
Faster Sounder Succinct Arguments and IOPs
Justin Holmgren∗ Ron D. Rothblum†

June 23, 2022

Abstract
Succinct arguments allow a prover to convince a verifier that a given statement is true, using an

extremely short proof. A major bottleneck that has been the focus of a large body of work is in reducing
the overhead incurred by the prover in order to prove correctness of the computation. By overhead we
refer to the cost of proving correctness, divided by the cost of the original computation.

In this work, for a large class of Boolean circuits 𝐶 = 𝐶(𝑥, 𝑤), we construct succinct arguments for
the language {𝑥 : ∃𝑤 𝐶(𝑥, 𝑤) = 1}, with 2−𝜆 soundness error, and with prover overhead polylog(𝜆).
This result relies on the existence of (sub-exponentially secure) linear-size computable collision-resistant
hash functions. The class of Boolean circuits that we can handle includes circuits with a repeated sub-
structure, which arise in natural applications such as batch computation/verification, hashing and related
block chain applications.

The succinct argument is obtained by constructing interactive oracle proofs for the same class of
languages, with polylog(𝜆) prover overhead, and soundness error 2−𝜆. Prior to our work, the best
IOPs for Boolean circuits either had prover overhead of polylog(|𝐶|) based on efficient PCPs due to
Ben Sasson et al. (STOC, 2013) or poly(𝜆) due to Rothblum and Ron-Zewi (STOC, 2022).
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1 Introduction
Succinct arguments are interactive proof systems that allow a prover to convince a verifier that a computa-
tional statement is true, using an extremely short proof. Soundness is computational — no polynomial-time
cheating prover can convince the verifier to accept a false statement except with negligible probability.

Succinct arguments, especially those that are zero-knowledge [GMR89], originate in the pioneering theo-
retical works of Kilian [Kil92] and Micali [Mic00]. In recent years however they have been drawing immense
interest also in practice and several different systems are being developed and deployed.1 One of the major
bottlenecks to more widespread deployment is the overhead incurred by the prover — the cost of proving
that a statement is true is still orders of magnitude larger than directly checking that the statement is true.

The original work of Kilian [Kil92], based on PCPs and collision resistant hash functions, has a prover that
has a large polynomial overhead. Since Kilian’s original work, and especially in recent years, there has been
significant effort in improving the prover’s runtime. In particular, a recent line of works have achieved succinct
arguments with a linear-size prover [BCG+17, XZZ+19, ZWZZ20, BCG20, BCL20, LSTW21, GLS+21] for
arithmetic circuits over large finite fields. Even more recently, Ron-Zewi and Rothblum [RR21] constructed
succinct arguments with a strictly linear-size prover for general Boolean circuits. However, the soundness
error in their protocol is constant, rather than negligible as we would typically desire. All of these results
fall short of the holy-grail in the field, which is captured by the following question:

Can we construct succinct arguments and interactive oracle proofs for size-𝑆 circuits with an
𝑂(𝑆) + poly(𝜆) size prover and soundness error 2−𝜆?

We emphasize that straightforward repetition, or working over 2𝜆-size finite fields, yields an 𝑂(𝑆 ·𝜆)-size
prover (when implemented as a Boolean circuit). The challenge that we are faced with is therefore breaking
the multiplicative dependence between the circuit size and the security parameter into an additive one.

1.1 Our Results
In this work we construct succinct arguments that come close to resolving the above question, for a large
class of Boolean circuits. Our first main result is a succinct argument-system with a |𝐶| · polylog(𝜆) +
poly(𝜆, log |𝐶|)-size prover, for the relevant class of circuits 𝐶. This result relies on the existence of linear-
size computable hash functions such as those constructed by Applebaum et al. [AHI+17].

Theorem 1.1 (Informally Stated, see Theorem 4.6). Assume the existence of sub-exponentially secure linear-
size computable hash functions.

Then, for any Boolean circuit 𝐶 : {0, 1}𝑛+𝑚 → {0, 1} of size 𝑆 with a “nice” succinct description of size
𝑠, there exists a succinct public-coin argument for the language {𝑥 ∈ {0, 1}𝑛 : ∃𝑤 ∈ {0, 1}𝑚, 𝐶(𝑥, 𝑤) = 1},
with 2−𝜆 soundness error and an 𝑆 · polylog(𝜆) + poly(𝜆, log 𝑆) size prover. The communication complexity
is poly(𝜆, log 𝑆), the number of rounds is 𝑂(log 𝑆) and the verifier runs in time 𝑂(𝑛 + 𝑠 · 𝜆).

We emphasize that the main novelty in Theorem 4.6 is that the prover has size roughly 𝑆 · polylog(𝜆),
rather than 𝑆 ·poly(𝜆). The “nice” class of circuits that we handle generalizes (modulo minor technicalities2)
the notion of Succinct R1CS, introduced by Ben Sasson et al. [BCG+19]. Loosely speaking, this class captures
computations that have some repeated sub-structure. As the precise definition is somewhat involved and
quite general (see Definition 4.2) we highlight two particular examples of interest. The first is “𝑇 -iterated”
circuits for 𝑇 ≥ 𝜆, i.e. those which map 𝑧 = (𝑥, 𝑤) to (𝐷 ∘ · · · ∘𝐷)⏟  ⏞  

𝑇 times

(𝑧) for a small circuit 𝐷. The second is

“batch” circuits, which map (𝑧1, . . . , 𝑧𝑇 ) to 𝐷(𝑧1)∧· · ·∧𝐷(𝑧𝑇 ), again for 𝑇 ≥ 𝜆. In both cases, for any 𝜀 > 0,
we obtain a protocol where our prover has size 𝑇 · |𝐷| ·polylog(𝜆) and our verifier has size (|𝐷|+𝑇 𝜀) ·poly(𝜆).

1See https://zkproof.org for additional details and resources as well as the recent surveys [Ish20, Tha21].
2Succinct R1CS was defined as a constraint system involving two types of constraints: time constraints and boundary

constraints. We can always handle the time constraints, and handle natural boundary constraints, which were the motivation
for the succinct R1CS definition.
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We remark that these class of computations arise in natural scenarios involving cryptographic hashing and
blockchains.

Following a body of recent works, Theorem 1.1 follows (non-trivially) from an analogous (unconditional)
interactive oracle proof (IOP) [BCS16, RRR21]. An IOP can be thought of as an interactive version of a PCP
— the prover can interact with the verifier, who in turn is allowed to read a few bits from each message sent
by the prover. Our main technical result is a new efficient IOP construction for the same class of problems.

Theorem 1.2 (Informally Stated, see Theorem 4.5). For the same family of Boolean circuits 𝐶 : {0, 1}𝑛+𝑚 →
{0, 1} of size 𝑆 with a “nice” succinct description of size 𝑠, there exists an IOP for the language {𝑥 ∈ {0, 1}𝑛 :
∃𝑤 ∈ {0, 1}𝑚, 𝐶(𝑥, 𝑤) = 1}, with 2−𝜆 soundness error and an 𝑆 · polylog(𝜆) size prover. The number of
rounds is 𝑂(log 𝑆), the query complexity is 𝑠 ·poly(𝜆) and the verifier runs in time 𝑛 ·polylog(𝜆)+𝑠 ·poly(𝜆).

We note that there are two aspects that make the compilation of the IOP of Theorem 1.2 into the succinct
argument of Theorem 1.1 non-trivial. The first is the fact that the query complexity in Theorem 1.2 has an 𝑠
dependence which may be only slightly sublinear in 𝑆, whereas the communication complexity in Theorem 1.1
has a poly-logarithmic dependence on 𝑆. This improvement is actually relatively easy to achieve — we first
construct an argument-system in which the communication complexity is 𝑠 · poly(𝜆) but then compose with
an off-the-shelf argument-system (e.g., the original [Kil92] argument) to reduce the communication to be
poly-logarithmic. (We remark that we leave open the question of improving the verification time and query
complexity to be poly-logarithmic in the IOP of Theorem 1.2.)

A more subtle, and serious, issue is that in order to implement the standard transformation of IOPs into
succinct arguments ([Kil92, BCS16]) the prover needs to be able to project its IOP messages to the specific
verifier query locations. The straightforward circuit for projecting a string of length 𝑁 = 𝑆 · polylog(𝜆) to
𝑞 coordinates, has size 𝑂(𝑁 · 𝑞) which we cannot afford. To the best of our knowledge no circuit of size
𝑂(𝑁)+poly(𝑞, log 𝑁) is known for the problem, which poses a serious difficulty. In [RR21] this problem was
overcome by ensuring that the verifier makes only a constant number of queries to each message (or reads
it entirely). In our IOP since we are aiming for 2−𝜆 soundness error, intuitively, the verifier has to make
Ω(𝜆) queries and so we cannot follow the [RR21] approach. Rather, we overcome the difficulty by ensuring
a utilizing a particular query structure of our IOP verifier, see Section 2 for details.

1.2 Related Work
The general question of constructing cryptographic primitives with constant overhead was raised by Ishai et
al. [IKOS08]. In particular, they asked whether we can construct zero-knowledge proofs (with negligible
soundness error) and constant computational overhead for the prover.

As was previously mentioned, a recent exciting line of work [BCG+17, XZZ+19, ZWZZ20, BCG20, BCL20,
LSTW21, GLS+21] has constructed succinct arguments for arithmetic circuits over large finite fields, with a
linear-size prover (see also [GLS+21] for a more through discussion and comparison of some of these works).
In the Boolean circuit regime, the best result is the recent work of [RR21] which achieves a linear-size prover,
albeit with only a constant soundness error.

A separate line of work has focused on constructing zero-knowledge proofs with a linear-size prover,
but where the communication may also grow linearly in the circuit size. (Here the aspect that makes the
problem non-trivial is simply that the proof should be zero-knowledge.) Such a non-succinct zero-knowledge
proof, with a linear-size prover, can be derived fairly directly from [IKOS09], using linear-size computable
commitments, but the resulting proof-system has a constant soundness error.

Damgård et al. [DIK10] similarly construct non-succinct zero-knowledge proofs with comparable prover
size to ours - namely, |𝐶| · polylog(𝜆). We emphasize however that the [DIK10] protocol is not succinct.

Recent works by Weng et al. [WYKW21] and Franzese et al. [FKL+21] also construct non-succinct zero-
knowledge proof (with sub-constant soundness error), where the prover can be implemented as a linear-time
RAM program. Concurrent to [WYKW21], and using related techniques, Dittmer et al. [DIO21] (see also the
followup [YSWW21]) and Baum et al. [BMRS21] constructed zero-knowledge proofs for arithmetic circuits
with constant overhead.
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A separate line of work focuses on the space efficiency of the prover. Proof-systems achieving time and
space efficient provers are known in the designated verifier setting [BC12, HR18] as well as in the publicly
verifiable setting [BHR+20, BHR+21]. The work of [EFKP20] achieves highly efficient parallel time.

1.3 Organization
In Section 2 we give an overview of our techniques. In Section 3 we introduce notations and definitions
that will be used throughout this work. Our main results are formally stated in Section 4. In Section 5 we
introduce some tools that we be used to construct our IOPs. In Section 6 we give the key IOP sub-protocols
that are used in our construction. In Section 7 we combine all of the above to prove our main results. Due
to space restriction, the (by now standard) definition of IOPs is given in Appendix A and, in Appendix B
we highlight concrete realizations of our tensor circuit framework.

2 Technical Overview
Multi-sumcheck with Small Error. The starting point of our work is the aforementioned recent work
of Ron-Zewi and Rothblum [RR21]. One of the key technical ideas in that work is an efficient “multi-
sumcheck” protocol. Generally speaking, a multi-sumcheck IOP is an IOP in which the verifier is given oracle
access to a pair of codewords 𝑐, 𝑐′, belonging to a code 𝐶 : F𝑘 → F𝑛, and would like to compute the inner
product

∑︀
𝑖∈[𝑘] 𝑐(𝑖) · 𝑐′(𝑖).3 Ron-Zewi and Rothblum construct a linear-size encodable code 𝐶 which has a

multi-sumcheck protocol with a linear-size prover. Unfortunately, the protocol only has a constant soundness
error.

We first discuss two common approaches for error reduction. The first is simply to repeat the protocol
𝑂(𝜆) times. This indeed reduces the soundness error at an exponential rate, but naturally increases the
prover’s size by a 𝜆 multiplicative factor, which we would like to avoid. Another common approach is to try
to work with codes with very large minimal distance, say 1−2−𝜆. Unfortunately, by the Plotkin bound, such
codes require an exponentially-large alphabet which would again introduce a poly(𝜆) multiplicative factor
in runtime.

Thus, our first key insight is a (simple) method for reducing the soundness error of the [RR21] protocol
to 2−𝜆, but with only a polylog(𝜆) overhead in the prover’s size.

Let F be a finite field of size 𝑂(𝜆) and consider the Reed-Solomon code 𝑅𝑆𝜆 : F𝜆 → F𝑂(𝜆) over F -
namely, the code consisting of all degree 𝜆 − 1 polynomials over |F|. We will use two key properties of the
Reed-Solomon code: (1) that it is a multiplication code (since the point-wise (aka Hadamard) product of any
two polynomials is a polynomial of degree at most 2𝜆 and therefore belongs to a closely related Reed-Solomon
code) and (2) that it can be encoded by a size 𝜆 · polylog(𝜆) circuit (using the Fast Fourier Transform). We
remark that the parameters (in particular the field size and block length) are set so that 𝑅𝑆𝜆 has a constant
relative distance and further note that we could replace the Reed-Solomon code with any constant-distance
multiplication code with quasi-linear time encoding.

In addition to the ubiquitous Reed-Solomon code, we will also use the code 𝐶 from [RR21]. Indeed, we
will combine these two codes to construct a new code 𝐷 and show an efficient multi-sumcheck procedure for
𝐷 with a small soundness error.

The code 𝐷 is simply the tensor product of 𝑅𝑆𝜆 with 𝐶, denoted 𝐷 = 𝐶 ⊗𝑅𝑆𝜆. In this code, messages
are viewed as (𝑘/𝜆)× 𝜆 matrices and we encode them by encoding first the rows using 𝑅𝑆𝜆 and encode the
columns (both old and the new ones generated by the row encoding) using 𝐶 (where we use 𝐶 with respect to
message size 𝑘/𝜆).4 Observe that since 𝑅𝑆𝜆 is encodable by a 𝜆·polylog(𝜆)-size circuit, and 𝐶 is encodable by
a linear-size circuit, the code 𝐷 is overall encodable by a circuit of size (𝑘/𝜆) ·𝜆 ·polylog(𝜆)+𝑂(𝜆) ·𝑂(𝑘/𝜆) =

3For simplicity we focus here on the case of two codewords, but in general we would like to be able to handle any constant
number of codewords.

4A minor technical inaccuracy is that the Reed-Solomon code’s alphabet is F whereas the [RR21] code has a binary alphabet.
This can be easily be resolved by a simple extension of the [RR21] result to the larger alphabet size, while accounting for
additional polylog(|F|) factors in efficiency, which we can afford since |F| = 𝑂(𝜆).
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𝑘 · polylog(𝜆). Thus, the code 𝐷 maps messages of length 𝑘 to codewords of length 𝑘 · polylog(𝜆) and is
encodable by a 𝑘 · polylog(𝜆) size circuit.

Our first main step is showing a multi-sumcheck protocol for 𝐷, with soundness error 2−𝜆. Recall that
the input to this protocol is two codewords 𝑑, 𝑑′ ∈ 𝐷, and we would like to check that

∑︀
𝑖∈[𝑘/𝜆],𝑗∈[𝜆] 𝑑(𝑖, 𝑗) ·

𝑑′(𝑖, 𝑗) = 𝑏, for some scalar 𝑏. The protocol is simple - the prover generates the codeword 𝑑𝑠𝑢𝑚 ∈ 𝑅𝑆2𝜆

(we use 𝑅2𝜆 to denote the Reed-Solomon code of the same block length as 𝑅𝑆𝜆 but double the degree)
defined as 𝑑𝑠𝑢𝑚 =

∑︀
𝑖∈[𝑘] 𝑑𝑖 ⋆ 𝑑′

𝑖, where 𝑑𝑖 and 𝑑′
𝑖 denote the 𝑖-th rows of 𝑑 and 𝑑′, respectively, and ⋆

denotes a point-wise/Hadamard product. Note that by linearity, 𝑑𝑠𝑢𝑚 is indeed a codeword of 𝑅𝑆2𝜆 and
that

∑︀
𝑗 𝑑𝑠𝑢𝑚(𝑗) =

∑︀
𝑖,𝑗 𝑑(𝑖, 𝑗) · 𝑑′(𝑖, 𝑗). The prover computes 𝑑𝑠𝑢𝑚 and sends it explicitly to the verifier.

