
1

PipeMSM: Hardware Acceleration for Multi-Scalar
Multiplication

Charles. F. Xavier
charlie@ingonyama.com

Abstract—Multi-Scalar Multiplication (MSM) is a fundamental
computational problem. Interest in this problem was recently
prompted by its application to ZK-SNARKs, where it often turns
out to be the main computational bottleneck.

In this paper we set forth a pipelined design for computing
MSM. Our design is based on a novel algorithmic approach
and hardware-specific optimizations. At the core, we rely on
a modular multiplication technique which we deem to be of
independent interest.

We implemented and tested our design on FPGA. We highlight
the promise of optimized hardware over state-of-the-art GPU-
based MSM solver in terms of speed and energy expenditure.

Index Terms—Zero-Knowledge, Hardware acceleration, Multi-
Scalar Multiplication (MSM), FPGA

I. INTRODUCTION

The multi-product problem is defined as follows: given a
sequence of elements (t0, t1, . . . tn−1), compute the following
sequence of products using the minimal number of multipli-
cations possible:

yi =

n−1∏
j=0

t
xi,j

j ;∀i = 0, 1, . . . k − 1 (1)

Here xi,j ∈ Z2 : {0, 1} are elements of a matrix Xk×n.
When xi,j ∈ Zr, r ≥ 2 then the sequence yi computes
various exponents of the elements tj and (1) is known as
a multi-exponentiation problem. Four decades ago, Pippenger
provided an asymptotically optimal algorithm for both of these
problems [1].

Some of the problems that can be reduced to the multi-
product or multi-exponentiation are evaluating sparse mul-
tivariate polynomials and computing matrix-vector products.
The logarithmic version of the same multi-exponentiation
problem can be equivalently stated as a Multi-Scalar Multi-
plication (MSM)

ỹi =

n−1∑
j=0

xi,j t̃j . (2)

One interesting application of the MSM problem is in cryp-
tography, and in particular ZK-SNARKs. In this instance of
the problem, we are interested in computing a single product
y, where t̃j = Gj are points of an Elliptic Curve (EC) group
G over a prime order field Fq and xj are scalars s.t. xj ∈ F|G|.
MSM as defined above is represented throughout this paper
as

MSM(x,G) =

n−1∑
j=0

xjGj (3)

Note that at the end of the computation (3) the left-hand side
is a single EC point from G.

A. MSM dominates ZK prover computation

A Zero Knowledge Proof (ZKP) is a protocol between two
parties, a prover, and a verifier. The prover aims to convince
the verifier that a statement is true with high probability,
without revealing any additional information. Consider an NP
relation R(x,w) with a corresponding language L(R), where
x is a public input known to both the prover and the verifier
and the ”witness” w is known only to the prover. For example,
think of a boolean circuit with some assignments known to
both parties (x) and the other ones known only to the prover
(w).

A proof π must possess several properties. At the minimum
we require completeness, soundness, and zero-knowledge
for which formal definitions can be found in [2]. ZK-
SNARKs (Zero-Knowledge Succinct Non-interactive Argu-
ments of Knowledge) are a subtype of ZK proofs with several
additional properties like small proof size and fast verification.
This allows ZK-SNARKs to serve as a foundation for highly
efficient verifiable computation. The trade-off is in the prover’s
complexity which becomes a computational bottleneck. See
[3] for several references on the subject at various levels, and
[4] for a practical technical introduction to the inner workings
of ZK-SNARKs.

We use the term arithmetization to define the process of
”codifying” a relation R in a set of arithmetic constraints over
a finite field F. It is a crucial step, aimed at describing the
problem in a unified arithmetic language, enabling the prover
to then apply information-theoretic and cryptographic tools for
generating the proof. Examples of popular formats in which
the ”codified” relations are represented are QAP [5], [6] and
R1CS.

A necessary step in any ZK-SNARK protocol is efficiently
evaluating polynomials at points requested by the verifier. A
key cryptographic primitive for an interactive protocol that
proves/verifies polynomial relations is a Polynomial Commit-
ment (PC) scheme. PC refers to a computationally binding
commitment to a polynomial P , using which the committer
can prove the evaluation P (k) at any point k ∈ F without
revealing P at other points (hiding).

In table I we survey some of the popular commitment
schemes used in ZKPs.

We see that for example, Plonk [10] and Marlin [11] use
the pairing-based KZG10 [7] scheme. Bulletproofs [12] use
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Scheme KZG10 [7] IPA [8] DARK [9]

Cryptographic primitive Pairing Discrete Log Group of unknown order

G/Fq : G1 ∈ G1, G2 ∈ G2, GT ∈ GT G/Fq : Gi ∈ G |G| unknown
Ingredients Pairing: e(G1,G2)→ GT random(Gi)← G random(Gi)← G

SRS = (τ0G1, τ1G1, . . . τn−1G1) q ∈ Zp; q ∼ O(p log2 n)

Trusted setup Yes No depends on G

Comm(P ) P (τ)G1 =
∑n−1

i=0 aiSRSi ⟨a,G⟩ =
∑n−1

i=0 aiGi
∑n−1

i=0 aiQi

P (X) =
∑n−1

i=0 aiX
i Q = (q0G, q1G, q2G, . . . qn−1G)

Computational primitive MSM MSM∗ MSM∗

ZKP’s Plonk [10], Marlin [11] BulletProofs [12] Supersonic [9]

TABLE I
CRYPTOGRAPHIC PRIMITIVES TO COMPUTATIONAL PRIMITIVES

inner product arguments [8] that rely on the discrete logarithm
assumption. Groups of unknown order play a central role
in DARK (Diophantine Argument of Knowledge) [9], used
by Supersonic. All of the above protocols rely on MSM
to compute polynomial commitments. In table I the MSM∗

notation is used to highlight that Gi in IPA and multiples of
G in DARK are not predetermined and computed during proof
generation. On the other hand, in KZG10 the bases τ i ·G1 are
precomputed before proving.

One last classic example of a popular protocol that also
requires the prover to compute several MSMs is Groth16 [13].

To sum up, table I highlights the strong presence of MSM in
polynomial commitments. While there is sufficient motivation
to consider MSM as a standalone problem, even purely from
a theoretical standpoint, it also turns out to be a key computa-
tional problem that needs to be tackled in order to accelerate
ZK-SNARK computation.

In table II, we see that some of the most popular protocols
spend a significant fraction of time computing MSMs. While

Protocol No. of MSM (Prover) Prover’s time %

Groth16 [13] 4 in G1, 1 in G2 70− 80%

Marlin [11] + Lunar [14] 11 in G1 70− 80%

Plonk [10] 9 in G1 85− 90%

TABLE II
MSM DOMINATION IN ZKP

the exact percentage of time can vary depending on the
implementation and circuit size, in general, MSM is the
main computational bottleneck for ZK-SNARK-based proof
systems.

