
Exploring Multi-Task Learning in the Context of1

Two Masked AES Implementations2

Thomas Marquet, Elisabeth Oswald3

Universität Klagenfurt, author.name@aau.at4

Abstract. This paper investigates different ways of applying multi-task learning in5

the context of two masked AES implementations (via the ASCADv1 and ASCADv26

databases). We propose novel ideas: jointly using multiple single-task models (aka7

multi-target learning), custom layers (enabling the use of multi-task learning without8

the need for information about randomness), and hierarchical multi-task models9

(owing to the idea of encoding the hierarchy flow directly into a multi-task learning10

model). Our work provides comparisons with existing approaches to deep learning and11

delivers a first attack using multi-task models without randomness during training,12

and a new best attack for the ASCADv2 dataset.13

Keywords: Side Channel Attacks · Masking · Deep Learning · Multi Task Learning14

1 Introduction15

Deep learning techniques have fast become an alternative to the use of classical statistics in16

the context of profiled side channel attacks, because of their unrivalled ability to efficiently17

utilise information across many trace points. The approach taken by many deep learning18

architectures still somewhat depends on the thinking found in traditional statistics based19

attacks: as single intermediate target is learned at a time (thus a single learning task is20

performed).21

Recent publications have begun to move beyond this single-task learning paradigm22

towards a multi-task learning approach: Mahgrebi [Mag20] explores a deep learning23

architecture to learn two intermediate values (bit-wise) on an AES implementation simul-24

taneously; Masure and Strullu [MS21] revisit Mahgrebi’s idea and learn many intermediate25

values simultaneously. They set a new record for a “non-dissecting” approach for the26

ASCADv2 dataset and successfully recover the key bytes with 60 traces when assuming27

knowledge of the masks during profiling. Their paper concludes by reflecting on the28

potential power of multi-task learning: “A further study of the advantages and drawbacks29

of such paradigm is yet to be done. Still, this could lead to help the SCA practitioner30

towards new milestones against protected implementations.” (p. 21, [MS21]).31

1.1 Summary of Contributions and Outline32

We focus on the application of multi-task learning in the context of the masked AES-12833

implementations that are the basis of the ASCADv1 and ASCADv2 databases. After34

providing some notation and background in Sect. 2, we focus on novel ideas for multi-target35

and multi-task learning in Sect. 3, we explain new multi-task learning architectures for36

ASCADv1 in Sect. ?? and ASCADv2 in Sect. 4.3, whereby our innovations are as follows:37

2 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

1.1.1 Contributions in a white box scenario38

• we propose the combination of multiple single-task networks via the multi-target39

attack strategy,40

• we suggest hierarchical multi-task learning as means to encode relationships between41

the multiple learning tasks,42

• we provide a comparison of hierarchical multi-task, multi-task and single-task ar-43

chitectures that suggests the importance of working with “related” learning tasks44

(rather than unrelated learning tasks), as well as the benefit of including hierarchies,45

• we give a new best attack for the ASCADv2 dataset and propose a better target46

than previously considered.47

1.1.2 Contributions in a grey box scenario48

• we propose to leverage multi-task learning to tackle the plateau effect49

• we suggest multiple architectures that leverages assumptions on the masking scheme50

in order to ease the learning51

• we provide a comparison of those architectures against each other and the previously52

trained white box architectures53

• we provide the first real one trace attack in a fully uninformed scenario (i.e. no PoI,54

no labels) on the ascadv1.55

1.2 Relevant related works56

[MS21] introduce the ASCADv2 database, and provide a first characterisation of the57

included traces. We base some of our network architecture for the model design for the58

ASCADv2 database on their work.59

[HWW21] explain that it can be beneficial to use the data from the processing of the60

AES state bytes to train a single model representing an intermediate value. This is possible61

in the case of many software implementations, because each state byte undergoes the same62

operations (the same sequence of Assembly instructions) which means that their leakage is63

very similar.64

[PWP22] investigate the impact that the selection of points of interest has when training65

deep networks. They observe that working with raw traces is sometimes possible (i.e.66

no points of interest are selected), which leads to a black box attack scenario, where an67

adversary needs no information about randomness during the training. They provide the68

best results for the ASCADv1 database: they achieve key recovery with just a single trace69

in many scenarios.70

[VGS14] and [MOW14] consider how to combine the leakage from multiple intermediate71

values efficiently. The former introduce the idea of using belief propagation, and the latter72

combine probabilities using Bayes theorem.73

[MCLS22] This paper consider the possibility of using a scheme aware training by74

training two models and propagating a loss on the predicted combined probabilities. Such75

training, relieves the network by giving him a better understanding of what he should76

learn. However the authors do not provide any attack results and only interest themselves77

in the P.I. metric.78

Thomas Marquet, Elisabeth Oswald 3

2 Preliminaries79

We consider side channel attacks that operate in two stages: a leakage identification stage80

where (if necessary) points of interest are selected and deep nets are trained, and a leakage81

exploitation stage, where the trained nets are used as classifiers in the context of differential82

side channel attacks.83

We stick to as simple notation as possible and stay with the variable naming conven-84

tions of the ASCAD databases: upper case letters denote sets (which we overload and85

simultaneously use as random variables), and lower case letters denote realisations of the86

random variables (and equivalently elements of a set). All variable/set names taken (with87

no renaming) from the original papers (implementations/data sets), such that “matchign88

up” of our work with these original implementations is straightforward. The index i refers89

to the ith state byte, and we generally drop any indexing referring to points within a trace90

from our notation. Occasionally we require to refer to the j-th trace, which we put as an91

index (alongside the index indicating the state byte) to a variable.92

We also use a consistent colour code for figures that describe custom layers/specific deep93

learning architecturs: importantly orange indicates output layers (they also correspond to94

