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Fast Hashing to G2 in Direct Anonymous

Attestation

Yu Dai , Fangguo Zhang and Chang-An Zhao∗

Abstract

To reduce the workload of the Trusted Platform Module (TPM) without affecting the security in

pairing-based direct anonymous attestation (DAA) schemes, it is feasible to select pairing-friendly curves

that provide fast group operations in the first pairing subgroup. In this scenario, the BW13-P310 and

BW19-P286 curves become competitive. In order to improve the efficiency of the DAA schemes based

on these curves, it is also necessary to design an efficient algorithm for hashing to G2. In this paper,

we first generalize the previous work to address the bottlenecks involved in hashing to G2 on the two

curves. On this basis, we further optimize the hashing algorithm, which would be nearly twice as fast

as the previous one in theory. These techniques actually can be applied to a large class of curves. We

also implement the proposed algorithms over the BW13-P310 curve on a 64-bit computing platform.

Index Terms

Direct anonymous attestation, Pairing-friendly curves, Hashing to G2

I. INTRODUCTION

Pairings are a powerful mathematical tool to construct various cryptographic protocols with

novel properties, such as identity-based encryption [6], direct anonymous attestation (DAA) [8],

and zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) [25]. In im-

plementation of pairing-based protocols, the selection of pairing-friendly curves is closely related

to particular requirements given by specifications of the considered application [2], [10], [11].
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For example, Yang et al. [36] pointed out that the Trusted Platform Module (TPM) is a small

chip equipped with constrained resources in DAA schemes. It is interesting to design a DAA

scheme such that the workload of the TPM is as small as possible. In this scenario, curves with

small size of prime p are particularly helpful since the TPM requires performing a number of

scalar multiplications in the first pairing subgroup. Based on the above facts, Clarisse et al. [10]

suggested two curves suitable for the DAA schemes: BW13-P310 with embedding degree 13 over

a 310-bit field, and BW19-P286 with embedding degree 19 over a 286-bit field. Consequently,

it is meaningful to present efficient algorithms for building blocks in the DAA schemes based

on the two curves.

Cryptographic pairings are built on elliptic curves over finite fields up till now. The following

standard notations and settings are used throughout the whole paper. Let p be a large prime

and E an elliptic curve over Fp with equation y2 = x3 + ax + b. Assume that r is a large

prime with r ‖ #E(Fp) (the notation a ‖ b means a | b but a2 - b). Let k be the smallest

positive integer such that r divides pk − 1. If k > 1, then the subgroup E[r] is contained in

E(Fpk) [3]. Denote by π : (x, y) → (xp, yp) the p-th power Frobenius endomorphism on E. A

pairing e : G1 × G2 → GT is a bilinear and non-degenerate function, where G1 = E(Fp)[r],

G2 = E[r] ∩ Ker(π − [p]) and GT is a subgroup of order r of F∗
pk

.

In the DAA scheme proposed in [36], it is necessary to hash binary strings to G1 and G2.

The standard approach of hashing to G1 is to hash to a random point of E(Fp) [16], [32], [34],

followed by a scalar multiplication by the cofactor h1 = #E(Fp)/r. The computational cost of

the multiplication is not expensive since the size of h1 is typically small on most of pairing-

friendly curves. Recently, a more efficient method for clearing the cofactor is proposed in [12],

which may further reduce the computational cost of hashing to G1.

By contrast, hashing to G2 is relatively complicated. Denote by Aut(E) the automorphism

group of E and let d = gcd(k,#Aut(E)). If d > 1 and r2 ‖ E(Fpk), there exists a unique

d-twist E ′ of E such that r ‖ #E ′(Fpe) [26, Section 4], where e = k/d. In this situation, the

group G2 can be represented as E ′(Fpe)[r]. As such, the procedure of hashing to G2 consists of

two phases: first hashing an arbitrary string to E ′(Fpe), followed by a scalar multiplication by

h2 = #E ′(Fpe)/r. In the case e 6= 1, the size of h2 is large and thus the cofactor multiplication

is expensive. In 2009, Scott et al. [31] proposed an efficient method to reduce the computational

cost of the cofactor multiplication. This method was further optimized by Fuentes et al. [19].

Detailed comparisons of the two methods on different curves were given in [9], [15].
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Unfortunately, we find that gcd(k,#Aut(E)) = 1 for the BW13-P310 and BW19-P286 curves.

It implies that G2 can be only represented as E[r]∩Ker(π−[p]). Following Enge and Milan [14],

we refer to this type of curves as curves with the lack of twists. In fact, if p ≥ 5, then

#Aut(E) ∈ {2, 4, 6} [33, Theorem III.10.1]. So for p ≥ 5, we can see that E is a curve with the

lack of twists if and only if gcd(k, 6) = 1. It seems that the extra effort is required for adapting

the above two approaches of hashing to G2 to pairing-friendly curves with the lack of twists.

