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Abstract
With the advent of secure function evaluation, distrustful par-
ties can jointly compute on their private inputs without dis-
closing anything besides the results. Yao’s garbled circuit
protocols have become an integral part of secure computation
thanks to considerable efforts made to make it feasible, practi-
cal, and more efficient. These efforts have resulted in multiple
optimizations on this primitive to enhance its performance by
orders of magnitude over the last years. Such improvement
targets have been defined to primarily reduce the cost of gar-
bling in terms of computation and communication required
for the creation, transfer, and evaluation of the garbled tables.
The advancement in protocols has also led to the develop-
ment of general-purpose compilers and tools made available
to academia and industry. For decades, the security of pro-
tocols offered in those tools has been assured with regard to
sound proofs and the promise that during the computation, no
information on parties’ input would be leaking.

In a parallel effort, however, side-channel analysis has
gained momentum in connection with the real-world imple-
mentation of cryptographic primitives. Timing side-channel
attacks have proven themselves effective in retrieving se-
crets from implementations, even through remote access
to them. Nevertheless, the vulnerability of garbled circuit
constructions, in particular, the optimized one to timing at-
tacks, has, surprisingly, never been discussed in the literature.
This paper introduces Goblin, the first timing attack against
two commonly employed optimized garbled circuit construc-
tions, namely free-XOR and half-gates. Goblin is a machine
learning-assisted, non-profiling, single-trace timing attack,
which successfully recovers the garbler’s input during the
computation. As the first step, Goblin targets the TinyGarble
family and its core garbling tool, JustGarble. In this regard,
Goblin hopefully paves the way for further research.

Keywords. Secure Function Evaluation; Timing Side-
channel Analysis; Clustering; Non-profiling attack; Single-
trace attack.

1 Introduction

Secure function evaluation (SFE) has had an immense im-
pact on the field of cryptography. Practical implementations
of general SFE have been proposed and flourished after the
introduction of garbled circuits (GCs) by Yao [89]. It has
found several applications including secure multi-party com-
putation [12, 28, 29, 56, 89], functional encryption [32, 33, 76],
key-dependent message security [6, 7], homomorphic encryp-
tion [31, 72], and recently, quantum circuits [15]. The key
premise of GCs is that it allows two parties to evaluate any
(known) function on their respective inputs x and y without
violating their privacy. In addition to real-world applications
being foreseen for GCs traditionally (e.g., credit evaluation
function, background- and medical history checking, privacy-
preserving database querying, etc. [53, 77]), nowadays GCs
have found applications in privacy-preserving genome analy-
sis [46], email spam filtering [40], image processing [17] and
machine learning and statistical analysis [20, 30, 66, 70], just
to name a few. To become practical and feasible solutions,
GCs have undergone dramatic improvements and optimiza-
tion to reduce the computation and communication costs (pro-
portional to the size of the circuit). Thanks to the increase in
hardware performance and the improvement in GC algorithms
themselves, one of the main bottlenecks for these protocols
has become the network bandwidth needed to transmit the
garbled gates [11, 90].

To face these obstacles preventing further adoption of GCs
in real-world systems, multiple optimization techniques have
been developed, which aim to reduce communication and
computation costs. Here we focus on two of the most acknowl-
edged methods, namely free-XOR [53] and half-gates [90].
Similar to other optimization mechanisms, the main argument
put forward by these techniques is that security is not compro-
mised for the sake of being efficient. The question is whether
this holds true when implementing these protocols. This be-
comes even more critical since today’s applications of GCs
(or potential ones) encompass services run on distributed com-
puting systems, cloud services, connected devices, etc. The
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security of open-source cryptographic libraries and implemen-
tations of protocols has just been evaluated in an extensive
study [47], where the vulnerability of some of those libraries
to timing side-channel analysis has been demonstrated. In this
regard, more interesting and inspiring from the perspective
of this work is the gap between academic research and cryp-
tographic engineering when it comes to timing side-channel
analysis.

Timing side-channel analysis. Irrespective of what cryp-
tographic functions are embedded in programmable instruc-
tion set processors, such systems exhibit observable features
and data-dependent behavior that can leak information about
users’ data/keys from the implementation. Side-channel at-
tacks leverage this information through analyzing execution
time [16, 24], power consumption [51], instruction or data
cache behavior [1, 13, 73], branch predictor behavior [4],
pipeline instruction and execution behavior as well as pipeline
speculation behavior [86].

Timing side-channel analysis (SCA) has been launched
to deduce information on the secret, e.g., keys, security to-
kens, and passwords [52, 62, 67, 85]. In general, timing side
channels can be observed when the time taken to execute a
piece of code depends on the secret variables. The temporal
behavior of a code may depend on the control flow of a pro-
gram, on its data flow, and on its contention over resources
the program has to share with other running programs [21];
therefore, any of these depends on the secret, timing SCA can
be launched. In this regard, two broad categories of timing
side channels can be identified: instruction-related and cache-
related cf. [88]. The former refers to the number or type of
instructions executed along a path that can differ depending
on the values of secret variables, leading to differences in
the number of CPU cycles. On the other hand, cache-related
timing side channels correspond to the case, where the mem-
ory subsystem may behave differently based on the values of
secret variables. In both categories, CPU instruction execu-
tion, specifically the branch prediction, memory access, and
data caches, have been exhibited to leak adequate timing side-
channel information to launch successful side-channel attacks
on the cryptographic systems cf. [3, 13, 26, 34, 74]. As prime
examples, the branch predictions [4] and memory accesses [1]
are dependent on the inputs of the job/process, meaning that
there is an input-dependent deviation in the execution time of
the same job/process working on different inputs [64].