In this paper we break down the acceleration of MSM (3)
into three sections as follows

– Efficient modular multiplication §II
– Elliptic curve point addition §III
– Multi-Scalar Multiplication §IV
We start with modular multiplication, a fundamental primi-

tive for all finite field arithmetic. There exist efficient modular
reduction methods for primes of a special form. However for
the general case, which we consider, our modular reduction
method needs to work with arbitrary primes. Several such

methods can be found in the literature: Barrett reduction [15],
Montgomery reduction [16], and lookup table-based methods
[17]. In §II we present an optimized variant of the modular
multiplication method based on Barrett reduction.

Moving on to the higher level, in §III we discuss the elliptic
curve addition based on complete formulae which have been
overlooked in the literature, and point out their efficiency in
data sampling and parallelism.

Finally, in §IV we discuss our algorithmic optimizations for
the efficient parallel implementation of the MSM solver.

Having all the theoretical tools in hand, we implemented our
design on Xilinx U55C FPGA. In §V, we demonstrate how our
implementation compares to state-of-the-art GPU-based MSM
solver.

We conclude with further potential algorithmic improve-
ments in §VI.

B. Related Work

Sppark [18] is a new library developed by Supranational
that provides GPU implementation for primitives used in ZKP,
among them MSM. We compare our implementation to Sppark
in section V.

The best existing FPGA implementation for SNARK are
projects led by Ben Devlin for Zcash [19] and the Ethereum
Foundation [20]. The projects either implement a limited
version of MSM with a naive approach, resulting in poor
performance, or skip MSM altogether.

PipeZK [21] is a recent work that provides end-to-end
pipelined design for ZK-SNARK. However, PipeZK chose
ASIC as its target hardware, skipping over FPGAs. ASIC is
at best years away from being accessible while FPGAs are
available today with supply time similar to GPUs or even
instantly in the cloud [22]. The measurements in PipeZK are
therefore done via simulation of ASIC without a physical
silicon chip. Our measurements on the other hand are done
on physical hardware.

II. EFFICIENT MODULAR MULTIPLICATION

The standard modular multiplication problem in Fq is
formulated as

r = a · b mod q (4)
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where a, b, r ∈ Fq , q is a prime. Equivalently this can be
written as

a · b = l · q + r (5)

with l ∈ Z such that 0 ≤ r < q. In this section we describe an
efficient, hardware-friendly method for computing (4). For the
rest of this paper assume that all variables are represented in
binary, and denote by n the number of digits used to represent
any element in Fq , i.e n = ⌈log2 q⌉. We begin by recounting
the details of the Barrett reduction method.

A. Barrett reduction

Our strategy is to assume that l is approximately known and
we denote by l̂ the corresponding approximation

l − λ ≤ l̂ ≤ l (6)

where λ ≥ 0 is a known constant.
1) Case 1: λ = 0: It is clear by definition (5) that

ab[2n− 1 : 0]− l̂q[2n− 1 : 0] = r[n− 1 : 0] (7)

where the brackets denote bit sizes. Writing out bits explicitly,
(7) is rewritten as:

ab[2n− 1] ... ab[n] ab[n− 1] ... ab[0]

- l̂q[2n− 1] ... l̂q[n] l̂q[n− 1] ... l̂q[0]
0 ... 0 r[n− 1] ... r[0]

Note that only ab[n− 1 : 0] and l̂q[n− 1 : 0] are necessary in
order to execute the computation. Also note that the result is
always a positive n-bit number, so any carry to the n + 1’st
bit is ignored.

2) Case 2: λ > 0: In this case

ab− l̂q = r + λq (8)

the number of bits required to represent the right-hand side of
the above is

⌈log2(r + λq)⌉ ≤ n+

⌈
log2

r + λq

q

⌉
≤ n+ ⌈log2(1 + λ)⌉

(9)
so instead of the lowest n bits in (7) we must take n +
⌈log2(1 + λ)⌉. For example, if λ = 3, the total number of
additional bits required would be 2.

3) Approximating l: The only remaining part is to compute
the approximation l̂:

l =

⌊
ab

q

⌋
= lim

k→∞

ab ·m(k)

2k+n
(10)

where

m(k) =

⌊
2k+n

q

⌋
< 2k+1 (11)

For a finite k, the approximation error of 1/q is

e(k) ≡ 1

q
− m(k)

2k+n
< 2−(k+n) (12)

where the upper bound can be derived by examining the max-
imal difference between the binary representation of the left

and right terms. This immediately leads to the approximation
error on l(k)

e(l, k) ≡ ab

q
− ab ·m(k)

2k+n
< 22n · 2−(k+n) = 2n−k (13)

Thus if k ≥ n the error is at most 1. Choosing k = n (i.e.
m(n) < 2n+1) leads to the following approximation on l

l̂0 =

⌊
abm

22n

⌋
, e(l̂0) < 1 (14)

where the approximation error obeys (13).
Let us instead perform the above multiplication in two

stages. Initially assume that ab[2n − 1 : 0] is available and
perform the multiplication as follows

abm

22n
=

ab[2n− 1 : n] ·m
2n

+
ab[n− 1 : 0] ·m

22n
(15)

<
ab[2n− 1 : n] ·m

2n
+ 2 (16)

This immediately leads to the following approximation on l

l̂1 =

⌊⌊
ab

2n

⌋
· m
2n

⌋
, e(l̂1) < 3 (17)

where the inner multiplication is n-by-n-bit, the outer multi-
plication is n-by-(n + 1)-bit, and the approximation error is
upper bounded by the sum of (14) and the right-most term of
(16).

