
Time Is Money, Friend!
Timing Side-channel Attack against Garbled Circuit Frameworks

Mohammad Hashemi
mhashemi@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

Domenic Forte
dforte@ece.ufl.edu
University of Florida
Gainesville, FL, USA

Fatemeh Ganji
fganji@wpi.edu

Worcester Polytechnic Institute
Worcester, MA, USA

ABSTRACT
With the advent of secure function evaluation (SFE), distrustful
parties can jointly compute on their private inputs without disclos-
ing anything besides the results. Yao’s garbled circuit protocol has
become an integral part of secure computation thanks to consider-
able efforts made to make it feasible, practical, and more efficient.
These efforts have resulted in multiple optimizations on this primi-
tive to enhance its performance by orders of magnitude over the
last years. The advancement in protocols has also led to the de-
velopment of general-purpose compilers and tools made available
to academia and industry. For decades, the security of protocols
offered in those tools has been assured with regard to sound proofs
and the promise that during the computation, no information on
parties’ input would be leaking.

In a parallel effort, however, side-channel analysis (SCA) has
gained momentum in connection with the real-world implemen-
tation of cryptographic primitives. Timing side-channel attacks
have proven themselves effective in retrieving secrets from imple-
mentations, even through remote access to them. Nevertheless, the
vulnerability of garbled circuit frameworks to timing attacks has,
surprisingly, never been discussed in the literature. This paper intro-
duces Goblin, the first timing attack against commonly employed
garbled circuit frameworks. Goblin is a machine learning-assisted,
non-profiling, single-trace timing SCA, which successfully recovers
the garbler’s input during the computation under different scenar-
ios, including various GC frameworks, benchmark functions, and
the number of garbler’s input bits. Furthermore, we discuss Gob-
lin’s success factors and countermeasures against that. In doing so,
Goblin hopefully paves the way for further research in this matter.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures;

KEYWORDS
Multiparty Computation; Garbled Circuits; Timing Side-channel
Analysis; Clustering; Non-profiling Attack; Single-trace Attack.

1 INTRODUCTION
Secure function evaluation (SFE) has had an immense impact on
the field of cryptography. Practical implementations of general SFE
have been proposed and flourished after the introduction of garbled
circuits (GCs) by Yao [109]. It has found several applications includ-
ing secure multi-party computation [13, 33, 34, 69, 109], functional
encryption [38, 39, 93], key-dependent message security [7, 9], ho-
momorphic encryption [37, 88], and recently, quantum circuits [16].

The key premise of GCs is that it allows two parties to evaluate
any (known) function on their respective inputs 𝑥 and 𝑦 without
violating their privacy. Besides real-world applications foreseen for
GCs traditionally (e.g., credit evaluation function, background- and
medical history checking, privacy-preserving database querying,
etc. [65, 95]), nowadays GCs have found applications in privacy-
preserving genome analysis [54], email spam filtering [47], im-
age processing [19] and machine learning and statistical analy-
sis [22, 35, 81, 86], just to name a few. To become practical, GCs
have undergone dramatic improvements and optimization to reduce
the computation and communication costs (proportional to the size
of the circuit). Thanks to the increase in hardware performance and
the improvement in GC algorithms themselves, one of the main
bottlenecks for these protocols has become the network bandwidth
needed to transmit the garbled gates [12, 113].

To face obstacles preventing further adoption of GCs in real-
world systems, optimization techniques have been developed, aim-
ing to reduce communication and computation costs. Here we focus
on two of the most acknowledged methods, namely free-XOR [65]
and half-gates [113]. Similar to other optimization mechanisms, the
main argument put forward by these techniques is that security
is not compromised for the sake of being efficient. However, the
question is whether this holds true when implementing these pro-
tocols. This becomes even more critical since today’s applications
of GCs (or potential ones) encompass services run on distributed
computing systems, cloud services, connected devices, etc.
Timing side-channel analysis. Irrespective ofwhat cryptographic
functions are embedded in programmable instruction set processors,
such systems can exhibit observable features and data-dependent
behavior that leak information about users’ data/keys from the
implementation. Side-channel attacks leverage this information
through analyzing execution time [17, 28], power consumption [63],
instruction or data cache behavior [1, 14, 89, 110], branch predictor
behavior [5], pipeline instruction and execution behavior as well
as pipeline speculation behavior [106].

Timing side-channel analysis (SCA) has been launched to de-
duce information on the secret, e.g., keys, security tokens, and
passwords [64, 75, 82, 105]. In general, timing side channels can be
observed when the time taken to execute a piece of code depends
on the secret variables. The temporal behavior of a code may de-
pend on the control flow of a program, on its data flow, and on
its contention over resources that the program has to share with
other running programs [24]; therefore, any of these depends on
the secret, timing SCA can be launched. In this regard, two broad
categories of timing side channels can be identified: instruction-
related and cache-related cf. [108]. The former refers to the number
or type of instructions executed along a path that can differ de-
pending on the values of secret variables, leading to differences in

1

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

the number of computer processor unit (CPU) cycles. On the other
hand, cache-related timing side channels correspond to the case,
where the memory subsystem may behave differently based on the
values of secret variables. In both categories, CPU instruction exe-
cution, specifically the branch prediction, memory access, and data
caches, have been exhibited to leak adequate timing side-channel
information and launch successful SCA on the cryptographic sys-
tems cf. [3, 14, 31, 40, 90]. As prime examples, the branch predic-
tions [5] and memory accesses [1] are dependent on the inputs of
the job/process, i.e., the execution time of the same job/process is
input-dependent [79]. Recently, the security of open-source cryp-
tographic libraries and implementations of protocols (excluding
GC) has just been evaluated in an extensive study [56], where the
vulnerability of some of those libraries to timing SCA has been
demonstrated. In this regard, more interesting and inspiring from
the perspective of this work is the gap between academic research
and cryptographic engineering when it comes to timing SCA.

SCA against GC constructions. Despite the achievements made
to define the adversary models, prove the security, and construct
numerous GC schemes, there is a gap between what theoretical
findings have suggested and what observations can be made by
parties involved in executing an GC protocol. The only example of
studies addressing this gap is a recent attack proposed by Levi et
al., which leverages the side-channel leakage as a result of three
main shortcomings as enumerated in [67]: (1) a secret, global value
is used to perform free-XOR, and (2) power consumption of the
garbler’s device can be linked to this secret value. Althoughmultiple
assumptions have been made to launch the attack, their attack has
successfully disclosed the global value used to perform free-XOR
optimization. For this, they have taken advantage of the leakage
from the garbler’s transmitted labels along with the power leakage
from non-linear gates. Now that the possibility of SCA against
free-XOR-optimized GC implementation has been indicated, the
question is whether one can go even beyond that attack and perform
timing SCA and whether some of the assumptions made in [67]
can be relaxed in that case.

Generally speaking, timing attacks feature outstanding proper-
ties that make them more interesting compared to other types of
SCA, e.g., power and electromagnetic (EM) attack cf. [56]. First and
foremost, timing attacks can be launched remotely, including cases
of running code in parallel to the victim code without the need
for local access to the target computer; hence, restricting physical
access to the target machine cannot prevent timing attacks. Second,
timing attacks can be carried out covertly. In light of this state of
affairs and of the fact that timing attacks against GC construction
have never been discussed in the literature, this work attempts
to answer the following question: Is it possible to reveal parties’
input by observing the timing information leaking when executing
an GC protocol? More specifically, we answer this question posi-
tively for free-XOR- and half-gates-optimized constructions. The
contribution of our work is as follows.

Contributions. Our contributions are summarized as follows.
(1) We introduce Goblin, the first non-profiling, single-trace timing
SCA that successfully extract the user’s input, which by definition,
should have been kept secret. To better demonstrate the power
of our attack, we compare it with the recent attack in [67]. The

power SCA in [67] has successfully extracted the global secret used
in free-XOR optimization, whereas Goblin focuses entirely on the
recovery of the garbler’s input. Needless to say that even with the
help of the disclosed secret, the garbler’s input could not be fully
recovered. Moreover, in contrast to [67], Goblin’s effectiveness is
limited to neither circuits with a minimum number of input gates
nor gate types (XOR or AND).
(2) Goblin is machine-learning assisted in disclosing the garbler’s
input, regardless of its size. For this purpose, 𝑘-means clustering is
applied, where no manual tuning or heuristic leakage models are
needed. It is, of course, advantageous to the attacker and allows for
scalable and efficient attacks.
(3) Last but not least, our paper highlights the vulnerabilities of
multiple available garbling tools to timing SCA. We believe that
this constitutes a basis for studying the SCA with respect to GC.

2 BACKGROUND
Notations. We follow a standard notation typically used in SFE-
related literature. ∈𝑅 denotes uniform sampling, ∥ is used to show
concatenation of bit strings. ⟨𝑎, 𝑏⟩ represents a vector with two
components 𝑎 and 𝑏, whereas 𝑎 ∥ 𝑏 is its bit string representation.
A gate is denoted by𝑊𝑐 = 𝑔(𝑊𝑎,𝑊𝑏) with input wires𝑊𝑎 and𝑊𝑏 ,
output wire𝑊𝑐 and 𝑔 : {0, 1}2 → {0, 1}.

2.1 Yao’s Garbled Circuit (GC)
One of the most widely studied SFE approaches, designed to meet
the needs of Boolean circuits, is garbling [68, 70]. This section gives
a brief overview of GC building blocks.

Oblivious transfer (OT). The first protocol within the context
of GC is OT. We consider 1-out-of-2 OT, which is a two-party
protocol with the following definition. The sender 𝑃1 posses two
secret messages𝑚0, and𝑚1, and the receiver 𝑃2 has a selection bit
𝑖 ∈ {0, 1}. By executing the protocol, 𝑃2 learns𝑚𝑖 , but not𝑚1−𝑖 ,
while the sender 𝑃1 does not learn anything about 𝑖 .

Garbling. One of the main components of GC is the primitive
associated with the cryptographic operation, often referred to as
"encryption," namely hashing or symmetric key operations, e.g.,
fixed-key block cipher. The protocol execution begins with garbling
the circuit 𝐶 , where the garbler (𝑃1) randomly chooses secrets𝑤 𝑗

𝑖
with the garbled value of 𝑗 ∈ {0, 1} on each wire𝑊𝑖 . Needless to say
that it is expected that𝑤 𝑗

𝑖
does not reveal any information about 𝑗 .

Practical implementations of Yao’s GC, e.g., [100] considered in this
paper, represent each of the logical “0” and “1” values with 𝑛-bit
values, where 𝑛 is often referred to as the security parameter. In this
sense,𝑤 𝑗

𝑖
(so-called token) is the encryption of the concatenation

of 𝑗 and (𝑛 − 1)-bit values drawn uniformly. After generating the
tokens, the garbler creates a garbled table𝑇𝑖 for each gate𝐺𝑖 , where
each row of the gate truth table is encrypted output with regard
to the tokens, and the output of the gate is called a “ciphertext,”
illustrated in Figure 1.(a) as the output of the operand 𝐸 (·), i.e., the
encryption operation. Since the table rows can reveal information
about the internal wire values, they are permuted so that the recov-
ery of the output labels does not result in uncovering the garbler
input. The main property of 𝑇𝑖 is that its output can be recovered
given a set of garbled inputs, while this process does not leak any

2

Time Is Money, Friend! Anonymous Submission to ACM CCS 2023, TBD, TBD

information about the garbler’s and evaluator’s (𝑃2) inputs. For
this, along with𝑇𝑖 ’s, the token corresponding to the garbler’s input
value is obliviously transferred to 𝑃2 through OT. 𝑃2 is then able to
obtain the garbled output by evaluating the garbled circuit gate by
gate using the tables 𝑇𝑖 and receiving 𝑗 for the output wire from 𝑃1
cf. [101]. Garbling of the output wires of the circuit can be skipped
so that two parties learn (only) the output of the circuit [65].