The verifier in turn, after receiving the message 𝑑𝑠𝑢𝑚 (which may or may not be equal to the intended 𝑑𝑠𝑢𝑚)
checks that 𝑑𝑠𝑢𝑚 ∈ 𝑅𝑆2𝜆 and that

∑︀
𝑗∈[𝜆] 𝑑𝑠𝑢𝑚(𝑗) = 𝑏.

Thus, if the original claim is false, in order not to be caught already at this stage, the prover must send
a false codeword 𝑑𝑠𝑢𝑚 ̸≡ 𝑑𝑠𝑢𝑚.

At this point we observe that 𝑑𝑠𝑢𝑚 and 𝑑𝑠𝑢𝑚 are distinct codewords and so they must disagree on a
constant fraction of their coordinates. A typical “sum-check” approach would be for the verifier to choose
at random one of these coordinates and recursively check the resulting multi-sumcheck claim. This is the
approach taken both in the classical sum-check as well as in [RR21].

Our approach differs here. In a nutshell, we observe that we can afford to run the [RR21] multi-sumcheck
procedure for each and every one of the claims induced by 𝑑𝑠𝑢𝑚, each with a constant soundness error, say
1/2. Since many (i.e., Ω(𝜆)) of the claims are false, the probability that the prover will successfully cheat in
all of these invocation is 2−Ω(𝜆).

In more detail, denote the set of coordinates on which 𝑑𝑠𝑢𝑚 and 𝑑𝑠𝑢𝑚 differ by 𝐽 ⊆ [𝑂(𝜆)]. That is,

𝐽 =
{︁

𝑗 : 𝑑𝑠𝑢𝑚(𝑗) ̸= 𝑑𝑠𝑢𝑚(𝑗) =
∑︁

𝑖∈[𝑘/𝜆]

𝑑(𝑖, 𝑗) · 𝑑′(𝑖, 𝑗)
}︁

.

Recall that by the above arguments, we know that |𝐽 | = Ω(𝜆). At this point we run the [RR21] multi-
sumcheck protocol, with a constant soundness error, on each and every coordinate 𝑗 to check that

∑︀
𝑖∈[𝑘/𝜆] 𝑑(𝑖, 𝑗)·

𝑑′(𝑖, 𝑗) = 𝑑𝑠𝑢𝑚(𝑗). The cost of each invocation is 𝑂(𝑘/𝜆), and we have 𝑂(𝜆) such invocations, leading to an
overall cost of 𝑂(𝑘). In terms of soundness, for each 𝑗 ∈ 𝐽 , the probability that the verifier accepts in the
underlying multi-sumcheck is at most a constant and so the probability that it accepts for all 𝑗 ∈ 𝐽 is 2−𝜆,
as desired.

This concludes the description of the multi-sumcheck protocol. We remark that in prior works, such as
[RR21], the multi-sumcheck was the key component and other protocols follows in a straightforward manner.
Unfortunately, in our parameter regime this is no longer the case.

To demonstrate this, consider the following related task that arises often in the construction of IOPs.
Suppose we are given access to a codeword 𝑐 and want to check that the first 𝑘′ bits of 𝑐 are identically
0. A common approach for doing so is to have the verifier choose at random (or pseudorandomly) a vector
𝑟 ∈ {0, 1}𝑘′ and to run multi-sumcheck on the expression

∑︀
𝑖∈[𝑘′] 𝑟𝑖 · 𝑐𝑖 = 0. The point is that if the claim

is false (i.e., 𝑐𝑖 ̸= 0 for some 𝑖 ∈ [𝑘′]) then the above sum will still be zero with probability that is inversely
proportional to the field size |F|. In all prior works that we are aware of, this sufficed since the goal was to
have error probability 1/|F|. In contrast, in this work we want to simultaneously work over a field of size
polylog(𝜆) but to have soundness error 2−𝜆. We manage to solve this difficulty by taking an approach that
is similar to, but somewhat more complicated than, our approach for handling the multi-sumcheck protocol.

At a high level, we again view 𝑐 as a tensor codeword. Using the efficient Reed-Solomon encoding, we
can transform 𝑐 into a new codeword 𝑐′ so that if 𝑐 was non-zero in even one coordinate in [𝑘′], then 𝑐′ is
non-zero in many of its columns. We can then check each and every one of the columns using [RR21], each
with a constant error probability, to overall get a 2−𝜆 error probability.
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A Difficulty with Arithmetization. With a toolkit of efficient IOP sub-protocols in hand, it now seems
straightforward to use existing ideas from the literature to construct an IOP for NP. Unfortunately, this turns
out to be more complicated than expected. To explain the difficulty, let us focus on a specific NP complete
problem which is particularly “arithmetization friendly”, called R1CS (for Rank 1 Constraint Satisfiability).
We view the problem as being parameterized by three (sparse) square matrices 𝐴, 𝐵 and 𝐶 and a given
input 𝑥 belongs to the language if there exists 𝑤 such that 𝐴𝑧 ⋆ 𝐵𝑧 = 𝐶𝑧, where 𝑧 = (𝑥, 𝑤).

The typical way to arithmetize the problem is for the prover to send encodings of 𝑧, 𝑎 = 𝐴𝑧, 𝑏 = 𝐵𝑧 and
𝑐 = 𝐶𝑧 and run sub-protocols to check that:

• 𝑎 ⋆ 𝑏 = 𝑐.

• 𝑎 = 𝐴𝑧, 𝑏 = 𝐵𝑧 and 𝑐 = 𝐶𝑧.

The first check can be handled using the multi-sumcheck and related techniques and so we do not elaborate
on this point. The latter check however turns out to be more complicated.

Let us see the difficulty in trying to employ a standard approach (c.f., [BCR+19]): the verifier chooses a
random (or pseudorandom) vector 𝑟 to reduce checking that 𝑎 = 𝐴𝑧 to checking that:∑︁

𝑖

𝑟𝑖𝑎𝑖 =
∑︁

𝑖

𝑟𝑖(𝐴𝑧)𝑖 =
∑︁

𝑖

(𝑟𝑇 𝐴)𝑖𝑧𝑖

and now the two sides of the equation can be computed by employing the multi-sumcheck protocol. The
problem that we encounter is that a single execution of this approach only has a constant soundness error (if
we are working over a small field). Our techniques for boosting the soundness that worked for multi-sumcheck
seem to fail because the matrix 𝐴 is arbitrary which precludes attempts at decomposing the problem into
smaller sub-problems.

Rather than handling arbitrary matrices 𝐴, we restrict our attention to matrices that have a specific
structure. In particular, we start by considering matrices of the form 𝐴 = 𝐼𝑘 ⊗ 𝐴0, where 𝐼𝑘 is the 𝑘 × 𝑘
identity matrix and 𝐴0 is a small matrix, say of size 𝑠× 𝑠. Intuitively, we can think of 𝐴 as acting on 𝑘 × 𝑠
matrices, such that if 𝑦 = 𝐴(𝑥), then each row of 𝑦 is obtained from the corresponding row of 𝑥 by applying
𝐴0. If 𝑥 and 𝑦 are column-wise encoded with a fixed linear code 𝐶, then we can say the same thing for the
encodings �̂� and 𝑦 of 𝑥 and 𝑦 respectively: each row of 𝑦 is obtained from the corresponding row of �̂� by
applying 𝐴0.

Now if 𝐶 has constant relative distance, the verifier given �̂� and 𝑦 has a way to succinctly check, with
low soundness error, whether 𝑦 = 𝐴𝑥: the verifier samples 𝜆 random rows of �̂�, along with the corresponding
rows of 𝑦, and checks that the latter are obtained from the former by applying 𝐴0. If 𝑦 ̸= 𝐴𝑥, then the
distance of 𝐶 implies that at least a constant fraction of the rows of 𝑦 are incorrectly generated, and so the
verifier will reject with probability 2−Ω(𝜆). Note that the size of this verifier is 𝑂(𝜆 · 𝑠2), which can be much
smaller than the number of entries of 𝐴 (which is 𝑘2 · 𝑠2).

We can push this simple idea quite far. Instead of viewing 𝐴 as acting on matrices, we view 𝐴 as acting
on degree-𝑑 tensors, and instead of column-wise encodings we use tensor codes. This immediately allows
us to handle matrices 𝐴 of the form 𝐴1 ⊗ · · · ⊗ 𝐴𝑑. We can also handle sum of such matrices, and in fact
we give a more general notion of matrices 𝐴 that are computable by a new notion that we introduce called
“succinct tensor circuits” (see Definition 4.2). As noted in Section 1.1, this notion generalizes (modulo some
technicalities) the notion of succinct R1CS [BCG+19], see Appendix B for details.

The Projection Problem. We turn to discussing an additional subtle difficulty that we encounter when
attempting to compile our IOP into an efficient argument (and which was briefly discussed in Section 1.1).
The common approach for compiling an IOP, as proposed by [BCS16] (following [Kil92]) is for the prover
to send Merkle hashes of each of its messages and, at the end of the protocol, to send authentication paths
corresponding to the verifier’s desired queries.

The problem is that projecting the proof string to the desired query locations may, in general, introduce
overhead. This naturally raises the following question: can we construct a “multi-plexing” circuit of size
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𝑂(𝑁) + poly(𝑘, log 𝑁) that given a string 𝑥 ∈ {0, 1}𝑁 (in our case the IOP string) and a set 𝑄 ⊆ [𝑁 ] (i.e.,
the verifier’s queries) of size 𝑘, outputs 𝑥𝑄. Note that for our purposes we cannot afford a circuit of size
Ω(𝑁 · 𝑘) for this task, and even a circuit of size Ω(𝑁 · log(𝑁)) would be too much.

Unfortunately, we do not know how to solve the above task in general with the desired complexity.
Imagine though, that we had a promise that the query set 𝑄 has a nice structure - namely, that we can
partition the input 𝑥 into 𝑁/𝑘 blocks and that the first query in 𝑄 is to block 1, the second is to block 2
and so forth. In such a case, we could just concatenate 𝑘 simple multi-plexing circuits each of size 𝑂(𝑁/𝑘)
to solve the problem and get, overall, a circuit of size 𝑂(𝑁).

Unfortunately, typical IOPs have a highly random query pattern. For example, one of the tasks that we
often have to do is sample some 𝑂(𝜆) coordinates of a given codeword 𝑐 (from a code with constant relative
distance) so that we can guarantee that with probability 1− 2−𝜆 at least one of the entries is non-zero.

Our observation, is that the random sampling of 𝑘 = 𝑂(𝜆) points can indeed be replaced in this case
by partitioning the codeword into blocks of 𝑁/𝑘 and choosing just a single point in each block! While this
distribution is far from the uniform distribution over [𝑛]𝑘, it is easy to show that it still solves our sampling
task with an exponentially small error probability. We extend this approach to all of the verifier’s tests to
obtain an IOP for which we can indeed efficiently project the IOP messages to the verifier’s query set.

3 Preliminaries
3.1 Notation and Conventions
Throughout this paper we use the notion of a Boolean circuit. When we refer to the size of a circuit, we use
the usual meaning (the number of gates).

3.2 Probability
We use the following Chernoff bound.

Fact 3.1 (Chernoff). If 𝑋1, . . . , 𝑋𝑛 are independent {0, 1}-valued random variables and if 𝜇 denotes the
expected value of

∑︀
𝑖 𝑋𝑖, then for all 0 ≤ 𝛿 ≤ 1,

Pr
[︀ ∑︁

𝑖

𝑋𝑖 ≤ (1− 𝛿) · 𝜇
]︀
≤ 𝑒− 𝛿2𝜇

2 .

3.3 Interactive Oracle Proofs
We next define the notion of interactive oracle proof, due to [BCS16, RRR21]. Our presentation closely
follows [RR21].

We restrict our attention to the public-coin setting which means that all of the verifier’s messages simply
consist of uniformly random coins.

An ℓ-round (public-coin) interactive oracle protocol consists of two entities, a prover 𝒫 and a verifier 𝒱.
The prover 𝒫 consists of ℓ Boolean circuits 𝒫1, . . . ,𝒫ℓ. For every 𝑖 ∈ [ℓ], the input to 𝒫𝑖 is the state 𝑆𝑖−1
from the previous round (where 𝑆0 is simply the main input 𝑥 and potentially also a witness 𝑤) as well as
uniformly random coins 𝑅𝑖−1, which we think of as being generated by the verifier (note that 𝑅0 is defined
as the empty string). The output of each circuit 𝒫𝑖 is the state 𝑆𝑖 for the next round and a message 𝑀𝑖 to
be transmitted to the verifier. The size |𝒫| of the prover 𝒫 is defined as the sum of the prover circuit sizes,
i.e., |𝒫| := |𝒫1|+ · · ·+ |𝒫ℓ|.

The verifier 𝒱 is a Boolean circuit that given as input the transcript, consisting of (𝑥, 𝑀1, 𝑅1, . . . , 𝑀ℓ−1, 𝑅ℓ−1, 𝑀ℓ),
decides whether to accept or reject. We will often be interested in verifiers that run in sub-linear time, and
in particular are unable to read the entire transcript. In this case we view the input as being separated into
two parts 𝑥 = (𝑥exp, 𝑥imp). The first part, 𝑥exp is read explicitly by the verifier (and will often consist of
a parameterization of the problem). In contrast, the verifier only has oracle access to 𝑥imp. We also view
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the verifier 𝒱 as consisting of two separate circuits. The first circuit 𝒱1 takes as input 𝑥exp, 𝑅1, . . . , 𝑅ℓ−1,
and outputs the set of query locations 𝐼. The circuit 𝒱2 then gets as input 𝑥exp, 𝑅1, . . . , 𝑅ℓ−1, as well as
the projection of (𝑥imp, 𝑀1, . . . , 𝑀ℓ) to the query set 𝐼, denoted by (𝑥imp, 𝑀1, . . . , 𝑀ℓ)|𝐼 , and based on these
decides whether to accept or reject. The size |𝒱| of the verifier 𝒱 is defined as the sum of the sizes of its
constituent parts, i.e., |𝒱| := |𝒱1|+ |𝒱2|.

Remark 3.2. The standard definition of interactive oracle protocols in the literature (see e.g., [BCS16,
RRR21]) allows the verifier’s queries to depend on the entire input 𝑥 (and sometimes also on answers to
previous queries). For sake of simplicity, and to facilitate composition, our definition of interactive oracle
protocol only allows the query locations to depend on the explicit input 𝑥exp and the verifier’s randomness
(and implicitly on the input length). We note that many constructions in the literature achieve this stronger
notion.

The key parameters that we will care about are:

1. Query Complexity: the number of bits 𝑞 = |𝐼| that the verifier reads from the input and transcript.

2. Round complexity: the number of rounds ℓ.

3. Verifier Size: the size of the verifier 𝒱, as defined above.

4. Prover Size: the size of the prover 𝒫, as defined above. In the context of interactive oracle protocols
for NP relations we will often assume that the prover is also given as an auxiliary input a witness 𝑤
proving that the input 𝑥 satisfies the relation.

Using the notion of interactive oracle protocols, we can now define interactive oracle proofs.

Definition 3.3 (Interactive oracle proof (IOP)). An ℓ-round interactive oracle proof (IOP) with soundness
error 𝜀 for a promise problem (YES, NO) is an ℓ-round (public-coin) interactive oracle protocol (𝒫,𝒱) such
that:

• Completeness: If 𝑥 ∈ YES, then when 𝒱 interacts with 𝒫, it accepts with probability 1.

• Soundness: If 𝑥 ∈ NO, then for every prover strategy 𝒫*, when 𝒱 interacts with 𝒫*, it accepts with
probability at most 𝜀.

Focusing on promise problems allows us to model settings in which the input has some particular structure
(e.g., is encoded under an error-correcting code). In particular, this will sometimes allow our verifier to run
in time that is sub-linear even in the input. Lastly, we note that the standard notion of PCP corresponds to
the special case of IOP, when the round complexity is ℓ = 1.