In fig 1 we present a block diagram of the modular mul-
tiplier. The diagram uses the l̂1 approximation for l given in
(17). Note that although multiplication

⌊
ab
2n

⌋
·m is n-by-n+1

bit, the result is less than q2n so it’s 2n-bit long and so l̂1 is
n-bit long.

a · b
l̂1 =

⌊⌊
ab
2n

⌋
· m
2n

⌋
l̂1 · q

r =
ab−
l̂1 ·qr = r − kq

k ∈ {0, 1, 2, 3}

a

n-bit

b

n-bit

ab[2n− 1 : n]

n-bit

l̂1

n-bit

l̂1 · q[n+ 1 : 0]
n+ 2-
bit

r[n+ 1 : 0]

n+ 2-bit

r

n-bit

ab[n+ 1 : 0]

n+ 2-bit

m n+ 1-bit q n-bit

Fig. 1. Optimized Barrett modular multiplier

B. Optimizing integer multiplications in Barrett algorithm

In general, two large integers x, y can be efficiently multi-
plied using the Karatsuba algorithm (see e.g., [23]). Writing
x = x12

k+x0 and y = y12
k+y0, one reduces the computation

of the product x · y to 3 narrower products as shown below

x ·y = 22kx1y1+x0y0+2k((x1+x0)(y1+y0)−x1y1−x0y0)
(18)
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x̂ · y = 2k0(z1 + z2) + z3

z1 = 2k11(z11+
z12) + z13

z2 = 2k12(z21+
z22) + z23

z3 = 22k13z31+z32+
2k13(z33− z31− z32)

z11 z12 z13 z21 z22 z23 z31 z32 z33

Fig. 2. LSB multiplication

To multiply two large integers, (18) can be iterated before
reaching multiplications that are narrow enough to be com-
puted by the hardware directly. However, note that in fig 1, we
do not always need the whole result of integer multiplications.
In particular, we are only interested in the most significant n
bits of ab[2n − 1 : n] ·m and the least significant n + 2 bits
of l1 · q.

We first demonstrate how to compute n+σ lowest bits of the
product of two n-bit numbers x ·y (in the case of algorithm 1,
σ = 2). As before, we write x = x12

k+x0 and y = y12
k+y0

and expand x · y = x1y12
2k + 2k(x1y0 + x0y1) + x0y0. Note

that, as long as 2k ≥ n+ σ, lowest n+ σ bits of the product
x · y are correctly computed by

x̂ · y = 2k(x1y0 + x0y1) + x0y0 (19)

Moreover, we only need the lower n + σ − k bits of x1y0
and x0y1 to be correct. This leads us to a recursive algorithm
as shown in fig 2, where the white boxes refer to regular
Karatsuba iterations (18) and the pink boxes refer to the
simplified iterations (19). To ensure the correctness of the
algorithm, we need to make sure that at each simplified
iteration (19), ki satisfies n+σ ≤ 2ki+ki−1+ki−2+ · · ·+k0.

A more difficult problem is to compute n highest bits of
the 2n-bit product of two numbers x · y. Following our earlier
approach, we write x = x12

k + x0 and y = y12
k + y0. Since

x ·y = x1y12
2k+2k(x1y0+x0y1)+x0y0 we can approximate

x · y as
x̂ · y = x1y12

2k + 2k(x1y0 + x0y1) (20)

As in the previous case, we build a recursive algorithm as
shown in fig. 3. Iterations that use formula (20) are pink while
the Karatsuba iterations (18) are white. Assuming that x1 · y0
and x0 · y1 are also computed approximately, we get that the
error of the approximation (20) is ∆(x · y) = x · y − x̂ · y =
x0y0+2k(∆(x1 ·y0)+∆(x0 ·y1)) ∈ [0; 22k+2k(∆(x0 ·y1)+
∆(x1 · y0))). Using this, we can bound the error ∆(x · y) of
the recursive algorithm in fig. 3 as follows

0 ≤ ∆(x · y) < 22k0 + 2k0(∆(z1) + ∆(z2)) <

22k0 + 2k0(22k12 + 22k13 + 2k12(∆(z22) + ∆(z23))+

2k13(∆(z32) + ∆(z33))) < · · · = ∆{kij} (21)

Here ∆{kij} is the upper bound on the error ∆(x · y)
which depends on every kij . This means that when we use

x̂ · y = 22k0z1 + 2k0(z2 + z3)

z1 = 22k11z11 +
z12 + 2k11(z13 −

z11 − z12)

z2 = 22k12z21+
2k12(z22 + z23)

z3 = 22k13z31+
2k13(z32 + z33)

z11 z12 z13 z21 z22 z23 z31 z32 z33

Fig. 3. MSB multiplication

the algorithm in fig. 3 in formula (17), l̂1 will be computed
with an additional error of

⌈
∆{kij}

2n

⌉
. Thus the total error is

upper bounded by

e(l̂1) < 3 +

⌈
∆{kij}

2n

⌉
(22)

C. Optimizing FPGA resources for integer multipliers

Two out of three multipliers in figure 1 are multiplications
by constants (m and q). This fact can be used to perform
extra optimizations at the hardware level. Since our target
hardware for this work is FPGA, we now present FPGA
specific analysis. The technique can be replicated for other
hardware with a different set of constraints.

The main basic logic blocks of FPGAs are DSP blocks and
Look-Up Tables (LUTs). A straightforward way to implement
integer multiplication at the leaves of the Karatsuba tree is by
using DSP blocks. This is the most efficient way to multiply
two unknown numbers. However, because the constants are
known in advance, the cost can be reduced by implementing
some of the multiplications using LUTs instead.

The exact resource optimization depends on the capacities
of DSP and LUT of a specific FPGA. The general cost function
for multiplication by a constant A can be defined recursively
as:

Ct(A, {kij}) =
1 LUTs(A) > t and bits(A) ≤ DSP size,

LUTs(A)/t LUTs(A) ≤ t,

Ct(A0, {kij}) + Ct(A1, {kij}) + Ct(A2, {kij}) else
(23)

Here A0, A1, A2 are the three Karatsuba terms which de-
pend on kij and on the Karatsuba equation that is used (either
(18), (19) or (20)). LUTs(A) is a function that returns the
number of LUTs required to implement the multiplication by
a constant A. bits(A) returns the bit-length of A. DSP size
is the maximum bit-length of the input to a DSP block. This
recursive cost function is linear in the number of LUTs and
has a hard threshold t that can be interpreted as the number
of LUTs, above which it’s better to use a DSP block instead.
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The Karatsuba tree enables some flexibility in the choice
of {kij}. Once we have this search space and a cost to be
minimized, we can define and solve the optimization problems
for q (the LSB multiplier on fig. 2) and m (the MSB multiplier
on fig. 3):

minimize
{kij}

Ct(q, {kij})

subject to n+ σl ≤ 2ki + ki−1 + ki−2 + · · ·+ k0

minimize
{kij}

Ct(m, {kij})

subject to n− σm ≥ 2ki + ki−1 + ki−2 + · · ·+ k0

The problems are solved by iterating on the splitting options
{kij} using dynamic programming. In the end, each product
with cost 1 is implemented as a DSP block and if the cost is
lower, LUTs are used. The threshold t is chosen such that the
total number of DSP blocks is equal to the available amount.
σm is chosen such that the error bound ∆{kij} in (21) stays
small enough. σl is found using (9) after the resulting error
bound is calculated from (22). See appendix A for further
details concerning LUTs and a demonstration of the technique
for a specific FPGA.