the labels that are required for training).95

2.1 Profiling based on Deep Learning96

For the purpose of building a classifier for newly observed traces during the exploitation97

phase, a deep learning approach uses one (or more) trained models, which output values98

that can be understood as likelihood scores. In the context of our work, we are intested99

in recovering information about key values. Thus, our networks are configured to return100

per-trace log-likelihood scores Si for 8-bit chunks of an AES secret key. To derive the101

log-likelihood score for the ith key chunk given an attack set of Na traces, we just compute102

the sum d[ki] =
∑Na

j=1 Si,j .103

To measure the effectiveness of a deep learning architecture we consider two quantities104

of interest: the accuracy on the whole attack dataset and the ability of a model to reduce105

the average key rank.106

2.1.1 Training Methodology107

We use the same methodology across all datasets. To enable meaningful comparisons, we108

use the same overall architecture for single models and multi task models, with the same109

learning rate and optimizer. The only difference between the models is the number of110

fully connected branches and how the branches are connected. We design one branch per111

intermediate value, whereby an intermediate value may also refer to a mask value.112

As per good practice, we divide the available data into training data, validiation data113

and attack (=test) data. All training happens on the training data set. We validate a114

learned model on a validation set of size Nv. During this validation phase we monitor115

the validation accuracy. Our best training model is selected based on the best validiation116

accuracy, and we use a tensorflow callback to retrieve this model. We then test the best117

training model by using it in an attacks with Na attack traces: all accuracies that we118

report later on are these final attack (=test) accuracies.119

2.2 Computing resources120

We’re using a single GPU Nvidia PNY A30 with 24GB of dedicated memory. In addition121

to the GPU, we’re using 4 cores of an AMD EPYC at 2.6GHz with 128 GB of RAM. All122

that is running on an Ubuntu 22.04.1 kernel, with tensorflow 2.10.1.123

4 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

Table 1: Summary of training, validation and test/attack dataset for ASCADv1-r
Ntraces start stop key

Training 50k 0 75000 random
Validation 10k 180000 195000 random
Attack 10k 0 30000 fixed

2.3 Data Sets and Corresponding Notation124

Our work is based on the ASCAD datasets, which are both based on masked AES125

implementations. We assume familiarity with low order masking, as well as typical126

software implementations of low order masking on standard micro-controllers, as we keep127

the following text as short as possible.128

2.3.1 ASCADv1-r129

The original ASCAD database (v1) features one data set of a masked AES implementation130

(on a simple 8-bit microcontroller) with varying keys, which we utilise in our work. The131

database is generous, each side channel trace offers many data points for inclusion in132

training. To fit with the constraints of our computing resources we extract trace information133

as summarised in Table 1.134

The extracted datasets contain the information that relates to the masked computation135

of the AES SubBytes operation. The masking scheme is a simple two-share scheme,136

which precomputes a masked AES SubBytes Table SubBytes∗ prior to encryption. The137

masked SubBytes table is defined as SubBytes∗[x] = SubBytes[x ⊕ rin] ⊕ rout. During138

the computation of a masked encryption round, all state bytes ti (i refers to the state byte139

index) are masked by a state mask ri. Prior to the masked SubBytes step, the state bytes140

are are remasked, so that the input to SubBytes∗ is masked by rin, and because of the141

definition of SubBytes∗, the corresponding output is masked by rout. The SubBytes output142

is then again remasked so that it is protected by the state mask ri. The accompanying write143

up for the data base already performs an analysis to highlight the most leaky intermediate144

variables, which are the masked input and output of the SubBytes operation (ti ⊕ rin,145

si ⊕ ri) as well as the two involved masks ri and rin. Whilst the output mask rout and the146

masked intermediate si ⊕ rout also leak, their leakage is weak and hence typically ignored.147

There have been a number of papers that reported, for a variety of network architectures148

and approaches, results for this database. Our approach is to work with the raw traces149

(thus no points of interest selection takes place). With this setting in mind, the best150

previous works are [BCS21] and [PWP21], who reach single trace success — although the151

latter does not achieve this for all key bytes.152

2.3.2 ASCADv2153

The ASCADv2 dataset contains traces from a masked and shuffled AES implementation154

(on a more complex 32-bit architecture). The full dataset contains 800k traces with random155

keys and inputs. Each trace has 1 million sample points: therefore we extract only a subset156

of the available points for training/attack purposes. The split of the available data into157

training, validation and attack (=test) data sets is summarised in Tab. 2.158

The masking scheme is slightly more complex. It uses both a non-zero multiplicative159

mask β, as well as a Boolean mask α, i.e. each intermediate value x is represented by160

three shares: (x · β ⊕ α,β, α) (the multiplication must be understood over the appropriate161

finite field). The SubBytes operation is based again on a pre-computed table. Shuffling162

happens throughout the encryption rounds: a permutation over 16 elements is used for all163

Thomas Marquet, Elisabeth Oswald 5

Table 2: Summary of training, validation and test/attack dataset from ASCADv2
Ntraces start stop key

Training 250k 0 250000 random
Validation 50k 250000 300000 random
Attack 200k 300000 500000 random

round operations bar MixColumns, in which only the column elements are permuted. The164

permutation affects the index of the state bytes.165

The specific notation for the intermediate values is akin to the notation in ASCADv1-r166

and works as follows. The variable ti denotes the i-th state byte prior to the SubBytes167

operation, si is the result of SubBytes. Key bytes are denoted by ki. The multiplicative168

mask is called rm (it is the same for all state bytes), and the additive masks are called rin169

(before SubBytes), rout (after SubBytes), and ri (everywhere else).170

3 Multi-Target and (Hierarchical) Multi-Task Deep Learn-171

ing172

Multi-target attack strategies predate the use of deep learning in the side channel community.173