IOP of Proximity. A particular special case of interest is that of IOPs of proximity [BCS16, RRR21], or
IOPP for short. For a pair language ℒ ⊆ {(𝑥exp, 𝑥imp) ∈ {0, 1}* × {0, 1}*} and 𝑥exp ∈ {0, 1}*, we use the
notation ℒ𝑥exp := {𝑥imp : (𝑥exp, 𝑥imp) ∈ ℒ}.

Definition 3.4 (Interactive oracle proof of proximity (IOPP)). An ℓ-round IOP of 𝛼-proximity (𝛼-IOPP) with
soundness error 𝜀 for a pair language ℒ ⊆ {(𝑥exp, 𝑥imp) ∈ {0, 1}* × {0, 1}*} is an ℓ-round IOP with soundness
error 𝜀 for the promise problem (YES, NO), where YES = ℒ and NO = {(𝑥exp, 𝑦) : 𝑦 is 𝛼-far from ℒ𝑥exp}.

The parameter 𝛼 is called the proximity parameter. Once more, we note that the standard notion of PCPP
corresponds to the special case of IOPP, when the round complexity is ℓ = 1.

Imported Theorem 1 ([RR21, Lemma 6.4 + Proposition 4.7]). Let 𝐶 : {0, 1}𝑛 → {0, 1} be a size 𝑆 = 𝑆(𝑛)
Boolean circuit. There exists a 𝛿-IOPP for the set

{︀
𝑥 ∈ {0, 1}𝑛 : 𝐶(𝑥) = 1

}︀
with soundness error 1/2 and

the following efficiency parameters:

• Rounds: 𝑂(log 𝑆)
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• Prover Size: 𝑂(𝑆)

• Verifier Size: 𝑂(𝑆) + poly(log(𝑆), 1/𝛿)

• Query Complexity: 𝑂(1/𝛿).

3.4 Constructible Finite Fields
We will assume that all fields that we work with are constructible.

Definition 3.5. A field ensemble F = (F𝑛)𝑛∈N is constructible if field elements can be represented using
𝑂(log(|F𝑛|)) bits and field operations (i.e., addition, subtraction, multiplication, inversion and sampling
random elements) can be performed using a Boolean circuit of size polylog

(︀
|F𝑛|

)︀
.

Fact 3.6 (See, e.g., [Sho88]). For every 𝑆 = 𝑆(𝑛) ≥ 1, there exists a constructible field ensemble (F𝑛)𝑛∈N
where each F𝑛 has characteristic 2 and size Θ

(︀
𝑆(𝑛)

)︀
.

3.5 Error-Correcting Codes
Let Σ be a finite alphabet, and 𝑘, 𝑛 be positive integers (the message length and the codeword length,
respectively). An (error-correcting) code is an injective map 𝐶 : Σ𝑘 → Σ𝑛. The elements in the domain of 𝐶
are called messages, and the elements in the image of 𝐶 are called codewords. We say that 𝐶 is systematic
if the message is a prefix of the corresponding codeword, i.e., for every 𝑥 ∈ Σ𝑘 there exists 𝑧 ∈ Σ𝑛−𝑘 such
that 𝐶(𝑥) = (𝑥, 𝑧).

The rate of a code 𝐶 : Σ𝑘 → Σ𝑛 is the ratio 𝜌 := 𝑘
𝑛 . The relative distance dist(𝐶) of 𝐶 is the maximum

𝛿 > 0 such that for every pair of distinct messages 𝑥, 𝑦 ∈ Σ𝑘 it holds that distΣ(𝐶(𝑥), 𝐶(𝑦)) ≥ 𝛿.
If Σ = F for some finite field F, and 𝐶 is a linear map between the vector spaces F𝑘 and F𝑛 then we

say that 𝐶 is linear. The generating matrix of a linear code 𝐶 : F𝑘 → F𝑛 is a matrix 𝐺 ∈ F𝑛×𝑘 such that
𝐶(𝑥) = 𝐺 · 𝑥 for any 𝑥 ∈ F𝑘.

3.5.1 Multiplication Codes

Definition 3.7. The Hadamard product of vectors 𝑥, 𝑦 ∈ F𝑛, denoted 𝑥 ⋆ 𝑦, is the vector 𝑧 ∈ F𝑛 whose 𝑖𝑡ℎ

component is 𝑧𝑖 = 𝑥𝑖 · 𝑦𝑖.
If 𝑋 and 𝑌 are subsets of F𝑛, we write 𝑋 ⋆ 𝑌 to denote the set

{︀
𝑥 ⋆ 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌

}︀
, and for integer

𝑡 ≥ 0 we define

𝑋⋆𝑡 =
{︃{︀

1𝑛
}︀

if 𝑡 = 0
𝑋 ⋆ 𝑋⋆(𝑡−1) otherwise.

3.5.2 Tensor Codes

A main ingredient in our constructions is the tensor product operation, defined as follows (see, e.g., [Sud01,
DSW06]).

Definition 3.8 (Tensor codes). The tensor product code of linear codes 𝐶 : F𝑘 → F𝑛 and 𝐶 ′ : F𝑘′ → F𝑛′ is
the code 𝐶 ⊗ 𝐶 ′ : F𝑘×𝑘′ → F𝑛×𝑛′ , where the encoding (𝐶 ⊗ 𝐶 ′)(𝑀) of any message 𝑀 ∈ F𝑘×𝑘′ is obtained
by first encoding each column of 𝑀 with the code 𝐶, and then encoding each of the 𝑛 resulting rows with the
code 𝐶 ′.

Note that by linearity, the codewords of 𝐶 ⊗ 𝐶 ′ are 𝑛 × 𝑛′ matrices (over the field F) whose columns
belong to the code 𝐶, and whose rows belong to the code 𝐶 ′. It is also known that the converse is true: any
𝑛 × 𝑛′ matrix, whose columns belong to the code 𝐶, and whose rows belong to the code 𝐶 ′, is a codeword
of 𝐶 ⊗ 𝐶 ′.
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Definition 3.9. We say that a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 is locally computable by a size 𝑆 circuit if
there is a size-𝑆 circuit that takes as input 𝑥 ∈ {0, 1}𝑛 and 𝑖 ∈ [𝑚] and outputs 𝑓(𝑥)𝑖.

Claim 3.10. The following holds for any pair of linear codes 𝐶 : F𝑘 → F𝑛, 𝐶 ′ : F𝑘′ → F𝑛′ .

1. If 𝐶, 𝐶 ′ can be encoded by Boolean circuits of sizes 𝑆, 𝑆′ respectively, then 𝐶 ⊗𝐶 ′ can be encoded by a
Boolean circuit of size 𝑛′ · 𝑆 + 𝑛 · 𝑆′.

2. If 𝐶 and 𝐶 ′ are locally computable by size 𝑆0 and 𝑆′
0 circuits, respectively, then:

(a) There is a size 𝑘′ ·𝑆0 +𝑆′
0 circuit whose input is a message 𝑚 ∈ F𝑘⊗F𝑘′ and an index 𝑖 ∈ [𝑛]× [𝑛′]

and whose output is (𝐶 ⊗ 𝐶 ′)(𝑚)𝑖.
(b) There is a size 𝑆0 + 𝑆′

0 circuit that on input 𝑚 ∈ F𝑘, 𝑚′ ∈ F𝑘′ , and 𝑖 ∈ [𝑛] × [𝑛′], outputs
(𝐶 ⊗ 𝐶 ′)(𝑚⊗𝑚′)𝑖.

For a linear code 𝐶 : F𝑘 → F𝑛, let 𝐶⊗0 := F→ F denote the identity function (i.e. the function computed
by the 1× 1 matrix [1]), and let and 𝐶⊗𝑡 denote 𝐶 ⊗ 𝐶⊗(𝑡−1) for any 𝑡 ≥ 1.

Finally, applying iteratively the above Claim 3.10, gives the following.

Claim 3.11. The following holds for any linear code 𝐶 : F𝑘 → F𝑛.

1. If 𝐶 : F𝑘 → F𝑛 can be encoded by a Boolean circuit of size 𝑠, then 𝐶⊗𝑡 can be encoded by a Boolean
circuit of size 𝑡𝑛𝑡−1𝑠.

2. If each coordinate of 𝐶 can be computed in time 𝑇0, then:

(a) For every 𝑡 ∈ Z+, there is a size 𝑂(𝑘𝑡−1 · 𝑇0) circuit that takes as input 𝑚 ∈ (F𝑘)⊗𝑡 and 𝑖 ∈ [𝑛]𝑡
and outputs 𝐶⊗𝑡(𝑚)𝑖.

(b) For every 𝑡 ∈ Z+, there is a size 𝑂(𝑡 · 𝑇0) circuit that takes as input 𝑚1, . . . , 𝑚𝑡 ∈ F𝑘 and 𝑖 ∈ [𝑛]𝑡
and outputs 𝐶⊗𝑡(𝑚1 ⊗ · · · ⊗𝑚𝑡)𝑖.

4 Main Results
Our results are most naturally stated in terms of (a slight modification to the notion of) Rank-1 Constraint
Satisfaction (R1CS) relations.

Definition 4.1 (R1CS). A Rank-1 Constraint Satisfaction (R1CS) relation over a field F is parameterized
by matrices 𝐴, 𝐵, 𝐶 ∈ F𝑀×𝑁 and 𝑋 ∈ F𝑛×𝑁 , and is defined as the set

ℛ𝐴,𝐵,𝐶,𝑋
R1CS

def=
{︁

(𝑥, 𝑧) ∈ F𝑛 × F𝑁 : 𝑋 · 𝑧 = 𝑥 ∧ (𝐴 · 𝑧) ⋆
(︀
𝐵 · 𝑧

)︀
= 𝐶 · 𝑧

}︁
,

where ⋆ denotes pointwise multiplication.
We define ℒ𝐴,𝐵,𝐶,𝑋

R1CS as the set {︀
𝑥 ∈ F𝑛 : ∃𝑧 ∈ F𝑁 s.t. (𝑥, 𝑧) ∈ ℛR1CS

}︀
.

We remark that the standard definition of R1CS require 𝑥 to be a prefix of 𝑧. Our definition can simulate
the former by setting 𝑋 to be the matrix that projects its length-𝑁 input to the first 𝑛 coordinates.

We will focus on R1CS relations for which the matrices 𝐴, 𝐵, 𝐶, 𝑋 defining the R1CS relation can be
succinctly expressed as a “tensor circuit”.

Definition 4.2 (Tensor Circuits). We define a tensor circuit over F to be a triple 𝐶 =
(︀
(𝑉𝑖)𝑖∈[𝑁 ], (𝐿𝑖)𝑖∈[𝑔+1], (𝜙𝑖)𝑖∈[𝑔]

)︀
,

where each 𝑉𝑖 is a vector space over F, each 𝐿𝑖 is a subset of [𝑁 ], and for every 𝑗 ∈ [𝑔], 𝜙𝑗 is a linear function
mapping

⨂︀
𝑖∈𝐿𝑗∖𝐿𝑗+1

𝑉𝑖 →
⨂︀

𝑖∈𝐿𝑗+1∖𝐿𝑗
𝑉𝑖.
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We associate 𝐶 with a function 𝑓𝑔 ∘ · · · ∘ 𝑓1, where 𝑓𝑖 represents a function corresponding to the 𝑖𝑡ℎ gate
𝜙𝑖, and is defined as

𝑓𝑖 :
⨂︁
𝑗∈𝐿𝑖

𝑉𝑗 →
⨂︁

𝑗∈𝐿𝑖+1

𝑉𝑗

𝑓𝑖 = 𝜙𝑖 ⊗
⨂︁

𝑗∈𝐿𝑖∩𝐿𝑖+1

Id𝑉𝑗
. (1)

Remark 4.3. In Definition 4.2, we take all tensor products to be indexed by an unordered set 𝐿. For
example, each 𝐿𝑖 is an unordered set and yet we consider the tensor product

⨂︀
𝑗∈𝐿𝑖

𝑉𝑖. This reflects the
fact that many aspects of the “ordering” of wires in (a layer of) a circuit are arbitrary and only serve to
complicate notation. For example, when applying a gate 𝜙 to the 𝑖𝑡ℎ and 𝑗𝑡ℎ wires of a layer, it shouldn’t
matter whether 𝑖 = 1 and 𝑗 = 2, or if 𝑖 = 3 and 𝑗 = 5. However, if we force the usual ordered semantics,
then only the former has the clean notation 𝜙⊗ Id. What we are doing with the above notation is implicitly
specifying which wires 𝜙 is applied to via the domain of 𝜙.

Definition 4.4 (Tensor Circuit Parameters). If 𝐶 =
(︀
(𝑉𝑖)𝑖∈[𝑁 ], (𝐿𝑖)𝑖∈[𝑔+1], (𝜙𝑖)𝑖∈[𝑔]

)︀
is a tensor circuit, we

define the following important parameters of 𝐶:

• Width: max𝑖∈[𝑔+1]
∏︀

𝑗∈𝐿𝑖
dim(𝑉𝑗).

• Degree: max |𝐿𝑖|

• Number of Gates: 𝑔

• Total Gate Size: The sum of the circuit complexities of 𝜙𝑖.

In terms of tensor circuits, our first main result is the following IOP.

Theorem 4.5 (Main IOP Construction). Let ℛ = ℛ𝐴,𝐵,𝐶,𝑋
R1CS be an R1CS relation, where 𝐴, 𝐵, and 𝐶 are

𝑀 ×𝑁 matrices and 𝑋 is an 𝑛×𝑁 matrix.
Suppose that for some constant-dimensional integer vectors k(𝑥), k(𝑦), k(𝑧) (possibly of different dimen-

sions), there are isomorphisms F𝑁
2
∼=

⨂︀
𝑖 F𝑘

(𝑧)
𝑖 , and F𝑀

2
∼=

⨂︀
𝑖 F𝑘

(𝑦)
𝑖 , and F𝑛

2
∼=

⨂︀
𝑖 F𝑘

(𝑥)
𝑖 , such that when 𝐴,

𝐵, 𝐶, and 𝑋 are viewed as maps between the corresponding tensor spaces, they each are computable by a
constant-degree tensor circuit over F2 with 𝑔 gates, width 𝑊 , and total gate size 𝑆.

Then for all 𝜀 > 0 there is an IOP for ℛ with soundness error 2−𝜆 and the following efficiency parameters:

• Number of rounds: 𝑂(log 𝑁).

• Prover size: 𝑊 · 𝑔 · polylog(𝜆).

• Verifier size: 𝑂(𝜆 · 𝑆) + poly(𝜆, 𝑀𝜀, log 𝑛), where the polynomial poly is independent of 𝜀, and the
verifier is given oracle access to a specific encoding of its input that is computable in time 𝑛 ·polylog(𝜆).

• Queries: The verifier makes 𝑂(𝜆 ·𝑆) queries to the messages sent by the prover, and 𝑂(𝜆) queries to
the encoding of its input.

We will use the IOP of Theorem 4.5 to construct an efficient argument-system. As discussed in Section 2
this step is non-trivial.

Theorem 4.6 (Main Interactive Argument Construction). Assume that there exists a sub-exponentially hard
collision-resistant hash function computable by linear size circuits mapping 𝜆 bits inputs to 𝜆/2 bit outputs.

Let ℛ = ℛ𝐴,𝐵,𝐶,𝑋
R1CS be an R1CS relation, where 𝐴, 𝐵, and 𝐶 are 𝑀 × 𝑁 matrices and 𝑋 is an 𝑛 × 𝑁

matrix.
Suppose that for some constant-dimensional integer vectors k(𝑥), k(𝑦), k(𝑧) (possibly of different dimen-

sions), there are isomorphisms F𝑁
2
∼=

⨂︀
𝑖 F𝑘

(𝑧)
𝑖 , and F𝑀

2
∼=

⨂︀
𝑖 F𝑘

(𝑦)
𝑖 , and F𝑛

2
∼=

⨂︀
𝑖 F𝑘

(𝑥)
𝑖 , such that when 𝐴,
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𝐵, 𝐶, and 𝑋 are viewed as maps between the corresponding tensor spaces, they each are computable by a
constant-degree tensor circuit over F2 with 𝑔 gates, width 𝑊 , and total gate size 𝑆.

Then, for every 𝜀 > 0, there is an interactive argument for ℛ with soundness error 2−𝜆 and the following
efficiency parameters:

• Number of rounds: 𝑂(log 𝑁).

• Prover size: 𝑊 · 𝑔 · polylog(𝜆) + poly(𝑆, 𝜆) · (𝑁𝜀 + 𝑀𝜀).