Privileged vs. unprivileged access for timing SCA. To ac-
cess fine-grained side-channel observations, e.g., timing, both
privileged and unprivileged adversaries have been considered
in the literature; see, e.g., [18]. In the former case, one possi-
ble scenario constitutes privileged attackers in control of the
operating system. In fact, such an attacker can be capable of
launching more direct attacks than side-channel attacks [64];
however, platforms supporting shielded execution, e.g., Intel

Software Guard eXtension (SGX), may not come under attack
by even most privileged adversaries. Hence, SCA in the pres-
ence of privileged attacker, for instance, through intercepting
the control flows, inferring page table and last-level cache,
has become an important research direction [18, 25, 71]. Nev-
ertheless, unprivileged attackers still attract attention as they
can mount attacks in various settings, e.g., an unprivileged
process in a native environment, an unprivileged process in
a virtual machine, and a sandboxed process cf. [18, 36]. Ex-
amples of such attacks include [1, 2, 69, 75, 84, 91]. Moreover,
rdtsc exemplifies the instructions used to obtain fine-grained
timing information by providing unprivileged access to a
model-specific register, which stores the current cycle count,
commonly used for cache attacks on, e.g., Intel CPUs cf. [60].

Adversary models in the context of SFE. After reviewing
how SCA, in particular, timing SCA, has been studied in other
domains, we shift our focus to how this topic is relevant in
the context of SFE. The security of GCs has been considered
in two main paradigms, namely honest-but-curious and mali-
cious adversary models. While the latter reflects the situation,
where a party potentially cheats by corrupting the function
to be jointly computed or, generally, adopting an arbitrary
attack strategy, honest-but-curious parties follow the protocol
honestly, although they may attempt to learn additional infor-
mation from the execution. From this definition and what has
been discussed about SCA, it is clear that an adversary capable
of performing SCA can be classified as an honest-but-curious
one. This has also been well-formulated in [10], where it
is suggested that Yao’s GC reveals no side-information be-
yond the function being computed, i.e., no information about
parties’ inputs leaks. Nevertheless, it should be noted that
these adversary models were developed to reflect the conven-
tional setting assumed for SFE, namely, parties’ symmetric
computation power.

To encompass all aspects of real-world applications of SFE,
the notion of server-aided or cloud-assisted SFE has been in-
troduced. In this setting, the standard SFE protocol is run with
the help of a server (or a small set of them), which does not
contribute to running the protocol by giving inputs, but by
making their computational resources available to the parties
cf. [14,22,23,49]. In spite of all difficulties in deploying even
single-server-aided protocols relying on Yao’s GC, it has been
demonstrated that it is indeed possible to construct practical
ones [49]. In the proposed setting, the server is instantiated
by a public cloud service provider, where parties who need
more computational power (e.g., the garbler) can outsource
their computations. An intrinsic part of the proposed method-
ology is the application of optimization techniques, namely
free-XOR. [49] has indeed well explained how any two-party
SFE can be converted to a server-aided protocol if the server
and the garbler are not simultaneously malicious. The pro-
posed protocols have been proven secure under various cir-
cumstances, where parties and the server can be of differ-

2



ent adversary types, including honest-but-curious server [50].
Nonetheless, as explained in Section 3.1, although the ad-
versary model assumed in studies devoted to server-aided
protocols might seem the most relevant to ours, any -even
unprivileged- access to the CPU running the SFE protocol
can be enjoyed by Golbin.

SCA against SFE constructions. Despite the achievements
made to define the adversary models, prove the security, and
construct numerous SFE schemes, considering SCA, there
is a gap between what theoretical findings have suggested
and what observations can be made by parties involved in
executing an SFE protocol. The only example of studies ad-
dressing this gap is a recent attack proposed by Levi et al.,
which leverages the side-channel leakage as a result of three
main shortcomings as enumerated in [54]: (1) a secret, the
global value is used to perform Free-XOR; (2) power con-
sumption of the garbler’s device can be linked to this secret
value. Although multiple assumptions have been made to
launch the attack (see Section 3), their attack has successfully
disclosed the secret value by taking advantage of the leakage
from the garbler’s transmitted labels along with the leakage
from non-linear gates. Now that the possibility of SCA against
free-XOR-optimized SFE implementation has been indicated,
the question is whether one can go even beyond that attack
and mount timing attack and whether some of the assumptions
made in [54] can be relaxed in that case.

Generally speaking, timing attacks feature outstanding
properties that make them more interesting compared to other
types of SCA, e.g., power and electromagnetic (EM) attack
cf. [47]. First and foremost, timing attacks can be launched
remotely, including cases of running code in parallel to the
victim code without the need for local access to the target
computer; hence, restricting physical access to the target ma-
chine cannot prevent timing attacks. Second, timing attacks
can be carried out covertly. In light of this state of affairs and
of the fact that timing attacks against SFE construction have
never been discussed in the literature, this work attempts to
answer the following question:

Is it possible to reveal parties’ input by observing the timing
information leaking when executing an SFE protocol?

More specifically, we answer this question positively for
free-XOR- and half-gates-optimized constructions. The con-
tribution of our work is as follows.

Contributions. We introduce Goblin, the first non-profiling,
single-trace timing SCA that successfully targets the imple-
mentations of Free-XOR and half-gates garbling techniques.
Notice that, to demonstrate the power of our attack, we com-
pare it with the recent relevant attack presented in [54].

1. In contrast to [54], Goblin’s effectiveness is not limited to
circuits with a minimum number of input gates being garbled.

2. The attack in [54] has successfully extracted the global
secret used in free-XOR optimization. Needless to say that
even with the help of the disclosed secret, the garbler’s input
cannot be fully recovered. This is in contrast to our attack sce-
nario, which focuses entirely on the recovery of the garbler’s
input. In the same vein, Goblin reveals not only the garbler’s
input fed into the non-linear gates (e.g., AND gates), but also
linear ones, namely XOR ones.

3. Goblin is machine-learning assisted in disclosing the gar-
bler’s input, regardless of its size. For this purpose, k-means
clustering is applied, where no manual tuning or heuristic
leakage models are needed. It is, of course, advantageous to
the attacker and allows for scalable and efficient attacks.