2.2 Optimizations of Yao’s GC
Reducing the computation and communication costs of SFE proto-
cols has been an objective of numerous studies. The legacy construc-
tion of GCs requires four garbled values per gate, corresponding to
the combinations of values on the input wires. To reduce this cost
on the evaluator and/or garbler side, various optimization methods
have been introduced in the literature.

Among optimization techniques introduced in the literature, free-
XOR has attracted considerable attention since it reduces the cost
on the garbler side effectively, namely by 25%. To reduce garbler’s
cost, the wire values are garbled as presented in Figure 1.(b). For
any gate 𝐺𝑖 , 𝑤1

𝑖
= 𝑤0

𝑖
⊕ 𝑅 for some secret, global 𝑅 ∈𝑅 {0, 1}𝑛1.

Here, for the sake of simplicity, let (𝐴,𝐴 ⊕ 𝑅) and (𝐵, 𝐵 ⊕ 𝑅) denote
the wire labels.

half-gates protocol complements the free-XOR protocol in the
sense that not only are XOR gates evaluated for free, but also AND
gates are garbled using only two ciphertexts (see Figure 1.(c)). Since
Goblin is interested in recovering the garbler’s input, in Figure 1.(c),
we show how the half-gates are generated on the garbler’s side,
where garbler knows which inputs she wants to garble (for more
information about the whole process, see [113]).

2.3 k-means Algorithm
In general, clustering algorithms are mostly in the category of unsu-
pervised machine learning. The main goal of clustering algorithms
is to group samples of a set with some common features into sub-
sets, i.e., clusters. The similarity of all members of each cluster is
measured based on the pairwise distances of values (so-called fea-
tures) [48]. With regard to the pairwise distances, clusters are then
made around the mean vectors, which are called centroids [107].

𝑘-means is a clustering algorithm that aims to partition 𝑁 mem-
bers of a set into 𝑘 clusters in a way that each member of a cluster
has a close value to the centroid of the cluster [107]. The pro-
cess of clustering data seems to be simple, but in fact, it is an
NP-hard problem [107]. Hence, there exist heuristic algorithms
that find a local optimum centroid over a series of finding itera-
tions [107]. To be more specific, 𝑘-means finds partitions (clusters)
𝑝 = {𝑝1, 𝑝2, · · · , 𝑝𝑘 } for the dataset 𝑐 = {𝑐𝑖 }𝑛𝑖=1 that minimizes the
total cluster variance [50]:

min
𝑝,{` 𝑗 }𝑘1

𝑘∑︁
𝑗=1

∑︁
𝑐𝑖 ∈𝑝 𝑗

| |𝑐𝑖 − ` 𝑗 | |2, (1)

where ` 𝑗 is the mean of all examples assigned to 𝑗 th centroid. Here
the squared Euclidean distance is one of the commonly applied dis-
tance measures applied to minimize the total cluster variance [99].

1For specifics of the encryption function in the free-XOR protocol, see [21, 45].

(a)

(b)

(c)

Figure 1: Garbled gates look-up tablewith (a) no optimization,
(b) free-XOR optimization, and (c) half-gate optimization.

2.4 Cache Architecture
Modern x86 processors include three layers of cache [84]: L1, L2,
and L3. All cache levels are mutually inclusive, which means every
available data on L1 is also available in L2 and L3 [36]. Figure 2
illustrates Intel core-i7 cache architecture. Each central process-
ing unit’s (CPU) core has dedicated L1 and L2 caches, where the
L1 cache is divided into a data and an instruction cache with 32
kilobytes (KB) capacity each in Intel core-i7 CPU [84]. Moreover,
the L2 cache is shared between all the CPU threads; therefore, it
has a bigger capacity (256 KB [84]) in Intel core-i7 CPU. All CPU
cores can access shared cache L3, the largest CPU cache with 8
megabytes (MB) capacity [84].

Memory access time variations. Each procedure of x86 pro-
cessors contains two main instructions categories: (1) read/write
data from/to memory and (2) process the data (so-called control
flow) [23, 36]. In the latter case, the execution time depends on the
instruction type and equals the number of an arithmetic-logic unit
(ALU) calls during the instruction execution [23]. However, memory
access time depends on either the instruction tries to access random-
access memory (RAM) or any level of cache [43, 76, 83, 94, 110].
For instance, an additional instruction between data a and b takes
fewer clock cycles when both data are available in the L1 cache
compared to the case when either of the data is in a higher level
cache or the worst case, is stored in the RAM.

3

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

Figure 2: Intel core-i7 cache architecture [84].

Memory storage hierarchy. To tackle the issue of the CPU’s insuf-
ficient storage, one of the CPU’s primary duties is efficiently man-
aging instructions’ access to memory, especially the cache. When
the CPU executes an instruction over a data, the resulting data is
first stored in L1, and inclusively in L2 and L3, and cache [66, 115].
Moreover, the CPU stores an instantiation of the data on the RAM.
From then on, if any task on the same core as the data is generated
requests the data, the CPU first checks the availability of data in the
core’s L1 cache level. If the allocated data address memory cells are
overwritten in the L1 cache by other tasks assigned to the core, the
CPU checks the availability of the data in the L2 and L3 cache levels.
Finally, if the data is unavailable in the cache, the CPU fetches the
data from RAM down to the L1 level of the cache assigned to the
core on which the task requests the data [66].

3 ADVERSARY MODEL
Before giving details about our adversary model, it is necessary to
review the models discussed for GC protocols.

Adversary models in the context of SFE. After reviewing how
SCA, in particular, timing SCA, has been studied in other domains,
we shift our focus to how this topic is relevant in the context of SFE.
The security of GCs has been considered in two main paradigms,
namely honest-but-curious and malicious adversary models. The
latter reflects the situation, where a party potentially cheats by cor-
rupting the function to be jointly computed or, generally, adopting
an arbitrary attack strategy. On the other hand, honest-but-curious
parties follow the protocol honestly, although they may attempt
to learn additional information from the execution. From this defi-
nition and what has been discussed about SCA, it is clear that an
adversary capable of performing SCA can be classified as an honest-
but-curious one. This has also been well-formulated in [11], where
it is suggested that Yao’s GC reveals no side-information beyond
the function being computed, i.e., no information about parties’
inputs leaks. Nevertheless, it should be noted that these adversary
models were developed to reflect the conventional setting assumed
for SFE, namely, parties’ symmetric computation power.

To encompass all aspects of real-world applications of SFE, the
notion of server-aided or cloud-assisted SFE has been introduced.
In this setting, the standard SFE protocol is run with the help of a
server (or a small set of them), which does not contribute to running
the protocol by giving inputs, but by making their computational
resources available to the parties cf. [15, 25, 26, 60]. In spite of all
difficulties in deploying even single-server-aided protocols relying
on Yao’s GC, it has been demonstrated that it is indeed possible to
construct practical ones [60]. In the proposed setting, the server is
instantiated by a public cloud service provider, where parties who
need more computational power (e.g., the garbler) can outsource
their computations. An intrinsic part of the proposed methodology

is the application of optimization techniques, namely free-XOR.
[60] has indeed well explained how any two-party SFE can be
converted to a server-aided protocol if the server and the garbler
are not simultaneouslymalicious. The proposed protocols have been
proven secure under various circumstances, where parties and the
server can be of different adversary types, including honest-but-
curious server [61]. Nonetheless, as further explained in Section 3.1,
although the adversary model assumed in studies devoted to server-
aided protocols might seem the most relevant to ours, any -even
unprivileged- access to the CPU running the SFE protocol can be
enjoyed by the adversary.

Privileged vs. unprivileged access for timing SCA. To access
fine-grained timing side-channel observations, both privileged and
unprivileged adversaries have been considered in the literature;
see, e.g., [20]. In the former case, one possible scenario constitutes
privileged attackers in control of the operating system. In fact, such
an attacker can be capable of launching more direct attacks than
side-channel attacks [79]; however, platforms supporting shielded
execution, e.g., Intel Software Guard eXtension (SGX), may not
come under attack by even most privileged adversaries. Hence,
SCA in the presence of privileged attacker, for instance, through
intercepting the control flows, inferring page table and last-level
cache, has become an important research direction [20, 30, 87]. Nev-
ertheless, unprivileged attackers still attract attention as they can
mount attacks in various settings, e.g., an unprivileged process in a
native environment, an unprivileged process in a virtual machine,
and a sandboxed process cf. [20, 42]. Examples of such attacks
include [1, 2, 85, 91, 104, 114]. In this respect, rdtsc exemplifies
the instructions used to obtain fine-grained timing information by
providing unprivileged access to a model-specific register, which
stores the current cycle count, commonly used for cache attacks
on, e.g., Intel CPUs cf. [73].

3.1 Our Adversary Model
The attack model taken into consideration in this paper is the semi-
honest model, where parties follow the protocol, but there is an
attempt to learn information from the execution of the protocol. In
doing so, even though the (single) server-aided SFE seems to be the
most relevant adversary model from the SFE protocols’ perspec-
tive, we consider the challenging setting where the server itself
is honest-but-curious. Moreover, similar to models taken into ac-
count in [32, 59, 60], we assume that the parties and the server
are independent, meaning that none of them collude. In practice,
given the consequences in terms of losing the reputation and legal
actions, it is reasonable to assume that the server will not collude
with the parties. Note that although throughout the paper, we re-
fer to the server as the entity collecting the timing information,
this does not rule out the fact that any entity having access to
the timing information can launch the attack. The main require-
ment for Goblin to be launched successfully is the ability to acquire
fine-grained timing information when the garbling process is run.
The attacker aims to take advantage of this information to extract
the garbler’s input. Next we explain how this can be possible in
real-world implementations.

4

Time Is Money, Friend! Anonymous Submission to ACM CCS 2023, TBD, TBD

4 TIMING SIDE-CHANNEL LEAKAGE IN
GARBLING TOOLS: AN OBSERVATION

Broadly speaking, timing side-channels leak due to the dependency
of the time taken to execute a piece of software code on the values
of secret variables. Here, two types of timing side-channels are of
interest, namely instruction-related and cache-related ones. The
former indicates that the number or type of instructions executed
along a path depends on the values of secret variables. In contrast,
cache-related timing side channels refer to the difference due to
the memory subsystem behavior depending on the values of secret
variables, e.g., a cache hit takes a few CPU cycles. Still, a miss
takes hundreds of cycles cf. [108]. By analyzing the code line-by-
line, the adversary can find and further exploit such vulnerabilities.
Nevertheless, manual analysis of the timing characteristics of a code
is challenging as it requires thorough knowledge of the code and the
platform on which it is executed. The broad range of existing tools
for automatically checking timing side-channel leakage can help
pinpoint such vulnerabilities. In doing so, we select a recent tool
recommended in the literature [55], namely SC-Eliminator [108].
Among the most important features of SC-Eliminator is the fact
that, in view of available garbling protocols, it can analyze codes
written in C/C++. To this end, using an LLVM compiler performs
static analyses to identify the sensitive variables and timing leakage
associated with them, given a program and a list of secret inputs.