Works such as [MOW14] and [VGS14] explored the possibilities of utilising the leakage174

from multiple intermediate values. These attack vectors do not always require learned175

models, but can be combined with deep learning: the idea then would be to learn multiple176

independent models representing the different intermediate values, and combining them177

using different techniques. In particular it is possible to plug machine learning models into178

belief propagation, see [GBO19].179

Multi-task learning refers to the concept of jointly learning multiple tasks simultaneously180

[Car98] [Rud17]. The intuition is that this enables better use of available training data and181

therefore it acts as a type of data augmentation, which aids generalisation. The second182

intuition is that tasks that share features can benefit from each other: perhaps some183

features are easier to identify in one task than in others and thus this task produces “hints”184

for the other tasks. However it is also possible that hints are not helpful, and therefore185

“poor” hints might prevent a network from learning.186

3.1 Multi-Target Learning187

The intuition behind utilising the leakage from multiple intermediate values is that they188

enable to gather information more efficiently, thereby reducing the number of traces during189

an attack. In the context of deep learning, one would aim to train single task models190

for, e.g. the SubBytes input and SubBytes output. Then rather than taking the “better”191

model, the idea of multi-target attacks would be to combine the information from both192

learning tasks. The combination is straightforward, if we assume that the learning tasks193

are sufficiently independent: suppose we gather information from task l1 and task l2, and194

they both relate to the same key k: then Pr[K = k|l1, l2] = Pr[K = k|l1] × Pr[K = k|l2].195

Thus in multi-target learning, multiple single tasks are completed individually, and196

then eventually combined. This is in contrast to the next technique, multi-task learning.197

3.2 Task and branches198

Multi task learning leverages shared layers when training multiple tasks at the same time.199

As their name indicate it, shared layers are common to all the tasks and therefore the200

network must take an independant path for each task after those layers. That’s where the201

idea of branches appears. Each branch is setup through combination of losses and labels,202

6 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

to learn a specific part of the underlying leakage based on known information about the203

masking scheme.204

We define a task Tx as the output of the network corresponding to the variable x.205

During the training process of a network, labels of x are provided to the corresponding206

output layer which is in our case a softmax layer, but could be any kind of layer that fits the207

output representation chosen. We note the activated task Tx output as αx = softmax(Ux).208

A multi task model has nb branches, nt tasks. In a white box scenario, we have209

nb = nt. However, in a scheme-aware scenario, we cannot label intermediates that possess210

a part of randomness. Therefore branches are combined with another to represent together211

(x ⊕ m, m), with the label representing x, meaning that there should be less tasks than212

branches.213

We define a branch B the following way :214

• The input of a branch is the output of the convolution block, which is shared with215

all branches.216

• A branch possess only fully connected layers, regularization layers and activations217

functions.218

• The output of a branch is an unactivated fully connected layer with units fitting the219

chosen output representation. As we chose the identity leakage model, we have 256220

units. We note it Ux.221

3.3 Custom layers used to regroup branches222

In order to fit our designs needs, we define a number of custom layers that we define in223

the following section.224

3.3.1 Xor and inverse multGF256225

"GroupRecombine" as been defined in [MCLS22], as a custom layer performing conditionnal226

probabilities between the softmax layers of two models trained during the same process.227

Our iteration of this layer performs the following computation given two vectors x and y228

of size 256 :229
f⊕(x, y)[i] =

255∑
j=0

x[j] × y[i ⊕ j] ∀ i ∈ [0, 255]

f⊗(x, y)[i] = x[0] +
255∑
j=1

x[j] × y[i ⊗ j] ∀ i ∈ [0, 255]

(1)

(2)

The function f⊗ has to discriminate the first case where j = 0, being a null element.230

We decided that in this case, the probabilities of x should be unchanged.231

3.3.2 Inverse Sbox layer232

The inverse sbox layer on itself assume the knowledge of the sboxes used in the implementa-233

tion of the AES. However this is something that is commonly assumed in profiling attacks.234

The layer is defined according to the following principle with Sx and Sy respectively the235

input and the output of the layer:236

finv(x)[i] = x[Sbox(i)] ∀ i ∈ [0, 255]

Thomas Marquet, Elisabeth Oswald 7

3.4 Multi-Task Learning237

In the deep learning community, Mahgrebi [Mag20] was the first to pick up on the idea of238

multi-task learning. An improved design by Masur and Strullu [MS21] achieves impressive239

results for the ASCADv2 database. The core idea behind the existing architectures in240

these two previous works is that each intermediate value is learned by an independent241

branch of the deep net, and that all branches are connected to several shared layers deeling242

with the higher level features. This is the canonical design of multi-task networks, as243

summarised in [Rud17].244

We show this principle visualised for one intermediate value that is represented via245

two shares in Fig. 1b. There are two branches. The upper branch corresponds to learning246

the mask value, and the lower branch corresponds to learning the masked intermediate247

value. Both branches are connected to several shares layers. The network then outputs two248

classification outputs, which can be understood to represent the probabilities Pr[x ⊕ m]249

and Pr[m], from which we can easily recover the probability Pr[x] =
∑

m Pr[x⊕m]×Pr[m]250

(because we may assume that masks are chosen independent from intermediate values).251

3.5 Hierarchical Multi-Task Learning252

In the classical approach to multi-task learning (and also multi-target learning 1a), all253

branches are weighted evenly when computing the distribution of the desired, unmasked254

intermediate value. Recall that the hope is that both branches share “something” such255

that learning some features jointly acts as data augmentation technique as well that the256