2 Background

Notations We follow a standard notation typically used in
SFE-related literature. ∈R denotes uniform sampling, ∥ is
used to show concatenation of bit strings. ⟨a,b⟩ represents a
vector with two components a and b, whereas a ∥ b is its bit
string representation. A gate is denoted by Wc = g(Wa,Wb)
with input wires Wa and Wb, output wire Wc and g : {0,1}2 →
{0,1}.

2.1 Oblivious Transfer (OT)

We consider 1-out-of-2 OT, which is a two-party protocol
with the following definition. The sender P1 posses two secret
messages m0, and m1, and the receiver P2 has a selection bit
i ∈ {0,1}. By executing the protocol, P2 learns mi, but not
m1−i, while the sender P1 does not learn anything about i.

2.2 Yao’s Garbled Circuit (GC)

One of the most widely studied SFE approaches, designed to
meet the needs of Boolean circuits, is garbling [55, 57]. One
of the main building blocks of GC is the primitive associated
with the cryptographic operation, often referred to as "en-
cryption," namely hashing or symmetric key operations, e.g.,
pseudorandom functions (PRFs), dual-key ciphers, fixed-key
block cipher. The protocol execution begins with garbling the
circuit C, where the garbler (P1) randomly chooses secrets
w0

i and w1
i , i.e., w j

i is the garbled value of j on each wire Wi.
Needless to say that it is expected that w j

i does not reveal
any information about j. Practical implementations of Yao’s
GC, e.g., [44, 83] considered in this paper, represent each of
the logical “0” and “1” values with n-bit values, where n is
often referred to as the security parameter. In this sense, w j

i
(so-called token) is the encryption of the concatenation of j
and (n−1)-bit values drawn uniformly. After generating the
tokens, the garbler creates a garbled table Ti for each gate Gi,
where each row of the gate truth table is encrypted output with
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regard to the tokens, and the output of the gate is called a "ci-
phertext." This is illustrated in Figure 1(a), where the operand
E(·) denotes the encryption operation. Since the table rows
can reveal information about the internal wire values, they are
permuted so that the recovery of the output labels does not
result in uncovering the garbler input. The main property of
Ti is that its output can be recovered given a set of garbled
inputs, while this process does not leak any information about
the garbler’s and evaluator’s (P2) inputs. For this, along with
Ti’s, the token corresponding to the garbler’s input value is
obliviously transferred to P2 through OT. P2 is then able to
obtain the garbled output by evaluating the garbled circuit
gate by gate using the tables Ti and receiving j for the output
wire from P1 cf. [83]. It is also possible to skip garbling the
output wires of the circuit; therefore, two parties learn (only)
the output of the circuit [53].

2.2.1 Optimizations of Yao’s GC and Tools

Reducing the computation and communication costs of SFE
protocols has been an objective of numerous studies. The
legacy construction of GCs requires four garbled values per
gate, corresponding to the combinations of values on the input
wires. To reduce these cost on the evaluator and/or garbler
side, various optimization methods have been introduced in
the literature. For instance, the point-and-permute optimiza-
tion, introduced by Beaver, Micali, and Rogaway [8] aims to
do so on the evaluator side, where instead of trying all four
ciphertexts, the evaluator can simply select the appropriate
one based on the select bits of visible wire labels. For this, a
random select bit is appended to each wire label; hence, the
two labels on each wire have opposite select bits. This does
not change the garbling cost, which is still four encryption per
gate. To address this, garbled row-reduction has been intro-
duced as an effective way to reduce the number of ciphertexts
per gate [68]. The basic idea underlying the row-reduction
technique is to set one of the four ciphertexts in each gate
(e.g., the first one) to all-zeroes string, which is not needed to
be sent; therefore, only three ciphertexts per gate need to be
sent.

Among optimization techniques, free-XOR has attracted
considerable attention since it reduces the cost on the garbler
side effectively, namely by 25%.

Free-XOR protocol. In the protocols reviewed above, XOR
gates cost as much as other gates, e.g., AND or OR gates,
with regard to the garbler’s computation and communication
costs. To reduce garbler’s cost, the wire values are garbled as
follows. For any gate Gi, w1

i = w0
i ⊕R for some secret, global

R ∈R {0,1}n1. For the sake of simplicity, let (A,A⊕R) and

1The encryption function needed by the free-XOR protocol should have
more specific properties. Since this is beyond the scope of this study and the
vulnerability observed by us is not relevant to this, we refer to [19, 38] for
more details.

(B,B⊕R) denote the wire labels. The evaluator possessing
one of (A,A⊕R) receives one of (B,B⊕R) and by XORing
them obtains one of (C,C ⊕R), which is the correct result
(see Figure 1(b)).

Half-gates protocol. This protocol complements the free-
XOR protocol in the sense that not only are XOR gates evalu-
ated for free, but also AND gates are garbled using only two
ciphertexts. The key idea behind half-gates optimization is to
guarantee that the output wire of an AND gate is of the form
(C,C ⊕R), compatible with free-XOR optimization. Since
Goblin is interested in recovering the garbler’s input, we dis-
cuss how the half-gates in the input layer is generated on
the garbler’s side (for a more general case, we refer to [90]).
For this purpose, the garbler enjoys the fact that one of the
inputs is known to her. Therefore, when a = 0, she garbles a
unary gate that always outputs false; otherwise, she garbles a
unary identity gate. During the evaluation phase, the evalua-
tor obtains C for both values of b if a = 0; otherwise, one of
(C,C⊕R) is output. It is further possible to reduce the num-
ber of ciphertexts to be sent by applying the row-reduction
technique to set the first of the two ciphertexts to all-zeroes.