Our contributions. The DAA scheme proposed in [36] consists of three algorithms: Setup,

Verify and Link. Hashing to G2 is performed by the host in the Verify algorithm. In order

to implement the DAA scheme based on the BW13-P310 or BW19-P286 curve efficiently, we

investigate the problem of hashing to G2 on such type of curves in detail. To be precise, our

contributions are mainly divided into the following two parts:

• We introduce the cyclotomic zero subgroup G0 of elliptic curves. It is confirmed that G2 is

the unique subgroup of order r contained in G0. Thus, given a random point of E(Fpk), we

first map it to G0. Then, we generalize the Fuentes et al. method [19] (denoted by Method

I) to map a point of G0 to G2 on the target curves. On the basis, a more efficient method is

proposed and we denote it by Method II. It should be noted that Method II is only suitable

for ordinary elliptic curves with j-invariant 0 or 1728.

• In order to explain the benefits resulting from Method II, we implement the two hashing

algorithms over the BW13-P310 curve on a 64-bit computing platform. Experimental results

show that Method II leads to roughly 77.0% improvement for the whole procedure of hashing

to G2. Hence, it is suitable for the DAA scheme given in [36].

Outline of the paper. The remainder of this paper is organized as follows. Section II introduces

the standard approach of hashing to G2 on curves with the lack of twists, the endomorphism

ring and the group structure of ordinary elliptic curves. In Section III, we define the cyclotomic

zero subgroup of elliptic curves. The main results of hashing to G2 on curves with the lack of

twists are presented in Section IV. The application of the proposed technique in DAA schemes

is considered in Section V. Finally, we draw our conclusion in Section VI.

II. BACKGROUND

In this section, we first recall the standard approach of hashing to G2 on pairing-friendly

curves with the lack of twists. Then we introduce endomorphism ring and group structure of
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ordinary elliptic curves, which are exploited to speeding up the efficiency of hashing to G2 on

the target curves.

A. The standard approach of hashing to G2

Let E/Fp be an ordinary elliptic curve with the lack of twists. Denote by OE and j(E) the

identity element and j-invariant of E, respectively. For arbitrary m ∈ Z+, let tm be the trace of

the pm-power Frobenius on E. Then the order of E(Fpm) is precisely pm+1− tm. Given t1 = t,

then the value tm for any m > 1 can be obtained by performing the following recursion [35,

Lemma 4.13]

t0 ← 2, t1 ← t, ti+1 ← t · ti − p · ti−1.

Given a random point Q ∈ E(Fpk), the standard approach of hashing to G2 on this type of

curves is done as follows:

Q→ R = cQ→ Tr(R)− kR,

where the cofactor c = #E(Fpk)/r2 and the mapping Tr acts as

Tr(S) = S + π(S) + · · ·+ πk−1(S)

for all S ∈ E(Fpk). The cofactor multiplication maps Q into E[r], and the endomorphism Tr−k

forces R into G2 [5, Section IX]. It is obvious that the approach is extremely inefficient and

shall not be admissible in practical applications.

B. Endomorphism ring of ordinary elliptic curves

Let t2 − 4p = −Df 2 where D is square free and f ∈ Z. The value D is referred to as the

CM discriminant of E. Denote by K the imaginary quadratic field Q(
√
−D) and let OK be the

largest subring of K. An order in K is a subring O satisfying that Z $ O ⊆ OK . Any order

O has the form Z ⊕ Zyδ, where δ =
√
−D or (1 +

√
−D)/2 and y ∈ Z. Let DO denote the

discriminant of order O , which is defined as

DO =

− y
2D, if D ≡ 3 mod 4,

− 4y2D, if D ≡ 1, 2 mod 4.

Let q be a power of the prime p. Let EndFq(E) and End(E) be the ring of endomorphisms

of E over Fq and Fq, respectively. Since E is ordinary, the ring End(E) is isomorphic to an
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order in K [35, Theorem 10.6]. Thus, we conclude that EndFq(E) ⊆ End(E) ⊆ OK . Generally

speaking, it is not straightforward to determine EndFq(E). However, for some special ordinary

elliptic curves, the question becomes simple. To be precise,

• if j(E) = 0, then p ≡ 1 mod 3 [35, Proposition 4.33]. There exists an endomorphism

φ ∈ EndFq(E) acting as φ : (x, y) → (ω · x, y), where ω is a primitive cube root of unity

in F∗p. Since φ satisfies φ2 + φ+ 1 = 0, we have Z[φ] = Z[(1 +
√
−3)/2] = OK . It implies

that EndFq(E) = OK as Z[φ] ⊆ EndFq(E) ⊆ OK ;

• if j(E) = 1728, then p ≡ 1 mod 4 [35, Theorem 4.23]. There exists an endomorphism

φ ∈ EndFq(E) acting as φ : (x, y) → (−x, i · y), where i is a primitive fourth root of

unity in F∗p. Since φ2 + 1 = 0, it holds that Z[φ] = Z[
√
−1] = OK and thus we conclude

EndFq(E) = OK .