“easier to learn” branch provides hints for the other branch. But equally, it could be that257

one branch remains a much better classifier than the other branch. We define a set of258

tasks Dht, that are encoded in the model from the results of tasks that are earlier in the259

model graph.260

Therefore we propose to encode the hierarchical relationship(s) between branches as a261

learning task into the network. We illustrate this directly on the example of the simple two262

branch multi-task network that we showed in Fig. 1b; leading to the network architecture263

depicted in Fig. 1c. The network architecure contains a further layer, which aims at264

learning how to weigh the contributions of the branches and has Dht = [x]. The design is265

slightly sophisticated because it is not possible to directly utilise the network outputs from266

the Softmax layer. The Softmax function is an exponential and therefore either amplifies267

or dampens characteristics of the distribution that is the result of the dense layers in each268

branch. Directly using the outputs of the dense layer is also not advisable. Consequently,269

we design a “Xor” layer which produces the distribution of x (given the distributions of270

x+m and m) (twice, once for each combination of dense layer output and softmax output).271

The two distributions representing x are then summed, whereby this is a weighted sum,272

and the network learns the weights. This, after a further Softmax layer then leads to the273

final distribution for x.274

Whilst we illustrated this approach for a network with two branches, it naturally275

generalises to networks with an arbitrary number of branches.276

3.6 Scheme-aware Multi-Task Learning277

The most challenging setting for learning is when during training only key knowledge and278

access is assumed. In the context of masked implementations, we would then assume that279

—because of a lack of access to internal randomness— the training data cannot be labelled280

with masks or masked values, but only the (unmasked) intermediate values. Also because281

of that, point of interest selection isn’t possible.282

However, in the case where some information about the scheme is known, or simply283

because most schemes possess similarities in the relationships between masks and inter-284

8 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

→ x̂ = ˆx⊕m⊕ m̂

250000 x 1 15625 x 1 Flatten

1840

250000 x 1 15625 x 1 Flatten

1840

Traces
Custom
Pooling

Conv
BlockBlock

Traces
Custom
Pooling

Conv
BlockBlock

Dense
200

Dense
200

Dense
200

Dense
200

Dense
256

Dense
256

Softmax
m

Softmax
x⊕m

(a) Single task models

Shared layers

→ x̂ = ˆx⊕m⊕ m̂

Mask branch

Intermediate branch

250000 x 1 15625 x 1 Flatten

1840Traces
Custom
Pooling

Conv
BlockBlock

Dense
200

Dense
200

Dense
200

Dense
200

Dense
256

Dense
256

Softmax
m

Softmax
x⊕m

(b) Classical multi-task learning model

Shared layers

Hierarchical relashionships

Mask branch

Intermediate branch

250000 x 1 15625 x 1 Flatten

1840Traces
Custom
Pooling

Conv
BlockBlock

Dense
200

Dense
200

Dense
200

Dense
200

Dense
256

Dense
256

Softmax
x⊕m

Softmax
m

Xor

Xor

Weighted

Sum
Softmax

x

(c) Hierarchical multi-task learning model

Figure 1: Two approaches for multi-task learning in a white box scenario

Thomas Marquet, Elisabeth Oswald 9

mediate values, it is possible to design "scheme-aware" networks that because of their285

structure relaxes the learning process. This idea has been introduced in [MCLS22].286

Given that the application of multi-task learning to masked implementations is based287

on designing branches that learn masks and masked values, it is non-trivial to come up288

with a way to apply multi-task learning when masks are unknown.289

4 Multi task learning in a white box scenario290

4.1 Assumptions, contributions and state of the art291

"White box" scenario assumes that for each trace during profiling, we know the value of292

the mask. Even though the knowledge of the mask isn’t assumed during the attack, it293

does decrease the difficulty of the profiling and therefore, the attack.294

Ascadv1-r. This dataset is used in our case, to explore the possibilities of multi295

task learning in a relatively simple scenario. We go through multiple combinations of296

intermediates in order to understand in which case multi task learning is useful. It is also297

useful to understand the best performances possible with the model architecture chosen,298

which will be then used to attack in a scheme-aware setting. The state of the art in this299

setting, is one trace.300

Ascadv2. In a more complex scenario, we’re proposing to apply multi task learning301

to ascadv2. Exploration is a lot less possible on this dataset, there is only a few leakages302

usable. Instead of exploring we’re offering an example of what can multi task learning can303

do to make it easier for an attacker, or evaluator. We’re setting a new state of the art,304

recovering the key in around 24 traces, with a single model for all key bytes. The previous305

state of the art was set by [MS21] with 60 traces in a similar setting.306

4.2 Ascadv1-r307

The colored numbers in the tables of this section are the difference between the model in308

question and the related combination of individually trained models.309

4.2.1 Core architecture310

We build different sets of models for the ASCADv1-r database. One set of models represents311

the idea of building individual models for intermediate values. In order to ensure a like-for-312

like comparison with multi-task learning, these individual models are simply the separate313

branches of the multi-task models. All models share the design of the pooling, convolution314

and dense layers, which is as follows:315

• Weighted Pooling Inspired by [PWP21] we’re using custom layers to perform a316

weighted average pooling on the raw traces in order to reduce the size of the following317

network. We are pooling a total of 4 times to reduce the size from 250k samples to318