• Communication complexity: poly(𝜆, log(𝑊 · 𝑔)).

• Verifier size: poly(𝜆) · �̃�
(︀
𝑆 + 𝑀𝜀

)︀
, where the verifier is given oracle access to a specific encoding of

its input that is computable by a circuit of size 𝑛 · polylog(𝜆).

Finally, we remark that the interactive argument of Theorem 4.6 can be made zero-knowledge using the
standard transformation of Ben-Or et al. [BGG+88]. The argument can can further be heuristically compiled
to a non-interactive argument using the Fiat-Shamir transform.

Organization. The technical heart of the proofs are in Sections 5 and 6 and Appendix B. Using these
tools Theorems 4.5 and 4.6 are eventually proved in Section 7.

5 IOP Tools
5.1 Projectability
Projection is a map, parameterized by a tuple (𝑖1, . . . , 𝑖𝑘) ∈ [𝑛]*, that takes any string 𝑥 ∈ {0, 1}𝑛 to the
subsequence (𝑥𝑖1 , . . . , 𝑥𝑖𝑘

) ∈ {0, 1}𝑘. The latter string is called the

6 Basic IOPs
In this section we build the key sub-protocols that will be used to construct our main IOP. We start, in
Section 6.1 with an IOP for checking a local multiplicative relation between codewords (aka the Hadamard
check) and then proceed to Section 6.2 in which we give an IOP for checking linear relations.

6.1 Hadamard Check
Definition 6.1. If 𝐶 is a code, we define Had𝐶 to be the promise problem where “yes” instances are triples(︀
𝐶(𝑥), 𝐶(𝑦), 𝐶(𝑥 ⋆ 𝑦)

)︀
, and “no” instances are all other triples of codewords of 𝐶.

We first construct an IOP for the Had with constant soundness. The result basically follows from [RR21].

Proposition 6.2 (Constant Soundness Hadamard Check). Let F be a constructible field extension of GF(2).
Let 𝐷 : F𝑘 → F𝑛 be a size-𝑆 encodable systematic linear code with constant rate and constant relative distance,
and define 𝐶 = 𝐷⊗𝑡 for some constant integer 𝑡.

There is an IOP for Had𝐶 with constant soundness error and the following efficiency parameters:

• Rounds: 𝑂(log 𝑆)

• Prover size: 𝑆 · 𝑛𝑡−1 · polylog(|F|)

• Prover communication: 𝑂(𝑛𝑡) elements of F.

• Verifier size: poly(𝑆, log(|F|)) for some polynomial poly that is independent of 𝑡.
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• Queries: The verifier makes a constant number of queries to its input, and for each prover message
𝑚 the verifier either reads all of 𝑚 or makes a constant number of queries to symbols in 𝑚. Here we
view both the input and the prover messages as strings with alphabet F.

Proof. The proof utilizes a code from [RR21] which supports an efficient “multi-sumcheck” protocol with
constant soundness error. We use a simple extension of their construction to a larger alphabet F. This
extension incurs additional polylog(|F|) factors in computational efficiency for both the prover and verifier,
and an 𝑂(log(|F|)) factor in communication.

In more detail, let 𝐶 = �̂�⊗𝑡 (where �̂� : F𝑘 → F�̂� is linear-size encodable) be a code that supports a
“multi-sumcheck” protocol with constant soundness error (c.f., [RR21, Lemma 4.8, Proposition 4.7]).

We first describe an encoded-message IOP. Given inputs 𝑐𝑥 = 𝐶(𝑥), 𝑐𝑦 = 𝐶(𝑦), 𝑐𝑧 = 𝐶(𝑧):

1. The prover sends re-encodings 𝑐𝑥 = 𝐶(𝑥), 𝑐𝑦 = 𝐶(𝑦), 𝑐𝑧 = 𝐶(𝑧).

2. The prover and verifier invoke the consistency checking IOP of [RR21, Lemma 5.1], which has constant
soundness error, on the claims{︁

𝑐(𝑖) = 𝑐(𝑖) for all 𝑖 ∈ [𝑘]𝑡
}︁

(𝑐,𝑐)∈{(𝑐𝑥,𝑐𝑥),(𝑐𝑦,𝑐𝑦),(𝑐𝑧,𝑐𝑧)}.

3. The verifier samples 𝑟1, . . . , 𝑟𝑡 ∈ F𝑘 and sends 𝑟 = 𝑟1 ⊗ · · · ⊗ 𝑟𝑡 to the prover.

4. The prover and verifier invoke the multi-sumcheck protocol on the claims∑︁
𝑖∈[𝑘]𝑡

𝑐𝑥(𝑖) · 𝑐𝑦(𝑖) · 𝑐𝑟(𝑖) =
∑︁

𝑖∈[𝑘]𝑡

𝑐𝑧(𝑖) · 𝑐𝑟(𝑖),

where we define 𝑐𝑟 = 𝐶(𝑟).
Here the verifier needs oracle access not only to 𝑐𝑥, 𝑐𝑦, 𝑐𝑧 : [𝑛]𝑡 → F, but also to 𝑐𝑟. Using the tensor
structure of 𝑟, the verifier can emulate oracle access to 𝑐𝑟 in size 𝑂(𝑡 · 𝑛) by Claim 3.11.

The constant soundness of this protocol follows from the constant soundness of the RR21 protocol, along
with the fact that with all but 𝑡/|F| probability over the choice of 𝑟, we have ⟨𝑣, 𝑟⟩ ≠ 0.

We compile this encoded-message IOP to a standard IOP using [RR21, Proposition 4.7].

Our Hadamard check with soundness error 2−𝜆 overhead only works for a more restricted family of codes,
which we fortunately are able to construct with polylog(𝜆) overhead in the encoding size.

Definition 6.3 ((𝜆, 𝑡)-Hadamard-friendly Codes). We say that a tensor code 𝐶 over a field F is (𝜆, 𝑡)-
Hadamard-friendly if it has constant rate and constant relative distance and can be written as 𝐶 = 𝐸⊗𝑡⊗𝑀⊗𝑡,
where 𝐸 is any linear code and 𝑀 is a multiplication code with message space F𝜆1/𝑡 and the property that
𝑀⋆2 has constant relative distance.

Lemma 6.4 (Improved Hadamard Check). Let 𝑡 ∈ Z+ be a constant, and let F be any constructible field
(see Definition 3.5). Let 𝐶 ⊆ F𝑁 be a (𝜆, 𝑡)-Hadamard-friendly tensor code.

There is an IOP for Had𝐶 with soundness error 2−𝜆 and the following efficiency parameters:

• Rounds: 𝑂(log 𝑁)

• Communication: 𝑂(𝑁 · log |F|)

• Prover Size: 𝑁 · polylog(|F|)

• Verifier Size: 𝑂
(︁

𝜆 ·
(︀
𝜆 + log 𝑁

)︀
+ poly(𝑁1/𝑡, log |F|)

)︁
, where we emphasize that the degree of the

polynomial poly is independent of 𝑡.

14



Common Input: Oracle access to triple of codewords 𝑐𝑥, 𝑐𝑦, 𝑐𝑧 ∈ 𝐶 = 𝐸⊗𝑡 ⊗𝑀⊗𝑡

1. The prover computes and sends a codeword 𝑐⋆
𝑧 ∈ 𝐸⊗𝑡⊗ (𝑀⋆2)⊗𝑡, defined so that 𝑐⋆

𝑧(𝛼, 𝛽) = 𝑐𝑥(𝛼, 𝛽) ·
𝑐𝑦(𝛼, 𝛽) for all 𝛼 ∈ [𝑘𝐸 ]𝑡 and 𝛽 ∈ [𝑛𝑀 ]𝑡.

2. The verifier samples (𝛼1, . . . , 𝛼𝜅𝐸⊗𝑡 )← 𝒬𝐸⊗𝑡 and (𝛽1, . . . , 𝛽𝜅𝑀⊗𝑡 )← 𝒬𝑀⊗𝑡 .

3. For each 𝑗 ∈ [𝜅𝐸⊗𝑡 ], and for all 𝛽 ∈ [𝑘𝑀 ]𝑡, the verifier checks that 𝑐𝑧(𝛼𝑗 , 𝛽) = 𝑐⋆
𝑧(𝛼𝑗 , 𝛽).

4. For each 𝑗 ∈ [𝜅𝑀⊗𝑡 ]:

(a) Let u𝑗 , v𝑗 , and w𝑗 respectively denote the vectors
(︀
𝑐𝑥(𝛼, 𝛽𝑗)

)︀
𝛼∈[𝑘𝐸 ]𝑡 ,

(︀
𝑐𝑦(𝛼, 𝛽𝑗)

)︀
𝛼∈[𝑘𝐸 ]𝑡 , and(︀

𝑐⋆
𝑧(𝛼, 𝛽𝑗)

)︀
𝛼∈[𝑘𝐸 ]𝑡 . Let û𝑗 , v̂𝑗 , and ŵ𝑗 respectively denote 𝐸⊗𝑡(u𝑗) =

(︀
𝑐𝑥(𝛼, 𝛽𝑗)

)︀
𝛼∈[𝑛𝐸 ]𝑡 ,

𝐸⊗𝑡(v𝑗) =
(︀
𝑐𝑦(𝛼, 𝛽𝑗)

)︀
𝛼∈[𝑛𝐸 ]𝑡 , and 𝐸⊗𝑡(w𝑗) =

(︀
𝑐⋆

𝑧(𝛼, 𝛽𝑗)
)︀

𝛼∈[𝑛𝐸 ]𝑡 .

(b) The prover and verifier, using oracle access to û𝑗 , v̂𝑗 , and ŵ𝑗 , invoke the constant soundness
error IOPP of Proposition 6.2 on the claim that that w𝑗 = u𝑗 ⋆ v𝑗 .

Figure 1: Encoded-message IOP for Had𝐸⊗𝑡⊗𝑀⊗𝑡

with soundness error 2−Ω(𝜆)

• Queries: 𝑂
(︀
𝜆2)︀

. These queries are prefix-projectable.

Proof. Let 𝑛𝐸 and 𝑛𝑀 denote the block lengths of 𝐸 and 𝑀 respectively. Let 𝑘𝐸 and 𝑘𝑀 denote the message
lengths of 𝐸 and 𝑀 respectively. Let 𝛿𝐸 and 𝛿𝑀 denote the relative distances of 𝐸 and 𝑀⋆2 respectively. Let
𝒬𝐸⊗𝑡 be a prefix-projectable (𝛿𝑡

𝐸 , 𝜆)-sampler for [𝑛𝐸 ]𝑡 and let 𝒬𝑀⊗𝑡 be a prefix-projectable (𝛿𝑡
𝑀 , 𝜆)-sampler

for [𝑛𝑀 ]𝑡 such that:

• 𝒬𝐸⊗𝑡 and 𝒬𝑀⊗𝑡 are sampleable by circuits of size 𝑂
(︀
𝜆 · log 𝑛𝐸

)︀
and 𝑂

(︀
𝜆 · log 𝑛𝑀

)︀
respectively,

• 𝒬𝐸⊗𝑡 and 𝒬𝑀⊗𝑡 both make 𝑂(𝜆) queries.

Such 𝒬𝐸⊗𝑡 and 𝒬𝑀⊗𝑡 are guaranteed to exist by ??.
Our construction begins with an encoded-message IOP for Had𝐶 , where the prover sends one message

that is promised to be a codeword of 𝐸⊗𝑡 ⊗ (𝑀⋆2)⊗𝑡. This protocol is described in Fig. 1.

Completeness Follows immediately from the linearity of 𝐸⊗𝑡 and 𝑀⊗𝑡 and the completeness of the IOP
of Proposition 6.2.

Encoded-Message Soundness We now argue that this IOP has soundness error 2−Ω(𝜆) (this can then
be reduced to 2−𝜆 with constant overhead by repeating in parallel. Let 𝛿𝑀 denote the relative distance of
𝑀⋆2, and let 𝛿𝐸 denote the relative distance of 𝐸.

Case 1: We first claim that if the prover sends 𝑐⋆
𝑧 that is a valid but incorrectly chosen codeword of

𝐸⊗𝑡 ⊗ (𝑀⋆2)⊗𝑡, then the verifier rejects with all but 2−Ω(𝜆) probability in step 4 (if it has not already
rejected in a previous step). Indeed, by the relative distance of (𝑀⋆2)⊗𝑡, if 𝑐⋆

𝑧 is incorrect then for at
least 𝛿𝑡

𝑀 fraction of 𝛽 ∈ [𝑛𝑀 ]𝑡, the “column”
(︀
𝑐⋆

𝑧(𝛼, 𝛽)
)︀

𝛼∈[𝑘𝐸 ]𝑡 must be incorrect. Then by the sampling
properties of 𝒬𝑀⊗𝑡 , it must hold with all but 2−𝜆 probability over the choice of 𝛽1, . . . , 𝛽𝜅𝑀⊗𝑡 ∈ [𝑛𝑀 ]𝑡 that
for at least 𝜆 values of 𝑗 ∈ [𝜅𝑀⊗𝑡 ], the column

(︀
𝑐⋆

𝑧(𝛼, 𝛽𝑗)
)︀

𝛼∈[𝑘𝐸 ]𝑡 is incorrect (that is, for some 𝛼 ∈ [𝑘𝐸 ]𝑡,
𝑐⋆

𝑧(𝛼, 𝛽𝑗) ̸= 𝑐𝑥(𝛼, 𝛽𝑗) · 𝑐𝑦(𝛼, 𝛽𝑗)). Thus with all but 2−Ω(𝜆) probability, at least one of the invocations of the
IOPP of Proposition 6.2 will cause the verifier to reject.

Case 2: Now suppose that 𝑐⋆
𝑧 disagrees with 𝑐𝑧 on some (𝛼, 𝛽) ∈ [𝑘𝐸 ]𝑡 × [𝑘𝑀 ]𝑡. We then claim that the

verifier will reject with all but 2−Ω(𝜆) probability in Step 3. Indeed, in this case the relative distance of
𝐸⊗𝑡 implies that for at least 𝛿𝑡

𝐸 fraction of 𝛼 ∈ [𝑛𝐸 ]𝑡, the “rows”
(︀
𝑐⋆

𝑧(𝛼, 𝛽)
)︀

𝛽∈[𝑘𝑀 ]𝑡 and
(︀
𝑐𝑧(𝛼, 𝛽)

)︀
𝛽∈[𝑘𝑀 ]𝑡
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differ. By the sampling properties of 𝒬𝑀⊗𝑡 , it must hold with all but 2−𝜆 probability over the choice
of 𝛼1, . . . , 𝛼𝜅𝐸⊗𝑡 ∈ [𝑛𝐸 ]𝑡 that for at least 𝜆 ≥ 1 values of 𝑗 ∈ [𝜅𝐸⊗𝑡 ], the rows

(︀
𝑐⋆

𝑧(𝛼𝑗 , 𝛽)
)︀

𝛽∈[𝑘𝑀 ]𝑡 and(︀
𝑐𝑧(𝛼𝑗 , 𝛽)

)︀
𝛽∈[𝑘𝑀 ]𝑡 differ, which causes the verifier to reject.

Finally, suppose that neither case 1 nor case 2 holds. That is, 𝑐⋆
𝑧 is correctly generated and agrees with

𝑐𝑧 on all (𝛼, 𝛽) ∈ [𝑘𝐸 ]𝑡 × [𝑘𝑀 ]𝑡. Then it must be that 𝑧 = 𝑥 ⋆ 𝑦 as desired.

Efficiency

• Rounds: The round complexity is dominated by the IOPP of Step 4, which has 𝑂
(︀

log(𝑛𝑡−1
𝐸 · 𝑆𝐸)

)︀
=

𝑂(log 𝑛𝐸) rounds.

• Prover Size:

1. The computation of 𝑐⋆
𝑧 in Step 1 can be done by a circuit of size 𝑘𝑡

𝐸 · 𝑛𝑡
𝑀 · polylog(|F|) + 𝑂

(︀
𝑛𝑡

𝑀 ·
𝑛𝑡−1

𝐸 · 𝑆𝐸

)︀
= 𝑂

(︀
𝑁 · polylog(|F|)

)︀
.