GC tools.To explore whether GC frameworks would be vulnerable
to timing SCA, we selected 5 open-source tools written in C/C++,
which mostly support AES-NI (Advanced Encryption Standard New
Instruction) instruction set (for more features of these tools cf. [49]).
As a result, they have made computing AES encryptions on modern
processors efficient, and consequently, the computation cost of GC
is reduced drastically. JustGarble [10] is a library for garbling and
evaluating circuits licensed under GNU GPL v3 license; however,
JustGarble does not support communication or circuit generation
and is, therefore, not a general-purpose framework. Nevertheless,
it has become a cornerstone of various frameworks, e.g., [41, 44,
46, 51, 58, 80, 101]. The reason behind JustGarble’s efficiency is its
ability to make only one AES call per garbled-gate evaluation which
makes it far faster than any prior reported results [10]. JustGarble
exploits the cryptographic permutations realizable by fixed-key
AES acting like a public random permutation [10]. Although this
might be a strong assumption cf. [44, 46], thanks to its efficiency
and the theoretical foundation laid for JustGarble, it has been used
in a wide variety of MPC and GC frameworks cf. [41, 80].

Songhori et al. [100, 101] proceeded JustGarble and proposed
TinyGarble, a highly compressed and scalable sequential GC,
which is a self-contained framework that can directly be used in
MPC applications [49]. Three steps are taken in TinyGarble, namely
converting a function defined in Verilog to a netlist format, convert-
ing that netlist to a custom circuit description (SCD), and finally,
securely evaluating the resulting Boolean circuit using a garbled
circuit protocol. This flow has been considered a strict improvement
over JustGarble as TinyGarble further includes recent protocol and
circuit optimizations. Nevertheless, and irrespective of the flexibil-
ity of TinyGarble for producing hardware circuits, changes made
to JustGarble have introduced timing side-channel leakage, as will
be discussed in Sections 6-7.

Table 1: The number of leaky IF conditions (IF) in various
frameworks (for a detailed report, refer to Appendix A).

Framework IF

TinyGarble [100] (half-gate) 4

TinyGarble [100] (free-XOR) 7

JustGarble [53] 11

EMP-toolkit [78] 0

Obliv-C [112] 4

ABY [27] 0

In contrast to TinyGarble, which is an extension of Verilog,
Obliv-C is an extension of C that executes a GC protocol in a
two-party setting [111]. The C language is extended by adding
an obliv qualifier that is applied to C types and constructs. By
enforcing typing rules, obliv types remain secret unless explic-
itly revealed. In doing so, it is suggested that oblivious functions
and conditionals could modify public data, if they are executed
within a qualified obliv block, where the code is always executed
cf. [111, 112]. In addition to the data security achieved by means of
these rules, modular libraries can be easily developed when using
Obliv-C. Thanks to this property, Obliv-C has found application in,
e.g., linear regression [35], decentralized certificate authorities [57],
aggregated private machine-learning models [103], classification
of encrypted emails [47] and stable matching [29].

Besides the frameworks mentioned above, we also took EMP-
toolkit [78] and ABY [27], libraries developed in C++, into account.
EMP-toolkit is composed of multiple MPC frameworks and allows
for executing circuit-based protocols due to the available circuit
generation and cryptographic libraries. ABY library offers a mecha-
nism for mixing protocols, including optimized versions of Yao’s
garbled circuit protocol.

Our observations. As mentioned earlier, as a first, we examined
the possibility of mounting timing SCA against GC frameworks enu-
merated above. In such an attack scenario, the adversary attempt to
take advantage of possible unbalance if-else statements (branches).
The adversary can assume that different operations performed
to generate garbled inputs in free-XOR and half-gate optimized
Yao’s GC protocols (see Figure 1) can result in leakage if neither
a constant-time implementation nor branch-less assignments are
used for sensitive branches. To examine this, SC-Eliminator [108] is
applied against TinyGarble [100], JustGarble [53], EMP-toolkit [78],
Obliv-C [112], and ABY [27]. Table 1 contains the number of leaky
IFs for this experiment. When taking a close look at the list of
leaky IFs (Table 3 in Appendix A), among the set of leaky IFs, we
observed unbalanced IF statements in the garbled-input generation,
i.e., garbled inputs were generated in a secret-dependent manner.
The existence of these unbalanced IFs demonstrates the likelihood
of timing attacks to be successfully mounted against them. Accord-
ing to the results in Table 1, EMP-toolkit [78] and ABY [27] do not
have any leaky IFs. Nevertheless, we should stress that although SC-
Eliminator does not find any vulnerability in terms of leaky IFs in
these frameworks, this does not rule out the possibility of other at-
tacks. Next, we introduce our attack, Goblin, to leverage the timing
side-channel leaking from existing unbalanced IF statements.

5

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

5 BUILDING BLOCKS OF GOBLIN
The main steps in Goblin’s flow are: (1) filling the cache with junks.
This step aims to maximize the CPU core’s access time to the global
secret (𝑅) from the cache and capture the CPU cycles corresponding
to each gate connected to input wires (i.e., gates in the input layer);
(2) measuring the time on the CPU, including the time taken to
generate garbler token, linked to the input size; (3) recovering
the garbler’s secret (i.e., garbler’s input) after pre-processing the
acquired CPU cycles and running a clustering algorithm.

5.1 Junk Generator
Goblin is only interested in the execution time of secret-dependent
instructions to guess the input. Based on our observation, the input
bit-dependant execution time varies for “0” and “1”, although it
can be subtle in some cases (see Section 6 for more information).
Therefore, the idea behind the junk generator (JG) is to fill the
cache repeatedly with some junk data to force the CPU to either
fetch the requested data into the L1 cache from the RAM to max-
imize the time consumption of the read data instructions from
the cache (see Section 7 for a discussion about memory manage-
ment). We emphasize that if the input bit-dependant execution
time differs significantly, this step can be skipped. In fact, the time
differences of read instructions caused by the availability of data
on cache or fetching the data from the RAM has contributed to the
success of multiple attacks [43, 66, 110, 115]. As a prime example,
in Flush+Reload attack [110], the attacker first flushes the cache,
reloads the flushed data, and then reveals secret information of
schemes according to the time consumption of reload instruction.
These attack scenarios, however, are not applicable against ARM ar-
chitecture [8]. This inability is because the cache evicts instruction
on ARM architecture requires privileged access [110]. However,
our approach is not limited to a specific architecture as JG utilizes
two structures that help it to fill most lines of the L3 cache level
and to avoid overwriting the generated junk.

The first structure is to use only registers in the source file and
avoid using pointers. Using registers guarantees that the CPU allo-
cates a part of the cache to the data, whereas when using pointers,
the CPU allocates an address in the RAM to the data and the cache.
Moreover, using pointers increase the probability of overwriting
unused data in the cache as its instantiation is available in the
RAM. The second structure utilizes a recursive algorithm to avoid
overwriting the previously generated data to maximize the cache
utilization by JG. To do so, JG first generates a 4 random long inte-
ger, then in the first iteration (𝑛 = 1), it calculates the summation
of each two of them, resulting in 6 long integers (including the 4
previously generated randoms). From this point on, in each itera-
tion, JG generates a sequence of summations from 𝑛 + 1 previously
generated long integers, where 𝑛 is the number of the iteration.
Hence, JG forces the CPU to overwrite 𝑅 with junk since its task
requests more memory than the task on which the garbling is taken
care of; therefore, using JG leads to the fact that 𝑅 will be over-
written with a high probability and must be fetched from RAM
when requested by any core (refer to Section 7 for more details).
The process mentioned above requires a considerable amount of
memory; therefore, JG uses registers to avoid storing this massive

amount of data on the RAM; otherwise, the system crashes due to
insufficient available memory space.

5.2 Measuring Time on CPUs
After the JG boosts the difference between the input bit-dependent
execution times, the time can be measured. According to Martin et
al. [79], to measure the time without breaking the software, there
are three main sources to take advantage of cf. [77]: (1) internal,
hardware time sources, e.g., timestamp counters; (2) external time
sources, e.g., external interrupts; and (3) creating a virtual clock,
for instance, the virtual clock implementation on multi-processor
systems with shared memory [91]. Without loss of generality, we
focus on how timing information can be retrieved using the first
option, namely rdtsc. The Read Timestamp Counter rdtsc is an
x86 instruction that returns the value of the CPU timestamp counter
(TSC) register. In general, the TSC register is shared with every user
with any level of privileged access [77]; therefore, it can be accessed
by: (1) a privileged/non-privileged user who has complete control
over the CPU; (2) a service provider who shares the processor with
the victim, such as cloud servers [79]; (3) a virtual-machine user
with a privileged/non-privileged access level, who runs a process
on a shared processor with the victim (e.g., cross-virtual machine
attacks) [77]. Hence, the adversary can have either privileged/non-
privileged access to (1) the CPU on which the garbling scheme is
running, (2) the CPU of the service provider’s system, or (3) a cross-
virtual machine to share the processor with the victim running
the garbling scheme. What could make a difference is that an un-
privileged attacker cannot precisely control the garbler’s execution
and interrupt it, unlike a privileged attacker. Nevertheless, if the
attacker can figure out when the garbling process begins, or use a
trigger signal such as a cache-based side channel [96], then the col-
lected traces can be aligned based on that timing information [74].
Therefore, without loss of generality, we assume that the attacker
can align the timing measurements to mount the attack.

Resolution of timing measurements. The timestamps provided
by rdtsc often have a resolution between 1 and 3 cycles on modern
CPUs cf. [73]. For example, on AMD CPUs until the Zen microarchi-
tecture, a cycle-accurate resolution can be obtained; however, more
recent generations come with a significantly lower resolution as the
register is only updated every 20 to 35 cycles. Another example is
Intel Core 𝑖7−7700 Processors, i.e., what has been used in this study,
where the rdtsc register is updated every cycle [52]. Nevertheless,
although it might be thought that lower resolutions might make
performing attacks more challenging, Goblin is not affected since it
requires mainly the difference between two readings with the same
resolution (see Section 7 for more details). Therefore, in contrast to
attacks requiring repetition when relying on rdtsc, it is not needed
for Goblin to do so and use the average timing differences over all
executions. We stress that although Goblin is a single-trace attack
since multiple gates are being garbled one after another, the time
difference can be directly driven from rdtsc. We should also add
that our attack is an example of a timing attack, meaning that we
believe other methods for acquiring the timing information can
definitely be applied.

6

Time Is Money, Friend! Anonymous Submission to ACM CCS 2023, TBD, TBD

5.3 Recovering Garbler’s Input
Counting the gates in the input Layer. According to our adver-
sary model, we assume that the adversary is neither the garbler nor
the evaluator. Therefore, there is no information about the circuit,
input size, and gate types in the input layer. Here we describe how
this information is retrieved by Goblin when the garbler uses Just-
Garble, as an example of GC tools. This example is selected due to
its broad applications (see Section 4) and its role as the core of other
garbling frameworks, e.g., ones considered in our study [101, 111].
Listing 1 illustrates a high-level description of JustGarble primary
functions. In Listing 1, NF, LF, GT, IF, INL, WL, GC, and OL, denoted
in Lines 1–9, refer to the number of fan-outs, location of fan-outs,
gates’ types, the value of filled input fan-out, initial input values,
wire labels, Garbled circuit, and output labels, respectively.