15625 points. After each average pooling we perform a batch normalization and an319

alpha dropout.320

• Convolution block. We use the convolutions from a CNN proposed by [PWP21].321

It consist in only one convolution layer (kernel 34, strides 17 and filters 4) followed322

by an average pooling (pool size 2) and a batch normalization.323

• Dense Units. Each prediction branch possess 2 dense layers of 200 units and one324

output layer followed by a softmax. The units in the dense layers are regularized325

using L2 norm and activated using a SeLu function.326

10 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

4.2.2 Considering multiple intermediate values before SubBytes327

As showed in [BCS21], the subbytes inputs can be rather useful in this dataset. In addition328

to the leakage with the input mask rin, we noticed leakages with other shares. Therefore we329

explored the idea that perhaps combining information from several (shared) intermedative330

values that all related to the SubBytes input my help multi-task learning to succeed. In331

this scenario, we’re again assuming knowledge of the masks. The (shared) intermediate332

values targeted are the following :333

• ti ⊕ rin334

• ti ⊕ ri335

• ti ⊕ ri ⊕ rin336

It should be clear that the exlusive-or of these three intermediate values gives the337

unmasked SubBytes input ti. Consequently, using the same core architecture as in the338

previous section, but designing five branches that learn the three intermediate values plus339

the masks, we now aim for a model that learns ti.340

Type nb nt Dht

mmt 5 5 ∅
mhmt 5 6 ti

341

The same branches are used in the flat model and in the hierarchical model, however,342

we encode the relationships between tasks, linking them together to predict ti. The design343

of the encoding is the following :344

Uti
= b +

∑
∀m∈[ri,rin,ri⊕rin]

wm ∗ f⊕(Uti⊕m,αm) +
∑

∀m∈[ri,rin]

wti⊕m ∗ f⊕(αti⊕m, Um)

The tables Tab. 3a and 3b show the accuracies of the multi-task model and the345

hierarchical multi-task model relative to the accuracies obtained by training individual346

models in a multi-target setting to recover ti. There are a number of similarities observable347

for both approaches: they both struggle to learn individual masks. However there is a348

striking difference in overall performance between the hierarchical multi-task model and349

both other models: encoding the hierarchical relationship between the intermediate values350

into the network, and enabling the network to learn the best weighted sum to recover ti351

dramatically increases the accuracy for ti.352

As an aside it is interesting to observe that for bytes 8, 10, 11 and 14, the individual353

models do not learn anything about ti ⊕ ri. Also for byte 4, the individual model is not354

learning anything about ti ⊕ ri ⊕ rin.355

Finally, we used the models in a key recovery attack. The attack is repeated over 1000356

experiments, in which up to 10 traces are picked at random from the attack set. Using the357

hierarchical multi-task model enables to uniquely identify the full key using (on average)358

no more than two traces.359

4.2.3 Considering multiple intermediate values before and after SubBytes360

Encouraged by the improved results from combining three (shared) intermediate values,361

we now investigate the combination of intermediate values occuring before and after the362

SubBytes operation. Figure 3 shows the hierarchichal relationships levered. It learns the363

leakage of the input shares and output shares, whereby we encode the inverse SubBytes364

operation so that we effectively learn the unmasked input ti from both the input and the365

output. We combine both “beliefs” and then add plaintext information to directly infer366

the key bytes ki.367

Thomas Marquet, Elisabeth Oswald 11

Table 3: Accuracies when recovering ti, compared against the single task models

(a) Multi-task model
Multi task model for the recovery of ti

Byte ti ⊕ rin ti ⊕ ri ti ⊕ ri ⊕ rin ri rin ti

i = 3 35.29 -6.21 22.91 16.61 15.80 -7.50 92.80 -4.20 72.61 -5.98 39.90 -5.75
i = 4 37.71 -4.59 14.27 1.38 11.33 11.00 70.66 -5.09 72.07 -6.52 35.32 -3.68
i = 5 36.20 -6.03 32.44 0.33 21.74 15.35 96.33 -1.81 72.52 -6.07 46.10 -5.11
i = 6 39.42 -3.62 23.59 7.34 21.03 15.55 97.87 -0.17 73.41 -5.18 43.32 0.03
i = 7 38.57 -3.37 18.24 11.87 21.31 12.43 96.27 -3.02 74.15 -4.44 40.58 0.77
i = 8 35.51 -4.82 15.77 15.38 15.28 10.29 82.20 -3.07 76.87 -1.72 39.51 6.50
i = 9 37.44 -13.4 17.83 2.36 16.01 10.18 70.83 -8.12 73.46 -5.13 36.85 -10.7
i = 10 41.02 -2.90 17.27 16.94 17.92 10.98 98.56 -0.12 75.89 -2.70 41.88 5.92
i = 11 45.51 -3.98 14.49 14.01 18.01 11.74 88.56 -2.77 74.29 -4.30 42.03 1.72
i = 12 44.24 -2.20 31.23 4.77 24.68 17.11 98.29 -0.99 79.61 1.02 52.69 1.23
i = 13 41.81 -1.50 19.57 11.07 16.66 10.00 69.40 -11.7 75.25 -3.34 40.08 -0.50
i = 14 35.52 -2.60 21.35 20.91 16.37 9.75 77.59 -11.8 74.91 -3.68 36.30 4.43
i = 15 48.73 6.36 44.54 -11.3 27.90 24.13 94.73 -3.63 77.65 -0.94 59.92 -8.82
i = 16 56.16 -3.47 24.69 4.24 26.97 19.46 77.91 -6.96 76.76 -1.83 51.25 -3.09