III. ELLIPTIC CURVE ADDITION: COMPLETE FORMULAE

Many elliptic curve addition formulae are not complete,
meaning they break for certain special cases, like adding two
equal points or adding a point at infinity. To avoid handling
these exceptions, we work with complete formulae that were
originally introduced by [24]. Despite them being available for
a decade or so now, they are not employed in practice since
they have a larger number of modular operations as compared
to other EC addition formulae in different coordinate systems
[25].

Unfortunately, many of the known EC addition formulae in
Jacobian or affine coordinates that are used in practice lead
to high latency. In this paper, we show that the complete
formulae [24] in homogeneous projective coordinates lead
to a low-latency implementation in hardware. We follow the
presentation of the formulae discussed in [26] (algorithm 7) for
prime order curves. Although our techniques can be applied
to many different curves, in this paper we consider a Barreto-
Lynn-Scott type pairing-friendly curve BLS12-377 [27]–[29].
The equation for G1 of BLS12-377 in Weierstrass form is
given by

y2 = x3 + 1 (24)

where (x, y) are the affine coordinates of a point. The base
field Fq is given by a 377-bit prime q1 and the scalar field Fp

is given by a 253-bit prime p. Exact values of p and q can be
found in [27].

We rewrite (24) in homogeneous projective coordinates by
substituting (x, y) → (X/Z, Y/Z) and the curve takes the
form

Y 2Z = X3 + Z3 (25)

1meaning that every number and every equation in this section is modulo
q

The complete formulae for adding points P : (X1, Y1, Z1) and
Q : (X2, Y2, Z2) are given by

X3 = (X1Y2 +X2Y1)(Y1Y2 − 3Z1Z2)

− 3(Y1Z2 + Y2Z1)(X1Z2 +X2Z1)

Y3 = (Y1Y2 + 3Z1Z2)(Y1Y2 − 3Z1Z2)

+ 9X1X2(X1Z2 +X2Z1)

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + 3Z1Z2)

+ 3X1X2(X1Y2 +X2Y1) (26)

Naively, formulae (26) appear to require 15 modular multi-
plications, 13 additions, and 4 multiplications by 3. Figure
4 shows how the same computation can be done using just
12 multiplications, 17 additions, and 3 multiplications by 3.
Due to its repetitive nature and homogeneity in the degree
of coordinates, these formulae are highly parallelizable and
hardware-friendly.

The circuit in fig. 4 is implemented in a pipeline and
optimized for low latency. It takes in as inputs points P and
Q and outputs coordinates (X3, Y3, Z3) of the result P +Q.

IV. MULTI-SCALAR MULTIPLICATION (MSM)

This section is independent of the specific curve or field in
question. Henceforth, we will provide a general description.
Let G be an elliptic curve group of prime order p. Let G =
[G0, G1, . . . , GN−1] ∈ GN and x = [x0, x1, . . . , xN−1] ∈ FN

p

be N -element vectors of elliptic curve points and scalars,
respectively. As mentioned in the introduction, MSM is a
problem of computing

MSM(x,G) =

N−1∑
n=0

xn ·Gn =

x0 ·G0 + x1 ·G1 + · · ·+ cN−1 ·GN−1 (27)

Note that plus signs here refer to the elliptic curve addition.
The scalar multiplication xn ·Gn refers to adding Gn to itself
xn times. Denote by

b = ⌈log2 p⌉ (28)

the maximum number of bits in x.
As we discussed in the introduction §I, state-of-the-art

algorithm to solve the MSM problem (27) is known as the
Pippenger algorithm [1], and its variant that is widely used in
the ZK space is called the bucket method [30] (see ”Overlap in
the Pippenger approach” in section 4). We describe it and our
proposed improvements in the following section. There, we
treat EC additions (PADD) and doublings (PDBL) as atomic
operations, and considering our usage of complete formulae
(26), we assume the costs of PADD and PDBL to be equal.

A. The bucket method

Let us partition each xn from equation (27) into K parts
such that each partition consists of c bits and K = ⌈ bc⌉.
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M

M

M

A

A

A

A

A

A

X1

M

M

M

A

A

A

(2A)

(2A)

  x3

S

S

S

—

—

—

  x3

S

A

—

(A)

(A)

  x3

M

M

M

M

M

M

(M+2A)

S

A

A

—

(M+2A)Z1 X2Y1 Y2 Z2

X3

Y3

Z3

Fig. 4. Low latency elliptic curve addition module. M,A/S refer to Multiplier and Adder/Subtractor, respectively. Triangles are multipliers by 3 and rectangles
show the delays that occur due to sampling of intermediate values.

Denoting by x
[k]
n the kth partition of xn, equation (27) can

be rewritten as

G =

N−1∑
n=0

K−1∑
k=0

2kcx[k]
n Gn =

K−1∑
k=0

2kc
N−1∑
n=0

x[k]
n Gn =

K−1∑
k=0

2kcG[k]

(29)

where G[k] =
∑N−1

n=0 x
[k]
n Gn is the result of computing multi-

scalar-multiplication with c-bit scalars {x[k]
n }. Clearly, if we

computed G[k] for each k, then the last step in (29) can be
completed using Horner’s rule as

G = 2c(...(2c(2cG[K−1]+G[K−2])+G[K−3])...)+G[0] (30)

Thus we reduced the MSM problem to computing the sums
G[k]. The total number of operations required in (30) can be
broken down as follows:

1) Computing K partial sum G[k]

2) K − 1 PADDs attributed to the summations
3) c(K − 1) PDBLs attributed to the 2c multiplications

We now proceed to describe an efficient algorithm to cal-
culate G[k]. The algorithm involves iterating over Gn, placing
each one in a ”bucket” corresponding to its coefficient x

[k]
n .

Clearly, the number of non-zero buckets is 2c − 1. Per step,
each bucket l ∈ [1, 2c − 1] acts as an accumulator, adding
an assigned Gn to its current sum B

[k]
l . Buckets initiate at

zero. For each k, the number of PADDs to compute all B[k]
l

is N + 1− 2c. The partial sum G[k] is calculated as

G[k] =

N−1∑
n=0

x[k]
n ·Gn =

2c−1∑
l=1

l ·B[k]
l (31)

which can be computed efficiently as the sum of the following
recursive series

S
[k]
l =

l∑
i=1

B
[k]
i = S

[k]
l−1 +B

[k]
l (32)
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thus

G[k] =

2c−1∑
l=1

S
[k]
l (33)

We present the bucket method in algorithm 1. For the con-
venience of presentation, we partition the bucket method
algorithm into three distinct parts, referred to as Loop 1, 2,
and 3 hereafter.