According to the protocol flow of JustGarble (see, Listing 1),
in the first step, the garbler’s tokens for zero and one logical val-
ues (IL) are constructed through createNewWire (Listing 1 line
5). Then, the parser function (createInputLabels Listing 1 line 3)
starts parsing the simple circuit description (SCD) file and g_init
files, which contain information about the circuit and the garbler’s
input values. The parser function learns about the circuit (GT) and
locates the fan-in and fan-out of the input layer gates (LF and NF)
that are connected to the garbler input based on g_init file infor-
mation. For every input, the createInputLabels is called once for
garbler label and once for the evaluator label of the input, twice
per input in total. At this point, Goblin starts counting the number
of createInputLabels calls and calculating the number of input
layer gates as half of the total number of createInputLabels func-
tion calls. Afterward, the gates are garbled one by one by calling
the garbleCircuit function (Listing 1 line 9), starting from the
input layer gates, where the garbler’s and evaluator’s inputs are
fed, before proceeding to the following layer gates. This fact allows
Goblin to count the CPU cycle associated with each gate in the
input layer by knowing the number of input gates.

Goblin against free-XOR optimization.When the framework
starts garbling the gates, output labels (OL) and garbled tables (GT)
are generated in the order provided in the SCD file. As JustGarble,
similar to various modern garbling frameworks, utilizes the free-
XOR optimization to generate garbler tokens for input value 1, the
garbler must access the 𝑅 frequently. When free-XOR optimization
is enabled, GarbleCircuit function (Listing 1 line 9) skips line 11
to line 14 of the Listing 1. Therefore, regardless of whether the
input is known or secret, it checks the type of the input gate (GT)
and treats all inputs as a secret. If the gate type is XOR, including all
gates categories that are considered XOR in GC protocols (INV, XOR
and XNOR gates), it generates the OL as the XOR results of labels 0
and 1 (Listing 1 line 16); otherwise, the OL is constructed through
a series of encryptions, see, Listing 1, line 18 to 25. It is clearly
observable that in the last part of the encryption, Listing 1 line
14 and between lines 25 and 28, if the garblerinput value is “1”,
one more encryption, one memory access, and one XORing take
place, which can result in the input dependency observable in the
execution time of garbling process.

In other words, when garbling AND (non-XOR) gates (including
(AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN), there is an un-
balanced if condition, which means a longer execution time for

1 def JustGarble(g_init , SCD):

2 NF, LF, GT = createNewWire(g_init , SCD) #Pasrses

the circuit , locate the fan -outs , and generates wire

labels.

3 IF, INL = createInputLabels(NF, LF) #Fills tokens to

input fan -outs (called twice per garbler input).

4 GC, OL, TT = garbleCircuit(IF, IFS , WL, GT) #

Generates garbled tables and Garbled output tokens.

5 def createNewWire(g_init , SCD):

6 for i in SCD [0]: #first line of SCD , which contains

the information about input layer gates

7 IF[i][0] = randomBlock ();

8 IF[i][1] = xorBlocks(R, IF[i][0]);

9 def garbleCircuit(IFS , WL, GT):

10 R = AESEcbEncryptBlks(AES_Key)

11 if(IFS == known):

12 GC, OL = HalfGarbleGate(GT, IF)

13 return GC, OL

14 else: #(IFS == secret):

15 if(GT == XORGATE):

16 OL = XorBlock (IFS , R) #free -XOR optimization

17 else: #if(GT == ANDGATE)

18 mask1 , mask2 , mask3 , mask4=AESEcbEncryptBlks(

AES_Key ,4)

19 #AND encryptions

20 OL = XorBlock(mask1 , mask2)

21 if (IFS == 1):

22 OL = XorBlock(OL , R);

23 GC = [XorBlock(OL, mask3), XorBlock(OL, mask4)]

24 if(gate_location is in input_layer): #Generates

associate garbler tokens to be transferred to

Evaluator.

25 if(g_init == 0):

26 TT = IF;

27 else:

28 TT = xorBlocks(R, IF);

29 return GC, OL, TT

Listing 1: Protocol flow of primary functions of JustGarble.

input value one. This is the point that Goblin takes advantage of
differences in execution time of the garbling process for each gate
due to their input value. If 𝑅 is available in the L1 level of the cache,
this difference is subtle and, in most cases, negligible to the time of
the encryption process. Hence, to maximize the difference between
the time taken to generate tokens for input 0 and 1, the JG (see Sec-
tion 5.1) starts filling the cache with junks parallel to the execution
of the createNewWire function (Listing 1 line 5) to enforce CPU
to fetch 𝑅 into L1 cache from RAM, which increases the execution
time difference between 0 and 1 token generation. To boost the
effect of JG, Goblin first finds the CPU core and thread on which
the garbling process is happening by calling the LSCPU instruction;
then asks the server to assign the JG task to the same thread, or if
not possible, at least to the same core on which the garbling process
is happening. It should be indicated that neither any privilege is
needed nor any restriction on assigning the JG to the same core is
posed as it fills the shared L3 cache level; nevertheless, assigning
JG to the same core as the garbling process core will result in faster
cache filling and fewer errors as JG first fills L1 and L2 level cache.

Goblin against half-gate optimization. Although JustGarble
does not support half-gate optimization, its subsequent frameworks,
such as TinyGarble and Obliv-C, utilize this optimization. Next,

7

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

1 def HalfGarbleGate(GT, IF):

2 R = AESEcbEncryptBlks(AES_Key)

3 mask1 , mask2 = AESEcbEncryptBlks(AES_Key ,2)

4 if(IF[0] == 0):

5 if(GT == ANDGATE):

6 OL = mask1 #XorBlock(mask1 , 0)

7 else: #if(GT == XORGATE):

8 OL = XorBlock(mask1 , IF[1])

9 if(IF[0] == 1):

10 if(GT == XORGATE):

11 OL = mask1 #XorBlock(mask1 , 0)

12 else: #if(GT == ANDGATE):

13 OL = XorBlock(mask1 , R)

14 GC = XorBlock(OL, mask2)

15 if(gate_location is in input_layer): #Generates

associate garbler tokens to be transferred to

Evaluator.

16 if(g_init == 0):

17 TT = IF;

18 else:

19 TT = xorBlocks(R, IF);

20 return GC, OL , TT

Listing 2: HalfGarbleGate function flow.

we explain why Goblin’s ability is not limited to free-XOR op-
timization and can be launched against frameworks using half-
gate optimization as follows. If half-gate optimization is enabled,
HalfGarbleGate is called by GarbleGate, see Listing 2. Here the
input dependency of the garbling process is even more explicit
in the sense that if one of the values of the input (IF) is zero and
the gate type (GT) is ANDGATE, the function skips all the garbling
processes and constructs OL equal to a constant value, which results
in less execution time compared to the garbling process of input
value one or other type of gates. If the input value is one, then
the encryption takes place (Listing 2 line 11), which results in an
unbalance if path and dependency between the garbling process
execution time and the input value. Similar to the free-XOR opti-
mization, Goblin can benefit from the differences in execution time
of HalfGarbleGate corresponding to the input value due to the
unbalanced if conditions in lines 3 and 8 of Listing 2. The rest of
the steps are not interesting for Goblin because they do not hold
any information about the secret (garbler’s input), and the above-
mentioned information is adequate to launch the Goblin; therefore,
from now on, Goblin can continue the attack from an offline phase.

Pre-processing the acquired CPU cycles.As explained before,
when employing free-XOR optimization, the attacker expects to
see a significant difference between the CPU cycle of INV, XOR, and
XNOR gates and other gate types, including AND/NAND, OR/NOR, ANDN,
ORN, NANDN, and NORN gates (refer to Section 6 for more information).
This significant difference is because in the free-XOR optimization,
as its name implies, an XOR-type gate is garbled by simply using the
XORing operation that takes a few CPU cycles. On the other hand,
garbling other types of gates, such as an AND gate, requires read-
ing/writing from/to memory and cipher generation, which results
in extra memory reads; hence, accumulating these leads to a drastic
increase in CPU cycles. This is evident thanks to the definition of
this optimization technique and the number of operands included
in the computation of those gates, see Figure 1.(b). When employing
clustering to discover the garbler’s input in a non-profiled manner,
this difference causes the gate types to be dominant centroids of
the clustering algorithm over the input values. To overcome this

challenge, Goblin first divides the CPU cycle into the number of
subgroups equal to the number of available gate types, i.e., AND
(AND/NAND, OR/NOR, ANDN, ORN, NANDN, and NORN) and XOR (INV, XOR
and XNOR gates, hereafter called XOR gates) with regard to the me-
dian of the CPU cycles. Afterward, it normalizes each subgroup of
CPU cycles by employing z-score normalization, and finally, con-
catenates the normalized data to form the CPU cycle array while
maintaining the order of captured CPU cycles. Normalization mini-
mizes the difference between the CPU cycle requirements of XOR
and AND gate types, consequently improving the SR.

The first step is more complicated in a case where the half-gates
optimization is enabled. Specifically, according to our observation,
not only garbling the XOR gates exhibits a significantly larger
number of CPU cycles compared to other gate types, but also there
is a dramatic difference in the number of CPU cycles in the OR/NOR
gates garbling process. There is, of course, a reason behind this,
namely how gates with truth tables containing an odd number of
ones (e.g., AND, NAND, OR, NOR, etc.) can be expressed and constructed.
Generally speaking, these gate can be defined as 𝐺 : (𝑣𝑎, 𝑣𝑏) →
(𝛼𝑎 ⊕ 𝑣𝑎) ∧ (𝛼𝑏 ⊕ 𝑣𝑏) ⊕ 𝛼𝑐 , where 𝑣𝑎 and 𝑣𝑏 are logical values and
𝛼𝑎 , 𝛼𝑏 , and 𝛼𝑐 are constant values cf. [113]. For AND gate, 𝛼 values
are set to 0, whereas for OR gate, they are set to 1. Therefore, it is
unsurprising that the CPU cycles collected when garbling OR/NOR
gates compose a cluster different from the others. In the same vain,
one can also observe that it takes more time for the garbler to
generate the garbled OR/NOR gate with input “0”, as opposed to
AND/NAND gates with input “1”. Therefore, contrary to the case of
free-XOR optimization, where AND/NAND and OR/NOR can be
considered as belonging to the same type, it is challenging to make a
distinction between AND/NAND gates with input “0” and OR/NOR
gates with input “1”. This overlap results in inaccurate clustering
since the algorithm puts both into one cluster, although they should
be put into two different clusters due to their inputs.