GC tools: JustGarble and TinyGarble family. JustGar-
ble [9], an open-source library licensed under GNU GPL v3 li-
cense, is an efficient circuit-garbling framework that has been
widely used in many garble circuit (GC) and multi-party com-
putation (MPC) approaches. JustGarble also offers multiple
optimization techniques, as explained before. Another inter-
esting aspect of JustGarble is the application of the AES-NI
instruction set with encryption pipelining, which significantly
reduces the cost of the AES computations. The reason behind
JustGarble’s efficiency is its ability to make only one AES
call per garbled-gate evaluation which makes it far faster than
any prior reported results [9]. JustGarble exploits the crypto-
graphic permutations realizable by fixed-key AES acting like
a public random permutation [9]. Although this might be a
strong assumption cf. [37, 39], thanks to its efficiency and the
theoretical foundation laid for JustGarble [9], it has been used
in a wide variety of MPC and GC frameworks. However, Just-
Garble has not supported sequential circuits [82] and has not
included communication or circuit generation [42]; therefore,
it has not been considered a general-purpose framework.

Songhori et al. [81] proceeded JustGarble and proposed
TinyGarble, a highly compressed and scalable sequential GC,
which is a self-contained framework and can directly be
used in MPC applications. In another approach, Mohassel
et al. [65] proposed a fast and secure three-party computation
for GC, which is an implementation based on the JustGarble
framework. Groce et al. [35] also introduced the CompGC
library, an efficient offline/online semi-honest two-party com-
putation library based on the JustGarble implementation. We
should add that we have chosen the TinyGarble family and
their core garbling scheme, JustGarble, as a starting point
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(a)

(b)

(c)

Figure 1: Garbled gates look-up table with (a) no optimization,
(b) Free-XOR optimization, and (c) half-gate optimization.

to point out how timing attacks could be applicable in the
context of GCs. We also stress that the timing attack is not the
result of how (in)correctly the fixed-key AES is used in GC
schemes cf. [39], but the shortcomings caused by implemen-
tations of optimized garbling methods. Further investigation
into other tools is left as future work.

2.3 k-means Algorithm

In general, clustering algorithms are mostly in the category of
unsupervised machine learning. The main goal of clustering
algorithms is to group samples of a set with some common fea-
tures into subsets, i.e., clusters. The similarity of all members
of each cluster is measured based on the pairwise distances of
values (so-called features) [41]. With regard to the pairwise
distances, clusters are then made around the mean vectors,
which are called centroids [87].

k-means is a clustering algorithm that aims to partition N
members of a set into k clusters in a way that each member of
a cluster has a close value to the centroid of the cluster [87].
The process of clustering data seems to be simple, but in fact,

it is an NP-hard problem [87]. Hence, there exist heuristic
algorithms that find a local optimum centroid over a series
of finding iterations [87]. To be more specific, k-means finds
partitions (clusters) p = {p1, p2, · · · , pk} for the dataset c =
{ci}n

i=1 that minimizes the total cluster variance [43]:

min
p,{µ j}k

1

k

∑
j=1

∑
ci∈p j

||ci −µ j||2, (1)

where µ j is the mean of all examples assigned to jth centroid.
Here the squared Euclidean distance is one of the commonly
applied distance measures applied to minimize the total clus-
ter variance [80].

3 Attack Overview and Building Blocks

3.1 Adversary model
The attack model taken into consideration in this paper is
the semi-honest model, where parties follow the protocol, but
there is an attempt to learn information from the execution
of the protocol. In doing so, even though the (single) server-
aided SFE seems to be the most relevant adversary model from
the SFE protocols’ perspective, we consider the challenging
setting where the server itself is honest-but-curious. Moreover,
similar to models taken into account in [27,48,49], we assume
that the parties and the server are independent, meaning that
none of them collude. In practice, given the consequences in
terms of losing the reputation and legal action, it is reasonable
to assume that the server will not collude with the parties.
Note that although throughout the paper, we refer to the server
as the entity collecting the timing information, this does not
rule out the fact that any entity having access to the timing
information can launch the attack.

The main requirement for Goblin to be launched success-
fully is the ability to acquire fine-grained timing information
when the garbling process is run. The attacker’s goal is to
take advantage of this information to extract the garbler’s
input. Next we explain how this can be possible in real-world
implementations.

3.1.1 Measuring Time on CPUs

According to Martin et al. [64], to measure the time without
breaking the software, there are three main sources to take
advantage of cf. [63]: (1) internal, hardware time sources, e.g.,
timestamp counters; (2) external time sources, e.g., external
interrupts; and (3) creating a virtual clock, for instance, the
virtual clock implementation on multi-processor systems with
shared memory [75]. Here without loss of generality, we focus
on how timing information can be retrieved using the first
option, namely through using rdtsc. The Read Timestamp
Counter rdtsc is an x86 instruction that returns the value
of the CPU timestamp counter (TSC) register. In general,
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the TSC register is shared with every user with any level of
privileged access [63]; therefore, it can be accessed by:

1. a privileged/non-privileged user who has complete control
over the CPU;

2. a service provider who shares the processor with the victim
such as cloud servers [64];

3. a virtual-machine user with a privileged/non-privileged
access level, who runs a process on a shared processor with
the victim (e.g., cross-virtual machine attacks) [63].

Hence, the adversary can have either privileged/non-
privileged access to (1) the CPU on which the garbling scheme
is running, (2) the CPU of the service provider’s system, or (3)
a cross-virtual machine to share the processor with the victim
running the garbling scheme. What could make a difference
is that an unprivileged attacker cannot precisely control the
garbler’s execution and interrupt it, in contrast to a privileged
attacker. Nevertheless, if the attacker can figure out when
the garbling process begins, or use a trigger signal such as a
cache-based side channel [78], then the collected traces can
be aligned based on that timing information [61]. Therefore,
without loss of generality, we assume that the attacker can
align the timing measurements in order to mount the attack.