2. The projection of the codewords 𝑐𝑥, 𝑐𝑦, 𝑐𝑧, and 𝑐⋆
𝑧 onto the rows and columns specified by {𝛼𝑖}

and {𝛽𝑗} can be done by a circuit of size 𝑂
(︀
𝑁 · log(|F|)

)︀
by the (prefix-)projectability of 𝒬𝐸⊗𝑡

and 𝒬𝑀⊗𝑡 .
3. In Step 4, the prover for the IOP of Proposition 6.2 is implemented by a circuit of size 𝑛𝑡

𝐸 ·
polylog(|F|) for each of the 𝜅𝐸⊗𝑡 = 𝑂(𝜆) instances, making a circuit of size 𝜆 · 𝑛𝑡

𝐸 · polylog(|F|) =
𝑁 · polylog(|F|) in total.

Adding up these circuit sizes gives the stated bound on the prover complexity.

• Verifier Size:

1. 𝒬𝐸⊗𝑡 and 𝒬𝑀⊗𝑡 can, by construction, be sampled by circuits of size 𝑂
(︀
𝜆 · (log 𝑛𝐸 + log 𝑛𝑀 )

)︀
=

𝑂(log 𝑁).
2. In Step 3, the verifier checks equality of 𝑂(𝜆 · 𝑘𝑡

𝑀 ) field elements, which requires circuitry of size
𝑂(𝜆 · 𝑘𝑡

𝑀 · log |F|) = 𝑂(𝜆2 · log |F|).
3. The verifier for each of the 𝑂(𝜆) instances of the IOP invoked in Step 4 has size poly(𝑛𝐸 , log |F|) =

poly(𝑁1/𝑡, log |F|) for some polynomial that does not depend on 𝑡.

Adding everything up gives the stated bound on the size of the verifier.

• Prefix Projectable Queries: The verifier’s queries can be partitioned into two sets of queries —
the queries it makes in Step 3 and the queries it makes in Step 4. Recall that the Step 3 queries are
made by selecting a prefix-projectable set of “rows” for 𝐸⊗𝑡 ⊗𝑀⊗𝑡 and querying 𝑐𝑧 and 𝑐⋆

𝑧 in each
entry of these rows. The Step 4 queries are made by choosing a prefix-projectable set of “columns” for
𝐸⊗𝑡 ⊗𝑀⊗𝑡, and querying a constant number of entries independently from of each of these column.
The prefix-projectability of both types of queries follows from ??.

Standard Model Soundness Applying ?? gives an IOP in the standard model (where messages are not
promised to be valid codewords).

6.2 Tensor LinCheck
Definition 6.5 (Lincheck). If 𝐶 : F𝑘 → F𝑛 and 𝐶 ′ : F𝑘′ → F𝑛′ are linear codes and 𝜙 : F𝑘 → F𝑘′ is a linear
map, we define Lin𝐶,𝐶′,𝜙 as the promise problem where:

• “Yes” instances consist of pairs
(︁

𝐶(𝑥), 𝐶 ′(︀𝜙(𝑥)
)︀)︁

,
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• “No” instances consist of pairs
(︁

𝐶(𝑥), 𝐶 ′(𝑦)
)︁

for 𝑦 ̸= 𝜙(𝑥).

We start by describing a basic Lincheck IOP with poor parameters. As a matter of fact, this IOP will
not involve the prover or have any interaction. Later, in Lemma 6.8 we will bootstrap this construction and
get an efficient IOP.

Lemma 6.6 (Basic Lincheck). For any constant 𝑡 ∈ Z+, any finite field F, any systematic linear codes
𝐷 : F𝑘𝐷 → F𝑛𝐷 , 𝐷′ : F𝑘𝐷′ → F𝑛𝐷′ , and 𝐸 : F𝑘𝐸 → F𝑛𝐸 , and any linear 𝜙 : F𝑘𝑡

𝐷 → F𝑘𝑡
𝐷′ that can be

implemented by a size-𝑆 Boolean circuit, let 𝛿𝐸 = Ω(1) denote the relative distance of 𝐸, let 𝐶 denote
𝐷⊗𝑡 ⊗ 𝐸⊗𝑡, and let 𝐶 ′ denote (𝐷′)⊗𝑡 ⊗ 𝐸⊗𝑡.

For 𝜆 ∈ Z+, there is an IOP for Lin𝐶,𝐶′,𝜙⊗Id with soundness error 2−𝜆 and the following efficiency
parameters:

• Rounds: 0 (there is no prover involvement)

• Verifier Size: 𝑂
(︀
𝜆 · (𝑆 + log 𝑛𝐸)

)︀
.

• Verifier Randomness: 𝑂(𝜆 · log 𝑛𝐸).

• Query Projectability: The verifier makes 𝑂
(︀
𝜆 · (𝑘𝑡

𝐷 + 𝑘𝑡
𝐷′)

)︀
queries to its input, and these queries

are prefix-projectable.

Common Input: Oracle access to a pair of codewords 𝑐𝑥 ∈ 𝐶, 𝑐𝑦 ∈ 𝐶 ′.

1. Let 𝒬 be a prefix-projectable (𝛿𝑡
𝐸 , 𝜆)-sampler for [𝑛𝐸 ]𝑡. The existence of such a 𝒬 is guaranteed by

??. The verifier samples (𝑖1, . . . , 𝑖𝜅)← 𝒬, where 𝜅 = 𝑂(𝜆).

2. For each 𝑗 ∈ [𝜅], let u𝑗 denote the vector
(︀
𝑐𝑥(𝛼, 𝑖𝑗)

)︀
𝛼∈[𝑘𝑡

𝐷
], let v𝑗 denote the vector

(︀
𝑐𝑦(𝛼, 𝑖𝑗)

)︀
𝛼∈[𝑘𝑡

𝐷′ ].

The verifier checks that v𝑗 = 𝜙(u𝑗).

Figure 2: IOP for Lin𝐶,𝐶′,𝜙⊗Id

Proof. The verifier is described in Fig. 2. The efficiency parameters follow immediately. Query projectability
follows from ??.

It remains to establish that the IOP is complete and sound.

Completeness Suppose we are given 𝑐𝑥 = 𝐶(𝑥) and 𝑐𝑦 = 𝐶 ′(︀(𝜙⊗ Id)(𝑦)
)︀
. Let x𝑗 =

(︀
𝑥(𝑖, 𝑗)

)︀
𝑖∈[𝑘𝑡

𝐷
] denote

the 𝑗𝑡ℎ “column” of 𝑥 for 𝑗 ∈ [𝑘𝐸 ], and similarly let y𝑗 denote the 𝑗𝑡ℎ column of 𝑦. We are promised that
y𝑗 = 𝜙(x𝑗) for every 𝑗 ∈ [𝑘𝐸 ].

Now consider 𝑦 = (Id⊗𝐸⊗𝑡)(𝑦) and �̂� = (Id⊗𝐸⊗𝑡)(𝑥), both of which we can view as 𝑘𝑡
𝐷 × 𝑛𝑡

𝐸 matrices.
Let x̂𝑗 and ŷ𝑗 denote the 𝑗𝑡ℎ columns of �̂� and 𝑦 respectively.

By the linearity of 𝐸⊗𝑡, it holds for every 𝑗 ∈ [𝑛𝐸 ]𝑡 that there exist coefficients
{︀

𝛽𝑖,𝑗

}︀
𝑖∈[𝑘𝐸 ]𝑡 such that

x̂𝑗 =
∑︁

𝑖∈[𝑘𝐸 ]𝑡

𝛽𝑖,𝑗 · x̂𝑖

and
ŷ𝑗 =

∑︁
𝑖∈[𝑘𝐸 ]𝑡

𝛽𝑖,𝑗 · ŷ𝑖.
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Thus

ŷ𝑗 =
∑︁

𝑖∈[𝑘𝐸 ]𝑡

𝛽𝑖,𝑗 · ŷ𝑖

=
∑︁

𝑖∈[𝑘𝐸 ]𝑡

𝛽𝑖,𝑗 · y𝑖

=
∑︁

𝑖∈[𝑘𝐸 ]𝑡

𝛽𝑖,𝑗 · 𝜙(x𝑖)

= 𝜙
(︁ ∑︁

𝑖∈[𝑘𝐸 ]𝑡

𝛽𝑖,𝑗 · x𝑖

)︁
= 𝜙(x̂𝑖).

Since 𝑐𝑥 = (𝐷⊗𝑡 ⊗ Id)(�̂�) and 𝑐𝑦 = (𝐷⊗𝑡 ⊗ Id)(𝑦), completeness follows by the systematicity of 𝐷⊗𝑡.

Soundness Suppose that 𝑐𝑥 = 𝐶(𝑥) and 𝑐𝑦 = 𝐶(𝑦) are inputs for which 𝑦 ̸= (𝜙 ⊗ Id)(𝑥). Let 𝑐𝑦 denote
what 𝑐𝑦 is “supposed” to be, i.e. 𝑐𝑦 = 𝐶

(︀
(𝜙⊗Id)(𝑥)

)︀
. Since 𝐸 has constant relative distance 𝛿𝐸 and 𝑐𝑦 ̸= 𝑐𝑦,

at least a 𝛿𝐸 fraction of the columns of 𝑐𝑦 must differ from 𝑐𝑦. Since 𝐷 is systematic, these columns are
determined by their first 𝑘𝐷 entries. Finally, the fact that 𝒬 is a (𝛿𝐸 , 𝜆)-sampler means that at least 𝜆 of
the generated claims are false. Thus the verifier rejects with all but 2−Ω(𝜆) probability.

Prefix-Projectability By ??, we have that (𝑖1, . . . , 𝑖𝜅) is prefix-projectable. Since 𝑖1, . . . , 𝑖𝜅 are then used
as indexes of rows to be queried in their entirety (or at least in their intersection with the 𝑗𝑡ℎ column for all
𝑗 in [𝑘𝐷]𝑡 or [𝑘𝐷′ ]𝑡), the prefix-projectability of all of the verifier’s input queries follows from ??.

Lemma 6.6 admits a generalization to succinct tensor circuits, which is Lemma 6.8 below.

Definition 6.7. For an integer 𝑡 ∈ Z+ and a vector k = (𝑘1, . . . , 𝑘𝑑) ∈ Z𝑑, say 𝐶 is an (F, k, 𝑡)-tensor code
if 𝐶 = 𝐷(1)⊗· · ·⊗𝐷(𝑑), where each 𝐷(𝑖) has message space F𝑘𝑖 , and each 𝐷(𝑖) is also a 𝑡-dimensional tensor
code 𝐷(𝑖) = (𝐸(𝑖))⊗𝑡.

Lemma 6.8. Let F be any field, and for any k = (𝑘1, . . . , 𝑘𝑑), let ℳk denote F𝑘1 ⊗ · · · ⊗ F𝑘𝑑 .
For any constant 𝑡 ∈ Z+, any k, k′, any (F, k, 𝑡)-tensor code 𝐶, and any (F, k′, 𝑡)-tensor code 𝐶 ′, and

any linear function 𝜑 : ℳk → ℳk′ that is computable by a tensor circuit with width 𝑊 , constant degree,
and 𝑔 gates with total size 𝑆, there exists an encoded-message IOP for Lin𝐶,𝐶′,𝜑 with soundness error 2−𝜆

and the following efficiency parameters:

• Rounds: 1 (consisting of 𝑔 encoded messages)

• Communication: 𝑂
(︀
𝑔 ·𝑊

)︀
elements of F

• Prover Size: 𝑂
(︀
𝑔 ·𝑊 + 𝑆

)︀
.

• Verifier Size: 𝑂
(︀
𝜆 · (𝑆 + 𝑔 · log 𝑊 )

)︀
• Queries: The verifier makes 𝑂(𝜆 ·𝑆) queries to its input and to the codewords sent by the prover, and

these queries are prefix-projectable.

• Encoded Messages: For all 𝑖, the 𝑖𝑡ℎ prover message is promised to be a codeword of a tensor code
𝐷⊗𝑡

𝑖 .

Proof. We first construct a family of codes {𝐶k}k where 𝐶k is a (k, 𝑡)-tensor code that is encodable by a
circuit of size 𝑂

(︀
|ℳk|

)︀
and has constant rate and relative distance. For k = (𝑘1, . . . , 𝑘𝑑), we define the code
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𝐶k as (𝐷
𝑘

1/𝑡
1

)⊗𝑡 ⊗ · · · ⊗ (𝐷
𝑘

1/𝑡

𝑑

)⊗𝑡, where {𝐷𝑘}𝑘∈Z+ is a family of linear-size encodable codes with constant
rate and relative distance (e.g. Spielman codes), and with 𝐷𝑘 having message space F𝑘.

The tensor circuit for 𝜑 expresses 𝜙 as a composition of linear maps 𝜑 = 𝜑𝑔 ∘ · · · ∘ 𝜑1, where each 𝜑𝑖

can be viewed as a tensor product 𝜙𝑖 ⊗ Id. In our IOP on input
(︀
𝐶(𝑥), 𝐶 ′(𝑦)

)︀
, the prover computes each

“intermediate state” 𝑧(𝑖) def= (𝜑𝑖 ∘ · · · ∘ 𝜑1)(𝑥) (which requires circuitry of size 𝑂(𝑆)), and sends encodings of
these states under a “suitable” tensor code.

More specifically, the 𝑖𝑡ℎ intermediate state 𝑧(𝑖) must lie in a message spaceℳk(𝑖) where k(𝑖) = (𝑘(𝑖)
1 , . . . , 𝑘

(𝑖)
𝑑 )

satisfies 𝑑 = 𝑂(1) and
∏︀

𝑗 𝑘
(𝑖)
𝑗 ≤𝑊 . The prover sends an encoding of 𝑧(𝑖) under 𝐶k(𝑖) , which takes circuitry

of size 𝑂(𝑔 ·𝑊 ) in total and results in 𝑂(𝑔 ·𝑊 ) field elements of communication. Adding this to the circuitry
requirements for generating 𝑧(1), . . . , 𝑧(𝑔) gives the stated bound on the prover complexity.

The verifier then uses the basic lincheck (Lemma 6.6) to check consistency of every pair
(︀
𝑧(𝑖), 𝑧(𝑖+1))︀ for i

= 0, . . . , 𝑔, where we denote 𝑧(0) = 𝑥 and 𝑧(𝑔+1) = 𝑦. If 𝜙𝑖 is computable by a circuit of size 𝑆𝑖, then checking
consistency of

(︀
𝑧(𝑖), 𝑧(𝑖+1))︀ takes 𝑂(𝜆 · 𝑆𝑖) queries, verifier circuitry of size 𝑂(𝜆 · 𝑆𝑖), and 𝑂(log 𝑊 ) bits of

verifier randomness. Summing this over all 𝑖 gives the stated bounds on the verifier query complexity, the
verifier size, and the verifier randomness. Finally, prefix-projectability follows from the prefix-projectability
of the input queries in Lemma 6.6.

7 Proof of Main Results
7.1 Efficient IOP: Proof of Theorem 4.5
In this section we prove Theorem 4.5. Actually, as we will need it for our second main result, we prove the
following strengthening of Theorem 4.5.

Lemma 7.1. Theorem 4.5 holds and, moreover, the IOP verifier’s queries are prefix-projectable.

Proof. We start by constructing an encoded-message IOP with prefix-projectable verifier queries, and then
compile it to a standard IOP using ??.

The main idea is simply to combine Lemmas 6.4 and 6.8. From there, it is a matter of working out what
parameters are achieved.

Claim 7.2. For every 𝑡 ∈ Z+ and constant-dimensional k = (𝑘1, . . . , 𝑘𝑑), there is a tensor code that is
simultaneously a (k, 𝑡)-tensor code (Definition 6.7) and 𝜆-Hadamard-friendly (Definition 6.3) .

Proof. Let F be a field of order 𝜆1/𝑡, and for any 𝑘 ≤ 𝜆, let 𝑀𝑘 : F𝑘 → F𝑂(𝑘) denote an F-linear, systematic,
multiplication code that is encodable by a circuit of size 𝑘·polylog(𝜆), and such that 𝑀⋆2

𝑘 has constant relative
distance. Reed-Solomon codes provide an example of such a code . For every 𝑘 ∈ Z+, let 𝐿𝑘 : F𝑘 → F𝑂(𝑘)

denote an F-linear, systematic code with constant rate and constant relative distance that is encodable by a
circuit of size 𝑂(𝑘 · log 𝜆) (e.g. a straight-forward generalization of Spielman’s code [Spi96]).