To counter this challenge, Goblin applies the following additional
data scaling technique before the normalization to force the pattern
to match other gate types (i.e., a larger number of CPU cycles for
input 1). First, similar to the free-XOR case, the CPU cycle collected
from the input gates {𝑐𝑖 }𝑛𝑖=1 should be partitioned into subsets
corresponding to different gate types: XOR/XNOR, AND/NAND,
andOR/NOR. For this, Goblin calculates 66th percentiles of elements
in {𝑐𝑖 }𝑛𝑖=1 and assign the elements larger than that to the subset
𝑐𝑂𝑅 . The remaining elements of {𝑐𝑖 }𝑛𝑖=1 are assigned to AND and
XOR subsets similarly as done in the free-XOR case: the larger
elements are assigned to 𝑐𝐴𝑁𝐷 by considering the median of the
{𝑐𝑖 }𝑛𝑖=1 \ 𝑐𝐴𝑁𝐷 . The remaining elements are then assigned to the
subset corresponding to the XOR/XNOR gates. Afterward, Goblin
applies the transformation 𝑡𝑖 = 𝑎𝑐𝑖 + 𝑏 for 𝑐𝑖 ∈ 𝑐𝑂𝑅 , where 𝑎 and 𝑏
are calculated as

𝑎 =
Max(𝑐𝐴𝑁𝐷) − 𝑐𝐴𝑁𝐷

Max(𝑐𝑂𝑅) − 𝑐𝐴𝑁𝐷
, 𝑏 = 𝑐𝐴𝑁𝐷 − 𝑎 · 𝑐𝑂𝑅,

where Max(·) and 𝑐’s denote the maximum and the average of
the subsets, respectively. After this step, normalization is applied,
similar to the free-XOR case.

Extracting garbler’s input through clustering. After obtaining
the pre-processed data, Goblin launches the clustering algorithm to
determine each garbler’s input bit. As Goblin applies normalization

8

Time Is Money, Friend! Anonymous Submission to ACM CCS 2023, TBD, TBD

to the CPU cycle data, the gate types’ dominance in the centroids
has vanished; therefore, Goblin clusters CPU cycles into only two
clusters corresponding to input zero and input one, regardless of
the gate types. To disclose the input bits, Goblin keeps track of the
Max({𝑐𝑖 }𝑛𝑖=1) before normalization. When the clustering process is
over, all cluster members that include the maximum element are
labeled as “1”, meaning that the garbler input bit is “1”; consequently,
other cluster includes 𝑐𝑖 ’s corresponding to garbler’s input bit “0”.

5.4 Performance Metric
Let c𝑖 be a leakage measurement, i.e., the number of CPU cycles, for
a garbler input 𝑥 = 𝑥1 · · · 𝑥𝑛 with 𝑛-bits corresponding to 𝑛 wires
giving the garbler’s input to the circuit. For instance, for a garbled
128-bit AES design, 𝑛 = 128. To evaluate the effectiveness of our
attack, we calculate its success rate of recovering the garbler’s input
given a single trace {𝑐}𝑛

𝑖
. Note that Goblin is a non-profiling attack;

hence, as opposed to profiled attacks, no leakage profile is made and
used during the attack. 𝑘-means clustering algorithm is used as a
distinguisher so that any observation 𝑐𝑖 is assigned to either cluster
𝑝0 or 𝑝1 associated with input bit 𝑥𝑖 being “0” or “1”. Precisely, the
success rate is defined as follows.

SR :=
∑︁

𝑗∈{0,1}

𝑛∑︁
𝑖=1

Pr(𝑐𝑖 ∈ 𝑝 𝑗 | 𝑥𝑖 = 𝑗).

To put this simply, SR indicates how many bits are correctly
disclosed out of 𝑛 bits in the garbler’s input. Note that this defini-
tion aligns with the general case considered in SCA-related litera-
ture [102]. In this context, we consider the success rate of order 1,
i.e., the probability that the correct key is ranked first.

6 EXPERIMENTAL RESULTS
We ran the JustGarble, TinyGarble and Obliv-C frameworks, pub-
licly available via GitHub repositories [53, 100, 112]. Garbler and
evaluator codes ran on two systems with Linux Ubuntu 20, 16 GB
of memory, and an Intel Core 𝑖7−7700 CPU 3.60GHz CPU. Two sys-
tems were connected through a local area network (LAN) cable. As
garbling process might access 𝑅 anytime during garbling process,
to force CPU to fetch 𝑅 from RAM to L1 level cache in maximum
possible cases, we started JG as soon as the garbling process begins.
This can be easily determined by calling non-privileged CPU in-
structions showing which applications run on each core. Moreover,
we assigned the JG to the same core that generates garbled circuits
on the garbler system. To capture the CPU clock cycles, we used
rdtsc as discussed before in Section 5.2. We have also used the
𝑘-means clustering algorithm implemented in Matlab 2021.

6.1 Results for Benchmark Functions
To evaluate the efficacy of Goblin, we have targeted the commonly-
used benchmark functions, including 128-AES, 288-SHA3, 256-bit
Multiplier, 128-bit Summation, and 128-bit Hamming garbled by
JustGarble [53], TinyGarble [101], and Obliv-C [112] (results for
the benchmark functions with various input sizes can be found in
Section 6.3). For this purpose, to calculate the success rate (SR), we
have applied various garbler’s inputs and provided the statistics in
this section. Launching Goblin against all combinations of inputs is
impractical due to the massive number of input combinations (i.e.,

for a 256-bit Multiplier, the attack had to be launched 2256 times);
therefore, we have chosen 1000 random inputs to run Goblin. In the
𝑘-means algorithm setting, the centroids are chosen at 100 different
starting values, and the algorithm returns the result for the least
within-cluster sums of point-to-centroid distances.

Figure 3 shows the SR when free-XOR or half-gate optimization
was enabled. The red lines in the boxes indicate the average SR
of the attack against these benchmark functions. It is observable
in Figure 3.(a) that the attack achieved a better SR when launched
against the AES benchmark compared to, e.g., the 256-bit Multiplier.
The reason is three-fold. First, only 1000 inputs are tested; there-
fore, the results might vary. Second, the input layer of the 256-bit
Multiplier contains more XOR gates than the AES, which are more
challenging because of the subtle difference between the number of
clock cycles taken for “1” and “0” (see Appendix B for more details).
Third, per input, notice that Goblin is a non-profiling, single-trace
attack, meaning that it receives one timing measurement per gate
(and per input bit, consequently); hence, the more input bits, the
better Goblin determines them. This is further studied in Section 6.2.

Compared to Figure 3.(a), Figure 3.(b) corresponding to the half-
gates optimization shows an overall reduced SR for the same bench-
mark functions. This is because of the increase in the number of
gate types to be identified for the same number of input bits and
observations, consequently. Needless to say, even for circuits with
various gate types, such as AES, Goblin achieved an average SR of
more than 90%, which means the effect of variation in the gate types
does not affect Goblin’s SR drastically. Imperfect process of filling
the L3 level cache with junk accounts for the outliers in Figure 3.
The implication of this is that the availability of 𝑅 in the L1 cache
level of the garbler core decreases the execution time difference
between garbler 0 and 1 token generation. However, these outliers
happen barely, i.e., in 11 out of 1000 experiments, which means the
JG has a small error. Note that even for the outliers, Goblin still
revealed the garbler’s input with a range of 60% to 100% SR.

6.2 Scalability of Goblin
To test Goblin’s scalability, we have launched Goblin against three
benchmark functions, including MULT, SUM, and Hamming, with
a range of input sizes between 128 and 1024. Figure 4 illustrates the
results, where Figure 4.(a) and Figure 4.(b) depict the free-XOR and
half-gate optimization results. As shown in Figure 4.(a), increasing
the input size increases the minimum and average SR for virtually
all cases. This SR increment is because Goblin has a broader range
of data to cluster, which means it has more observations to compare
with one another. Similar to previous experiment, outliers can be
observed in Figure 4. To reduce the number of outliers, the natural
question to ask is whether it is possible to launch Goblin without JG.
We conducted experiments to answer this questions and found out
that for JustGarble [53] and Obliv-C [112], the SR could decrease
dramatically (close to 50%) due to the small difference between the
execution times for garbler’s input “0” and “1.” Nonetheless, for
TinyGarble [100], it is indeed possible to mount the attack with
high SR without using JG (see Appendix C). This can be achieved
thanks to how TinyGarble is coded, namely generating tokens for
garbler input in an input-dependant manner (see Section 7 for more

9

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

(a) (b)

(c) (d)

Figure 3: SR of Goblin for 1000 randomly chosen inputs given to GC garbled by TinyGarble [101] with (a) free-XOR, (b) half-gate
optimizations, (c) JustGarble [53], and (d) Obliv-C [112].

details). It is worth mentioning that in this case, the JG, of course,
enhances the average SR of Goblin.

6.3 Impact of the Number of Traces
In previous expriments in this section, to evaluate the effectiveness
of our attack, we selected 1000 random inputs since capturing CPU
cycles for all inputs is impractical and infeasible. This can directly
impact the variance in our results. To investigate this, we collected
CPU cycles after feeding powers of tens (from 10- 100, 000) random
inputs into the 128-bit SUM, Hamming, and MULT benchmark
functions, i.e., the ones demonstrating a fairly high variance (see,
Figure 3). Figure 5 illustrates the SR of Goblin when being launched
against a range of CPU cycle traces. As can be seen, increasing the
number of CPU cycle traces results in increasing the SR of Goblin.
We have observed that for a higher number of traces, SR exhibits
less variance, and the average settles around 97% in all cases, except
for 128-MULT. The reason behind this is the variation in the gate
types as discussed before. Note that since Goblin is a single trace
attack, each trace is processed by Goblin individually. In other
words, the increase in the number of traces does not impact each
attack but reduces the variance of the overall results. Therefore, to
judge the effectiveness of Goblin, it is recommended to use more
traces. We could not do this in the first place due to the time-
consuming process of collecting traces for all benchmark functions.
Nonetheless, comparing the results for 1000 and 100, 000 traces, the
change in the average SR is subtle.

7 DISCUSSION
Relative accuracy of rdtsc. For applications using rdtsc, succes-
sive calls must have a difference that accurately reflects the number

of cycles between two calls. This is referred to as “relative accu-
racy” cf. [79], meaning that any measurement through rdtsc is
accurate with regard to the previous call/measurement. The rela-
tive accuracy does not pose any constraint to the application since
they must tolerate some variations as rdtsc instruction’s number
of cycles can vary due to the state of caches, DVFS, scheduling,
etc. [79]. Similarly, Goblin is resilient against variations as long as
the variation is smaller than the difference between the number of
cycles spent on garbling the XOR and non-XOR gates (in order of
tens of thousands of cycles).
Limited resolution of rdtsc on some platforms. As introduced
in Section 5.2, rdtsc can have various resolutions depending on the
platform. In the same vein, as explained about the relative accuracy
of the time read using rdtsc, the resolution cannot impact the
effectiveness of Goblin. The point is that as long as the XOR gates
can be distinguished from non-XOR ones, Goblin can successfully
extract the garbler’s input. For this purpose, it is necessary to have
at least a resolution comparable to the number of cycles taken
to garble the XOR gates (couples of tens cycles, e.g., 80 cycles as
observed in our experiments).

7.1 Potential Countermeasures
To come up with a countermeasure against Goblin, one should
first determine factors contributing to Goblin’s sucees. Here we
describe these factors and emphasize that if they are considered
and encountered when proposing a framework, the likelihood of
Goblin’s success can decrease.
x86 processor’s input dependent branch predictions. x86 pro-
cessor architecture utilizes the branch predictions technique to
accelerate the execution of the instructions and to optimize the

10

Time Is Money, Friend! Anonymous Submission to ACM CCS 2023, TBD, TBD

(a) (b)

(c) (d)

Figure 4: SR of Goblin against benchmark functions for a range of input bits garbled by TinyGarble [100] with (a) only free-XOR
optimization, (b) half-gate protocol, (c) JustGarble [53], and (d) Obliv-C [112] for 1000 randomly chosen inputs.

