i. Then
(i, xi,AP, x̂i, ÂP) is an EvalAP collision for the Merkle
Tree hash MT built from H. It follows from Lemma 1 and
the collision-resistance of H that Pr[W3] ≤ εH,CR = negl(λ).

We conclude that Pr[W] = Pr[W1] + Pr[W2] + Pr[W3] =
negl(λ), assuming the collision-resistance of H.

Theorem 2 (Pseudorandomness): The authenticated MT-
iVRF construction of Subsection IV-B satisfies Pseudoran-
domness, if the pseudorandom number generator G satisfies
Pseudorandomness (Def. 2) and the hash function family H
satisfies the Pseudorandom Function (PRF) properties (Def. 1).

Proof: Let W be the event that the adversary wins, i.e.
b = b′ and (i∗, j∗) /∈ I. We use a game based approach to
prove the theorem.

Game0 : This is identical to Exp-PRand except that the
challenger picks at the beginning of the game a uniformly
random guess (̂i, ĵ)

$← {0, . . . , N −1}×{0, . . . , t−1} for the
challenge indices (i∗, j∗) output by A1. Let E be the event
that the guess is correct, i.e. (̂i, ĵ) = (i∗, j∗). We are interested
in Pr[W] and hence we have that:

Pr
Game0

[W] = Pr
Game0

[W ∩ E]/ Pr
Game0

[E]

= Nt · Pr
Game0

[W ∩ E].

10

https://falcon-sign.info/Falcon-impl-20211101.zip
https://falcon-sign.info/

The first equality holds since W and E are independent
in Game0. The second equality is deduced from Pr[E] =
1/(Nt) as the attacker’s view is independent of what we chose
here. In the following games we will trace both Pr[W ∩ E]
and Pr[E] at each game.

Game1 : This game is identical to previous game except
we replace G.Next output (x0,0, . . . , xN−1,0) in line 1 of
iAV.Evalskav and line 2 of iAV.Keygen(pp) algorithms with uni-
formly random and independent random elements in {0, 1}2λ.
We have that PrGame1

[E] ≤ 1/(Nt)+ εG, in which εG is the
advantage of an adversary in distinguishing the outputs of G
from random, as in Def. 2.

Game2 : This game is identical to the previous game,
except that we replace xî,ĵ in line 3 of iAV.Keygen(pp)

by an independent uniformly random element ŷ in {0, 1}2λ
(instead of xî,ĵ = Ht−1−ĵ(xi,0) used in Game1), and we
also accordingly set y := ŷ in line 2 of iAV.Evalskav when
queried at (i, j) = (̂i, ĵ) and y := Hĵ−j(ŷ) when queried at
(i, j) = (̂i, j) for j < ĵ by an independent uniformly random
element in {0, 1}2λ (note that queries with i = î and j > ĵ
do not occur if the events of interest E or E ∩ W occur).
By applying the assumed Pseudorandom Function property
(PRF) of H (with an empty string PRF input argument) at
most t times, we get PrGame2

[E] ≤ 1/(Nt) + εG + t · εPRF,
where εPRF is the maximal advantage of an adversary with
run-time TA against the PRF security of H. Note that in this
argument we replace the output of Hα(·) for 1 ≤ α ≤ t with a
random element because the PRF property of H can be applied
sequentially to outputs of each iteration. More specifically, for
a uniformly random input x, H(x) can be replaced by a random
string according to the PRF property of H. Now assuming the
indistinguishability of H(x) from a random, one can replace
H(H(x)) = H2(x) with a random element. This process can
be inductively iterated for any α ≤ t to replace Hα(x) with a
random element assuming the indistinguishability of Hα−1(x)
from a uniformly random input to H(·).