Resolution of timing measurements. The timestamps pro-
vided by rdtsc often has a resolution between 1 and 3 cycles
on modern CPUs cf. [60]. For example, on AMD CPUs until
the Zen microarchitecture, a cycle-accurate resolution can
be obtained; however, more recent generations come with a
significantly lower resolution as the register is only updated
every 20 to 35 cycles. Another example is Intel Core i7-7700
Processors, i.e., what has been used in this study, where the
rdtsc register is updated every cycle [45]. Nevertheless, al-
though it might be thought that lower resolutions might make
performing attacks more challenging, Goblin is not affected
since it requires mainly the difference between two readings
with the same resolution (see Section 5 for more details).
Therefore, in contrast to attacks requiring repetition when
relying on rdtsc, it is not needed for Goblin to do so and use
the average timing differences over all executions. We stress
that although Goblin is a single-trace attack since multiple
gates are being garbled one after another, the time difference
can be directly driven from rdtsc. We should also add that
our attack is an example of timing attacks, meaning that we
believe other methods for acquiring the timing information
can definitely be applied.

3.2 Performance Metric
Let ci be a leakage measurement, i.e., the number of CPU
cycles, for a garbler input x = x1 · · ·xn with n-bits correspond-
ing to n wires giving the garbler’s input to the circuit. For

instance, for a garbled 128-bit AES design, n = 128. To eval-
uate the effectiveness of our attack, we calculate its success
rate of recovering the garbler’s input given a single trace
{c}n

i = 1. Note that Goblin is a non-profiling attack; hence,
in contrast to profiled attacks, no leakage profile is made and
used during the attack. k-means clustering algorithm is used
as a distinguisher so that any observation ci is assigned to
either cluster p0 or p1 associated with input bit xi being “0”
or “1”. Precisely, the success rate is defined as follows.

SR := ∑
j∈{0,1}

n

∑
i=1

Pr(ci ∈ p j | xi = j).

To put this simply, SR indicates how many of the bits are
disclosed correctly out of n bits in the garbler’s input.

3.3 Goblin Flow
According to our adversary model, we assume that the ad-
versary is neither the garbler nor the evaluator, and therefore,
does not have any information about the circuit, size of the
input, and input layer gates types. Hence, the Goblin flow
contains three main steps:

1. Finding the size of the input and the number of gates in
the input layer, then capturing the CPU cycles corresponding
to each gate connected to input wires (i.e., gates in the input
layer).

2. Pre-processing the acquired CPU cycle and making them
ready for the clustering algorithm.

3. Running clustering algorithm over pre-processed CPU
cycle to predict the Garbler secret, which is the Garbler inputs.

Here we provide an example of GC protocol flow as used in
the TinyGarble family to provide insight into Goblin’s flow.

3.3.1 Counting the Gates in the Input Layer

According to the protocol flow of TinyGarble/JustGarble, in
the first step, the garbler’s tokens for zero and one logical
values are constructed. Then, the parser function starts pars-
ing the simple circuit description (SCD) file and g_init files,
which contain information about the circuit and the garbler’s
input values. The parser function learns about the circuit and
locates the fan-in and fan-out of the input layer gates that are
connected to the Garbler input based on g_init file informa-
tion. After that, the InputinitAloc function is called, which
allocates the tokens to the input layer gates fan-ins. We have
observed that the number of InputinitAloc function calls
equals two times the number of input layer gates. To have a
systematic observation, we first applied the garbling process
to a single XOR and a single AND gate (hereafter called the
one-gate circuits). We have seen that the InputinitAloc
function was called twice during the garbling process. Based

6



on our observation, the parser first found two fan-ins from
the one-gate circuit SCD file and used the number of fan-ins
when it was calling the InputinitAloc function. To exam-
ine if this holds true for other circuits with different sizes,
we implemented toy examples, for instance, a circuit with
four gates, including an AND and an XOR gate in its input
layer followed by an AND and an XOR gate in the next layer
(hereafter called the four-gate circuit). Note that in all obser-
vations, similar to any GC, one of the fan-ins (input wires) is
devoted to the garbler’s inputs. We have seen similar behavior
from the parser and the InputinitAloc function, where the
parser finds four fan-ins and the InputinitAloc function
was called four times. The reason behind this behavior is
due to the GC protocol rules, which mandate all the gates in
the circuit to have the exact number of two inputs and one
output [10]. At this point, Goblin starts counting the number
of InputinitAloc calls and calculating the number of input
layer gates as half of the total number of InputinitAloc
function calls. Then, the TinyGarble framework starts gar-
bling the gates in the order provided in the SCD file, which
mandates the framework to garble the gates one by one by
calling the GarbleGate function, starting from the input layer
gates, whose inputs are connected to the garbler and evaluator,
before proceeding to the next layer gates. This fact allows
Goblin to store the CPU cycle of each input layer gate gar-
bling process by knowing the number of input gates based.
The rests of the steps are not interesting for Goblin because
they do not hold any information about the secret (Garbler
input), and the above-mentioned information is adequate to
launch the Goblin; therefore, from this point on, Goblin can
continue the attack from an offline phase.

3.3.2 Pre-processing the Acquired CPU Cycles

When employing Free-XOR optimization, the attacker ex-
pects to see a significant difference between the CPU cycle of
INV, XOR, and XNOR gates and other gate types, including
AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN
gates (refer to Section 4 for more information). The reason
behind this significant difference is that in the free-XOR opti-
mization, as its name implies, an XOR-type gate is garbled
by simply using the XORing operation that takes a few CPU
cycles. On the other hand, garbling other types of gates, such
as an AND gate, requires reading/writing from/to memory
as well as cipher generation, which results in extra memory
reads; hence, the accumulation of these leads to a drastic in-
crease in CPU cycles. This is evident thanks to the definition
of this optimization technique and the number of operands
included in the computation of those gates, see Figure 1(b).
This difference causes the gate types to be dominant centroids
of the clustering algorithm over the input values. To over-
come this challenge, Goblin first divides the CPU cycle into
the number of subgroups equal to the number of available
gate types, i.e., AND (AND/NAND, OR/NOR, ANDN, ORN,

NANDN, and NORN) and XOR (INV, XOR and XNOR gates,
hereafter called XOR gates). Afterward, it applies normaliza-
tion to each subgroup by employing z-score normalization,
and finally, concatenates the normalized data to form the CPU
cycle array while maintaining the order of captured CPU cy-
cles. The normalization approach minimizes the difference
between the garbling process CPU cycle requirements of
XOR gates and all other gate types.