Assume without loss of generality that 𝑘1 ≥ · · · ≥ 𝑘𝑑. If 𝑘1 > 𝜆, set the code to be

(𝑀𝜆1/𝑡)⊗𝑡 ⊗ 𝐿⊗𝑡
(𝑘1/𝜆)1/𝑡 ⊗ 𝐿𝑘2 ⊗ · · · ⊗ 𝐿𝑘𝑑

.

If 𝑘1 ≤ 𝜆, recursively let 𝐶 ′ be a code that is simultaneously a
(︀
(𝑘2, . . . , 𝑘𝑑), 𝑡)-tensor code and (𝜆/𝑘1)-

splittable. Set our code to be 𝑀⊗𝑡

𝑘
1/𝑡
1
⊗ 𝐶 ′.

Let 𝐷(𝑥) denote a (k(𝑥), 𝑡)-tensor code, let 𝐷(𝑧) denote a (k(𝑧), 𝑡)-tensor code, and let 𝐷(𝑦) denote a code
that is simultaneously a (k(𝑦), 𝑡)-tensor code and 𝜆-splittable.

The prover, given 𝑧 such that (𝐴 · 𝑧) ⋆ (𝐵 · 𝑧) = (𝐶 · 𝑧) and 𝑋 · 𝑧 = 𝑥, computes and sends the following
promised codewords to the verifier:

• 𝑐𝑧 = 𝐷(𝑧)(𝑧), promised to be a codeword of 𝐷(𝑧);
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• 𝑐𝐴 = 𝐷(𝑦)(𝐴 · 𝑧), 𝑐𝐵 = 𝐷(𝑦)(𝐵 · 𝑧), and 𝑐𝐵 = 𝐷(𝑦)(𝐶 · 𝑧), all promised to be codewords of 𝐷(𝑦); and

• 𝑐𝑥 = 𝐷(𝑥)(𝑥).

Upon receiving codewords 𝑐𝑧, 𝑐𝐴, 𝑐𝐵 , 𝑐𝐶 , and 𝑐𝑥, the verifier:

• Uses the generalized lincheck (Lemma 6.8) to check that if 𝑧 denotes the true value encoded in 𝑐𝑧 under
𝐶(𝑧), then 𝑐𝐴, 𝑐𝐵 , and 𝑐𝐶 respectively encode 𝐴 · 𝑧, 𝐵 · 𝑧, and 𝐶 · 𝑧, and 𝑐𝑥 encodes 𝑋 · 𝑧.

• Uses the improved Hadamard check (Lemma 6.4) to check that if 𝑎, 𝑏, and 𝑐 denote the values encoded
in 𝑐𝐴, 𝑐𝐵 , and 𝑐𝐶 , then 𝑐 = 𝑎 ⋆ 𝑏.

7.2 From IOPs to Arguments: Proof of Theorem 4.6
In this section we prove Theorem 4.6. To do so, we show how to compile the IOP of Lemma 7.1 into
an efficient argument-system. The compiler is based on Kilian’s [Kil92] PCP based construction and its
extension to IOPs [BCS16] while using linear-time computable hash functions [AHI+17].

The hash functions are used to derive a succinct commitment scheme with local openings.

Definition 7.3. A succinct commitment with local openings consists of a probabilistic algorithm called setup
and three determinstic algorithms commit, reveal and verify. The setup algorithm, on input 𝑛, 𝜆 ∈ N outputs
a reference string crs. The commit algorithm, on input crs and a message 𝑚 ∈ {0, 1}𝑛 outputs a commitment
𝑐. The algorithm reveal, given as input crs, 𝑚 and an index set 𝐼 ∈ [𝑛] outputs the sequence of values
(𝑚𝑖)𝑖∈𝐼 ∈ {0, 1}|𝐼| as well as a proof 𝜋 ∈ {0, 1}poly(log 𝑛,𝜆). The algorithm verify gets as input crs, 𝑐, 𝐼,
(𝑏𝑖)𝑖∈𝐼 and 𝜋 and outputs either “accept” or “reject”.

We require:

• (Correctness:) For every 𝑛, 𝜆 and 𝑚 ∈ {0, 1}𝑛 and 𝐼 ∈ [𝑛], it holds that verify(crs, 𝑐, 𝐼, (𝑚𝑖)𝑖∈𝐼 , 𝜋) =
𝑎𝑐𝑐𝑒𝑝𝑡, where crs← setup(𝑛, 𝜆), 𝑐 = commit(crs, 𝑚) and 𝜋 ← reveal(crs, 𝑚, 𝐼).

• (Succinctness:) The length of 𝑐 is poly(𝜆, log 𝑛) and that of 𝜋 is poly(𝜆, log 𝑛, |𝐼|).

• (Binding:) For every family of polynomial-sized circuits 𝒜 = (𝒜)𝜆, the probability over the choice of
crs ← setup(𝑛, 𝜆) that 𝐴𝜆(crs) outputs (𝑐, 𝐼, 𝜋, 𝜋′) such that verify(crs, 𝑐, 𝐼, (𝑚𝑖)𝑖∈𝐼 , 𝜋0) = 𝑎𝑐𝑐𝑒𝑝𝑡 and
verify(crs, 𝑐, 𝐼, (𝑚′

𝑖)𝑖∈𝐼 , 𝜋′) = 𝑎𝑐𝑐𝑒𝑝𝑡 is negligible.

The following lemma gives a construction of such a commitment scheme using a Merkle tree.

Lemma 7.4. Assume that there exists a collision-resistant hash function computable by linear size circuits
mapping 𝜆 bits inputs to 𝜆/2 bit outputs

Then, there exists a succinct commitment with local openings such that the 𝑐𝑜𝑚𝑚𝑖𝑡 algorithm can be
implemented by a circuit of size 𝑂(𝑛 + 𝜆), the 𝑠𝑒𝑡𝑢𝑝 can be implemented by a circuit of size poly(log 𝑛, 𝜆),
the 𝑣𝑒𝑟𝑖𝑓𝑦 algorithm can be implemented by a circuit of size poly(|𝐼|, log 𝑛, 𝜆).

For any prefix-projectable set 𝒬, there 𝑟𝑒𝑣𝑒𝑎𝑙 algorithm, restricted to query sets 𝐼 ∈ 𝒬 can be implemented
in size 𝑂(𝑛) + poly(𝜆).

Moreover, if the collision-resistant hash is sub-exponentially strong, then the resulting commitment is also
sub-exponentially small.

Proof Sketch. The construction is simply a Merkle tree hash, and using authentication paths in order to
decommit.

In more detail, we use the linear-time encodable hash function, to commit to the Merkle root of the
message by a linear-size circuit. To decommit to a sequence 𝐼 of location, one first constructs the entire
Merkle tree and then selects the relevant locations from the tree (namely those blocks corresponding to the
path from the 𝑖 leaf in the tree to the root, together with the corresponding siblings). Projecting to the
authentication paths is done by utilizing the prefix-projectability of the query set.
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Next, we use the commitment to compile the IOP into an argument-system (c.f., [BCG+17, BCG20,
RR21]).

Lemma 7.5. Assume the existence of a sub-exponentially strong CRHF computable by a linear-size circuit.
Suppose that the relation ℛ has an ℓ-round prefix-projectable IOP with soundness error 𝜀 and commu-

nication complexity 𝑐. Then, ℛ has an (ℓ + 2)-round argument-system with soundness error 𝜀 + 2−𝜆 and
communication complexity 𝑂

(︀
(ℓ + log 𝑐) · poly(𝜆)

)︀
.

Furthermore, suppose that:

1. The IOP prover can be implemented as a size 𝑇𝑃 circuit, where poly(𝜆) ≤ 𝑇𝑃 .

2. The IOP verifier has a first offline step that depends only on the input and can be implemented in size
𝑃𝑉 and then the online step can be implemented in size 𝑇𝑉 .

Then, the prover of the argument-system can be implemented as a size 𝑂(𝑇𝑃 ) + poly(𝜆) circuit, and the
verifier can be implemented by a size 𝑃𝑉 offline circuit followed by a size 𝑇𝑉 + poly(ℓ, log(𝑇𝑃 ), 𝜆) circuit.

Sketch. The proof is a (by now standard) extension of Kilian’s [Kil92] protocol to IOPs (instead of PCPs),
as proposed by Ben Sasson et al. [BCS16].Details follow.

The verifier first emulates the offline phase of the original IOP. Then, the interaction involves two phases:

1. (Interaction :) The parties emulate the interactive phase of the IOP, except that in every round,
rather than sending the IOP message in the clear, the prover generates and sends a commitment to the
message using the succinct commitment with local opening.

2. (Query and Decision Phase:) In the final stage of the IOP, the verifier needs to query locations
in the transcript. To do so, the verifier sends these locations to the prover, who in turn runs the
decommitment procedure.

Completeness is immediate, and soundness follows from [Kil92, BCS16]. We proceed to analyze the
complexity of the protocol.

Verifier complexity. The verifer’s online computation is dominated by the online phase of the IOP which
has complexity 𝑇𝑉 and the verification of the decommitments which has complexity poly(ℓ, 𝑞, log(𝑇𝑃 ), 𝜆).

Overall the verifier’s online complexity is 𝑂(𝑇𝑉 ) + poly(ℓ, 𝑞, log(𝑇𝑃 ), 𝜆).

Prover complexity. Denote the length of the prover message in round 𝑖 by 𝑎𝑖, and observe that
∑︀

𝑖 𝑎𝑖 =
𝑂(𝑇𝑃 ). The complexity of the prover is upper bounded by 𝑂(𝑇𝑃 )+

∑︀
𝑖 𝑂(𝑎𝑖+𝜆) = 𝑂(𝑇𝑃 +ℓ·𝜆) = 𝑂(𝑇𝑃 ).

Lemma 7.6. Assume that there exists a sub-exponentially hard collision-resistant hash function computable
by linear size circuits mapping 𝜆 bits inputs to 𝜆/2 bit outputs.

Suppose that the relation ℛ has an ℓ-round public-coin argument-system with soundness error 𝜀, prover
complexity 𝑇𝑃 and verifier offline complexity 𝑃𝑉 and online complexity 𝑇𝑉 . Then, ℛ also has an ℓ + 𝑂(1)-
round with soundness error 𝜀 + 2−𝜆, communication complexity poly(𝜆, log(𝑇𝑉 ), prover complexity 𝑇𝑃 +
poly(𝑇𝑉 ) and verifier complexity 𝑃𝑉 + poly(𝜆, log(𝑇𝑉 )).

Proof Sketch. Loosely speaking, we simply compose the existing argument-system with Kilian’s argument-
system, details follow.

The prover emulates the interaction but in every round rather than sending the message in the clear, the
prover sends a succinct commitment to the message. At the end of the interaction, the prover uses Kilian’s
[Kil92] argument-system to prove that it knows decommitments that would make the verifier accept.

Theorem 4.6 follows by combining Lemmas 7.1, 7.5 and 7.6 (where we choose 𝜀 in Lemma 7.1 to dominate
the additive fixed polynomial factors in Lemmas 7.5 and 7.6).
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A Interactive Oracle Proofs
We next define the notion of interactive oracle proof, due to [BCS16, RRR21]. Our presentation closely
follows [RR21].

We restrict our attention to the public-coin setting which means that all of the verifier’s messages simply
consist of uniformly random coins.

An ℓ-round (public-coin) interactive oracle protocol consists of two entities, a prover 𝒫 and a verifier 𝒱.
The prover 𝒫 consists of ℓ Boolean circuits 𝒫1, . . . ,𝒫ℓ. For every 𝑖 ∈ [ℓ], the input to 𝒫𝑖 is the state 𝑆𝑖−1
from the previous round (where 𝑆0 is simply the main input 𝑥 and potentially also a witness 𝑤) as well as
uniformly random coins 𝑅𝑖−1, which we think of as being generated by the verifier (note that 𝑅0 is defined
as the empty string). The output of each circuit 𝒫𝑖 is the state 𝑆𝑖 for the next round and a message 𝑀𝑖 to
be transmitted to the verifier. The size |𝒫| of the prover 𝒫 is defined as the sum of the prover circuit sizes,
i.e., |𝒫| := |𝒫1|+ · · ·+ |𝒫ℓ|.

The verifier 𝒱 is a Boolean circuit that given as input the transcript, consisting of (𝑥, 𝑀1, 𝑅1, . . . , 𝑀ℓ−1, 𝑅ℓ−1, 𝑀ℓ),
decides whether to accept or reject. We will often be interested in verifiers that run in sub-linear time, and
in particular are unable to read the entire transcript. In this case we view the input as being separated into
two parts 𝑥 = (𝑥exp, 𝑥imp). The first part, 𝑥exp is read explicitly by the verifier (and will often consist of
a parameterization of the problem). In contrast, the verifier only has oracle access to 𝑥imp. We also view
the verifier 𝒱 as consisting of two separate circuits. The first circuit 𝒱1 takes as input 𝑥exp, 𝑅1, . . . , 𝑅ℓ−1,
and outputs the set of query locations 𝐼. The circuit 𝒱2 then gets as input 𝑥exp, 𝑅1, . . . , 𝑅ℓ−1, as well as
the projection of (𝑥imp, 𝑀1, . . . , 𝑀ℓ) to the query set 𝐼, denoted by (𝑥imp, 𝑀1, . . . , 𝑀ℓ)|𝐼 , and based on these
decides whether to accept or reject. The size |𝒱| of the verifier 𝒱 is defined as the sum of the sizes of its
constituent parts, i.e., |𝒱| := |𝒱1|+ |𝒱2|.
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Remark A.1. The standard definition of interactive oracle protocols in the literature (see e.g., [BCS16,
RRR21]) allows the verifier’s queries to depend on the entire input 𝑥 (and sometimes also on answers to
previous queries). For sake of simplicity, and to facilitate composition, our definition of interactive oracle
protocol only allows the query locations to depend on the explicit input 𝑥exp and the verifier’s randomness
(and implicitly on the input length). We note that many constructions in the literature achieve this stronger
notion.

The key parameters that we will care about are:

1. Query Complexity: the number of bits 𝑞 = |𝐼| that the verifier reads from the input and transcript.

2. Round complexity: the number of rounds ℓ.

3. Verifier Size: the size of the verifier 𝒱, as defined above.

4. Prover Size: the size of the prover 𝒫, as defined above. In the context of interactive oracle protocols
for NP relations we will often assume that the prover is also given as an auxiliary input a witness 𝑤
proving that the input 𝑥 satisfies the relation.

Using the notion of interactive oracle protocols, we can now define interactive oracle proofs.

Definition A.2 (Interactive oracle proof (IOP)). An ℓ-round interactive oracle proof (IOP) with soundness
error 𝜀 for a promise problem (YES, NO) is an ℓ-round (public-coin) interactive oracle protocol (𝒫,𝒱) such
that:

• Completeness: If 𝑥 ∈ YES, then when 𝒱 interacts with 𝒫, it accepts with probability 1.

• Soundness: If 𝑥 ∈ NO, then for every prover strategy 𝒫*, when 𝒱 interacts with 𝒫*, it accepts with
probability at most 𝜀.

Focusing on promise problems allows us to model settings in which the input has some particular structure
(e.g., is encoded under an error-correcting code). In particular, this will sometimes allow our verifier to run
in time that is sub-linear even in the input. Lastly, we note that the standard notion of PCP corresponds to
the special case of IOP, when the round complexity is ℓ = 1.

IOP of Proximity. A particular special case of interest is that of IOPs of proximity [BCS16, RRR21], or
IOPP for short. For a pair language ℒ ⊆ {(𝑥exp, 𝑥imp) ∈ {0, 1}* × {0, 1}*} and 𝑥exp ∈ {0, 1}*, we use the
notation ℒ𝑥exp := {𝑥imp : (𝑥exp, 𝑥imp) ∈ ℒ}.

Definition A.3 (Interactive oracle proof of proximity (IOPP)). An ℓ-round IOP of 𝛼-proximity (𝛼-IOPP) with
soundness error 𝜀 for a pair language ℒ ⊆ {(𝑥exp, 𝑥imp) ∈ {0, 1}* × {0, 1}*} is an ℓ-round IOP with soundness
error 𝜀 for the promise problem (YES, NO), where YES = ℒ and NO = {(𝑥exp, 𝑦) : 𝑦 is 𝛼-far from ℒ𝑥exp}.

The parameter 𝛼 is called the proximity parameter. Once more, we note that the standard notion of PCPP
corresponds to the special case of IOPP, when the round complexity is ℓ = 1.