Game3 : This game is identical to the previous game, except
that we replace xî,ĵ+1 in line 2 of iAV.Keygen(pp) by an
independent uniformly random element ŷ′ in {0, 1}2λ (instead
of xî,ĵ+1 = H(ŷ) used in Game2), and we also accordingly
set v := v̂ for another independent uniformly random element
v̂ ∈ {0, 1}2λ in line 3 of iAV.Evalskav when queried at
(i, j) = (̂i, ĵ) (instead of v = H(ŷ, µ1) in Game2) and
y := Hĵ−j−1(ŷ′) in line 2 when queried at (i, j) = (̂i, j) for
j < ĵ (instead of y = Hĵ−j(ŷ) in Game2). Notice that we
can construct an adversary against the assumed Pseudorandom
Function property (PRF) of H with key ŷ as the first input that
makes two PRF oracle queries with key ŷ (namely at the empty
string PRF input to simulate xî,ĵ+1 = H(ŷ) and at the PRF
input µ1 to simulate v = H(ŷ, µ1)), such that the b = 0 case
of the PRF game simulates the view of Game2 to A while
the b = 1 case simulates the view of Game3 to A. Hence,
we get PrGame3

[E] ≤ 1/(Nt) + εG + (t + 1) · εPRF), where
εPRF is the maximal advantage of an adversary with run-time
TA against the PRF security of H.

Now observe that in Game3, if E occurs then v0 is
perfectly indistinguishable from v1 since they are both uni-
formly random and independent of A’s view. It follows that

PrGame3
[W |E] = 1/2. We further deduce that:

Pr
Game3

[W ∩ E] = Pr
Game3

[E]/2

≤ 1

2
(1/(Nt) + εG + (t+ 1) · εPRF)),

where in the last equality we have used the above expression
for PrGame3

[E]. Putting all these together, we have that:

Pr[W]Game0 = Nt · Pr
Game0

[W ∩ E] (1)

≤ Nt · (Pr
Game3

[W ∩ E] + εG + (t+ 1) · εPRF)

≤ Nt · (1/(2Nt) + 3εG/2 + 3(t+ 1) · εPRF/2)
= 1/2 + ε.

Since εG = negl(λ),εPRF = negl(λ) and Nt = poly(λ), we
conclude that ε := (Nt/2) · (3εG +3(t+1) · εPRF) = negl(λ).

Theorem 3 (Forward-Secure Unforgeability): The authen-
ticated MT-iVRF construction of Subsection IV-B is forward-
secure, if the underlying signature Σ is t-time unforgeable
against CMA and the stateful pseudorandom number generator
G satisfies Forward-Security (Def. 2).

Proof: We conduct the proof by the following games from
game Game0 to game Game3. For each game Gamei, we
use Wini to denote the event that adversary A wins Exp-Forge
in Gamei. Without loss of generality, we assume that the
adversary issues at most q queries to OiAV.Eval.

Game0 : This is identical to Exp-Forge.

Game1 : This is identical to Game0 except we replace the
output of G.Next in iAV.KeyUpd(skav) with random elements.
It is obvious from the forward-security property of G that
|Pr[Win1] − Pr[Win0]| ≤ ε, where ε here is the advantage
of an adversary in breaking the forward-security of G.

Game2 : This is identical to Game1 except that the adversary
can simulate (v, π) without knowing the private key skav of
the signature. This is the case since we replaced the output
of G.Next with random elements in previous game. Since
there is no difference in the view of the attacker from the
previous game, we have Pr[Win2] = Pr[Win1]. Since we have
used N consecutive sum composition of Σ (that is Σ⊕

logN
according to [16]) in our scheme, this game is now identical to
an experiment with adversary B against the forward-security
of Σ⊕

logN . In particular, Theorem 1 of [16] implies that:
Pr[Win2] ≤ N · Pr[B wins Exp-UF-CMA].

Overall, we have that

Pr[Win0] ≤ Pr[A wins Exp-Forge]
≤ N · Pr[B wins Exp-UF-CMA] + ε ≤ negl(λ),

where the last inequality holds since N = poly(λ), and
ε = negl(λ), Pr[B wins Exp-UF-CMA] = negl(λ) by the
assumed forward-security of G and t-time unforgeability of
Σ, respectively.

Theorem 4 (Unbiasability): The authenticated MT-iVRF
construction of Subsection IV-B satisfies Unbiasability, if
the hash function family H satisfies Everywhere Preimage
Resistance (ePre) in the sense of Def. 1.