Algorithm 1 Basic bucket method

1: Set B[k]
l = 0, ∀k ∈ [0,K − 1], ∀l ∈ [1, 2c − 1]

2: ▷ The 1st loop
3: for n = 0, 1, . . . , N − 1 do ▷ N inputs
4: for k = 0, 1, . . . ,K − 1 do ▷ K partial sums
5: Set l = x

[k]
n ▷ Continue (skip) if l = 0

6: B
[k]
l ← B

[k]
l +Gn ▷ Partial bucket sums B

[k]
l

7: end for
8: end for
9:

10: Set S[k] = 0, G[k] = 0 ▷ The 2nd loop
11: for l = 2c − 1, 2c − 2, . . . , 1 do ▷ Loop over buckets
12: for k = 0, 1, . . . ,K − 1 do ▷ K partial sums
13: S[k] ← S[k] +B

[k]
l

14: G[k] ← G[k] + S[k] ▷ Partial sums G[k]

15: end for
16: end for
17:
18: Set G = 0 ▷ The 3rd loop
19: for k = K − 1,K − 2, . . . , 0 do ▷ K partial sums
20: g ← 2cG+G[k] ▷ Horner’s rule
21: end for

Cost of algorithm 1: One way to define the cost of 1 is to
count the number of required EC operations. In figure 5 we
plot this number against the parameter c and show the optimal
values of c for various input sizes N .

10 11 12 13 14 15 16 17 18
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0.4

0.6

0.8

1.0

1.2

Nu
m
be

r o
f o

pe
ra
tio

ns

1e7 f(c)= N+2c
c ⋅b+b

N=215

N=216

N=217

N=218

N=21⋅

Fig. 5. The number of EC operations vs c, assuming b = 253 bits for various
input sizes N . Dots represent the values of c that minimize f(c).

A different way to define the cost of an algorithm is the
expected span in clock cycles it requires to run once from

start to completion. We’ll use this cost function throughout
the text. To that end, consider a fully pipelined PADD/PDBL
kernel with a total delay of d clock cycles. This means that
the kernel handles inputs for one EC operation every clock
cycle and the result is returned after d clock cycles.

Loop 1 runs (N − 2c)K times with the delay of 1 between
two consecutive iterations. The cost of Loop 1 is thus (N −
2c)K = (N−2c)b

c . In Loop 2, we need to perform 2c+1K
EC operations, each taking d clock cycles and 2K of them
can be performed in parallel at a time (assuming 2K is less
than d which is true in practice). The cost of Loop 2 is thus
2c+1Kd

2K = d2c. Loop 3 contains (K − 1)(c + 1) serial EC
operations, taking around db clock cycles. Summing the costs
of all loops provides the following cost function

f(c) = (N − 2c)bc−1 + d(2c + b) (34)

B. An improvement to Loop 2 - segmentation of buckets

While the first loop in algorithm 1 can be parallelized, the
second loop consists of K highly sequential computations, and
only 2K parallel additions can be done at a time. To solve
this issue, we break the second loop into M segments. Thus,
instead of computing (31) we compute a segmented version
of the buckets

G[k] =
(
1 ·B[k]

1 + 2 ·B[k]
2 + · · ·+ U ·B[k]

U

)
+

(
(U + 1) ·B[k]

U+1 + (U + 2) ·B[k]
U+2 + · · ·+ 2U ·B[k]

2U

)
+ . . .

+

(
(U(M − 1) + 1) ·B[k]

U(M−1)+1+

(U(M − 1) + 2) ·B[k]
U(M−1)+2 + · · ·+ (2c − 1) ·B[k]

2c−1

)
(35)

where U = ⌈ 2
c−1
M ⌉. We compute each of M segment sums

separately, which can be done in parallel using the algorithm
2. Then the results are aggregated to obtain G[k].

Trade-offs: In the basic version 1, the computation of each
G[k] includes 2 · (2c − 2) PADD. At every moment in time,
2 of these can be performed in parallel. In the segmented
version, 2 · (2c − 2 −M) PADD are performed; 2M can be
performed in parallel, and we suppose that M is large enough
to fully occupy the pipelined adder. log2(U) more PDBL2 and
3M PADD need to be performed to get the final result G[k].
Thus, the segmented version requires K(M + log2(U)) more
EC operations while making most of the second loop more
parallelizable. We get the total cost in clock cycles as

f(c) = (N + 2c)bc−1 + d (2M +K + b) + 2K(2c − 2−M)
(36)

C. Simulating the bucket method

In this section, we discuss the performance of the segmented
bucket method presented in algorithm 2. As mentioned above,

2Here we assume that U is a power of two so that computing the scalar
multiplication by U only takes log2(U) PDBL.
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Algorithm 2 Buckets segmentation for the 2nd loop
1: ▷ The 2nd loop
2: Set S[k,m] = 0, G[k,m] = 0 ▷ 2.0
3: Def U ≡ 2c

M ▷ Assume that M is a power of two
4: for u = 1, 2 . . . , U do ▷ U segment buckets
5: for m = 0, 1, . . . ,M − 1 do ▷ M segments
6: Set l = U(M −m)− u ▷ Skip if l = 0
7: for k = 0, 1, . . . ,K − 1 do ▷ K partial sums
8: G[k,m] ← G[k,m] + S[k,m]

9: S[k,m] ← S[k,m] +B
[k]
l

10: end for
11: end for
12: end for
13:
14: Set S[k] = 0 ▷ 2.1
15: Def S[k,−1] ≡ 0
16: for m = 0, 1, . . . ,M − 2 do ▷ M − 1 segment
17: for k = 0, 1, . . . ,K − 1 do ▷ K partial sums
18: S[k,m] ← S[k,m] + S[k,m−1]

19: S[k] ← S[k] + S[k,m]

20: end for
21: end for
22:
23: Def v ≡ log2 U ▷ 2.2
24: for v cycles do ▷ M segments
25: for k = 0, 1, . . . ,K − 1 do ▷ K partial sums
26: S[k] ← S[k] + S[k]

27: end for
28: end for
29:
30: Set G[k] = 0 ▷ 2.3
31: for m = 0, 1, . . . ,M − 1 do ▷ M segments
32: for k = 0, 1, . . . ,K − 1 do ▷ K partial sums
33: G[k] ← G[k] +G[k,m]

34: end for
35: end for
36:
37: ▷ 2.4
38: for k = 0, 1, . . . ,K − 1 do ▷ Loop over K partial sums
39: G[k] ← G[k] + S[k]

40: end for

we work with the BLS12-377 curve [27], [28]. So the scalars
xi ∈ Fp in (27) are 253 bit integers, while the base field
elements Gi ∈ Fq are 377 bit integers.