We can see that the discriminant of EndFq(E) for the above two classes of curves are −3 and −4,

respectively. The following subsection will illustrate the connection between the group structure

of ordinary curves and the associated endomorphism ring.

C. Group structure of ordinary elliptic curves over finite fields

By the basic theory of elliptic curves over finite fields [35, Thoerem 4.1], we know that

E(Fq) ∼= Zm1 ⊕Zm2 with m1 | m2. In particular, if m1 = 1 then E(Fq) is cyclic. However, one

can not determine the values m1 and m2 directly, even if #E(Fq) is known. Indeed, let ` be an

integer such that `2 ‖ #E(Fq). There are the following two possibilities: (a) E[`] ⊆ E(Fq); (b)

E(Fq) has a cyclic subgroup of order `2. A sufficient and necessary condition of the question

is given by Schoof, which is shown as follows.

Theorem 1 [30, Propostition 3.7] Let E be an ordinary elliptic curve over Fq, where q is

a power of the prime p. Let t̃ denote the trace of the q-power Frobenius endomorphism πq :

(x, y) → (xq, yq). Assume ` ∈ Z+ with p - `. Then E[`] ⊆ E(Fq) if and only if `2 | #E(Fq),

` | q − 1 and O( t̃
2−4q
`2

) ⊆ EndFq(E), where the notation O( t̃
2−4q
`2

) represents the order with

discriminant t̃2−4q
`2

.

The condition of Theorem 1 can be further simplified for curves with j-invariant 0 or 1728,

which is given in Proposition 1. It should be noted that the conclusion is actually well known

to the experts but we are incapable of finding the proof in the literature.
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Proposition 1 Let notation be as above. Assume j(E) = 0 or 1728. Then E[`] ⊆ E(Fq) if and

only if `2 | #E(Fq) and ` | q − 1.

Proof Since j(E) = 0 or 1728, it can be seen from Subsection II.B that EndFq(E) = OK

and thus the condition O( t̃
2−4q
`2

) ⊆ EndFq(E) holds. By Theorem 1, the rest of the proof is

immediate.

Given the factorization of gcd(#E(Fq), q − 1), Proposition 1 induces a simple method to

determine the group structure of E(Fq) if j(E) = 0 or 1728. For general cases, an alternative

approach is given in [29, Algorithm 3], which is slightly complicated. In the following, we show

how to use the conclusion to improve the efficiency of hashing to G2 on pairing-friendly curves

with the lack of twists.

III. CYCLOTOMIC ZERO SUBGROUP OF ELLIPTIC CURVES

We denote by G0 the set

{Q ∈ E(Fpk) | Φk(π)(Q) = OE},

where Φk(π) is the k-th cyclotomic polynomial with respect to π. It is obvious that G0 forms a

group. Recall that the trace zero subgroup Tk [18] of E(Fpk) is exactly the kernel of the mapping

Tr. The subgroup Tk is particularly interesting in elliptic-curve cryptography [23], [24]. By the

definition of G0, we clearly have G0 ⊆ Tk. In particular, the two subgroups are identical if

and only if the embedding degree k is prime. In the following, we call G0 the cyclotomic zero

subgroup of E(Fpk). Several properties of G0 are summarized in the following two propositions.

Proposition 2 Let notation be as above. Then the order of the group G0 is precisely equal to∏
d|k

#E(Fpd)µ(k/d), where µ(.) is the Moebius function. In addition, if r - Φk(1), then we have

the following equality E[r] ∩G0 = G2.

Proof By [28, Theorem 3.27], we have

Φk(π) =
∏
d|k

(πd − 1)
µ(k/d)

. (1)
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Since Φk(π) and πd − 1 are separable, taking degrees of both sides of Equation (1), it yields

that

#G0 = #Ker(Φk(π)) =
∏
d|k

#Ker(πd − 1)
µ(k/d)

. (2)

Furthermore, since E(Fpd) = Ker(πd − 1) for any d ∈ Z+, Equation (2) implies that #G0 =∏
d|k

#E(Fpd)µ(k/d).