11

Proof: Let Game denote the Exp-Bias game running
with a PPT adversary A = (A1,A2). We denote the adversary
run time by TA. On input pp = H, where H

$← H,
A1 returns (pkav, µ2, v, i, j, st), and on input (µ1, st), where
µ1

$← {0, 1}ℓ(λ), A2 returns (σ, π), where π = (y, pk,AP).
Let W denote the event that A wins in Game, which implies
that H(y, µ1) = v. Then we can construct an adversary
B = (B1,B2) breaking ePre of H with run-time at most
TA and advantage AdvePre(B) ≥ Pr[W], which implies that
Pr[W] ≤ 2−ℓ(λ) + negl(λ) by the assumed ePre security of
H. Namely, on input H

$← H, B1 runs A1 on input H to
get (pkav, µ2, v, i, j, st) and B1 returns (v, st), and on input
(µ1, st) for µ1

$← {0, 1}ℓ(λ), B2 runs A2 on (µ1, st) to get
(σ, π), where π = (y, pk,AP), and B2 returns y.

VII. APPLICATION TO ALGORAND

The Algorand protocol is a fork-free PoS protocol in which
consensus is achieved using a Byzantine Agreement (BA)
protocol [26], [27]. To prevent the adversary from adaptively
corrupting parties who participate in the protocol, the parties
who are actively running the protocol change after every step11

of the protocol. This is achieved using a VRF that takes into
account parties’ stakes. The security of the signature primitives
(including the VRF), and, by extension, of the BA protocol,
rely on computational assumptions that are known to be broken
in the context of a quantum adversary. Hence, to attain post-
quantum security for this protocol, it is necessary to shift to
alternate constructions for these primitives. The purpose of this
section is to provide a high-level explanation of the relevant
aspects of Algorand’s BA protocol that should be replaced with
post-quantum secure alternatives.

We begin by explaining how parties register their keys to
the Algorand blockchain [28]. To create an account, a party
registers its public account key apk to the blockchain using a
registration transaction that includes the spending public key
and the amount of coins belonging to the account owner. At
each step of the BA protocol, parties individually run the
sortition algorithm to check if they are eligible to participate
in the consensus protocol. The sortition is implemented using
a VRF (see below for how parties register their VRF keys).

At round n, a party computes the output of their VRF on
input their VRF secret key vsk and a special quantity Qn,
which is derived from the blockchain. The main idea is that
Qn will be unpredictable to any party at the time of registering
its public key to the blockchain. Therefore, it also should not
be able to predict if it will be eligible to participate in the
consensus protocol at round n. We elide a detailed description
of how the protocol computes Qn, as it is not relevant for
explaining the sortition mechanism.

The initial quantity Q0 is assumed to be randomly gener-
ated (as part of the genesis block). At round n, the previous
round’s magic number Qn−1 is used. Particularly, the leader

11Note that a round of the Algorand protocol may include several periods,
each consisting of a constant number of steps, namely 5 steps [26]. In our
iVRF formal model, we use two indices (one for rounds and the other for
iterations), and each step of a period in Algorand increments one iteration in
our iVRF model (i.e., there is no need to introduce a third index in the formal
model, which would unnecessarily complicate its presentation).

of period j of round n is elected as the party Pi with the
lowest VRF value (proportional to its stakes) satisfying12 13

H(Σ.Signi(n, j, 1, Qn−1)) ≤ p · stake(Pi), (2)

where p is a predefined threshold value and stake(Pi) denotes
the amount of stakes owned by Pi. More generally, parties
determine their eligibility to participate in the protocol for a
given step s > 1 (of period j) of the BA protocol by checking
whether

H(Σ.Signi(n, j, s,Qn−1)) ≤ p′ · stake(Pi), (3)

where p′ ≫ p is a predefined value.

Every period of the protocol is associated with a leader who
is also elected via VRF. The BA protocol may have several
periods (each consisting of a constant number of steps with
rotating participants). Each potential round leader in round
n proposes a block including new valid transactions together
with its VRF proof for round n and broadcasts them to the
network. After the blocks are proposed by the potential leaders,
all participants of the protocol verify the correctness of the
VRF outputs and choose the candidate block with the lowest
VRF value. Once a block is accepted by collecting a strong
majority of votes (2/3 of the votes) from the active protocol
participants, parties move on to the next round.