We assume that both scalars and points are variable inputs.
In fig. 6, we present a high level design that executes the
algorithm 2 in three phases

1) Bucket accumulation
2) Segments sum
3) Final accumulation

For the simulations in this section, we choose the number of
segments in Loop 2 to be M = 8. The parameter c is varied.
In our example in fig. 6, c = 9 so the design includes 29
bucket accumulators that are divided into 8 segments, each of
them enclosing 64 buckets.

Final
Accumulator

FIFO 1 & 2

29 Bucket
accumulators 

Scheduler

EC 
Adder

Input

2 x 377b 
1 x 253 b

3 x 377 b

Output

Output from EC 
adder

8 x 64 
buckets

Fig. 6. Bucket method module for c = 9.

The EC adder module is a hardware unit that executes the
addition of projective coordinates as described in §III. For
the purposes of this section the EC adder module is a black
box that works for d clock cycles before returning the result.
However, the EC adder can receive a new task every clock.

Once the input enters the bucket accumulator module (the
green box in fig. 6), the point is distributed to the buckets,
defined by its scalar. If the bucket is empty then the input is
written to it. If the bucket already contains a point then the
accumulator sends an addition task to the EC adder with the
current value and the new input. The result is sent back to the
appropriate bucket. The bucket accumulator handles the output
from the EC adder in higher priority than new input data. In
Loop 2, the points in each of the segments are scheduled to
be summed by the EC adder module. Thus, the output of the
EC adder is sent back to the segments until all the data in the
segments is exhausted, following which the data is sent to the
final accumulator at the end of Loop 2. The final accumulator
accumulates the results of all the segmented sums and uses
the EC adder to perform Loop 3. While the final accumulator
functions, the bucket accumulators are free to handle the next
task.

Our operating design for the EC adder discussed in §III
gives a delay of d = 115 clocks. Using a simulator written
in Python and our design for input sizes N = 215, 217 and
find that the optimum run time is obtained for c = 12, 14
respectively in tight agreement with our theoretical prediction
plotted in fig 5. Our simulated results for N = 215 and N =
217 are plotted in fig 7.

Furthermore, it is possible to squeeze in more than one EC
adder in our design. To get a sense of how efficient that would
be, we plot the rate of MSM computation as a function of c
in fig. 8. For optimal c, we see that the time for computing an
MSM almost halves with the introduction of the second EC
adder. Our simulations also indicate that the idle rate for two
EC adders stays insignificant (see fig 9) and can be neglected.
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Fig. 7. We have plotted the bucket module run to finish vs c for a input
vector of size N = 215, N = 217 and we find that the optimal run time is
obtained when c = 12 and c = 14 respectively.

V. IMPLEMENTATION

In our current implementation, we use the design depicted
in fig. 6. We choose parameters c = 12,M = 8, where M
is the number of segments from algorithm 2. We use a single
EC adder module, its delay is equal to 115 clock cycles. The
clock speed is set to 125MHz.

To compare our implementation with the state-of-the-art
GPU implementation, Sppark [18], we measure the delay
and peak power draw of both. For our implementation we
used Xilinx Alveo U55C, and for Sppark we used the Nvidia
RTX3090 family, chosen as they outperformed all other GPU
cards we tested: A100, V100, RTX5000, RTX6000.

Our benchmark on the two systems is done by taking two
equally-sized vectors of scalars and EC points as inputs. It
is worth noting that one likely scenario is for the EC points
vectors to be precomputed in memory which reduces signifi-
cantly the total running time3. Additionally we compute energy
consumption per MSM which measures the monetary costs of
computation. The performance is measured on MSMs of sizes
215 to 220. The results, which agree with our simulations (see
subsection IV-C), are summarized in table III.

As can be seen, our implementation is significantly better
in terms of the peak power consumption and competitive in
terms of delay, especially for smaller sizes. Also note that the
computation time for Sppark grows slower than one might
expect. This is due to the under-utilization of resources by the
GPU for smaller-sized MSMs, as evident from the growing
power consumption.

For future work we suggest three directions for improving
our implementation:

1) Increase clock frequency: For our proof of concept we
used clock frequency of 125MHz. With some engineer-
ing effort we believe it can be increased up to 500MHz.
This immediately results in 4x speed improvement.

3Measuring running time at the host includes time to write to the hardware.
Since the hardware part runs fast, we are sensitive to how the host-hardware
interface is implemented and how much data goes through.

2) Add EC adders: As seen on figures 8 and 9, adding one
more EC adder, doubles the performance.

3) Further algorithmic performance improvements: See
section VI.

VI. IMPROVEMENT PROPOSALS

In this section, we present potential improvements we have
not yet implemented in hardware.

A. Signed scalars

Here we describe a method that utilizes the cheap negation
in elliptic curve groups. In affine coordinates P : (x, y) we
can write

P → −P ≡ (x, y)→ (x,−y) (37)

Starting from the definition of the basic bucket method (29)
we note that x[k]

n ∈ [1, 2c − 1]. To make use of the property
(37), we need negative scalars, so we aim to shift the scalar
set: x[k]

n ∈ [−2c−1, 2c−1 − 1]. A simple way to do this is to
parse through x

[0]
n , x

[1]
n , . . . , x

[K−1]
n and, if x

[k]
n is larger than

2c−1 − 1, subtract 2c and increment the k + 1’st scalar by 1.
If the highest K − 1’st digit is greater than 2c−1 then there

is a potential overflow. In the case of BLS12-377 [27] 253-
bit scalars will have some extra bits to offset the overflow
provided c does not divide 253 (so, c ̸= 11 and c ̸= 23). The
algorithm for shifting between the representations is given in
algorithm 3 and can be run on the fly in Loop 1 of algorithm
1.

Algorithm 3 Conversion of c-bit scalars to signed scalars

1: input: x[k]
n ∈ [0, 2c − 1] ∀k ∈ 0, 1, . . .K − 1

2: for k = 0, 1, . . .K − 1 do
3: if x[k]

n ≥ 2c−1 then
4: x̃

[k]
n ← x

[k]
n − 2c ▷ Subtract 2c

5: x̃
[k+1]
n ← 1 + x

[k+1]
n ▷ Add 1 to the next scalar

6: end if
7: end for
8: return x̃

[k]
n ∈ [−2c−1, 2c−1 − 1] ∀k ∈ 0, 1, . . .K − 1

In Loop 1, we include a check for the sign of the scalar,
which leads to a decrease in the number of buckets: from
2c to 2c−1. The rest of the algorithm can proceed as before
including the segmentation improvement 2. The general idea
is illustrated in algorithm 4. The new cost is

f(c) =
(
N + 2c−1

) b
c
+d

(
log2

(⌈
2c−1 − 1

M

⌉)
+ 2M +K

)
(38)

This allows a free (memory-wise) increase c → c + 1,
decreasing the cost of the Loop 1 by a factor of c+1

c .
Finally, we mention that negation is just one example of the

so-called ”endomorphisms” which can be cheaply computed
on curves of the BLS family. For an overview of other such
endomorphisms and difficulties in applying them to the bucket
method, see [31].
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Fig. 8. Execution times for the sizes N = 215 and N = 217 respectively for various c. We note that the rate almost doubles when using 2 EC adders.
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Fig. 9. Idle rates of EC adders for N = 215 and N = 217 respectively for various c. We note that the idle rate increases with the increase in the number
of EC adders

B. Batched bucket method
This is a proposed improvement to the first loop of algo-

rithm 1, which also requires a change in the way we do EC
addition. Namely, we switch to representing points in affine
coordinates. Since the affine addition includes field inversion,
we first discuss how to offset the high computational costs of
inversions using the so-called Montgomery trick.