Let R1 and R2 be generators of G1 and G2, respectively. Then we get π(R1) = R1 and

π(R2) = pR2. Since r - Φk(1) and r | Φk(p), it indicates that

Φk(π)(R1) = Φk(1)R1 6= OE, (3)

Φk(π)(R2) = Φk(p)R2 = OE. (4)

For any R ∈ E[r], there exist m1,m2 ∈ Z/rZ such that

R = m1R1 +m2R2.

By the relations (3) and (4) we can deduce that R ∈ G0 if and only if m1 = 0, which implies

that R ∈ G2 and thus completes the proof.

It can be seen from Proposition 2 that given the order of E(Fpd) for each d | k, it is simple to

calculate that of G0. In addition, since r is a large prime in pairing-based cryptographic schemes,

the condition r - Φk(1) clearly holds. Thus, we confirm that G2 is the unique subgroup of order

r contained in G0. We now consider how to determine the group structure of G0 for curves with

j-invariant 0 or 1728.

Proposition 3 Let notation be as above. Let E/Fp be an ordinary elliptic curve with j(E) = 0

or 1728. Assume ` ∈ Z+ with p - ` and `3 - #E(Fpk). Then E[`] ⊆ G0 if and only if `2 | #G0

and ` | pk − 1.

Proof By Proposition 1, the necessity is obvious, and the hypothesis that `3 - #E(Fpk) is not

necessary. Conversely, since G0 ⊆ E(Fpk) and `2 | #G0, we have `2 | E(Fpk). Furthermore, by

the condition ` | pk−1, it is obvious from Proposition 1 that E[`] ⊆ E(Fpk). On the other hand,

since `3 - #E(Fpk) and G0 ⊆ E(Fpk), there is no cyclic subgroup of order `2 contained in G0.

By the condition that `2 | #G0, we get E[`] ⊆ G0, which completes the proof.
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Proposition 3 induces an efficient way to determine the group structure of G0 for ordinary elliptic

curves with j-invariant 0 or 1728 under a weak condition.

IV. MAIN RESULTS

Based on the analysis in Section III, the group G0 is isomorphic to Zm ⊕ Zmnr for some

m,n ∈ Z. We use H to denote mG0. Then H is a cyclic group of order nr. Let the mapping τ

act as

τ(Q) =
(
πk − 1)/Φk(π)

)
(Q)

for all Q ∈ E(Fpk). We can see that τ(Q) ∈ G0. To summarize, mapping a random point of

E(Fpk) to G2 can be performed as follows:

E(Fpk)
τ−→ G0

m−→ H
n−→ G2.

Since the action of τ on a random point of E(Fpk) only requires a few point additions and

applications of the Frobenius endomorphism π, and the size of m is typically small, the most

significant cost of hashing to G2 is the scalar multiplication by n. In this section, we show how

to perform the cofactor multiplication efficiently.

A. Method I: Generalized Fuentes et al. method

It is well-known that efficiently computable endomorphisms are a powerful tool to accelerate

elliptic curve scalar multiplication [20], [22]. This technique was further used by Fuentes et al. to

reduce the overhead of hashing to G2 for curves admitting a twist [19]. However, few research

studied the application of the technique for hashing to G2 on curves with the lack of twists

in existing literature. Since the endomorphism π on an original curve plays a similar role as

the “untwist-Frobenius-twist” endomorphism [21] on its twist, it seems that the Fuentes et al.

method also can be applied into pairing-friendly curves with the lack of twists. But there is a few

details left to sort out in practice. First, it is necessary to confirm that π(P ) ∈ H for all P ∈ H .

Moreover, one also needs to determine the value a satisfying that π(P ) = aP if π(P ) ∈ H . In

this subsection, we solve the above two questions and thus generalize the Fuentes et al. method

on pairing-friendly curves with the lack of twists.
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Lemma 1 Let notation be as above. Let g(π) = π2− tπ+ p be the characteristic polynomial of

the Frobenius endomorphism π. For all P ∈ H , there exists an integer a such that π(P ) = aP .

Furthermore, the integer a is one of solutions of the linear congruence equation

a0 + a1x ≡ 0 mod nr, (5)

where the integers a0 and a1 are determined by the following congruence equation

Φk(π) ≡ a0 + a1π mod g(π).

Proof Without loss of generality, we regard P as a generator of H . Apparently, the order of

π(P ) divides the order of P . On the other hand, since P = πk−1(π(P )) the order of P also

divides the order of π(P ). Therefore, both P and π(P ) are points of order nr. Since

P ∈ H ⊆ G0
∼= Zm ⊕ Zmnr,

then we have mR = P for some R ∈ G0. It is easy to deduce that mπ(R) = π(P ). Furthermore,

Φk(π)
(
π(R)

)
= π

(
Φk(π)(R)

)
= OE,

which indicates that π(R) ∈ G0. In total, there exists a point π(R) ∈ G0 such that mπ(R) =

π(P ). By the definition of H , we can see that π(P ) ∈ H and thus π(P ) is a generator of H . It

means that the endomorphism π acting on H corresponds to a scalar multiplication. In other

words, there exists an integer a such that π(P ) = aP for all P ∈ H .