Imported Theorem 2 ([RR21, Lemma 6.4 + Proposition 4.7]). Let 𝐶 : {0, 1}𝑛 → {0, 1} be a size 𝑆 = 𝑆(𝑛)
Boolean circuit. There exists a 𝛿-IOPP for the set

{︀
𝑥 ∈ {0, 1}𝑛 : 𝐶(𝑥) = 1

}︀
with soundness error 1/2 and

the following efficiency parameters:

• Rounds: 𝑂(log 𝑆)

• Prover Size: 𝑂(𝑆)

• Verifier Size: 𝑂(𝑆) + poly(log(𝑆), 1/𝛿)

• Query Complexity: 𝑂(1/𝛿).
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B Iterated Circuit Evaluation and Batch Circuit Satisfiability
We now apply Theorems 4.5 and 4.6 to obtain succinct arguments for succinctly described versions of R1CS
that capture iterated circuit evaluation (Appendix B.2) and batch circuit satisfiability (Appendix B.3).
Because Theorems 4.5 and 4.6 require that associated linear functions are computable by nice tensor circuits
(Definition 4.2), we begin by establishing some basic properties of tensor circuits.

B.1 Basic Properties of Tensor Circuits
We construct tensor circuits to compute a matrix 𝐴 by writing 𝐴 as a sum of tensor products of small
matrices. The reason this implies a small tensor circuit for 𝐴 is the following propositions.

Proposition B.1. If 𝜙 = 𝜙1⊗· · ·⊗𝜙𝑑 : 𝐹 𝑁 ∼= F𝑛1⊗· · ·⊗F𝑛𝑑 → F𝑚1⊗· · ·⊗F𝑚𝑑 ∼= F𝑀 is a linear function,
where each 𝜙𝑖 is implementable by a Boolean circuit of size 𝑆𝑖, then 𝑓 has a 𝑑-gate, degree-𝑑 tensor circuit
with width 𝑂(𝑁 + 𝑀) and total gate size

∑︀
𝑖 𝑆𝑖.

Proof. This follows straight-forwardly from the definition of a tensor circuit, and from writing 𝜙 = 𝑓1∘· · ·∘𝑓𝑑,
where 𝑓𝑖 = Id𝑛1 ⊗ · · · ⊗ Id𝑛𝑖−1 ⊗𝜙𝑖 ⊗ Id𝑛𝑖+1 ⊗ · · · ⊗ Id𝑛𝑑

.

Proposition B.2. If 𝐶1, . . . , 𝐶𝑘 : 𝐹 𝑁 ∼= F𝑛1 ⊗ · · · ⊗ F𝑛𝑑 → F𝑚1 ⊗ · · · ⊗ F𝑚𝑑 ∼= F𝑀 are each (functions
computable by) 𝑔-gate, degree-𝑑 tensor circuits with width 𝑊 and total gate size 𝑆, then (𝐶1 + · · · + 𝐶𝑘) is
computable by an 𝑂(𝑘 · 𝑔)-gate tensor circuit with width 𝑂(𝑘 ·𝑊 ), degree 𝑑 + 1, and total gate size 𝑂(𝑘2 ·𝑆).

Proof Sketch. The high-level idea is to implement 𝐶1 + · · ·+ 𝐶𝑘 as the following sequence of steps. On input
𝑥:

1. We first map 𝑥 to 𝑥 ⊗ 1𝑘, which effectively makes 𝑘 copies of 𝑥. This is the reason for the factor 𝑘
increase in the width of our tensor circuit.

2. For each 𝑖 ∈ [𝑘], we emulate each 𝑓𝑖 gate-by-gate on the 𝑖𝑡ℎ copy of 𝑥. That is, if 𝜙 denotes a gate of
𝑓𝑖, we emulate 𝜙 with a function that on input 𝑧 ⊗ 𝑒𝑗 for a basis vector 𝑒𝑗 ∈ F𝑘, outputs 𝜙(𝑧)⊗ 𝑒𝑗 if
𝑗 = 𝑖, and otherwise outputs 𝑧 ⊗ 𝑒𝑗 . This increases the size of each gate by a factor of 𝑘 (because the
input space’s dimension is larger by a factor of 𝑘).

3. We collapse the last dimension (which indexes the copies) by applying a function that, for any basis
vector 𝑒𝑖 ∈ F𝑘 for 𝑖 ∈ [𝑘], maps 𝑦 ⊗ 𝑒𝑖 to 𝑦. By linearity, this step maps

∑︀
𝑖 𝑦𝑖 ⊗ 𝑒𝑖 to

∑︀
𝑖 𝑦𝑖.

B.2 Iterated Circuit Satisfiability
For a Boolean circuit 𝐷 : {0, 1}𝑛 → {0, 1}𝑛 and an integer 𝑇 , define 𝐷𝑇 (𝑥) = 𝐷(𝑥) if 𝑇 = 1, and 𝐷

(︀
𝐷𝑇 −1(𝑥)

)︀
if 𝑇 > 1. The problem of checking that 𝐷𝑇 (𝑥) = 𝑦 has a tight reduction to the following form of Succinct
R1CS [BCG+19]:

Definition B.3 (Succinct R1CS with Initial State Boundary Constraint). A Succinct R1CS relation with an
initial state boundary constraint is a relation ℛ𝐴,𝐵,𝐶,𝑋

R1CS , where:

• (Staircase Matrices) The matrices 𝐴, 𝐵, and 𝐶 have the 𝑇 × 𝑇 block structure

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
𝐴0 𝐴1

𝐴0 𝐴1
. . . . . .

𝐴0 𝐴1
0

⎞⎟⎟⎟⎟⎟⎠ 𝐵 =

⎛⎜⎜⎜⎜⎜⎝
𝐵0 𝐵1

𝐵0 𝐵1
. . . . . .

𝐵0 𝐵1
0

⎞⎟⎟⎟⎟⎟⎠ 𝐶 =

⎛⎜⎜⎜⎜⎜⎝
𝐶0 𝐶1

𝐶0 𝐶1
. . . . . .

𝐶0 𝐶1
0

⎞⎟⎟⎟⎟⎟⎠
where 𝐴0, 𝐴1, 𝐵0, 𝐵1, 𝐶0, 𝐶1 all are 𝑆×𝑆 matrices, and the input matrix 𝑋 is the matrix that projects
onto the first 𝑆 coordinates of its input.
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• (Initial State Boundary Constraint) 𝑋 is the 𝑆 × (𝑇 · 𝑆) matrix 𝑋0 + 𝑋𝑇 , where

𝑋0 =

⎛⎜⎝1 0 · · · 0
. . .

...
...

1 0 · · · 0

⎞⎟⎠
and

𝑋𝑇 =

⎛⎜⎝0 · · · 0 1
...

...
. . .

0 · · · 0 1

⎞⎟⎠ .

We now show that Theorems 4.5 and 4.6 are applicable to succinct R1CS instances with an initial state
boundary constraint. That is, we give a tensor decomposition of F𝑆·𝑇 and F𝑛, and compatible succinct tensor
circuits for multiplying by 𝐴, 𝐵, 𝐶, and 𝑋. By Propositions B.1 and B.2, it suffices to prove Propositions B.4
and B.6 below.

Proposition B.4 (Staircase Matrix Tensor Decomposition). For every constant 𝜀 > 0, any 𝑘𝑇 ×𝑘𝑇 matrix
of the form

A =

⎛⎜⎜⎜⎜⎜⎝
𝐴0 𝐴1

𝐴0 𝐴1
. . . . . .

𝐴0 𝐴1
0

⎞⎟⎟⎟⎟⎟⎠ ,

where 𝐴0 and 𝐴1 are 𝑘 × 𝑘 matrices implementable by boolean circuits of size 𝑆, can be written in the form

A =
𝑂(1/𝜀)∑︁

𝑖=1

𝑂(1/𝜀)⨂︁
𝑗=1

𝜙𝑖,𝑗 ,

where each 𝜙𝑖,𝑗 is computable by a circuit of size 𝑠𝑖,𝑗 satisfying
∑︀

𝑠𝑖,𝑗 = 𝑂(𝑆 + 𝑇 𝜀).

Proof. We start by writing A as

A = 𝐼𝑇 ⊗𝐴0 + LShift𝑇 ⊗𝐴1 −𝑀𝑇 ⊗𝐴0,

where we let 𝐼𝑇 denote the 𝑇 × 𝑇 identity matrix, we let LShift𝑇 denote the 𝑇 × 𝑇 “left shift” matrix

LShift𝑇
def=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 0 1 . . . ...

0 0 0 . . . 0
...

...
... . . . 1

0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and we let 𝑀𝑇 denote the 𝑇 × 𝑇 matrix

𝑀𝑇
def=

⎛⎜⎜⎜⎝
0 · · · 0 0
... . . . ...

...
0 · · · 0 0
0 · · · 0 1

⎞⎟⎟⎟⎠ .

Note that 𝑀𝑛1𝑛2 = 𝑀𝑛1 ⊗𝑀𝑛2 for any 𝑛1, 𝑛2, and so we can write 𝑀𝑇 = 𝑀
⊗1/𝜀
𝑇 𝜀 . Similarly 𝐼𝑇 = 𝐼

⊗1/𝜀
𝑇 𝜀 .

Finally we give a tensor decomposition for LShift𝑇 by applying the following lemma with 𝑘 = 𝑇 𝜀 and 𝑟 = 1/𝜀.
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Lemma B.5. For any 𝑘, view [𝑘𝑟] as in bijective correspondence with [𝑘]𝑟 by associating 𝑖 ∈ [𝑘𝑟] with
(𝑖1, . . . , 𝑖𝑟) ∈ [𝑘]𝑟 such that

∑︀𝑟
𝑗=1(𝑖𝑗 − 1) · 𝑘𝑟−𝑗 = 𝑖− 1. Correspondingly view F𝑘𝑟 as (F𝑘)⊗𝑟.

For every 𝑘 and every 𝑟, LShift𝑘𝑟 , viewed as a map on (F𝑘)⊗𝑟 via the above correspondence, can be written
in the form

LShift𝑘𝑟 =
𝑟∑︁

𝑖=1

𝑟⨂︁
𝑗=1

𝜙𝑖,𝑗 ,

where each 𝜙𝑖,𝑗 is implementable by a circuit of size 𝑘.

Proof. Denote by 𝑊𝑘 the 𝑘 × 𝑘 matrix

𝑊𝑘
def=

⎛⎜⎜⎜⎝
0 0 · · · 0
...

... . . . ...
0 0 · · · 0
1 0 · · · 0

⎞⎟⎟⎟⎠
We first claim that

LShift𝑘𝑟 = 𝐼𝑘𝑟−1 ⊗ LShift𝑘 + LShift𝑘𝑟−1 ⊗𝑊𝑘.

= 𝐼⊗𝑟−1
𝑘 ⊗ LShift𝑘 + LShift𝑘𝑟−1 ⊗𝑊𝑘. (2)

This amounts to verifying that for every 𝑖 ∈ [𝑘𝑟] with corresponding (𝑖1, . . . , 𝑖𝑟) ∈ [𝑘]𝑟, the action of the
right-hand side on a basis vector 𝑒𝑖 is correct. That is, if 𝑖 = 1 then the output is 0. Otherwise, if (𝑖′

1, . . . , 𝑖′
𝑟)

corresponds to 𝑖− 1, then the output should be 𝑒𝑖′
1
⊗ · · · ⊗ 𝑒𝑖′

𝑟
.

Case 0: If 𝑖 = 1, then 𝑖1 = · · · = 𝑖𝑟 = 1. We have that LShift𝑘(𝑒1) = 0 and LShift𝑘𝑟−1(𝑒1 ⊗ · · · ⊗ 𝑒1) = 0,
so the right-hand side of Eq. (2) evaluates to 0 on 𝑒1 ⊗ · · · ⊗ 𝑒1 as it should.

Case 1: If 𝑖 > 1 and 𝑖𝑟 > 1, then 𝑊𝑘(𝑒𝑖𝑟
) = 0 by definition. We then have(︀

𝐼⊗𝑟−1
𝑘 ⊗ LShift𝑘 + LShift𝑘𝑟−1 ⊗𝑊𝑘

)︀
(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑟

) =
(︀
𝐼𝑘𝑟−1 ⊗ LShift𝑘

)︀
(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑟

)
= 𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑟−1 ⊗ 𝑒𝑖𝑟−1.

Indeed, if (𝑖1, . . . , 𝑖𝑟) are the base-𝑘 digits of an integer 𝑖, most-significant digit first, with 𝑖𝑟 > 0, then the
base-𝑘 digits of 𝑖− 1 are (𝑖1, . . . , 𝑖𝑟−1, 𝑖𝑟 − 1). So Eq. (2) is correct in this case.

Case 2: If 𝑖 > 1 and 𝑖𝑟 = 1, then LShift𝑘(𝑒𝑖𝑟 ) = LShift𝑘(𝑒1), which is 0 by definition, and 𝑊𝑘(𝑒𝑖𝑟 ) =
𝑊𝑘(𝑒1) = 𝑒𝑘. We then have(︀

𝐼⊗𝑟−1
𝑘 ⊗ LShift𝑘 + LShift𝑘𝑟−1 ⊗𝑊𝑘

)︀
(𝑒𝑖1+1 ⊗ · · · ⊗ 𝑒𝑖𝑟+1) =

(︀
LShift𝑘𝑟−1 ⊗𝑊𝑘

)︀
(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑟 )

= LShift𝑘𝑟−1(𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑟−1)⊗ 𝑒𝑘.

The correctness of this follows from the fact that for any “prefix” 𝑝 ∈ [𝑘𝑟−1] corresponding to the 𝑟 − 1
most significant digits of 𝑖, we have that (𝑘 · 𝑝 + 0)− 1 = 𝑘 · (𝑝− 1) + 𝑘 − 1.

The proposition then follows by recursively applying Eq. (2), along with the fact that each of 𝐼𝑘, 𝑊𝑘,
and LShift𝑘 is implementable by a circuit of size 𝑘.

Proposition B.6 (Initial State Boundary Constraint). The matrix 𝑋 in Definition B.3 can be written as
a tensor product of 1 + 1

𝜀 matrices whose total circuit size is 𝑂
(︀
𝑆 + 𝑇 𝜀

𝜀

)︀
.

Proof. Let Π denote the 1×𝑇 𝜀 matrix with a 1 in the first entry and 0 elsewhere, and let Π̃ denote the 1×𝑇 𝜀

matrix with a 1 in the last entry and 0 elsewhere. We then have 𝑋0 = Π⊗(1/𝜀)⊗ 𝐼𝑆 and 𝑋𝑇 = Π̃⊗(1/𝜀)⊗ 𝐼𝑆 ,
where 𝐼𝑆 is the 𝑆 × 𝑆 identity matrix.
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B.3 Batch Circuit Satisfiability
Theorems 4.5 and 4.6 are also applicable, with much less work, to “batch circuit satisfiability” problem. For
integers 𝑛, 𝑚 ∈ Z+ and a Boolean circuit 𝐶 : {0, 1}𝑛+𝑚 → {0, 1}, let ℒ𝐶 denote the set

{︀
𝑥 ∈ {0, 1}𝑛 : ∃𝑤 ∈

{0, 1}𝑚 s.t. 𝐶(𝑥, 𝑤) = 1
}︀

.
If ℒ𝐶 = ℒ𝐴0,𝐵0,𝐶0,𝑋0

R1CS , then with 𝐴 = 𝐼𝑇 ⊗ 𝐴0, 𝐵 = 𝐼𝑇 ⊗ 𝐵0, 𝐶 = 𝐼𝑇 ⊗ 𝐶0, and 𝑋 = 𝑋0, we have
ℒ𝑇

𝐶 = ℒ𝐴,𝐵,𝐶,𝑋
R1CS . This immediately implies the following IOPs and arguments.

Proposition B.7. For any circuit 𝐶, integers 𝑇, 𝜆 ∈ Z+, and constant 𝜀 > 0, there is an IOP for ℒ𝑇
𝐶 with

soundness error 2−𝜆 with the following efficiency parameters:

• Rounds: 𝑂(log |𝐶|+ log 𝑇 )

• Communication: 𝑂(𝑇 · |𝐶|)

• Prover Size: 𝑇 · |𝐶| · polylog(𝜆)

• Verifier Size:
(︀
|𝐶|+ 𝑇 𝜀

)︀
· poly(𝜆)

• Queries: The verifier’s queries are prefix-projectable.