A. Key Management in Algorand

In Algorand, there are four types of keys: spending keys,
VRF (selection) keys, voting keys and (recently introduced)
state proof keys [28]. Spending keys, also known as root keys,
are used for sending and receiving coins by an account. An
account is identified with the root public key apk of the
spending key. Also, later on, the VRF, voting and state proof
keys of the account are validated via the spending keys.

VRF keys are used to check if an account is selected
for participation in the voting phase as the leader or, more
generally, as an active participant in the BA protocol. Hence,
all protocol messages are validated with a VRF proof.

Voting keys are used to authenticate participation during
the voting phase of the BA agreement protocol. To achieve
forward security, voting keys are periodically updated. This
simple update works as follows: parties delete the latest used
private key, and move to the next one. To avoid registering a
new voting key each time, per epoch, a batch of ephemeral
voting keys (epk1, esk1), (epk2, esk2), ... (10,000 as the de-
fault value) are generated. These keys are authenticated using a
signature relative to the root voting key apk, which is validated
by the signature of the spending key. Thus, a batch of keys
are committed and (partially) validated as follows whenever a
new epoch begins. First, the user registers a new root key epk,
which it validates by signing with the spending key of the root
public key apk of the previous epoch. Each ephemeral voting
key epki is later validated using epk.

12The signature scheme used in Algorand’s VRF (given in Eqn. 2) has the
uniqueness property.

13Note that in the Algorand protocol given in [26], the period parameter j
is omitted since each round is described over one period, whereas the current
implementation of the protocol explained in [28] may include several periods
per round.

12

In theory (to ensure full forward security), voting keys
should be updated immediately after their use in a step of
the BA protocol. However, in practice, they are updated once
in every round [28]. This results in a slightly weaker form
of security where a fully adaptive adversary may indefinitely
stall progress of the protocol. However, such a strong adversary
appears somewhat unrealistic in practice.

Recently, Algorand also introduced state proof keys that
are used to generate post-quantum secure state proofs. Similar
to voting keys, state proof keys consist of ephemeral keys that
are renewed in epochs.

B. Our Modifications to the Algorand Protocol

We aim to achieve a post-quantum version of Algorand
protocol by replacing cryptographic algorithms that are vul-
nerable to quantum attacks. In March 2022, concurrently and
independently from our work, Algorand added state proofs to
the protocol to improve its resilience against quantum attacks.
In state proofs, a subset-sum-based hash function [29] and the
Falcon signature algorithm [19] are used. However, the rest of
the protocol mainly utilizes pre-quantum algorithms. Algorand
uses SHA-512/256 and EdDSA [30], [31] as primary hash
function and signature scheme, respectively.

The security of the Algorand protocol relies on a strong
honest majority among each of the BA committees that ac-
tively run the protocol. With the above choices, the Algorand
protocol achieves its desired security properties with over-
whelming probability (1 − 10−18 given appropriate network
conditions) [2]. The committee and leader elections for the BA
protocol are done via the VRF function. However, since the
VRF function is instantiated with the pre-quantum algorithms,
these election protocols are not post-quantum secure14. In our
protocol, we can replace the signature scheme EdDSA with any
post-quantum signature, and particularly propose to use Falcon
signature since it has the minimal total size for a public key
and a signature among those selected by the NIST for post-
quantum signature standardization. Also, we replace the VRF
function with MT-iVRF, which is defined in Section IV. In fact,
as discussed before, we can realize both VRF and signature
functionalities by a single tool, our authenticated MT-iVRF
from Sec. IV-B.

As we mentioned previously, the election in the BA pro-
tocol is done via the VRF algorithm with the input of Qn

value, which should satisfy uniqueness, pseudorandomness
and unbiasability (See Section 5.6 and proof of Lemma 5.11
in [26]). Our iVRF construction satisfies somewhat different
notions of uniqueness, pseudorandomness, and unbiasability
than the ones stated in [26]. First of all, our formal model
in Section III is designed to collectively capture the VRF
and forward secure signature requirements in an Algorand-like
blockchain setting, where the protocol is inherently indexed
(or timed). Particularly, we assume the protocol operates in
rounds (indexed by i), periods within rounds (indexed by
j), and each period consists of a constant number of steps.
We require in an Algorand-like blockchain setting that at any