(b) Hierarchical multi-task model
Byte ti ⊕ rin ti ⊕ ri ti ⊕ ri ⊕ rin ri rin ti

i = 3 43.49 1.99 29.47 23.17 23.32 0.02 94.89 -2.11 76.83 -1.76 80.25 34.6
i = 4 34.82 -7.48 13.44 0.55 13.08 12.75 74.24 -1.51 76.58 -2.01 67.37 28.37
i = 5 40.41 -1.82 32.66 0.55 25.17 18.78 98.54 0.40 77.89 -0.70 85.86 34.65
i = 6 38.87 -4.17 19.91 3.66 19.52 14.04 97.02 -1.02 75.56 -3.03 85.93 42.64
i = 7 40.62 -1.32 15.21 8.84 25.27 16.39 97.70 -1.59 77.89 -0.70 86.07 46.26
i = 8 38.66 -1.67 15.46 15.07 18.96 13.97 84.46 -0.81 80.31 1.72 81.37 48.36
i = 9 43.67 -7.13 17.17 1.70 20.50 14.67 73.27 -5.68 77.16 -1.43 77.76 30.17
i = 10 39.02 -4.90 15.11 14.78 21.03 14.09 96.41 -2.27 77.41 -1.18 83.00 47.04
i = 11 39.13 -10.4 13.06 12.58 16.05 9.78 81.94 -9.39 73.82 -4.77 77.72 37.41
i = 12 39.26 -7.18 26.05 -0.41 24.71 17.14 95.20 -4.08 76.62 -1.97 82.36 30.9
i = 13 37.23 -6.08 16.33 7.83 14.35 7.69 72.06 -9.05 75.98 -2.61 74.62 34.04
i = 14 41.53 3.41 16.13 15.69 17.62 11.00 77.75 -11.6 77.15 -1.44 80.73 48.86
i = 15 48.60 6.23 47.28 -8.58 27.18 23.41 95.39 -2.97 76.95 -1.64 88.67 19.93
i = 16 59.70 0.07 22.27 1.82 27.78 20.27 78.07 -6.80 77.08 -1.51 82.25 27.91

Figure 2: Full key recovery attacks for ASCADv1-r using multiple intermediates before
SubBytes

12 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

Table 4: Accuracies when recovering ki, compared against the single task models

(a) Multi-task model
Byte si ⊕ ri ti ⊕ rin ri rin si ti ki

i = 3 99.35 -0.27 44.92 3.42 91.43 -1.7 76.89 -5.57 90.84 -5.81 35.00 2.13 92.64 -4.86
i = 4 97.75 1.86 38.07 4.79 74.25 -2.82 75.77 -1.50 72.56 -0.28 28.71 -4.57 78.63 -0.74
i = 5 98.69 -0.45 43.99 1.76 97.73 -2.87 75.72 -0.41 96.45 -0.87 33.11 0.08 97.20 -0.82
i = 6 96.72 -2.64 34.05 -8.99 96.48 -1.54 77.05 -1.56 93.35 -4.07 26.67 -7.35 94.54 -3.48
i = 7 99.51 0.07 40.05 -1.89 95.49 -1.78 76.81 -3.80 95.06 -3.68 30.67 -1.15 95.89 -3.11
i = 8 96.69 -2.59 33.23 -7.1 84.49 -3.47 75.12 -0.78 81.95 -2.73 25.21 -6.60 84.59 -3.16
i = 9 97.03 -1.89 44.38 -6.42 83.78 -0.77 77.82 4.83 81.32 3.17 34.57 -5.22 86.64 2.53
i = 10 98.57 -1.02 40.12 -3.80 98.83 -0.73 77.86 0.15 97.45 -0.83 31.71 -2.76 98.13 -0.59
i = 11 98.51 0.10 39.19 -10.3 91.69 -1.41 77.18 0.36 90.36 0.41 30.63 -8.53 91.87 -0.77
i = 12 97.78 -2.00 43.97 -2.47 97.75 0.24 78.83 -1.53 95.66 -3.41 34.79 -2.00 96.75 -2.61
i = 13 98.91 -0.70 35.83 -7.48 68.01 -1.38 77.21 -13.1 67.39 -13.4 27.86 -6.62 73.24 -12.9
i = 14 98.16 -1.02 48.67 10.55 79.66 -2.79 75.8 -9.70 78.31 -10.4 37.07 6.65 83.75 -7.38
i = 15 97.35 -1.40 53.25 10.88 96.88 0.35 78.94 -1.48 94.33 -2.81 42.3 -0.07 95.76 -2.16
i = 16 98.60 -1.03 58.37 -1.26 77.39 1.01 79.6 -7.48 76.27 -8.32 46.23 -0.24 85.21 -4.90

(b) Hierarchical multi-task model
Byte si ⊕ ri ti ⊕ rin ri rin si ti ki

i = 3 98.23 -1.39 43.73 2.23 93.10 0.10 78.69 -3.9 86.54 -10.1 26.65 -6.22 97.75 0.25
i = 4 96.89 1.00 36.92 3.64 75.41 -0.34 74.05 -4.54 66.30 -6.54 21.59 -11.7 92.11 12.74
i = 5 96.40 -2.74 25.86 -16.4 90.11 -8.03 61.81 -16.8 79.61 -17.7 12.09 -20.9 94.09 -3.93
i = 6 98.55 -0.81 42.79 -0.25 96.93 -1.11 76.06 -2.53 93.15 -4.27 26.12 -7.9 99.09 1.07
i = 7 99.46 0.02 31.99 -9.95 97.82 -1.47 80.13 1.54 94.07 -4.67 19.97 -11.9 98.82 -0.18
i = 8 97.83 -1.45 35.01 -5.32 90.7 5.43 75.46 -3.13 84.79 0.11 20.89 -10.9 95.8 8.05
i = 9 97.02 -1.9 36.56 -14.2 77.7 -1.25 80.03 1.44 69.57 -8.58 22.99 -16.8 94.37 10.26
i = 10 98.60 -0.99 38.67 -5.25 98.60 -0.08 75.72 -2.87 95.24 -3.04 24.41 -10.1 99.08 0.36
i = 11 98.55 0.14 46.53 -2.96 89.58 -1.75 78.09 -0.50 83.49 -6.46 28.99 -10.2 97.1 4.46
i = 12 98.17 -1.61 42.60 -3.84 98.18 -1.10 72.55 -6.04 94.61 -4.46 23.93 -12.9 98.79 -0.57
i = 13 99.15 -0.46 39.00 -4.31 76.30 -4.81 78.35 -0.24 70.71 -10.1 23.59 -10.9 94.64 8.47
i = 14 97.52 -1.66 42.02 3.9 84.10 -5.26 76.34 -2.25 75.05 -13.7 25.04 -5.38 95.62 4.49
i = 15 97.12 -1.63 51.97 9.60 95.05 -3.31 75.43 -3.16 87.39 -9.75 31.3 -11.1 98.03 0.11
i = 16 98.92 -0.71 57.81 -1.82 80.14 -4.73 76.93 -1.66 74.56 -10.0 38.97 -7.50 97.88 7.77