By the Euclidean algorithm, there exists a polynomial u(π) ∈ Z[π] such that

Φk(π) = u(π) · g(π) + r(π), (6)

where r(π) = a0 + a1π. Moreover, the Frobenius endomorphism π on H satisfies the relations

Φk(π) = 0, g(π) = 0. (7)

Putting Equations (6) and (7) together, we deduce that

(a0 + a1 · a)P = r(π)(P ) = Φk(π)(P )− u(π)
(
g(π)(P )

)
= OE.

Since the order of the point P is nr, we conclude that a0 + a1 · a ≡ 0 mod nr, which completes
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the proof.

Lemma 1 explains the effect of the endomorphism π on the group H . Let x0 be a particular

solution of the linear congruence equation (5) and d = gcd(a1, nr). By Lemma 1, the integer a

would be one of

{x0, x0 +
nr

d
, · · · , x0 + (d− 1)

nr

d
}.

In fact, it is easy to determine which one is the solution. We can search the integer i between 0

and d− 1 which makes a = x0 + inr
d

, and then π(P ) = (x0 + inr
d

)P . Now we are in a position

to generalize the Fuentes et al. method.

Theorem 2 Let E/Fp be an ordinary elliptic curve with the lack of twists. Let G0 be the

cyclotomic zero subgroup of E(Fpk), and H the cyclic subgroup of G0 of order nr. Then there

exists a polynomial

h(z) = h0 + h1z + · · ·+ hϕ(k)−1z
ϕ(k)−1 ∈ Z[z]

and an efficiently computable endomorphism ψ such that h(ψ)(P ) ∈ G2 for all P ∈ H , where

|hi| < |n|1/ϕ(k) for i = 0, · · · , ϕ(k)− 1.

Proof Taking ψ = π, it can be obtained from Lemma 1 that ψ(P ) = aP for all P ∈ H . Since

the order of ψ is precisely k restricted in the group H , we conclude that

Φk(a) ≡ 0 mod nr.

Similar to the proof in [19, Theorem 1], there exists a polynomial in

h(z) = h0 + h1z + · · ·+ hϕ(k)−1z
ϕ(k)−1 ∈ Z[z]

such that h(a) is a multiple of n, where |hi| < |n|1/ϕ(k). Therefore, we have h(ψ)P ∈ G2 for

all P ∈ H , which completes the proof.

Applying the LLL algorithm [27] one can obtain a short coefficient vector (h0, · · · , hϕ(k)−1) in



11

the following ϕ(k)-dimensional lattice:

n 0 0 · · · 0

−a 1 0 · · · 0

−a2 0 1 · · · 0
...

... . . .

−aϕ(k)−1 0 · · · 0 1


.

As mentioned in Section IV, the computational cost of hashing to G2 on pairing-friendly curves

with the lack of twists is dominated by the scalar multiplication by n. Thus, the time complexity

of Method I should be in O
(
log n/ϕ(k)

)
. Apparently, this method is significantly faster than the

standard one.

B. Method II

If j(E) = 0 or 1728, there exists another efficiently computable endomorphism φ that is

given in Section II. Similarly, the endomorphism φ also corresponds to a scalar multiplication

restricted in the group H . We summarize this observation as follows.

Lemma 2 Let notation be as above. Let t2 − 4p = −Df 2, where D, f ∈ Z and D is square

free. If j(E) = 0 or 1728, then φ(P ) = bP for all P ∈ H , where

b =


−f ± (2a− t)

2f
mod nr if j(E) = 0,

±(2a− t)
2f

mod nr if j(E) = 1728.

Proof We only give the proof for the case j(E) = 0 (The proof of the remaining case is similar).

Since E is ordinary and j(E) = 0, we have D = 3. Furthermore, since the value a in Lemma

1 is one of solutions of the quadratic congruence equation

x2 − tx+ p ≡ 0 mod nr,

we get

a ≡ 1

2
(t±

√
t2 − 4p) ≡ 1

2
(t± f

√
−3) mod nr,

which implies
√
−3 ≡ ±(2a− t)/f mod nr.
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On the other hand, since φ satisfies the quadratic relation

φ2 + φ+ 1 = 0,

we have b2 + b+ 1 ≡ 0 mod nr. It yields that

b =
−1±

√
−3

2
=
−f ± (2a− t)

2f
mod nr,

which completes the proof.

Putting Lemmas 1 and 2 together, we get the following theorem.