CPU tasks by skipping redundant instructions [62]. This CPU be-
havior results in time variations between the execution times of
the same instruction sets applied to different values. This exploit
has been extracted by successful attacks such as [4, 62]. Similar
CPU behavior exists in the case of garble circuit frameworks when
being executed on the CPU. When garbler applies token generation
instruction sets to the input value 0, some instructions, such as XOR-
ing with 𝑅, will be skipped due to the CPU branch prediction, which
results in less execution time when applying the same instruction
sets to the input value 1 as it includes time-consuming instructions
such as reading 𝑅 from memory. This exploit plays a primary part
in revealing the garbler’s input by Goblin. Note that the nature of
x86 processors leads to this issue, i.e., it results in vulnerability to
the Goblin attack under various scenarios. Using a time-constant
compiler might mitigate this exploit to some extent. However, a
time-constant compiler is by far slower than the modern compilers
used in cloud servers and real-time applications; therefore, at least
in these applications, using a time-constant compiler may not be
preferred [18, 92, 98].

The coding style of the framework. As explained before, Goblin
exploits unbalanced IF statements. We have observed that EMP-
toolkit [78], Obliv-C [112], and ABY [27] frameworks consider
this vulnerability and encounter it securely. In their frameworks,
they first generate both 0 and 1 garbler’s tokens and only choose
one of these tokens when the garbler starts transferring its token
to the evaluator. Although this technique is less optimized than

generating one token per garbler’s input, used in TinyGarble [101]
and JustGarble [53] frameworks, the leakage is mitigated.

Memory management. Employing free-XOR or half-gate opti-
mization requires frequent memory access to load 𝑅, the global
secret, to generate garbler’s token for input bit 1. Assigning 𝑅 to
a fixed address of memory via pointers will result in less time-
consuming memory access when a core requests 𝑅. This is due to
that fact that the CPU manages to keep an instance of 𝑅 as close as
possible to the core that requests it- in the best scenario, keeps it in
the L1 cache level of the core. This decreases the memory access of
𝑅 drastically because the CPU does not need to fetch it from the
RAM and provide it to the core. Instead of using pointers, registers
can be utilized to store 𝑅, which increases the overwrite chance of
𝑅 by other cores that utilize a vast amount of cache memory. In this
case, the CPU is forced to fetch the overwritten 𝑅 from the RAM,
resulting in a variation in the time taken to generate the garbler’s
token for input 0 and 1. On the other hand, using registers to store
data let the CPU save time by allowing it to decide if the value is
needed to be kept as close as possible to the core, which possibly
requests 𝑅 or keeps an instantiate of it in the RAM and overwrites
it resulting in less cache utilization.

We have observed that EMP-toolkit [78], Obliv-C [112], JustGar-
ble [53], and ABY [27] assigned a fixed address to 𝑅, which allows
CPU to maintain its memory location as close as possible to the
core that requests it, while TinyGarble [101] only assigned a fixed
address to it during the labels generations and used registers in the
token generations. However, using JG forces the CPU to overwrite

11

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

(a) (b) (c)

Figure 5: SR of Goblin against (a) 128-bit SUM, (b) 128-bit Hamming, and (b) 128-bit MULT for a range of 10-100, 000 randomly cho-
sen inputs (first to last row: JustGarble [53], Obliv-C [112], TinyGarble [100] with free-XOR, and with half-gate optimizations).

𝑅 with junk as its assigned task requests more memory than the
task on which the garbling is taken care of. Hence, using JG leads to
the fact that 𝑅 will be overwritten with a high probability and must
be fetched from RAM when requested by any core. This results in
a noticeable time difference between the generation of garbler’s
token for input bits 0 and 1.

Can restricting access stop Goblin? As it has been nicely put
forward in [71], unprivileged usage of the high-resolution timers
can be prevented by setting control registers, e.g., CR4.TSD bit in
AMD [6] (volume 2, Section 3.2.5). This results in rdtsc, rdtscp,
and rdpru being unavailable to the attacker. Although this might
be tempting, such a restriction can have a negative impact on un-
privileged applications depending on rdtsc, e.g., adb, cargo, and
Docker [71]. Moreover, in doing so, not all timing primitives can be
disabled. It is possible for the attacker to come up with a counting

thread that constantly increments a global variable that serves as a
timestamp without relying on platform specifics [72, 73, 97]. It is
further shown that such a counting thread can have even a higher
resolution than the rdtsc instruction on Intel CPUs [97].

8 CONCLUSION
Nowadays, several applications, including multi-party computa-
tion, rely on the efficient implementations of GC.To achieve this
efficiency, many optimizations, such as free-XOR and half-gates,
have been presented to reduce the cost of garbling progress. This
paper has introduced Goblin, the first machine learning-assisted,
non-profiling, single-trace timing SCA against GC frameworks.
Specifically, Goblin targets frameworks using free-XOR and half-
gate by collecting and analyzing the CPU cycles of the garbling
process by reading the time stamp counter, i.e., calling rdtsc. In

12

Time Is Money, Friend! Anonymous Submission to ACM CCS 2023, TBD, TBD

doing so, the garbler’s inputs that should have been kept secure
can be disclosed without prior knowledge about the circuit being
garbled. In this regard, Goblin can be run in parallel to the gar-
bling framework without requiring any privileged access. Goblin
has also been proven to be scalable when targeting large circuits.
We have studied several cases, including various GC frameworks,
benchmark functions, and the number of garbler’s input bits. Under
different scenarios, Goblin disclosed the garbler’s input with high
probability. Further, we have discussed Goblin’s success factors and
countermeasures against that.

REFERENCES
[1] Onur Aciiçmez. 2007. Yet Another Microarchitectural Attack: Exploiting I-cache.

In Proceedings of the 2007 ACMworkshop on Computer security architecture. 11–18.
[2] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. 2010. New Results on

Instruction Cache Attacks. In International workshop on cryptographic hardware
and embedded systems. Springer, 110–124.

[3] Onur Acıiçmez and Çetin Kaya Koç. 2006. Trace-driven Cache Attacks on AES
(Short Paper). In International Conference on Information and Communications
Security. Springer, 112–121.

[4] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2006. Predicting Secret
Keys via Branch Prediction. In Topics in Cryptology–CT-RSA 2007: The Cryptog-
raphers’ Track at the RSA Conference 2007, San Francisco, CA, USA, February 5-9,
2007. Proceedings. Springer, 225–242.

[5] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the Power of
Simple Branch Prediction Analysis. In Proceedings of the 2nd ACM symposium on
Information, computer and communications security. 312–320.

[6] Advanced Micro Devices Inc. 2017. AMD64 Architecture Programmer’s Man-
ual. [Online]https://www.amd.com/system/files/TechDocs/24593.pdf [Accessed:
Jan.30, 2023]. (2017).

[7] Benny Applebaum. 2011. Key-dependent Message Security: Generic Amplifica-
tion and Completeness. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 527–546.

[8] ARM ARM. 2012. Architecture Reference Manual. ARMv7-A and ARMv7-R
edition (2012).

[9] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. 2010. Bounded Key-
dependent Message Security. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 423–444.

[10] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. 2013.
Efficient Garbling from a Fixed-key Blockcipher. In 2013 IEEE Symp. on Security
and Privacy. IEEE, 478–492.

[11] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. 2012. Foundations of
Garbled Circuits. In Proc. of the 2012 ACM Conf. on Computer and Comm. security.
784–796.

[12] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. 2016. Optimizing Semi-honest
Secure Multiparty Computation for the Internet. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 578–590.

[13] Fabrice Benhamouda and Huijia Lin. 2018. K-round Multiparty Computation
from K-round Oblivious Transfer via Garbled Interactive Circuits. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 500–532.

[14] Daniel J Bernstein. 2005. Cache-timing Attacks on AES. (2005).
[15] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas

Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, et al. 2009. Secure Multiparty Computation Goes Live. In
International Conference on Financial Cryptography and Data Security. Springer,
325–343.

[16] Zvika Brakerski and Henry Yuen. 2022. QuantumGarbled Circuits. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing. 804–817.

[17] David Brumley and Dan Boneh. 2005. Remote Timing Attacks are Practical.
Computer Networks 48, 5 (2005), 701–716.

[18] Gaurav Chadha, Scott Mahlke, and Satish Narayanasamy. 2015. Accelerating
Asynchronous Programs through Event Sneak Peek. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture. 642–654.

[19] Delin Chen, Wenhao Chen, Jian Chen, Peijia Zheng, and Jiwu Huang. 2018.
Edge Detection and Image Segmentation on Encrypted Image with Homomor-
phic Encryption and Garbled Circuit. In 2018 IEEE International Conference on
Multimedia and Expo (ICME). IEEE, 1–6.

[20] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. 2017.
Detecting Privileged Side-channel Attacks in Shielded Execution with Déjá Vu. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. 7–18.

[21] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou.
2012. On the Security of the “free-XOR” Technique. In Theory of Cryptography
Conference. Springer, 39–53.

[22] Martine de Cock, Rafael Dowsley, Anderson CA Nascimento, and Stacey C
Newman. 2015. Fast, Privacy preserving Linear Regression over Distributed
Datasets Based on Pre-distributed Data. In Proceedings of the 8th ACM Workshop
on Artificial Intelligence and Security. 3–14.

[23] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing Control: On the Effectiveness of Control-flow Integrity Under Stack
Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. 952–963.

[24] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.
2009. Practical Mitigations for Timing-based Side-channel Attacks on Modern
x86 Processors. In 2009 30th IEEE Symposium on Security and Privacy. IEEE,
45–60.

[25] Ivan Damgård and Yuval Ishai. 2005. Constant-round Multiparty Computation
Using a Black-box Pseudorandom Generator. In Annual International Cryptology
Conference. Springer, 378–394.

[26] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam
Smith. 2008. Scalable Multiparty Computation with Nearly Optimal Work and
Resilience. In Annual International Cryptology Conference. Springer, 241–261.

[27] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A Frame-
work for Efficient Mixed-protocol Secure Two-party Computation.. In NDSS.

[28] Jean-Francois Dhem, Francois Koeune, Philippe-Alexandre Leroux, Patrick
Mestré, Jean-Jacques Quisquater, and Jean-Louis Willems. 1998. A Practical
Implementation of the Timing Attack. In International Conference on Smart Card
Research and Advanced Applications. Springer, 167–182.

[29] Jack Doerner, David Evans, and Abhi Shelat. 2016. Secure Stable Matching
at Scale. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 1602–1613.

[30] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L Cox, and Sandhya
Dwarkadas. 2018. Shielding Software From Privileged {Side-Channel} Attacks.
In 27th USENIX Security Symposium (USENIX Security 18). 1441–1458.

[31] Catherine Easdon, Michael Schwarz, Martin Schwarzl, and Daniel Gruss. 2022.
Rapid Prototyping for Microarchitectural Attacks. In USENIX Security Sympo-
sium.

[32] Uri Feige, Joe Killian, and Moni Naor. 1994. A Minimal Model for Secure Com-
putation. In Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing. 554–563.