Model nb nt Dht

mmt 4 4 ∅
mhmt 4 7 ti, si, ki

368

Again, the only difference between the two models, is the tasks encoded at the end.369

The encoding is the following :370
Uti

= b + wrin ∗ f⊕(Uti⊕rin
, αrin

)wti⊕rin
∗ f⊕(αti⊕rin

, Urin
)

Usi
= b + wri

∗ f⊕(Usi⊕ri
, αri

) + wsi⊕ri
∗ f⊕(αsi⊕ri

, αri
)

Uki
= b + wti

∗ Uti
+ wsi

∗ finv(Usi
)

(3)
(4)
(5)

From Tables 4a and 4b we can see that both multi-task approach loses significantly in371

terms of accuracy, but hierarchical multi-task learning hugely benefits from the wealth of372

information which leads to an accuracy of over 95% on all key bytes in the attack data set.373

While impressive since we’re using a single model to go from raw traces to key value, it374

has to be noted that the knowledge of the masks is assumed during profiling.375

Like in the previous scenario, training all together does not appear to give any benefit376

on the intermediate values when combined using a multi-target strategy themselves. The377

real benefit appears to occur in the end leaf: the last loss function is more important than378

the other loss functions during the training. Looking at the accuracies on si and ti, we379

can hypothesize that the network is trying to learn the intermediates in a complementary380

way, each branch mitigating the errors of the other. On the byte 9, the accuracies381

on si and ti are much worse than the individual models. Yet the final accuracy on the key382

byte is 8% better.383

As expected, when using these models in a full key recover attack, the outcomes are384

Thomas Marquet, Elisabeth Oswald 13

Figure 3: Full key recovery using SubBytes inputs and outputs (ASCADv1-r)

excellent, see Fig. 3. The hierarchical multi-task learning recovers the full key with a single385

raw trace robustly.386

4.3 ASCADv2387

The ASCADv2 database is considerably newer and therefore much less analysed. In Masure388

and Strullu [MS21] the authors provide an excellent characterisation of the traces, and we389

took full advantage of this information in our work.390

We follow the line of thought by Masure and Strullu, and first consider which trace391

points to include in our analysis—this is in stark contrast to what is possible for ASCADv1-392

r, where it is possible to work in a black box manner. Most of the work done on ascadv1393

isn’t replicable on this dataset simply because leakages that can be used on ascadv1 are394

not present or simply too weak on ascadv2. The best example of this is the state mask395

ri which leaks up to 100% accuracy in the ascadv1. Here this mask doesn’t leak better396

than 5%. Leveraging this mask and the potential combinaisons with ri ⊕ rin is therefore397

impossible here.398

4.3.1 Points of interest selection399

The point selection strategy (based on computing the SNR of intermediate values) detailed400

in Masure and Strullu [MS21], even though sufficient to perform successful attacks, omits401

inclusion, of what we found to be the most leaky part of the implementation: much leakage402

about the input mask rin is not utilised and the subbytes inputs rm ⊗ tj ⊕rin. We therefore403

adapt our points of interest selection (also SNR based) as follows.404

• rm: We consider the entire interval where it leaks strongly (trace points 200000,405

280000) but compress this down using a moving average with a window of 20 samples.406

• rin: We take the points where the snr is above a certain threshold, in total 1085407

trace points408

• rout: We detect twelve peaks, and take 50 points around them for a total of 600409

trace points410

14 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

(a) rm, rin, rout (b) rm ⊗ sj ⊕ rout (c) rm ⊗ tj ⊕ rin

Figure 4: SNR analysis of the targets in our attack

• rm ⊗ sj ⊕ rout: The SubBytes output is not leaking very strongly, and we take 100411

traces points from within each state byte.412

• rm ⊗ tj ⊕ rin: The SubBytes input is leaking strongly, and we take 100 trace points413

from each state byte.414

• j = Perm(i): The permutation indices are leaking strongly, we take 1000 samples415

from across the entire encryption operation for each state byte.416

• If some trace points are present twice because some interval overlaps, we remove417

them.418

We note that the most leaky intermediates values are sj ⊕ rj and tj ⊕ rj . However the419

mask rj associated with these two values has a very low SNR and therefore we decided to420

exclude these two intermediates.421

4.3.2 Data augmentation by training across state bytes422

Whilst the shuffling implementation permutes the order of working through the state bytes,423

there is no whatsoever randomisation taking place within the processing of each state byte.424

This implies, that within each state byte, the order of operations is perfectly aligned across425

the 16 state bytes, and we take full advantage of this fact: we train a single model with a426

dataset constructed from samples corresponding to every bytes. This technique is taken427

from [HWW21] and allows a model to generalize to all bytes while decreasing the training428

time (or increasing the potential training set).429

4.3.3 Core architecture)430

In the case of ASCADv1-r we were able to use the individual branches of the multi-task431

architecture as a “reference” model for single task models. This strategy does not work432

with the ASCADv2 data: individual models based on individual branches do not learn433

any of the assigned tasks. Consequently, a like-for-like comparison as in the ASCADv1-r434

database is not possible, and architectures for the individual learning tasks were necessary.435

Each model is trained using data from all 16 key bytes.436

4.3.4 Individual models437

Inspired by the CNNs used by Masure in his paper, we decided to use a VGG16 like438

architecture. The structure is the following :439

• Convolution Block : Convolution + Average pooling + BatchNormalization.440

Thomas Marquet, Elisabeth Oswald 15

Table 5: Hyperparameters for Single Task Models
Parameter Tested Values Chosen Value