14We note here that the uniqueness property of ECVRF used in Algorand
does not rely on any computational assumption [9] and, therefore, is plausibly
post-quantum (in ROM). However, the pseudorandomness property requires
DDH assumption [9] and, therefore, ECVRF as a whole is not post-quantum.

particular step of a period of any round, each (computationally
bounded) user can only produce a single valid VRF value,
as captured by our formal uniqueness model. Similarly, we
need pseudorandomness to hold against indices that have not
been queried before. That is, it is fine for the outputs from
previous steps/rounds to not satisfy pseudorandomness, as the
past unique VRF values have already served their purpose and
are no longer relevant. Moreover, by combining the forward-
secure signature scheme with iVRF, our construction given
in Section IV-B reduces the cost of the validation. More
specifically, we require only one Merkle Tree authentication
path, rather than two in the separate construction case.

Thanks to the blockchain-oriented design of our formal
definitions, the security properties achieved by our iVRF
are sufficient to ensure the required properties on the BA
committee elections that are leveraged in Algorand’s proofs.
As we showed in Section VI, our iVRF proposal satisfies the
aforementioned properties, and thereby can be substituted in
the original Algorand protocol without impacting its security.

Finally, recall that our MT-iVRF construction includes t
pseudorandom strings (xi,j) per round. Here, the iteration
parameter t can be chosen based on the network and security
assumptions. The BA protocol of Algorand is expected to
terminate within at most 2.5 periods (which corresponds to 16
steps in total) [27]. As discussed in Sec. V, the parameter t has
very little impact on the computational performance (and no
impact on the communication size) and, hence, can be safely
adjusted without a significant compromise in performance.

C. Interpreting Our iVRF Performance for Algorand

It is easy to see that the iAV.Keygen runtime is heav-
ily dominated by Falcon key generations, which are needed
anyway for forward security. As discussed earlier, this key
generation process can be amortized over time or paralellized.
For example for N = 223, splitting the computation into 4
cores (and using 4 random seeds instead of one to generate
signature keys) reduces the required once-a-year computation
time to just 2.6 hours. Alternatively, whenever the user’s device
is turned on, the signature keys can be progressively computed
(and hashed to avoid storing the whole key). Therefore, in
terms of keygen procedure, there is effectively no computa-
tional overhead over what already needs to be done to achieve
forward security. Note that the ephemeral key generation
process that already exists in Algorand together with a little
more of effort for the generation of xi,j’s and the Merkle tree
can serve as iAV.Keygen.

From Table II, we can see that an evaluation (including
signing) can be done under 5 ms, which is well below the
Algorand’s round time at 4.5 seconds. Therefore, a committee
member’s local authenticated iVRF evaluations are not ex-
pected to lead to any slowdown. We can also conclude that
50,000 or more iAV.Verify executions can be performed within
the time period of a round. In fact, as seen in Tables I and
II, our verification (including signature validation) runs even
faster than ECVRF verification used by Algorand. Therefore,
we also do not expect any slowdown due to verification.

As discussed in Sec. V, for the storage of the Merkle tree
nodes, we need about 32N bytes, meaning only 256 MB is
needed even for N = 223. Note that the existing Algorand

13

protocol already has a similar storage requirement where N
pairs of an ephemeral key and a signature (each pair of size
about 96 bytes) are stored.

Perhaps the only significant cost introduced with the use
of our authenticated MT-iVRF in the Algorand setting is
the increased communication. As discussed before, the vast
majority of the increased communication cost stems from the
use of a post-quantum forward-secure signature and there is
only a 32-byte additional cost due to the VRF functionality.
Such an additional cost of increased communication appears
unavoidable in the current state of affairs when post-quantum
security is desired as evidenced by the increased sizes of all
schemes standardized by NIST15.

VIII. CONCLUSION

In this work, we introduced a simple and efficient method
to realize the VRF functionality required in the blockchain
setting for the leader election problem. Our solution does not
involve a racing condition as in Bitcoin and can be instantiated
from well-known basic (post-quantum) primitives. We believe
that our approach can be readily deployed in the Algorand
blockchain system as only minor modifications are needed.

ACKNOWLEDGMENT

This research was supported in part by ARC Discovery
Project grants DP180102199 and DP220101234.