However, the first step is more complicated in a case, where
the half-gates protocol is enabled. Specifically, according to
our observation, not only garbling the XOR gates exhibits
a significantly larger number of CPU cycles compared to
other gate types, but also there is a dramatic difference in
the number of CPU cycle in the OR/NOR gates garbling
process. There is, of course, a reason behind this, namely
how gates with truth tables containing an odd number of ones
(e.g., AND, NAND, OR, NOR, etc.) can be expressed and
constructed. Generally speaking, these gate can be defined as
G : (va,vb)→ (αa⊕va)∧(αb⊕vb)⊕αc, where va and vb are
logical values and αa, αb, and αc are constant values cf. [90].
For AND gate, α values are set to 0, whereas for OR gate, they
are set to 1. Therefore, it is not surprising that the CPU cycle
traces collected when garbling OR/NOR gates compose a
cluster different from the other gates. In the same vain, one can
also observe that it takes more time for the garbler to generate
the garbled OR/NOR gate when its input is zero, as opposed
to AND/NAND gates, where for input one, it takes more time
from the garbler to construct the gate. Moreover, contrary to
the case of free-XOR optimization, where AND/NAND and
OR/NOR can be considered as belonging to the same type,
it is challenging to make a distinction between AND/NAND
gates with input 0 and OR/NOR gates with input 1. This
overlap results in inaccurate clustered data since the clustering
algorithm puts both into one cluster, although they should be
put into two different clusters due to their inputs. To counter
this challenge, before applying normalization, Goblin applies
the following additional data scaling technique to force the
pattern to match other gate types (i.e., a larger number of
CPU cycles for input 1). First, similar to the free-XOR case,
the CPU cycle collected from the input gates {ci}n

i=1 should
be partitioned into subsets corresponding to different gate
types: XOR/XNOR, AND/NAND, and OR/NOR. For this,
Goblin calculates 66th percentiles of elements in {ci}n

i=1 and
assign the elements larger than that to the subset cOR. The
remaining elements of {ci}n

i=1 are assigned to AND and XOR
subsets similarly as done in the free-XOR case: the larger
elements are assigned to cAND by considering the median of
the {ci}n

i=1 \ cAND. The remaining elements are then assigned
to the subset corresponding to the XOR/XNOR gates.

Afterward, Goblin applies the transformation ti = aci +b
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for ci ∈ cOR, where a and b are calculated as

a =
Max(cAND)− c̄AND

Max(cOR)− c̄AND
,

b = c̄AND −a · c̄OR,

where Max(·) and c̄’s denote the maximum and the average
of the subsets, respectively. After this step, normalization is
applied, similar to the free-XOR case.

3.3.3 Recovering Garbler’s Input

Up to this point, Goblin has obtained the pre-processed data
and is ready to launch the clustering algorithm. As Goblin
applies normalization to the CPU cycle data, the gate types’
dominance in the centroids has vanished; therefore, the clus-
tering algorithm of Goblin clusters CPU cycle into only two
clusters corresponding to input zero and input one, regardless
of the gate types. To disclose the input bits, Goblin keeps track
of the Max({ci}n

i=1 before normalization. When the cluster-
ing process is over, all members of the cluster that includes
the maximum element are labeled as “1”, meaning that the
garbler input bit is “1”. The other cluster then includes ci’s
corresponding to garbler’s input being equal to “0”.

4 Experimental Results

As the first step, we have considered TinyGarble (see Sec-
tion 2.2.1), publicly available via GitHub [81] To prepare our
experimental setup, we have run the TinyGarble framework
on two systems, one acting as the garbler and the other as
the evaluator, connecting through local area network (LAN)
cable. Each TinyGarble framework garbler and evaluator code
ran on a system with Linux Ubuntu 20, 16 GB of memory,
and an Intel Core i7-7700 CPU 3.60GHz computer processor
unit (CPU). To employ the clustering method on the collected
CPU cycle, we have used the k-means algorithm implemented
in Matlab 2021. Moreover, the main code of the TinyGarble
framework is based on Justgarble [9], and in the most updated
version, TinyGarble is upgraded to be compatible with the
half-gate [90] approach.

To capture the CPU clock cycles, we used rdtsc com-
mand to capture the clock cycles associated with the garbling
of each gate, excluding the oblivious transfer (OT) module,
initialization, scheduler, parsing, and fan-out assignment of
the TinyGarble source code. Moreover, for the attack against
free-XOR optimization, we have disabled half-gate and row-
reduction optimizations in the source code and OT from the
bash file. This helps us to analyze the susceptibility of these
optimization techniques one by one. However, for the attack
against half-gate, we have only disabled row-reduction and
kept free-XOR optimization because it is at the heart of the
half-gate approach.

(a)

(b)

Figure 2: CPU clock cycles captured for InputinitAloc
(blue bars) and GarbleGate functions calls on (a) an
XOR/AND gate, (b) the four-gate circuit and its correspond-
ing CC. In both (a) and (b), Garbler’s inputs (per gate, one of
the fan-ins) are set to one. (Note: The y-axis has a logarithmic
scale.)

4.1 Results for a single gate

The first question that we have attempted to answer is: if only
one gate is garbled, is it possible to determine the garbler’s in-
put? For this purpose, we have captured the CCs from two cir-
cuits, including only one of the XOR or AND gates. Figure 2
illustrate the CPU clock cycles of the two steps of the Tiny-
Garble framework garbling process. Note that, in Figure 2,
a logarithm scale is used due to the significant gap between
the number of clock cycles taken for InputinitAloc and
GarbleGate when garbling the AND gate. It is observable
in Figure 2.a that in the garbling process of both one-gate
circuits (AND and XOR gates), the InputinitAloc function
(the Blue bars) is called twice (see Section 3.3.1 for the discus-
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sion). This is a proof of concept that the number of the input
layer gates is equal to half the number of the InputinitAloc
function calls. To examine a more complex circuit, we have
repeated the same experiment on a circuit with four gates
(so-called four-gate circuit), one XOR and AND gate in the
input layer, and one XOR and AND gate in the second layer.