C From 𝐶⊗𝑡-Encoded to Standard IOPs: Proof of ??
In this section we prove ??. To do so we first recall, and mildly strengthen, some known local properties of
tensor codes.

C.1 Local Testability of Tensor Codes
Throughout this section we will be considering the space [𝑛]𝑡 for integers 𝑛, 𝑡 ∈ Z+. For distinct 𝑖, 𝑗 ∈ [𝑡]
and 𝛼 : ([𝑡]∖{𝑖, 𝑗})→ [𝑛], we define the (𝑖, 𝑗, 𝛼)-plane as the product set 𝑆1 × · · · × 𝑆𝑡, where 𝑆𝑖 = 𝑆𝑗 = [𝑛]
and 𝑆𝑘 = {𝛼(𝑘)} for all 𝑘 ∈ [𝑡]∖{𝑖, 𝑗}. A set 𝑆 ⊆ [𝑛]𝑡 is called an (𝑖, 𝑗) plane if there exists an 𝛼 such that
it is an (𝑖, 𝑗, 𝛼) plane, and it is simply referred to as a plane if there exist 𝑖, 𝑗 and 𝛼, so that it is an (𝑖, 𝑗, 𝛼)
plane.

Theorem C.1 (Local testing of tensor codes, [Vid15, Theorem 3.1], (see also [RR21, Theorem B.3]). Let
𝐶 : F𝑘 → F𝑛 be a systematic linear code of relative distance 𝛿. Then for every integer 𝑡 ≥ 3, and 𝑤 ∈ F𝑛, if
distF(𝑤, 𝐶⊗𝑡) ≥ 𝛼, then with probability at least 𝛼 · 𝛿2𝑡

𝑡10 the projection of 𝑤 to a random plane is not in 𝐶2.

Lemma C.2. Let 𝑡 ≥ 3 be a constant and let 𝐶 : F𝑘 → F𝑛 be a systematic linear code of relative distance
𝛿. Then, there exists a randomized oracle algorithm 𝒜 which gets as input parameters 𝜀, 𝜆 > 0 and oracle
access to a string 𝑤 ∈ F𝑛𝑡 satisfying the following properties.

• Completeness: If 𝑤 is a codeword of 𝐶⊗𝑡, then 𝒜 accepts with probability 1.

• Soundness: If distF(𝑤, 𝐶⊗𝑡) ≥ 𝜀, then 𝒜 rejects with probability at least 2−𝜆.

• Running time: If 𝐶 can be encoded in time 𝑇 , then 𝒜 has running time 𝑂(𝑛 ·𝑇 ·(1/𝛿)2𝑡 ·(1/𝜀) ·𝜆), its
query complexity is 𝑂(𝑛2 · (1/𝛿)2𝑡 · (1/𝜀) ·𝜆) and randomness complexity is 𝑂(log(𝑛) · (1/𝛿)2𝑡 · (1/𝜀) ·𝜆).

• Projectability: The queries made by 𝒜 are prefix projectable.

Proof. The tester works as follows:

1. For every distinct 𝑖, 𝑗 ∈ [𝑡]:

(a) Choose random functions 𝛼1, . . . , 𝛼𝜆 from ([𝑡]∖{𝑖, 𝑗}) to [𝑛] (i.e. choose 𝜆 elements of [𝑛]𝑡−2) using
the prefix-projectable

(︀
𝛼 · 𝛿2𝑡

𝑡10 , 𝜆
)︀
-sampler of ??, for input length [𝑛]𝑡−2.
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(b) For every 𝑘 ∈ [𝜆], check that the restriction of 𝑤 to the plane (𝑖, 𝑗, 𝛼𝑘) belongs to 𝐶2.
(c) If all tests pass then accept, otherwise reject.

To see that completeness holds, note that if 𝑤 is a codeword, the projection to any plane is also a
codeword and so the test passes (with probability 1).

For soundness, if 𝑤 is 𝛼-far from a codeword, then by Theorem C.1, with probability at least 𝛼 · 𝛿2𝑡

𝑡10 ,
its projection to a random plane is not a codeword of 𝐶2. In particular, there exists 𝑖, 𝑗 ∈ [𝑡] so that the
projection of 𝑤 to a random (𝑖, 𝑗)-plane is not a codeword with similar probability. Fix such an 𝑖, 𝑗 and
consider the corresponding iteration of the tester. By our definition of a sampler, 𝒜 will reject in this
iteration with all but 2−𝜆 probability as desired.

The complexity of the tester can be easily verified and so we turn to showing that it is prefix-projectable.
We first show a circuit handling the (𝑖, 𝑗)-th iteration. For each ℓ1, ℓ2 ∈ [𝑛] (corresponding to a point on

the plane), we can use the circuit guaranteed by ?? using 𝛼1, . . . , 𝛼𝜆 as the query set applied to the input
string 𝑥 = 𝑆1 × · · · × 𝑆𝑡, where 𝑆𝑖 = {ℓ1}, 𝑆𝑗 = {ℓ2} and 𝑆𝑘 = [𝑛], for every 𝑘 /∈ {𝑖, 𝑗}. Concatenating
these circuits for all ℓ1, ℓ2 gives us the projection of the tester’s queries for the (𝑖, 𝑗)-iteration (namely indices
corresponding to the 𝑛2 points in each of the 𝜆 planes that it queries). Concatenating the circuits for all
(𝑖, 𝑗) gives us the desired circuit.

C.2 Relaxed Local Correction of Tensor Codes
We will also use the relaxed local correction of tensor codes, as shown by Gur et al. [GRR18] (see also [RR21,
Lemma B.5]). We extend their result to handle a large number of queries while preserving a projectability
property from the query set.

Lemma C.3. Let 𝑡 ≥ 1 be a constant and let 𝐶 : F𝑘 → F𝑛 be a systematic linear code of relative distance
𝛿. there exists a randomized oracle algorithm 𝒜 satisfying the following properties.

• Input/Output: 𝒜 takes as input a coordinate set of coordinates 𝑄 ⊆ [𝑛]𝑡 and also gets oracle access
to a string 𝑤 ∈ F𝑛𝑡 . The algorithm outputs either “accept” or “reject”.

• Completeness: If 𝑤 is a codeword of 𝐶⊗𝑡, then 𝒜 accepts with probability 1.

• Soundness: If there exist 𝑐 ∈ 𝐶⊗𝑡 and 𝑞 ∈ 𝑄 such that distF(𝑤, 𝑐) < 𝛿𝑡/2 and 𝑤𝑞 ̸= 𝑐𝑞, then the
algorithm rejects with all but 2−𝜆 probability.

• Projectability: For every suffix-projectable set 𝒬, given as in input 𝑄 ∈ 𝒬, the queries made by
𝒜 are prefix-projectable.

• Other Efficiency Parameters: If 𝐶 can be encoded in time 𝑇 , then 𝒜 has running time 𝑂(|𝑄| ·𝜆 ·𝑇 ·
(1/𝛿)𝑡). 𝒜 queries 𝑂(|𝑄|·𝜆·𝑛·(1/𝛿)𝑡) symbols of 𝑤, and has randomness complexity 𝑂(𝜆·log(𝑛)·(1/𝛿)𝑡).

A first glance the statement of Lemma C.3 may seem a bit unusual since the “correcting” algorithm does
not output the actual corrected value, but rather just an accept or reject decision. The point however is
that, in combination with local testing, the completeness and soundness properties guarantee that if the
algorithm accepts, then the projection of 𝑐, which is close to 𝑤, to the index set 𝑄 is simply equal to 𝑤𝑄.

We further remark that the main novel feature of Lemma C.3, compared to the prior work, is that we
achieve a low soundness error while preserving good projectability.

Proof. We will be considering the space [𝑛]𝑡 for integers 𝑛, 𝑡 ∈ Z+. For 𝑖 ∈ [𝑡] and 𝛾 : ([𝑡]∖{𝑖}) → [𝑛], the
(𝑖, 𝛾)-line is defined as the set of points {𝛾(1)} × · · · × {𝛾(𝑖− 1)} × [𝑛]× {𝛾(𝑖 + 1)} × · · · × {𝛾(𝑡)}.

Given two points 𝛼, 𝛽 ∈ [𝑛]𝑡 and an index 𝑖, we define the (𝑖, 𝛼, 𝛽)-mashup as the line (𝑖, 𝛾), where
𝛾(𝑗) = 𝛼(𝑗) for 𝑗 < 𝑖 and 𝛾(𝑗) = 𝛽(𝑗) for 𝑗 > 𝑖.

We proceed to describe the tester 𝒜. Given as explicit input the set of coordinates 𝑄 ⊆ [𝑛]𝑡 and oracle
access to the string 𝑤 ∈ F𝑛𝑡 , 𝒜 operates as follows:
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1. Choose at random 𝑃 ⊆ [𝑛]𝑡 from the (𝛿𝑡/2, 𝜆)-sampler of ??.

2. For every 𝑝 ∈ 𝑃 :

(a) For every 𝑞 ∈ 𝑄 and 𝑖 ∈ [𝑡], check if the restriction of 𝑤 to the (𝑖, 𝑞, 𝑝)-mashup is a codeword of
𝐶.

3. If all of the tests passed then accept, otherwise reject.

Completeness. If 𝑐 ∈ 𝐶⊗𝑡 then its restriction to any axis parallel line is a codeword of 𝐶 and so the test
passes with probability 1.

Soundness. Suppose distF(𝑤, 𝑐) < 𝛿𝑡/2 for some codeword 𝑐 ∈ 𝐶⊗𝑡 with 𝑐𝑞 ̸= 𝑤𝑞, for some 𝑞 ∈ 𝑄. In the
following we consider only iterations of the tester that correspond to this specific choice of 𝑞 and ignore all
other 𝑞′ ̸= 𝑞.

Soundness follows immediately from the following proposition, combined with ??.

Proposition C.4. If 𝑝 ∈ [𝑛]𝑡 is chosen uniformly at random, then the test of Step 2a fails with at least 𝛿𝑡/2
probability.

Proof. Let 𝑝 = (𝑝1, . . . , 𝑝𝑡) ∈ [𝑛]𝑡 be a random point. For every 𝑖 ∈ [𝑡], denote by 𝐿𝑖 the (𝑖, 𝑞, 𝑝)-mashup line
(which is queried by the tester).

Recall that we now view 𝑞 as fixed and consider iterating over Step 2a with all values of 𝑖 ∈ [𝑡]. Note
that the 𝑖-th iteration of this loop depends only on 𝑝𝑖+1, . . . , 𝑝𝑡.

Claim C.5. Fix 𝑖 ∈ [𝑡−1], and randomness 𝑝𝑖+1, . . . , 𝑝𝑡, such that 𝑐𝐿𝑖
̸≡ 𝑤𝐿𝑖

. Then, either the tester rejects
in the 𝑖-th iteration, or, with probability at least 𝛿 over the choice of 𝑝𝑖 ∈ [𝑛], it holds that 𝑐𝐿𝑖−1 ̸≡ 𝑤𝐿𝑖−1 .

Proof. Fix 𝑖 ∈ [𝑡− 1] and randomness 𝑝𝑖+1, . . . , 𝑝𝑡 such that 𝑐𝐿𝑖 ̸≡ 𝑤𝐿𝑖 .
If 𝑤𝐿𝑖

is not a codeword of 𝐶 then the tester rejects in the 𝑖-th iteration and we are done. Otherwise,
both 𝑤𝐿𝑖

and 𝑐𝐿𝑖
are codewords of 𝐶 and are distinct. Thus, with probability 𝛿 over the choice of 𝑝𝑖, they

disagree on the point 𝐿𝑖(𝑝𝑖) = (𝑞1, . . . , 𝑞𝑖−1, 𝑝𝑖, 𝑝𝑖+1, . . . , 𝑝𝑡). Assume that this is the case and observe that
the line 𝐿𝑖−1 = (𝑞1, . . . , 𝑞𝑖−2, *, 𝑝𝑖+1, . . . , 𝑝𝑡) passes through this point. Thus, 𝑐𝐿𝑖−1 ̸≡ 𝑤𝐿𝑖−1 .

Claim C.6. 𝑐𝐿𝑡 ̸≡ 𝑤𝐿𝑡 .

Proof. The line 𝐿𝑡, which is the (𝑡, 𝑞, 𝑝) mashup, passes through the point 𝑞. The claim follows from the fact
that 𝑐(𝑞) ̸= 𝑤(𝑞).

Claim C.7. With probability 𝛿𝑡 over the choice of 𝑝, it holds that either the tester rejects or 𝑐(𝑝) ̸= 𝑤(𝑝).

Proof. By Claims C.5 and C.6, with probability 𝛿𝑡−1 we have that either the tester rejects or 𝑐𝐿1 ̸≡ 𝑤𝐿1 .
We may further assume 𝑤𝐿1 is a codeword of 𝐶 since otherwise the tester rejects. Thus, with probability 𝛿,
we have that 𝑐 and 𝑤 disagree on the point 𝐿1(𝑝1) = 𝑝.

The proposition now follows from Claim C.7 by observing that 𝑐(𝑝) ̸= 𝑤(𝑝) with probability 𝛿𝑡/2.
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Efficiency and Projectability. To show prefix projectability, we need to construct a circuit of size
𝑂(𝑡 ·𝑛𝑡 · log(|F|) that given as input a codeword 𝑐 ∈ F𝑛𝑡 and the verifier’s query set 𝑄, outputs the projection
of 𝑐 to 𝑄, or to prefixes thereof.

We show a separate circuit of size 𝑂(𝑛𝑡 · log(|F|)) for handling each dimension 𝑖 ∈ [𝑡]. Thus, we can
consider a fixed dimension 𝑖 ∈ [𝑡] and need to project to the corresponding query set.

Denote the set of random points selected by the tester by 𝑃 . The tester’s queries then correspond to all
of the (𝑖, 𝑝, 𝑞)-mashup lines for all 𝑞 ∈ 𝑄 and 𝑝 ∈ 𝑃 .

To do so the circuit first generates the projection of 𝑐 to all of the subspaces (𝑞1, . . . , 𝑞𝑖−1, *, . . . , *). Since
the set 𝑄 is prefix projectable, this can be done using a circuit of size 𝑂(𝑛𝑖 ·log(|F|)) with min(|𝑄|, 𝑛𝑖)·log(|F|)
outputs, where we use the fact that the total number of possible projections is 𝑛𝑖.

Next, we project each output subspace (which has dimension 𝑡 − 𝑖) to the set of lines (*, 𝑝𝑖+1, . . . , 𝑝𝑡),
each of which can be done by a circuit of size 𝑂(𝑛𝑡−𝑖) (see ?? ), and produces the projection to the mashup
line (𝑖, 𝑞, 𝑝). Overall we get a circuit of size 𝑂

(︀
(𝑛𝑖 + min(|𝑄|, 𝑛𝑖) · 𝑛𝑡−𝑖) · log(|F|)

)︀
= 𝑂

(︀
𝑛𝑡 · log(|F|)

)︀
, as

desired.
The other efficiency parameters follow from the construction.

C.3 Proof of ??
The prover and verifier emulate the original IOP protocol. We refer to round in which, according to the
specification of the protocol, the prover should send 𝐶⊗𝑡 encoded messages as “encoded rounds”. Let 𝑟
denote the number of encoded rounds.

In addition to emulating the original protocol, in every encoded round, if the prover sends a message 𝑤,
the verifier runs the local testing procedure of Lemma C.2 on 𝑤 with proximity parameter 𝛿𝑡/2. The verifier
also runs the relaxed local correction procedure of Lemma C.3 to check that its query set 𝑄 to 𝑤 has the
correct answers.

Completeness follows from the completeness of the original protocols together with the completeness
conditions of Lemmas C.2 and C.3.

For soundness, if in some round the prover sends a message that is more than 𝛿𝑡/2-far from the code then,
by Lemma C.2 the verifier rejects with all but 2−𝜆 probability and we are done. Thus, we may assume that
the prover always sends close messages. Assume that one of these messages disagrees with the underlying
codeword in one of the verifier’s query locations. Then, by the soundness condition of Lemma C.3, the
verifier also rejects with all but 2−𝜆 probablility.

Thus, we may assume that both of these events do not occur. Soundness now follows from 𝐶⊗𝑡

encoded-message soundness of the original IOP. Prefix projectability of the final IOP follows from the prefix-
projectability of the original IOP as well as the prefix-projectability guaranteed by Lemmas C.2 and C.3.
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