1) Montgomery trick: Suppose that we want to invert
m > 1 numbers: a1, a2, . . . , am modulo q. We can avoid
performing many computationally costly inversions by using
the so-called Montgomery trick. It is summarized in algorithm
5. It is easy to see that algorithm 5 performs 3(m − 1)
multiplications and 1 inversion instead of m inversions. Since

in most cases modular multiplication is more than 3 times
faster than inversion, the Montgomery trick is a very useful
maneuver, provided that several field elements can be inverted
”in parallel”. For instance, it does not work if the input to
one inversion depends on the other inversion being performed
first.

The classical Montgomery trick as defined above is serial.
It is, however, possible to parallelize the Montgomery trick,
as shown in algorithm 6.

Analyzing this algorithm, we see that the first loop requires
L(R − 1) multiplications. The inner Montgomery trick used
to invert the final partial product in each batch takes 3(L− 1)
multiplications. Finally, the second loop takes 2L(R − 1)
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Implementation Hardware Length
of MSM

Time,
ms.

Peak power,
watts

Energy per
MSM, joules

This work U55C

215 9.8 18.4 0.174

216 17.6 29.1 0.414

217 35.9 33.6 0.976

218 68.8 34.8 2.15

219 136.6 34.8 4.50

220 273.0 34.9 9.23

Sppark [18] RTX 3090

215 9.1 173 1.44

216 10.6 210 2.15

217 14.6 287 3.34

218 21.4 282 5.39

219 33.7 384 8.99

220 53.9 465 14.5

TABLE III
THE COMPARISON OF OUR FPGA IMPLEMENTATION AND SPPARK

Algorithm 4 The bucket method with signed scalars

1: Set B[k]
m = 0, ∀k ∈ [0,K − 1], ∀m ∈ [1, 2c−1]

2: ▷ The 1st loop
3: for n = 0, 1, . . . , N − 1 do ▷ N inputs
4: for k = 0, 1, . . . ,K − 1 do ▷ K partial sums
5: Set l = x

[k]
n ▷ Convert to signed scalars

6: if l ≥ 0 then
7: B

[k]
l ← B

[k]
l +Gn ▷ Partial bucket sums B

[k]
l

8: else
9: B

[k]
|l| ← B

[k]
|l| −Gn ▷ Partial bucket sums B

[k]
|l|

10: end if
11: end for
12: end for
13:
14: Set S[k] = 0, G[k] = 0 ▷ The 2nd loop
15: for l = 2c−1, 2c−1 − 1, . . . , 1 do ▷ Loop over 2c−1

buckets
16: for k = 0, 1, . . . ,K − 1 do ▷ K partial sums
17: S[k] ← S[k] +B

[k]
l

18: G[k] ← G[k] + S[k] ▷ partial sums G[k]

19: end for
20: end for
21:
22: Set G = 0 ▷ The 3rd loop
23: for k = K − 1,K − 2, . . . , 0 do ▷ K partial sums
24: G← 2cG+G[k] ▷ Horner’s rule
25: end for

multiplications. In total, we need 3(LR − 1) = 3(m − 1)
multiplications, which is the same number as for the regular
Montgomery trick. Thus, we parallelized the Montgomery
trick with no additional computational cost.

The cost of the parallelized version is additional memory.
Note that the lists ti, as well as data for the inner Montgomery
trick, need to be stored. This amounts to storing m+ L field
elements, L more than the non-parallel version (algorithm 5).

In general, one can recursively execute the parallel Mont-
gomery trick with more than one layer, in a tree-like structure.

Algorithm 5 The Montgomery Trick
1: input: ai,∀i = 1, 2, . . .m
2: t← [a1, ▷ Compute partial products
3: a1 · a2 (mod q),
4: a1 · a2 · a3 (mod q),

5:
...

6: a1 · a2 · a3 . . . am−2 (mod q),
7: a1 · a2 · a3 . . . am−2 · am−1 (mod q)]
8: A← (t[m− 2] · am)−1 (mod q) ▷ List t is 0-based
9: for j ∈ {m,m− 1, . . . , 3, 2} do

10: a−1
j ← A · t[j − 2] (mod q)

11: A← A · aj (mod q)
12: end for
13: a−1

1 ← A.

Algorithm 6 Parallelized Montgomery Trick
1: input: ai,∀i = 1, 2, . . .m
2: for i ∈ {0, 1, . . . , L− 1} do:
3: ti ← [aiR+1, ▷ Parallel partial products in batches
4: aiR+1 · aiR+2 (mod q),

5:
...

6: aiR+1 · aiR+2 . . . a(i+1)R−2 (mod q),
7: aiR+1·aiR+2 . . . a(i+1)R−2·a(i+1)R−1 (mod q)]
8: Ai ← ti[R− 2] · a(i+1)R (mod q)
9: end for

10:
11: ▷ Invert {Ai} in-place using regular Montgomery trick
12: A0, A1, . . . AL−1 ← Montgomery(A0, A1, . . . AL−1)
13: for i ∈ {0, 1, . . . , L− 1} do:
14: for j ∈ {R,R− 1, . . . , 3, 2} do:
15: a−1

iR+j ← Ai · ti[j − 2] (mod q)
16: Ai ← Ai · aiR+j (mod q)
17: end for
18: a−1

iR+1 ← Ai

19: end for
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In any case, the number of multiplications remains the same
and the memory footprint in the extreme case of a binary tree
will be 2m, or 2 times larger than for the non-parallel version.

To use the Montgomery trick, we will abstract away the
details of it’s implementation. Instead, we’ll think of it as
a stack of field elements that, after being populated, can
return the inverses of these elements in the reverse order. In
pseudocode, we denote by .push(a) a method that pushes a
into the stack; this corresponds to the loop at lines 2-9 of
algorithm 6. Method .invert() computes the inner Montgomery
trick at line 12. Finally, .iter() successively iterates over the
inverses of inputs in reverse order and stops when the data
structure is empty; this happens at lines 13-19 in 6.