REFERENCES

[1] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
EUROCRYPT (2), ser. LNCS, vol. 10821. Springer, 2018, pp. 66–98.

[2] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
51–68. [Online]. Available: https://doi.org/10.1145/3132747.3132757

[3] S. Gorbunov, “Algorand releases first open-source code: Verifiable
random function,” 2018, available at https://medium.com/algorand/
algorand-releases-first-open-source-code-of-verifiable-random-functio
n-93c2960abd61.

[4] T. Hanke, M. Movahedi, and D. Williams, “DFINITY technology
overview series, consensus system,” CoRR, vol. abs/1805.04548, 2018.
[Online]. Available: http://arxiv.org/abs/1805.04548

[5] “Chia documentation,” 2018, available at https://docs.chia.net/docs/03c
onsensus/consensus intro.

[6] S. Micali, M. O. Rabin, and S. P. Vadhan, “Verifiable random functions,”
in FOCS. IEEE Computer Society, 1999, pp. 120–130.

[7] “Rangersprotocol whitepaper,” 2022, available at https://www.rangersp
rotocol.com/pdf/RangersProtocolWhitepaper.pdf.

[8] “What sets it apart: Filecoin’s proof system,” 2020, available at https:
//spec.filecoin.io/algorithms/expected consensus/.

[9] D. Papadopoulos, D. Wessels, S. Huque, M. Naor, J. Včelák, L. Reyzin,
and S. Goldberg, “Making nsec5 practical for dnssec,” Cryptology
ePrint Archive, Report 2017/099, 2017, https://ia.cr/2017/099.

[10] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, “High-
speed high-security signatures,” in CHES, ser. LNCS, vol. 6917.
Springer, 2011, pp. 124–142.

[11] M. F. Esgin, V. Kuchta, A. Sakzad, R. Steinfeld, Z. Zhang, S. Sun, and
S. Chu, “Practical post-quantum few-time verifiable random function
with applications to algorand,” in Financial Cryptography (2), ser.
LNCS, vol. 12675. Springer, 2021, pp. 560–578.

15https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algori
thms-2022

[12] M. F. Esgin, R. Steinfeld, D. Liu, and S. Ruj, “Efficient hybrid ex-
act/relaxed lattice proofs and applications to rounding and vrfs,” Cryp-
tology ePrint Archive, Report 2022/141, 2022, https://ia.cr/2022/141.

[13] M. Buser, R. Dowsley, M. F. Esgin, S. K. Kermanshahi, V. Kuchta,
J. K. Liu, R. Phan, and Z. Zhang, “Post-quantum verifiable random
function from symmetric primitives in pos blockchain,” Cryptology
ePrint Archive, Report 2021/302, 2021, https://ia.cr/2021/302.

[14] J. Buchmann, E. Dahmen, and A. Hülsing, “XMSS - A practical forward
secure signature scheme based on minimal security assumptions,” in
PQCrypto, ser. LNCS, vol. 7071. Springer, 2011, pp. 117–129.

[15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for MPC and FHE,” in EUROCRYPT (1), ser. LNCS, vol.
9056. Springer, 2015, pp. 430–454.

[16] T. Malkin, D. Micciancio, and S. K. Miner, “Efficient generic forward-
secure signatures with an unbounded number of time periods,” in
EUROCRYPT, ser. LNCS, vol. 2332. Springer, 2002, pp. 400–417.

[17] “Quantum-Safe Identity-based Encryption,” The European Telecom-
munications Standards Institute, Sophia-Antipolis, France, Technical
Report, 2019.

[18] R. K. Zhao, S. McCarthy, R. Steinfeld, A. Sakzad, and M. O’Neill,
“Quantum-safe hibe: does it cost a latte?” Cryptology ePrint Archive,
Paper 2021/222, 2021, https://eprint.iacr.org/2021/222. [Online].
Available: https://eprint.iacr.org/2021/222

[19] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon:
Fast-fourier lattice-based compact signatures over ntru,” Submission to
the NIST’s post-quantum cryptography standardization process, vol. 36,
no. 5, 2018.

[20] M. Bellare, C. Namprempre, and G. Neven, “Security proofs for
identity-based identification and signature schemes,” in EUROCRYPT,
ser. LNCS, vol. 3027. Springer, 2004, pp. 268–286.