As observable in Figure 2.b, the InputinitAloc (see the
blue bars) is called four times, meaning there are two gates in
the input layer of the circuit. Moreover, we have also observed
that the TinyGarble framework garbles the input layer gates
at the beginning of the garbling process before proceeding to
the other layers.

Up until this point, our main focus of interest has been XOR
and AND gates. In the next experiments, we have shifted that
to the main other types of gates, namely, XOR, XNOR, AND,
NAND, OR, and NOR. The question is: can the observation
made about the XOR and AND gates be generalized to other
gates as well? Moreover, by repeating the experiments 30
times (corresponding to a 95% confidence level), we have
tried to understand how noisy the timing traces could be.

Figure 3 shows the CPU cycles for each type of gates. Note
that, due to the free-XOR optimization, the number of CPU
cycles of XNOR and XOR gates was drastically smaller than
other gates due to their free garbling process [53]. There-
fore, for the sake of readability, we have included results for
AND, NAND, OR, and NOR separately in Figure 3.a, and
those for XOR and XNOR in Figure 3.b. The reason behind
the differences in the number of CPU cycles between the 30
experiments is other programs with root access to the CPU.
These mandatory programs are run by the TinyGarble frame-
work and introduce a small amount of noise when capturing
the clock cycles. To the best of our knowledge, these root pro-
grams cannot be disabled nor be set to have less priority than
the Linux Ubuntu task, which runs the TinyGarble framework
code; hence, the CPU cycle noise is inevitable. Nevertheless,
we have observed that this noise does not interfere with Gob-
lin because this noise is far less than the difference in the
number of CPU cycles of the gates for different inputs. We re-
peated the same experiments when the half-gate protocol was
enabled and captured the CPU cycles of the gates mentioned
above.

Figure 3.c and Figure 3.d illustrate the CPU cycles in this
case. Similar to the free-XOR optimization case, we have de-
picted the results for XOR and XNOR in Figure 3.c, whereas
ones for other gates are shown in Figure 3.d.

Summary. The main messages conveyed here are as fol-
lows. First and foremost, even in the presence of noise, it
is possible to distinguish the garbler’s inputs thanks to the
considerable difference between the number of clock cycles
taken in each case. Second, as explained in Section 3.3.2, it is
definitely possible to categorize the gates into 2 and 3 types
for the free-XOR and the half-gates optimizations, respec-
tively. Last but not least, even if only one gate is garbled, if

Goblin has a reference, it can distinguish between gates and
the garbler’s inputs. Here reference means that Goblin learns,
for instance, how many cycles takes for garbler’s input “0”
or “1”. This places absolutely no burden on Goblin, when
more than one gate is garbled, which happens in a real-world
scenario. In that case, just by comparing the clock cycles col-
lected per gate, the difference becomes evident to Goblin, and
it can determine the inputs. This is what has been studied
through garbling benchmark functions in the next section.

4.2 Results for Benchmark Functions

On order to evaluate the efficacy of Goblin, we have targeted
the most commonly-used benchmark functions, also avail-
able in the TinyGarble toolbox, including AES-128, SHA3,
256-bit Multiplier, 128-bit Summation, and 128-bit Hamming.
For this purpose, to calculate the success rate (SR), we have
applied various garbler’s inputs and provided the statistics in
this section. Launching Goblin against all combinations of
inputs are impractical task to do due to the massive number
of input combinations (i.e., for a 256-bit Multiplier, the attack
had to be launched 2256 times); therefore, we have chosen
1000 random inputs and launched Goblin against this set. In
the setting of the k-means algorithm, the centroids are chosen
at 100 different starting values and the algorithm returns the
result for the least within-cluster sums of point-to-centroid
distances.

Figure 4.a and Figure 4.b show the SR when only free-
XOR optimization was enabled. The red lines in the boxes
indicate the average SR of the attack against these bench-
mark functions. It is observable in Figure 4.a that the attack
achieved a better SR when launched against the AES bench-
mark compared to 256-bit Multiplier. The reason is three-fold.
First, only 1000 inputs are tested; therefore, the results might
vary. Second, although the size of the inputs is almost the
same (in the range 128-288), the input layer of the 256-bit
Multiplier contains more XOR gates than the AES, which are
more challenging because of the subtle difference between
the number of clock cycles taken for “1” and “0”. Third, per
input, Goblin can observe a few examples. Notice that Gob-
lin is a non-profiling, single traces attack, meaning that it
receives one timing measurement per gate (and per input bit,
consequently); hence, the more input bits, the better Goblin
determines them. This is further studied in Section 4.3.

Figure 4.a and Figure 4.b show the SR of Goblin launched
against benchmark functions when the half-gate protocol was
enabled. Compared to Figure 4.a, Figure 4.b shows an overall
reduced SR for the same benchmark functions. This is because
of the increase in the number of gate types to be identified for
the same number of input bits and observation, consequently.
Needless to say, even for circuits with various gate types, such
as AES, Goblin achieved an average SR of more than 90%
which means the effect of variation in the gate types does not
affect Goblin’s SR drastically.
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(a) (b)

(c) (d)

Figure 3: The number of clock cycles for (a) AND, NAND, OR, and NOR (b) XOR and XNOR gates when only free-XOR
optimization is enabled (c) AND, NAND, OR, and NOR (d) XOR and XNOR gates when the half-gate protocol is enabled.