Theorem 3 Let E/Fp be an ordinary elliptic curve with the lack of twists. Let G0 be the

cyclotomic zero subgroup of E(Fpk), and H the cyclic subgroup of G0 of order nr. If j(E) = 0

or 1728, then there exists a polynomial

h(z) = h0 + h1z + · · ·+ h2ϕ(k)−1z
2ϕ(k)−1 ∈ Z[z]

and an efficiently computable endomorphism ψ such that h(ψ)(P ) ∈ G2 for all P ∈ H , where

|hi| < |n|1/(2ϕ(k)) for i = 0, · · · , 2ϕ(k)− 1.

Proof If j(E) = 0 (resp.1728), we take ψ = π ◦ φ, where φ is given in Section II. Combining

Lemmas 1 and 2, we have ψ(P ) = λP for all P ∈ H , where λ = a · b mod nr. Moreover,

we can find that gcd(k, 3) = 1 (resp. gcd(k, 4) = 1). Otherwise, the curve E admits a twist of

degree 3 (resp. 2). Hence, the order of ψ is precisely 3k (resp. 4k) restricted in H . It means

that the integer λ satisfies that

Φ3k(λ) ≡ 0 mod nr(resp. Φ4k(λ) ≡ 0 mod nr).

Since the degree of the cyclotomic polynomial is 2ϕ(k), there exists a polynomial

h(z) = h0 + h1z + · · ·+ h2ϕ(k)−1z
2ϕ(k)−1 ∈ Z[z]

such that h(λ) is a multiple of n, where |hi|< |n|1/(2ϕ(k)). From this result, we can conclude

h(ψ)P = h(λ)P ∈ G2 for all P ∈ H , which completes the proof.

Likewise, applying the LLL algorithm one can obtain a 2ϕ(k)-dimensional coefficient vector

(h0, · · · , h2ϕ(k)−1) for curves with j-invariant 0 or 1728. In this situation, the time complexity
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H
G0

G2

E(Fpk)

Q

mτ(Q)

τ(Q)

Fig. 1. Mapping a random point Q of E(Fpk ) to G2 on pairing-friendly curves with the lack of twists

of hashing to G2 can be further reduced to O
(

log n/(2ϕ(k))
)
. In order to give readers a clear

understanding of the proposed approaches, the process of mapping a random point of E(Fpk)

into G2 is illustrated in Fig.1.

V. APPLICATIONS

In this section, we give a detailed description for hashing to G2 on the BW13-P310 and BW19-

P286 curves. As a by-product, we also apply Method II into BW25-P663, which was studied

by Enge and Milan [14]. All of the three curves are defined by the equation y2 = x3 + b and

parameterized by u as follows [17, Construction 6.6]:

p =
1

3
(u+ 1)2(u2k − uk + 1)− u2k+1,

r = Φ6k(u),

t = −uk+1 + u+ 1.

In Table I, we summarize the important parameters for the three curves.

The hash function HG2 : {0, 1}∗ → G2 is one of building blocks of the DAA scheme proposed

in [36]. In fact, it consists of the following three phases:

(1) hashing an arbitrary string to F∗p using a standard cryptographic hash function;
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TABLE I
Parameters for the BW13-P310, BW19-P286 and BW25-P663 curves.

Curve k seed u b
BW13-P310 13 −2224 −17
BW19-P286 19 −145 31
BW25-P663 25 6995 31

(2) mapping a random element of F∗p to E(Fpk) in constant-time;

(3) mapping a random element of E(Fpk) to G2 in constant-time.

The mapping involved in the phase (2) is also referred to as encoding function in [13], which

can be constructed by the Shallue-van de Woestijne (SVW) method [32]. A specialization of

the SVW method on BN curves [4] were presented by Fouque and Tibouchi [16]. In fact, these

techniques also can be applied to the above three curves. See Algorithm 1 for details. Note that

χp() and χpk() represent the quadratic residuosity testing functions in Fp and Fpk , respectively.

The computation cost of Algorithm 1 is of about one quadratic residuosity testing in Fp, two

quadratic residuosity testings, one square root, and a few multiplications in Fpk .

To map a random point of E(Fpk) to G2 using the proposed techniques, we first need to

determine the order of the group H that is defined in Section IV. By Proposition 2, we find that

#G0 =

#E(Fpk)/(#E(Fp)) if k = 13 or 19,

#E(Fpk)/(#E(Fp5)) if k = 25.