[33] Sanjam Garg and Akshayaram Srinivasan. 2017. Garbled Protocols and Two-
round MPC From Bilinear Maps. In 2017 IEEE 58th Annual Symposium on Foun-
dations of Computer Science (FOCS). IEEE, 588–599.

[34] Sanjam Garg and Akshayaram Srinivasan. 2018. Two-round Multiparty Secure
Computation from Minimal Assumptions. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 468–499.

[35] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack Doerner,
Samee Zahur, and David Evans. 2017. Privacy-Preserving Distributed Linear
Regression on High-Dimensional Data. Proc. Priv. Enhancing Technol. 2017, 4
(2017), 345–364.

[36] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A Survey of
Microarchitectural Timing Attacks and Countermeasures on Contemporary
Hardware. Journal of Cryptographic Engineering 8 (2018), 1–27.

[37] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 2010. i-hop Homomorphic
Encryption and Rerandomizable Yao Circuits. In Annual Cryptology Conference.
Springer, 155–172.

[38] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. 2013. Reusable Garbled Circuits and Succinct Functional
Encryption. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing. 555–564.

[39] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. 2012. Functional
Encryption with Bounded Collusions via Multi-party Computation. In Annual
Cryptology Conference. Springer, 162–179.

[40] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Transla-
tion Leak-aside Buffer: Defeating Cache Side-channel Protections with {TLB}
Attacks. In 27th USENIX Security Symposium (USENIX Security 18). 955–972.

[41] Adam Groce, Alex Ledger, Alex J Malozemoff, and Arkady Yerukhimovich. 2016.
CompGC: Efficient Offline/online Semi-honest Two-party Computation. Cryp-
tology ePrint Archive (2016).

[42] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-
gard. 2016. Prefetch Side-channel Attacks: Bypassing SMAP and Kernel ASLR. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 368–379.

[43] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a Fast and Stealthy Cache Attack. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings 13. Springer, 279–299.

13

[Online] https://www.amd.com/system/files/TechDocs/24593.pdf

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

[44] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. 2015. Fast Garbling
of Circuits under Standard Assumptions. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 567–578.

[45] Chun Guo, Jonathan Katz, Xiao Wang, Chenkai Weng, and Yu Yu. 2020. Better
Concrete Security for Half-gates Garbling (in the Multi-instance Setting). In
Annual International Cryptology Conference. Springer, 793–822.

[46] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. 2020. Efficient and Secure
Multiparty Computation from Fixed-key Block Ciphers. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 825–841.

[47] Trinabh Gupta, Henrique Fingler, Lorenzo Alvisi, and Michael Walfish. 2017.
Pretzel: Email Encryption and Provider-supplied Functions are Compatible. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication. 169–182.

[48] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman.
2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Vol. 2. Springer.

[49] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. 2019.
Sok: General Purpose Compilers for Secure Multi-party Computation. In 2019
IEEE symposium on security and privacy (SP). IEEE, 1220–1237.

[50] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. 2020. Applications of
machine learning techniques in side-channel attacks: a survey. J. of Cryptographic
Engineering 10, 2 (2020), 135–162.

[51] Siam Hussain, Baiyu Li, Farinaz Koushanfar, and Rosario Cammarota. 2020.
TinyGarble2: Smart, Efficient, and Scalable Yao’s Garble Circuit. In Proc. of the
2020 WKSP on Privacy-Preserving Machine Learning in Practice. 65–67.

[52] Intel Corporation. 2017. Intel® CoreTM i7 Processors. [Online]https://www.intel.
com/content/www/us/en/products/details/processors/core/i7.html [Accessed:
Jan.30, 2023]. (2017).

[53] irdan. 2014. JustGarble Framework. [Online]https://github.com/irdan/justGarble
[Accessed Jan.30, 2023]. (2014).

[54] Karthik A Jagadeesh, David J Wu, Johannes A Birgmeier, Dan Boneh, and Gill Be-
jerano. 2017. Deriving Genomic Diagnoses without Revealing Patient Genomes.
Science 357, 6352 (2017), 692–695.

[55] Jan Jancar. 2021. The State of Tooling for Verifying Constant-timeness of Crypto-
graphic Implementations. [Online]https://neuromancer.sk/article/26 [Accessed:
Feb.7, 2023]. (2021).

[56] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter
Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. 2022. “They’re
not that Hard to Mitigate”: What Cryptographic Library Developers Think About
Timing Attacks. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 632–
649.

[57] Bargav Jayaraman, Hannah Li, and David Evans. 2017. Decentralized Certificate
Authorities. arXiv preprint arXiv:1706.03370 (2017).

[58] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A Low Latency Framework For Secure Neural Network Inference.
In 27th USENIX Security Symp. (USENIX Security 18). 1651–1669.

[59] Seny Kamara, Payman Mohassel, and Mariana Raykova. 2011. Outsourcing
Multi-party Computation. Cryptology ePrint Archive (2011).

[60] Seny Kamara, Payman Mohassel, and Ben Riva. 2012. Salus: a System for Server-
aided Secure Function Evaluation. In Proceedings of the 2012 ACM conference on
Computer and communications security. 797–808.

[61] Seny Kamara, Payman Mohassel, and Ben Riva. 2012. Salus: A System for Server-
Aided Secure Function Evaluation. Cryptology ePrint Archive (2012).

[62] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.
Spectre Attacks: Exploiting Speculative Execution. Commun. ACM 63, 7 (2020),
93–101.

[63] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Annual international cryptology conference. Springer, 388–397.

[64] Paul C Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Annual International Cryptology Conference.
Springer, 104–113.

[65] Vladimir Kolesnikov and Thomas Schneider. 2008. Improved Garbled Circuit:
Free XOR Gates and Applications. In Intrl. Colloquium on Automata, Languages,
and Programming. Springer, 486–498.

[66] Chun-Hao Lai, Jishen Zhao, and Chia-Lin Yang. 2017. Leave the Cache Hier-
archy Operation as it is: A New Persistent Memory Accelerating Approach. In
Proceedings of the 54th Annual Design Automation Conference 2017. 1–6.

[67] Itamar Levi and Carmit Hazay. 2022. Garbled-Circuits from an SCA Perspective:
Free XOR Can be Quite Expensive... Cryptology ePrint Archive (2022).

[68] Y Lindell and B Pinkas. 2004. A Proof of Yao’s Protocol for Secure Two-party
Computation. ECCC Report TR04-063. In Electronic Colloquium on Computational
Complexity (ECCC).

[69] Yehuda Lindell and Benny Pinkas. 2007. An Efficient Protocol for Secure Two-
party Computation in the Presence of Malicious Adversaries. In Annual Intrl.
Conf. on the theory and applications of cryptographic techniques. Springer, 52–78.

[70] Yehuda Lindell and Benny Pinkas. 2009. A Proof of Security of Yao’s Protocol
for Two-party Computation. J. of cryptology 22, 2 (2009), 161–188.

[71] Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD Prefetch Attacks
Through Power and Time. In USENIX Security Symposium.

[72] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. {ARMageddon}: Cache Attacks on Mobile Devices. In 25th
USENIX Security Symposium (USENIX Security 16). 549–564.

[73] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Maurice,
and Daniel Gruss. 2020. Take a Way: Exploring the Security Implications of
AMD’s Cache Way Predictors. In Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security. 813–825.

[74] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power
Side-channel Attacks on x86. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 355–371.

[75] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. 2016. Catalyst: Defeating Last-level Cache Side Channel Attacks
in Cloud Computing. In 2016 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 406–418.

[76] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level Cache Side-channel Attacks are Practical. In 2015 IEEE symposium on secu-
rity and privacy. IEEE, 605–622.

[77] Yangdi Lyu and Prabhat Mishra. 2018. A Survey of Side-channel Attacks on
Caches and Countermeasures. Journal of Hardware and Systems Security 2, 1
(2018), 33–50.

[78] A.JMalozemoff, XWang, and J Katz. 2022. Emp-toolkit Framework. [Online]https:
//github.com/emp-toolkit [Accessed Jan.30, 2023]. (2022).

[79] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Timewarp:
Rethinking Timekeeping and Performance Monitoring Mechanisms to Mitigate
Side-channel Attacks. In 2012 39th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 118–129.

[80] Payman Mohassel, Mike Rosulek, and Ye Zhang. 2015. Fast and Secure Three-
party Computation: The Garbled Circuit Approach. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security. 591–602.

[81] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A System for Scalable
Privacy-preserving Machine Learning. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 19–38.

[82] Keaton Mowery, Sriram Keelveedhi, and Hovav Shacham. 2012. Are AES x86
Cache Timing Attacks Still Feasible?. In Proceedings of the 2012 ACM Workshop
on Cloud computing security workshop. 19–24.

[83] Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre, Muhammad Khur-
ram Bhatti, and Guy Gogniat. 2020. Winter is Here! A Decade of Cache-based
Side-channel Attacks, Detection & Mitigation for RSA. Information Systems 92
(2020), 101524.

[84] Aoi Nakamoto. 2018. W-Shield: Protection Against Cryptocurrency Wallet
Credential Stealing. In Workshop on Security and Privacy in E-Commerce 2018.
71–107.

[85] Michael Neve and Jean-Pierre Seifert. 2006. Advances on Access-driven Cache
Attacks on AES. In International Workshop on Selected Areas in Cryptography.
Springer, 147–162.

[86] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and
Nina Taft. 2013. Privacy-preserving Ridge Regression on Hundreds of Millions
of Records. In 2013 IEEE symposium on security and privacy. IEEE, 334–348.

[87] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. 2018. Varys: Protecting {SGX} Enclaves from Practical {Side-Channel}
Attacks. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). 227–240.

[88] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. 2014.
Maliciously Circuit-private FHE. In Annual Cryptology Conference. Springer,
536–553.

[89] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: the Case of AES. In Cryptographers’ track at the RSA conference.
Springer, 1–20.

[90] Dan Page. 2002. Theoretical Use of Cache Memory as a Cryptanalytic Side-
channel. Cryptology ePrint Archive (2002).

[91] Colin Percival. 2005. Cache Missing for Fun and Profit. (2005).
[92] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong, and Yuval

Yarom. 2019. The 9 Lives of Bleichenbacher’s CAT: New Cache Attacks on TLS
Implementations. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
435–452.

[93] Amit Sahai and Hakan Seyalioglu. 2010. Worry-free Encryption: Functional
Encryption with Public Keys. In Proceedings of the 17th ACM conference on
Computer and communications security. 463–472.

[94] Anish Saxena and Biswabandan Panda. 2022. Dabangg: A Case for Noise Resilient
Flush-based Cache Attacks. In 2022 IEEE Security and Privacy Workshops (SPW).
IEEE, 323–334.

[95] Thomas Schneider. 2008. Practical Secure Function Evaluation.. In Informatiktage.
37–40.

14

[Online] https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
[Online] https://www.intel.com/content/www/us/en/products/details/processors/core/i7.html
[Online] https://github.com/irdan/justGarble
[Online] https://neuromancer.sk/article/26
[Online] https://github.com/emp-toolkit
[Online] https://github.com/emp-toolkit

Time Is Money, Friend! Anonymous Submission to ACM CCS 2023, TBD, TBD

[96] Michael Schwarz, Daniel Gruss, Moritz Lipp, ClémentineMaurice, Thomas Schus-
ter, Anders Fogh, and Stefan Mangard. 2018. Automated Detection, Exploitation,
and Elimination of Double-fetch Bugs Using Modern CPU Features. In Proceed-
ings of the 2018 on Asia Conference on Computer and Communications Security.
587–600.