(a) (b)

Figure 4: SR of Goblin against benchmark functions for 1000 randomly chosen inputs when (a) only free-XOR optimization (b)
half-gate protocol are enabled.
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Figure 5: SR of Goblin against 128-bit SUM for a range
of CPU cycle traces captured from 10, 100, 1000, 10000,
and 100000 randomly chosen inputs when only free-XOR
optimization is enabled.

Impact of the number of traces. As mentioned earlier,
to evaluate the effectiveness of our attack, we selected 1000
random inputs since capturing CPU cycles for all inputs is im-
practical and infeasible. This can directly impact the variance
in our results. To investigate this, we have applied Goblin
on a range of CPU cycle traces captured from 10, 100, 1000,
10,000, and 100,000 random inputs of a 128-bit SUM mod-
ule, i.e., the one demonstrating a fairly high variance (see,
Figure 4). Figure 5 illustrates the SR of Goblin when being
launched against a range of CPU cycle traces. As observable
in Figure 5, increasing the number of CPU cycle traces results
in increasing the SR of Goblin. We have observed that for a
higher number of traces, SR exhibits less variance, and the
average settles around 97%. Note that since Goblin is a single
trace attack, each trace is processed by Goblin individually.
In other words, the increase in the number of traces does not
impact each attack, but just reduces the variance of the overall
results. Therefore, to judge the effectiveness of Goblin, it is
recommended to use more traces. We could not do this in the
first place due to the time-consuming process of collecting
traces for all benchmark functions. Nonetheless, comparing
the results for 1000 and 100,000 traces, the change in the
average SR is subtle.

4.3 Scalability of Goblin

To test Goblin’s scalability, we have launched Goblin against
three benchmark functions, including MULT, SUM, and Ham-
ming, with a range of input sizes between 128 and 1024. Fig-
ure 6 illustrates the results for launching Goblin against these
benchmark functions where Figure 6.a containes the results
for free-XOR optimization, whereas Figure 6.b is for half-gate
one. As shown in Figure 6.a, not only does increasing the in-
put size decrease the SR but also increases the minimum and
the median of Goblin SR against these benchmark functions.

This SR increment is due to the fact that the k-means has
a broader range of data to cluster, which means it has more
examples to compare with one another.

5 Discussion

After introducing Goblin and its effectiveness through ex-
perimentation, a natural question to ask would be whether
countermeasures could be devised to stop Goblin. Here we
discuss different aspects of the attack that can be considered
in this regard.

Relative accuracy of rdtsc. For applications using rdtsc,
successive calls must have a difference that accurately reflects
the number of cycles between two calls. This is referred to
as “relative accuracy” cf. [64], meaning that any measure-
ment through rdtsc is accurate with regard to the previous
call/measurement. The relative accuracy does not pose any
constraint to the application since they must tolerate some
variations as rdtsc instruction’s number of cycles can vary
due to the state of caches, DVFS, scheduling, etc. [64]. Sim-
ilarly, Goblin is resilient against variations as long as the
variation is smaller than the difference between the number
of cycles spent on garbling the XOR and non-XOR gates (in
order of tens of thousands of cycles).

Limited resolution of rdtsc on some platforms As in-
troduced before in Section 3.1.1, rdtsc can have various
resolutions depending on the platform. In the same vein, as
explained about the relative accuracy of the time read us-
ing rdtsc, the resolution cannot impact the effectiveness of
Goblin. The point is that as long as the XOR gates can be
distinguished from non-XOR ones, Goblin can successfully
extract the garbler’s input. For this purpose, it is necessary to
have at least a resolution comparable to the number of cycles
taken to garble the XOR gates (couples of tens cycles, e.g.,
80 cycles as observed in our experiments).

Restricting access. As it has been nicely put forward
in [58], unprivileged usage of the high-resolution timers can
be prevented by setting control registers, e.g., CR4.TSD bit in
AMD [5] (volume 2, Section 3.2.5). This results in rdtsc,
rdtscp, and rdpru being unavailable to the attacker. Al-
though this might be tempting, such a restriction can have a
negative impact on unprivileged applications depending on
rdtsc, e.g., adb, cargo, and Docker [58]. Moreover, in doing
so, not all timing primitives can be disabled. It is possible
for the attacker to come up with a counting thread that con-
stantly increments a global variable that serves as a timestamp
without relying on platform specifics [59, 60, 79]. It is further
shown that such a counting thread can have even a higher
resolution than the rdtsc instruction on Intel CPUs [79].
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(a) (b)

Figure 6: SR of Goblin against MULT, SUM, and Hamming benchmark functions for a range of inputs when (a) only free-XOR
optimization (b) half-gate protocol is enabled for 1000 randomly chosen inputs.

6 Conclusion

Several applications, including multi-party computation, are
taking secure function evaluation (SFE) into account thanks
to the efficient implementations of GC presented by Yao. To
achieve this efficiency, many optimizations, such as free-XOR,
row-reduction, half-gate, etc., have been presented to reduce
the cost of garbling progress. However, it has been recently
shown that these optimizations are vulnerable to side-channel
attacks in a way that the global secret used in the free-XOR
setting can be revealed by launching power side-channel at-
tacks. Goblin, on the other hand, has demonstrated that the
frameworks which are using free-XOR and half-gate are vul-
nerable to timing-side channel attacks. For this, Goblin can
be launched by collecting the CPU cycles of the garbling
process by reading the time stamp counter, i.e., calling rdtsc.
In this regard, Goblin can be run in parallel to the garbling
framework without requiring any privileged access. Moreover,
Goblin can extract Garbler’s input directly from each garbling
process (clock cycles per gate) without any prior knowledge
about the circuit being garbled; therefore, Goblin can be con-
sidered a non-profiling attack that can be launched against one
timing trace. Utilizing clustering algorithm k-means, Goblin
has achieved up to 98% success rate when launching against
the most commonly used benchmarks such as Sum, MULT,
Hamming, AES, and SHA to extract the Garbler’s input di-
rectly from the garbling process. Goblin has also been proven
to be a scalable attack against more extensive circuits.
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