Algorithm 1 Indifferentiable mapping to E(Fpk) for the BW13-P310, BW19-P286 and

BW25-P663 curves
Input: t ∈ F∗p, the curve parameter b ∈ F∗p
Output: a point P ∈ E(Fpk)

1: sr3←
√
−3; //Precomputation

2: j ← (sr3− 1)/2;

3: t0 ← 0 + t · α + 0 · α2 + · · ·+ 0 · αk−1 ∈ Fpk

4: w ← sr3 · t0
1+b+t20

;

5: x0 ← j − t0 · w;

6: x1 ← −1− x0;

7: x2 ← 1 + 1/w2;
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8: r0, r1, r2
$←− F∗p;

9: a0 ← χp13(r
2
0 · (x30 + b));

10: a1 ← χp13(r
2
1 · (x31 + b));

11: i← (a0 − 1) · a1 mod 3 + 1;

12: return P ← (xi, χp(r
2
2 · t) ·

√
x3i + b, );

It is easy to check that gcd(pk − 1,#G0) = r and r2 - #G0 for each curve. Thus, it can be

deduced from Proposition 3 that

H = G0
∼= Znr.

Given a random point Q ∈ E(Fpk), then P = τ(Q) ∈ H and thus nP ∈ G2, where τ =

(πk − 1)/Φk(π). In the following, we discuss how to map P into G2 using the two methods

reported in Section IV.

Method I:

We first determine the integer a such that π(Q) = aQ for all Q ∈ H using Lemma 1. Constructing

the lattice, we then obtain the vector (h0, h1, · · · , hϕ(k)−1) such that

h(a) = h0 + h1a+ · · ·+ hϕ(k)−1a
ϕ(k)−1

is a multiple of n. For the BW13-P310 or BW19-P286 curve, each term of hi for i = 0, 1, · · ·ϕ(k)−

1 is given as follows

hi=



(−1)m
(
u2k−4−i−u2k−5−i+u2k−6−i+2uk−4−i−2uk−5−i−uk−6−i

)
−`k−1 if i=3m, 0 ≤ m < s− 1,

(−1)m
(
2uk−4−i + uk−5−i − uk−6−i

)
− `k−1 if i=3m+1, 0 ≤ m < s− 1,

(−1)m+1
(
u2k−4−i − u2k−5−i + u2k−6−i − 3uk−5−i

)
− `k−1 if i=3m+2, 0 ≤ i < s− 1,

− u2k + u2k−1 − u2k−2 + 3uk−1 − 3− `k−1 if i=3s− 3,

− u2k−1 + u2k−2 − u2k−3 − 2uk−1 + 2uk−2 + uk−3 − `k−1 if i=3s− 2,

− 2uk−2 − uk−3 + uk−4 − `k−1 if i=3s− 1.

where s = (k − 1)/3 and `k−1 = u2k−3 − u2k−4 + u2k−5 − 3uk−4. Since P ∈ G0 ⊆ Tk, we have

Tr(P ) = OE . Thus,

h(a)P = h(π)P =
k−2∑
i=0

πi(hiP ) =
k−1∑
i=0

πi(`iP ),

where `i = hi + `k−1 for i = 0, 1, · · · , k − 2.
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In order to compute `iP for each i, the following scalar multiplications are performed:

P → uP → u2P · · · → uk+1P → (2u2 + u)P → (2u5 + u4)P · · · → (2uk−2 + uk−3)P

On this basis, we then calculate Ri and Hi for i = 0, 1, · · · s− 1, where

Ri = (2u3i+2 + u3i+1)P − u3iP,Hi = 2u3i+3P − (2u3i+2P + u3i+1)P.

The above calculation is done at a cost of k+ 1 scalar multiplications by u, 2s point doublings

and 3s point additions. We denote Li by ui(uk+1 − uk + uk−1)P for i = 0, 1, · · · k − 1, which

can be obtained as follows

(uk+1 − uk + uk−1)P → u(uk+1 − uk + uk−1)P · · · → uk−1(uk+1 − uk + uk−1)P.

Afterwards, we can calculate `iP for i = 0, 1, · · · , k − 1, where

`iP =



(−1)m
(
Lk−5−i +Hs−2−m

)
if i=3m, 0 ≤ m < s− 1,

(−1)mRs−2−m if i=3m+1, 0 ≤ i < s− 1,

(−1)m+1
(
Lk−5−i − 3uk−5−iP

)
if i=3m+2, 0 ≤ i < s− 1,

− Lk−1 + 3(uk−1P − P ) if i=3s− 3,

− Lk−2 −Hs−1 if i=3s− 2,

−Rs−1 if i=3s− 1,

Lk−4 − 3uk−4P if i=3s.

The calculations of Li and `iP for i = 0, 1, · · · , k− 1 require k− 1 scalar multiplications by u,

s+ 1 point doublings and 3s+ 5 point additions. Finally, the operation

h(π)P =
k−1∑
i=0

πi(`iP )

includes the computation of k − 1 point additions and k − 1 applications of the endomorphism

π.