[21] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics:
Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance,” in FSE, ser.
Lecture Notes in Computer Science, vol. 3017. Springer, 2004, pp.
371–388.

[22] M. Bellare and S. K. Miner, “A forward-secure digital signature
scheme,” in CRYPTO, ser. Lecture Notes in Computer Science, vol.
1666. Springer, 1999, pp. 431–448.

[23] NIST, “Recommendation for random number generation using deter-
ministic random bit generators,” https://doi.org/10.6028/NIST.SP.800-
90Ar1, 2015.

[24] S. Gueron, “Intel’s new AES instructions for enhanced performance and
security,” in FSE, ser. Lecture Notes in Computer Science, vol. 5665.
Springer, 2009, pp. 51–66.

[25] D. J. Bernstein, “Chacha, a variant of salsa20,” https://cr.yp.to/chacha/
chacha-20080128.pdf, 2008.

[26] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theor. Comput. Sci., vol. 777, pp. 155–183, 2019.

[27] J. Chen, S. Gorbunov, S. Micali, and G. Vlachos, “ALGORAND
AGREEMENT: super fast and partition resilient byzantine agreement,”
IACR Cryptol. ePrint Arch., p. 377, 2018.

[28] A. Foundation, “Algorand key specification,” 2022, available at: https:
//github.com/algorandfoundation/specs/blob/master/dev/partkey.md.

[29] Y. Gilad, D. Lazar, and C. Peikert, “Subset-sum hash specification,”
2021, available at: https://github.com/algorandfoundation/specs/blob/m
aster/dev/cryptographic-specs/sumhash-spec.pdf.

[30] S. Josefsson and I. Liusvaara, “Edwards-curve digital signature algo-
rithm (eddsa),” RFC, vol. 8032, pp. 1–60, 2017.

[31] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
Public Key Cryptography, ser. Lecture Notes in Computer Science, vol.
3958. Springer, 2006, pp. 207–228.

14

https://doi.org/10.1145/3132747.3132757
https://medium.com/algorand/algorand-releases-first-open-source-code-of-verifiable-random-function-93c2960abd61
https://medium.com/algorand/algorand-releases-first-open-source-code-of-verifiable-random-function-93c2960abd61
https://medium.com/algorand/algorand-releases-first-open-source-code-of-verifiable-random-function-93c2960abd61
http://arxiv.org/abs/1805.04548
https://docs.chia.net/docs/03consensus/consensus_intro
https://docs.chia.net/docs/03consensus/consensus_intro
https://www.rangersprotocol.com/pdf/RangersProtocolWhitepaper.pdf
https://www.rangersprotocol.com/pdf/RangersProtocolWhitepaper.pdf
https://spec.filecoin.io/algorithms/expected_consensus/
https://spec.filecoin.io/algorithms/expected_consensus/
https://ia.cr/2017/099
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://ia.cr/2022/141
https://ia.cr/2021/302
https://eprint.iacr.org/2021/222
https://eprint.iacr.org/2021/222
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://cr.yp.to/chacha/chacha-20080128.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://github.com/algorandfoundation/specs/blob/master/dev/partkey.md
https://github.com/algorandfoundation/specs/blob/master/dev/partkey.md
https://github.com/algorandfoundation/specs/blob/master/dev/cryptographic-specs/sumhash-spec.pdf
https://github.com/algorandfoundation/specs/blob/master/dev/cryptographic-specs/sumhash-spec.pdf

	Introduction
	Our Contributions
	Overview of Solution
	Advantages of Our Approach

	Preliminaries
	Hash Functions and Merkle Tree
	Pseudorandom Generator
	Digital Signatures and Forward Security

	Formal Definitions of Many-Time Indexed VRF (MT-iVRF)
	Syntax
	Correctness and Security Definitions

	Our Constructions
	Many-Time indexed VRF (MT-iVRF)
	Authenticated MT-iVRF with Forward Security

	Performance Analysis and Implementation
	Security Analysis
	Application to Algorand
	Key Management in Algorand
	Our Modifications to the Algorand Protocol
	Interpreting Our iVRF Performance for Algorand

	Conclusion
	References