[97] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Ste-
fan Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache
Attacks. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 3–24.

[98] Mohammad Shahrad, Jonathan Balkind, and DavidWentzlaff. 2019. Architectural
Implications of Function-as-a-service Computing. In Proceedings of the 52nd
annual IEEE/ACM international symposium on microarchitecture. 1063–1075.

[99] Hanif D Sherali and Cihan H Tuncbilek. 1992. A Squared-euclidean Distance
Location-allocation Problem. Naval Research Logistics (NRL) 39, 4 (1992), 447–
469.

[100] E Songhori, H Siam, and S Riazi. 2019. TinyGarble Framework. [Online]https:
//github.com/esonghori/TinyGarble [Accessed Jan.30, 2023]. (2019).

[101] EbrahimM Songhori, Siam UHussain, Ahmad-Reza Sadeghi, Thomas Schneider,
and Farinaz Koushanfar. 2015. Tinygarble: Highly Compressed and Scalable
Sequential Garbled Circuits. In 2015 IEEE Symp. on Security and Privacy. IEEE,
411–428.

[102] François-Xavier Standaert, Tal G Malkin, and Moti Yung. 2009. A Unified
Framework for the Analysis of Side-Channel Key Recovery Attacks. In Annual
Intrl. Conf. on the Theory and Applications of Cryptographic Techniques. Springer,
443–461.

[103] Lu Tian, Bargav Jayaraman, Quanquan Gu, and David Evans. 2016. Aggregat-
ing Private Sparse Learning Models using Multi-party Computation. In NIPS
Workshop on Private Multi-Party Machine Learning.

[104] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks
on AES, and Countermeasures. Journal of Cryptology 23, 1 (2010), 37–71.

[105] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. 2011. Eliminating
Fine Grained Timers in Xen. In Proceedings of the 3rd ACM workshop on Cloud
computing security workshop. 41–46.

[106] Zhenghong Wang and Ruby B Lee. 2006. Covert and Side Channels Due to
Processor Architecture. In 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06). IEEE, 473–482.

[107] Carolyn Whitnall and Elisabeth Oswald. 2015. Robust Profiling for DPA-style
Attacks. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 3–21.

[108] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018. Eliminat-
ing Timing Side-channel Leaks Using Program Repair. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 15–26.

[109] Andrew Chi-Chih Yao. 1986. How to Generate and Exchange Secrets. In 27th
Annual Symp. on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

[110] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache side-channel Attack. In 23rd {USENIX} Security Symposium
({USENIX} Security 14). 719–732.

[111] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Extensible
Data-oblivious Computation. Cryptology ePrint Archive (2015).

[112] S Zahur, G Kerneis, and G Necula. 2018. Obliv-C Secure Computation Compiler.
[Online]https://github.com/samee/obliv-c [Accessed Feb.2, 2023]. (2018).

[113] Samee Zahur, Mike Rosulek, and David Evans. 2015. Two Halves Make a
Whole. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 220–250.

[114] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2014. Cross-
tenant Side-channel Attacks in PaaS Clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. 990–1003.

[115] Li Zhao, Ravi Iyer, Srihari Makineni, Don Newell, and Liqun Cheng. 2010. NCID:
a non-inclusive Cache, Inclusive Directory Architecture for Flexible and Efficient
Cache Hierarchies. In Proceedings of the 7th ACM international conference on
Computing frontiers. 121–130.

Table 2: Type of the gates in the input layer of the AES and
256-bit MULT modules.

AES 256-bit MULT

Percentage (%) Count Percentage (%) Count

AND gates in input layer 75 96 50 256

XOR gates in input layer 25 32 50 256

APPENDIX A
Table 3 contains details of leaky IF conditions in each function of
TinyGarble [100], EMP-toolkit [78], Obliv-C [111], and ABY [27].

APPENDIX B
To investigate the effects of the gate types in the input layer on the
SR, we counted the number of XOR and AND gates in the input
layer of the AES and 256-bit MULT since the results for these two
benchmark functions vary largely as shown in Figure 3. Table 2
contains the detail about the type of the gates in the AES and 256-
bit MULT benchmark functions. Moreover, the category of AND
gate contains AND/NAND, OR/NOR, ANDN, ORN, NANDN, and
NORN gates, and the category of XOR gate includes NV, XOR, and
XNOR gates as described in 5.3. It is observable that the AND gates
are dominant in the AES input layer (75% input layer gates) while
the portions of XOR and AND gates are equal in the input layer
of 256-bit MULT. This can explain why the results for these two
benchmark functions are different. In fact, it is because of the fact
that it is more challenging to determine the inputs given to XOR
gates. To further analyze the reason behind this, we have separately
calculated the SR of Goblin against applied against AND and XOR
gates. Figure 6 illustrates the results for launching Goblin against
128-AES, 256-bit MULT, 128-bit Hamming, 128-bit SUM, and 288-
bit SHA modules, similar to Figure 3, where the results for AND
and XOR gates are combined. As observable in Figure 6, Goblin’s
average SR when launching against AND gates are always close
to 100% while its average SR has a range between 100% and 65%
when launching against XOR gates for the benchmark functions.
This is aligned with the results presented in Figure 3. In that figure,
the difference between the mean values of CPU cycles collected for
inputs “0” and “1” is larger for AND gates in comparison to XOR
gates.

APPENDIX C
To study the impact of an implementation in which not all timing
side-channel vulnerability is not considered, we have launched
Goblin against TinyGarble when the JG has been disabled. Fig-
ure 7 illustrates the results of Goblin against TinyGarble when
JG is disabled. It is observable in Figure 7 that even without the
presence of JG, Goblin can reveal the garbler’s input with a success
rate (SR) average of 95% or higher, which is slightly lower than
the case when JG is enabled. These results indicate the damaging
effect of a wrong coding style, memory management, and compiler
branch predictions on the GC frameworks securities. To further
investigate this damaging effect, we launched Goblin against MULT,
SUM, and Hamming benchmarks with input ranges between 128
and 1024 bits when JG was disabled. Figure 8 shows the results of
launching Goblin against MULT, SUM, and Hamming benchmark
functions for a range of inputs garbled by TinyGarble when (a) only
free-XOR optimization, (b) half-gate protocol is enabled, and JG
is disabled. Same as results in Sec 6.2, one can observe a similar
pattern of increasing SR of Goblin according to the increased size
of benchmarks input. As another part of our investigations, we
have launched Goblin against MULT, SUM, and Hamming modules
without JG. Figure 9 illustrates SR of Goblin against (a) 128-bit
SUM, (b) 128-bit Hamming, and (b) 128-bit MULT benchmarks for
a range of CPU cycle traces captured from 10 − 100, 000 randomly
chosen inputs when JG is disabled. These results prove that Goblin
can reveal garbler information from an insecurely implemented
framework even without the help of JG.

15

[Online]https://github.com/esonghori/TinyGarble
[Online]https://github.com/esonghori/TinyGarble
[Online] https://github.com/samee/obliv-c

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

Table 3: A detailed report of leaky IF conditions (IF) of every function call in JustGarble [10], TinyGarble [100] with half-gate
and free-XOR optimization, EMP-toolkit [78], Obliv-C [111], and ABY [27].

Framework Function IF Framework Function IF

TinyGarble
(half-gate) [100]

GarbledLowMem 0

JustGarble [53]

createNewWire 0

GarbledGate 2 TRUNCATE 0

ParseInitInputStr 0 TRUNC_COPY 0

RemoveGarbledCircuit 0 getNextId 0

HalfGarbleGateKnownValue 0 getFreshId 0

NumOfNonXor 0 getNextWire 0

HalfGarbleGate 2 createEmptyGarbledCircuit 0

InvertSecretValue 0 removeGarbledCircuit 0

XorSecret 0 startBuilding 0

OutputBN2StrLowMem 0 finishBuilding 2

RandomBlock 0 extractLabels 0

Total 4 garbleCircuit 8

TinyGarble
(free-XOR) [100]

GarbledLowMem 2 blockEqual 0

GarbledGate 5 mapOutputs 0

ParseInitInputStr 0 createInputLabels 0

RemoveGarbledCircuit 0 randomBlock 0

NumOfNonXor 0 xorBlocks 0

XorSecret 0 findGatesWithMatchingInputs 1

OutputBN2StrLowMem 0 Total 11

RandomBlock 0

EMP-toolkit [78]

HalfGateGen 0

Total 7 parse_party_and_port 0

Obliv-C [111]

yaoGenerateGate 3 NetIO 0

yaoGenrRevealOblivBits 0 Total 0

yaoGenrFeedOblivInputs 1

ABY [27]

YaoSharingInit 0

yaoKeyNewPair 0 BooleanCircuit 0

yaoSetBitAnd 0 init_aes_key 0

yaoSetBitOr 0 ceil_divide 0

yaoSetBitXor 0 clean_aes_key 0

yaoFlipBit 0 EncryptWire 0

yaoSetHashMask 0 EncryptWireGRR3 0

yaoSetHalfMask 0 PrintKey 0

yaoSetHalfMask2 0 PrintPerformanceStatistics 0

yaoKeyDouble 0 XOR_DOUBLE_B 0

Total 4 Total 0

(a) (b)

Figure 6: SR of Goblin computed separately for AND and XOR input gates of 128-AES, 256-bit MULT, 128-bit Hamming, 128-bit
SUM, and 288-bit SHA modules with (a) free-XOR and (b) half-gate optimization.

16

Time Is Money, Friend! Anonymous Submission to ACM CCS 2023, TBD, TBD

(a) (b)

Figure 7: SR of Goblin for 1000 randomly chosen inputs given to GC garbled by TinyGarble [101] when (a) only free-XOR or (b)
half-gate optimization is enabled and JG is disabled.

(a) (b)

Figure 8: SR of Goblin againstMULT, SUM, andHamming benchmark functions for a range of inputs garbled by TinyGarble [100]
when (a) only free-XOR optimization, (b) half-gate protocol is enabled, and JG is disabled.

17

Anonymous Submission to ACM CCS 2023, TBD, TBD Mohammad Hashemi, Domenic Forte, and Fatemeh Ganji

(a) (b) (c)

Figure 9: SR of Goblin against 128-bit (a) SUM, (b) Hamming, and (c) MULT. CPU cycle traces captured from 10-100, 000 randomly
chosen inputs when JG is disabled. (Top: TinyGarble [100] with only free-XOR, Bottom: with half-gate optimization).

18

	Abstract
	1 Introduction
	2 Background
	2.1 Yao's Garbled Circuit (GC)
	2.2 Optimizations of Yao's GC
	2.3 k-means Algorithm
	2.4 Cache Architecture

	3 Adversary Model
	3.1 Our Adversary Model

	4 Timing Side-channel Leakage in Garbling Tools: An Observation
	5 Building Blocks of Goblin
	5.1 Junk Generator
	5.2 Measuring Time on CPUs
	5.3 Recovering Garbler's Input
	5.4 Performance Metric

	6 Experimental Results
	6.1 Results for Benchmark Functions
	6.2 Scalability of Goblin
	6.3 Impact of the Number of Traces

	7 Discussion
	7.1 Potential Countermeasures

	8 Conclusion
	References