2) Batched bucket method: We adopt the notation from the
basic bucket method discussed in algorithm 1. The buckets
B

[k]
l now store a single elliptic curve point in affine coordi-

nates. We assume that the buckets are also equipped with a
method .pop() that returns the contents and empties the bucket.
We also maintain a stack t of capacity tmax that will hold pairs
of affine EC points and bucket indices. When the stack reaches
its maximum capacity, the inner Montgomery trick is called.
The stack is initialized empty and has standard methods like
.len(), .push(), and .pop(). By M we denote the Montgomery
trick stack discussed earlier.

Algorithm 7 Batched version of the Loop 1 of the bucket
method

1: for n = 0, 1, 2, . . . , N − 1 do ▷ Receive n-th scalar
2: for k = 0, 1, 2, . . .K − 1 do ▷ Working with G[k]

3: l← xn (mod 2c) ▷ Bucket index
4:
5: if l > 0 then ▷ Ignore bucket 0
6: ▷ Batch invert only when stack t is full
7: if length(t) = tmax then
8: M.invert() ▷ Inner Montgomery
9: for d in M.iter() do

10: (A,B, k̂, l̂)← t.pop()
11: B

[k̂]

l̂
← ECadd(A,B, d) ▷ Algorithm 8

12: end for
13: end if
14:
15: if B[k]

l = NULL then ▷ Empty bucket
16: B

[k]
l ← Gn ▷ Write Gn into the bucket

17: else ▷ Non-empty bucket
18: G← B

[k]
l .pop() ▷ Pop a point

19: M.push(xG − xGn)
20: t.push((G,Gn, k, l))
21: end if
22: end if
23:
24: xn ← ⌊xn

2c ⌋ ▷ Removing c last bits from xn

25: end for
26: end for

The EC addition referred to in line 11 of algorithm 7 is
done using the standard affine formulae. The only difference
is that the denominators are precomputed (see algorithm 8).

Algorithm 8 Affine addition of elliptic curve points
1: input: G1, G2, d
2: (x1, y1)← G1 ▷ Coordinates of the point G1

3: (x2, y2)← G2 ▷ Coordinates of the point G2

4: λ← (y1 − y2) · d (mod q)
5: x3 ← λ2 − x1 − x2 (mod q)
6: y3 ← λ(x1 − x3)− y1 (mod q)
7: return (x3, y3)
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APPENDIX
OPTIMIZATIONS IN MODULAR MULTIPLICATION FOR U55C

Here, we focus on optimizations for the hardware of our
choice — Xilinx U55C FPGA.

Recall that FPGAs contain DSP blocks that can multiply 18-
bit and 27-bit numbers. Using the Karatsuba tree, a 377-bit by
377-bit multiplication can be done with 162 DSP blocks.

As mentioned in section III, each EC adder is composed
of 12 modular multipliers which are in turn composed of
3 377-bit by 377-bit integer multipliers. Implementing this
naively, we will need 5832 DSP blocks for one EC adder or
11664 for two. However, Our FPGA barely have enough DSP
blocks even for one EC adder. Therefore, replacing some of
the DSP blocks with LUTs is necessary for building a working
pipelined EC adder.

As an example of multiplying by constant, consider A =
10001110000, then A ·B is:

A ·B = B ≪ 10 +B ≪ 6 +B ≪ 5 +B ≪ 4

This can be improved using the Canonical Signed Digit
(CSD) representation. The constant A can be represented
as a combination of a positive part and a negative part:
A = 10010000000− 10000.

Now the computation contains only 3 terms:

A ·B = B ≪ 10 +B ≪ 7−B ≪ 5

The average fraction of non-zero bits in the CSD repre-
sentation is one-third as compared to one-half in the binary

representation. The costs of addition and subtraction are the
same LUT-wise and therefore we prefer the CSD representa-
tion.

All of the above leads to the conclusion that the DSP blocks
that should be replaced are the ones performing multiplication
by constants with low Hamming weight in the CSD repre-
sentation. The basic LUT can implement any 5 → 2 logical
function. Therefore addition/subtraction combinations of 2 or
3 bits are implemented with a single LUT. When we have 4
or 5 bits (this can happen only when the computation includes
at least 4 or 5 terms), 2 LUTs are required. This logic can be
extended to operations with larger bit sizes. This implies that
the cost in LUTs of a multiplication depends not only on the
Hamming weight of the constant but also on the non-zero bit
distribution. Here are some examples. If we take a variable B
with a bit-size of 10 bits, and different constants A:

1. A = 10000000100 translates into B ≪ 10+B ≪ 2. The
cost is 2 LUTs because there are 2 terms with an overlap of
2 . The LUTs are for computing b0 + b8 and b1 + b9 as seen
in fig. 10 (The carry is taken care of by a Carry-8 module).

2. A = 10001000000 translates into B ≪ 10+B ≪ 6. The
cost is 6 LUTs because there are 2 terms with an overlap of
6 as shown in fig. 11.

b9b8b7b6b5b4b3b2b1b0

+b9b8b7b6b5b4b3b2b1b0

Fig. 10. Addition with an overlap of 2.

b9b8b7b6b5b4b3b2b1b0

+b9b8b7b6b5b4b3b2b1b0

Fig. 11. Addition with an overlap of 6.

The same Karatsuba tree that we use for 377-bit numbers
can actually be used for numbers up to 416 bits. This gives
us some flexibility in the choice of {kij}. After computing
optimal values of {kij} by solving the optimization problems
that are defined in II-C, we obtain the results depicted in tables
IV and V.

MSB multiplication by m # of DSP # of LUT

No optimizations 162 9.5K
No optimizations, DSP replaced by LUTs 35 19.5K
Optimized kij , no MSB optimization 35 16K
Both optimizations 35 13.5K

TABLE IV
THE RESULTS OF OPTIMIZATIONS IN FIG. 3 AND IN II-C

After implementing all optimizations, we have that
∆{kij} ≈ 1.994 · 2377. Refining error bounds using specific

https://github.com/bsdevlin/fpga_snark_prover
https://github.com/bsdevlin/fpga_snark_prover
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LSB multiplication by q # of DSP # of LUT

No optimizations 162 9.5K
No optimizations, DSP replaced by LUTs 35 19K
Optimized kij , no LSB optimization 35 15.5K
Both optimizations 35 10K

TABLE V
THE RESULTS OF OPTIMIZATIONS IN FIG. 2 AND IN II-C

values of m and q, the maximal error e(l̂1) from equation (22)
can be shown to be 4. This means that the only modification
that needs to be applied to the algorithm in fig. 1 — potentially
subtracting up to 4q (and not 3q) in the last step.
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