Since s = (k−1)/3, Method I totally requires 2k scalar multiplications by u, k point doublings

and 3k+ 2 point additions, one application of the endomorphism τ and k−1 applications of the

endomorphism π for the BW13-P310 or BW19-P286 curve. Clearly, Method I is also suitable

for the BW25-P663 curve.
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Method II:

Putting Lemmas 1 and 2 together, it is easy to calculate the integer λ such that ψ(P ) = λP for

all P ∈ H , where ψ = π ◦ φ. Applying LLL algorithm, we then obtain a 2ϕ(k)-dimensional

vector (h0, · · · , h2ϕ(k)−1) such that

h(λ) = h0 + h1λ+ · · ·+ h2ϕ(k)−1λ
2ϕ(k)−1

is a multiple of n, which implies that h(ψ)(P ) = h(λ)P ∈ G2. Specifically, for the BW13-P310,

BW19-P286 or BW25-P663 curve, each term of hi for i = 0, · · · , 2ϕ(k) − 1 can be expressed

as follows:

hi =



0 if k + 2 ≤ i ≤ 2ϕ(k)− 1,

2 if i = k + 1,

u2 − u+ 1 if i = k − 1,

− uhi+1 if 2 ≤ i ≤ k − 2,

− uh2 + 1 if i = 1,

(k−4)/3∑
j=0

ifh3j+1 −
(k−1)/3∑
j=1

h3j − u if i = 0,

(k−4)/3∑
j=0

h3j+1 −
(k−1)/3∑
j=1

h3j−1 − 2u+ 1 if i = k.

In order to compute h(ψ)P , we first perform the following sequence of calculations:

P → uP → (u− 1)P → u2P → (u2 − u+ 1)P.

Then we have

h(ψ)P =
k+1∑
i=0

ψi(Ri),
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TABLE II
Comparison between the operation count of Method I and Method II.

Curve Method I Method II
BW13-P310 26Z + 13D + 41A+ 1τ + 12π 14Z + 1D + 30A+ 1τ + 14ψ
BW19-P286 38Z + 19D + 59A+ 1τ + 18π 20Z + 1D + 42A+ 1τ + 20ψ
BW25-P663 − 26Z + 1D + 54A+ 1τ + 26ψ

where Ri for i = 0, · · · , k + 1 satisfies

Rk+1 = 2P,

Rk−1 = (u2 − u+ 1)P,

Ri = −uRi+1, 2 ≤ i ≤ k − 2,

R1 = −uR2 + P,

R0 = (R1 +R4 + · · ·+Rk−3 − uP )− (R3 +R6 + · · ·+Rk−1),

R13 = (R1 +R4 + · · ·+Rk−3 − uP )− (R2 +R5 · · ·+Rk−2)− (u− 1)P.

In total, it requires k+ 1 scalar multiplications by u, one point doubling, 2k+ 4 point additions,

one application of the endomorphism τ and k + 1 applications of the endomorphism ψ.

Let Z, D and A denote the cost of a scalar multiplication by u, point doubling and point

addition, respectively. In Table II, we present the operation counts of the two methods.

A. Implementation results

Magma [7] implementation is provided in https://github.com/eccdaiy39/hashing-magma to

ensure the two methods are correct. In order to further illustrate the performance benefits

resulting from Method II, we also implemented the two methods within the RELIC library [1] on

the BW13-P310 curve. We benchmarked our implementations on a 64-bit Intel Core i7-8550U

@1.8GHz processor running Ubuntu 18.04.1 LTS with TurboBoost and hyper-threading features

disabled. The open resource code is available at https://github.com/eccdaiy39/hashing. In Table

III, we give the timing benchmark results averaged over 10,000 executions. The results show

that Method II is faster than Method I by about 93.1% for mapping a random point of E(Fpk) to

G2 on the BW13-P310 curve. For the whole procedure of hashing to G2, the proposed method

leads to a roughly 77.0% speedup.

https://github.com/eccdaiy39/hashing-magma
https://github.com/eccdaiy39/hashing
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TABLE III
Comparison of the running timing for the components of hashing to G2 on the BW13-P310 curve.

Phase Method Clock cycles(×104)
Hashing to E(Fp13) SVW 320
Map-point-to-G2 I 2906
Map-point-to-G2 II 1505
hashing to G2 SVW+I 3225
hashing to G2 SVW+II 1822

VI. CONCLUSION

The BW13-P310 and BW19-P286 curves become competitive in DAA schemes as fast group

operation in G1. In this work, we investigated the problem of hashing to G2 on the two curves

in detail. Several interesting techniques were proposed, which actually can be applied to a large

class of curves with the lack of twists. A software implementation were presented on the BW13-

P310 curve to confirm the efficiency of the proposed techniques. The results show that hashing

to G2 can be implemented efficiently on this curve.
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