Number of Epochs 100 100
Batch Size 200, 500, 1000 500

Learning Rate 10−4, 10−3 10−3

Optimiser Adam Adam

Table 6: Hyperparameters for Multi Task Models
Parameter Tested Values Chosen Value

Resnet Blocks 1,2,3,4,5 3
Number of Epochs 100 100

Batch Size 250, 500 250
Learning Rate 10−4, 10−3 10−3

Optimiser Adam Adam

• Numbers of blocks : We experimented with 3,4 and 5 blocks. We settled for 4 as441

it showed the best performance.442

• Pooling : Average Pooling of size 2.443

• Kernel size : In VGG16 like architectures, the kernel size usually goes from 32 to444

256 (doubling the size at every block). We decided after some tuning to start with a445

kernel size of 16.446

• Filters : The convention is to use 11 filters, we investigated other choices, but found447

no better value, thus settled with 11.448

• Activation : ReLu, as it is commonly used for VGG16.449

• Dense Layer block : BatchNormalization + L1 and L2 regularization to reduce450

overfitting.451

• Number of units and dense block : 2048 and 1, like Masure and Strullu, we did452

not experiment with other sizes.453

The training hyperparameters are specified in the table 6. Note that the number of454

epochs do not matter as we overfit much before that but our strategy is to keep the best455

model on the validation set.456

4.3.5 Multi task models457

Again inspired by the work of Masure, we use ResNet based branches. However we are458

using our custom weighted pooling layer instead of the average pooling.459

The hyperparameter tuning hasn’t been done on the architecture of the network but460

rather on the regularizers present in most layers. All convolutions and dense layers are461

regularized used L1L2 Norm. Also various amount of dropout were used in between layers.462

This is where most of the tuning has been done.463

4.3.6 Considering multiple intermediate values before and after SubBytes464

Akin to how we approached the comparison for the ASCADv1-r dataset, we also performed465

experiments with ASCADv2. We built single-task models, and combined them using the466

multi-target strategy. We also built multi-task models and multi-target models. For all467

efforts we assumed full knowledge about the randomness during training.468

16 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

Figure 5: Full key recovery results for different models

Model nb nt Dht

mmt 6 6 ∅
mhmt 6 7 tj

469

The 6 main branches correspond to the targets of the attack, developped in the section470

4.3.1. The encoding of the hierarchical model mhmt is the following :471

U1 = finv(f⊗(f⊕(Usj⊕rout , αrout), αr⊗))
U2 = finv(f⊗(f⊕(αsj⊕rout , Urout), αr⊗))
U3 = f⊗(f⊕(Utj⊕rin , αrin), αr⊗)
U4 = f⊗(f⊕(αtj⊕rin , Urin), αr⊗)

Utj
= b +

4∑
k=1

wk ∗ Uk

(6)
(7)
(8)
(9)

(10)

The hierarchical multi task model uniquely reveals the correct secret key with 25 traces;472

this is as good as the best single-task model (using the SubBytes input) and the multi-task473

and multi-target models. These results are the best known results for the ASCADv2474

dataset.475

Even if the performances of multi task learning are worst than individual networks in476

5, it has to be noted that the individual networks are fed with only the points that are477

related to the task to be learned, because the model couldn’t learn anything otherwise.478

4.3.7 Conclusion on whitebox multi-task learning479

Throughout our two examples we show case a wide range of applications of multi task480

learning. The key takaways are the following :481

• Training related tasks together, improve the training for all tasks.482

• Training unrelated task together has negative to neutral impact. The increased483

difficulty by the propagation of multiple losses is to blame for that.484

Thomas Marquet, Elisabeth Oswald 17

• Hierarchical multi task learning helps in both cases, as it improves when tasks are485

related and unrelated over the multi task learning scenario.486

• Multi task learning increase the ability of a network to learn from large traces.487

• Multi task learning provides a huge boost in learning and ease of hyperparameter488

tuning489

5 Multi task learning in a scheme-aware scenario490

The most challenging setting for learning is when during training only scheme knowledge is491

assumed. In the context of masked implementations, we would then assume that —because492

of a lack of access to internal randomness— the training data cannot be labelled with493

masks or masked values, but only the (unmasked) intermediate values. Again, due to the494

absence of randomness information, a point of interest selection might not be feasible.495

Given that the application of multi-task learning to masked implementations is based496

on designing branches that learn masks and masked values, it is non-trivial to come up497

with a way to apply multi-task learning when masks are unknown. For this reason, we’re498

looking for targets that we know share a mask in a scheme aware threat model.499

Ascadv1-r. This dataset is very often used in a scenario where the masks are not500

known and many attacks have been showed successful. The state of the art succesfully501

recover the full key in 3 traces [PWP22]. The architecture of the branches of the network502

used in the whitebox scenario are the same as the one used here.503

Ascadv2. This dataset has no state of the art in such scenario with no successful504

attacks so far.505

5.1 Leveraging the subbytes inputs to unmask themselves506

The idea with this model is to leverage the leakage of rin and ti ⊕ rin. Since all bytes of507

this intermediates are masked with the same randomness, we design an architecture with508

one branch that is connected to all the other with a xor-like layer. The idea is that while509

learning (ti ⊕ rin) ⊕ rin, it might beneficial to learn at the same time (ti+1 ⊕ rin) ⊕ rin.510

This repeated 14 times for all the attackable bytes.511

We train two unlabelled models, named m0 and mcross. The latter being an improved512

version of the first one.513

Type nb nt Dht

m0 15 14 ∅
mcross 15 14 ∅

514

Both model have one branch for each possible masked intermediate, but only one for515

the mask. As said before, both architectures are going to combine the learning of the516

mask, from the masked intermediates. However, in the mcross model, where adding an517

extra loss, that propagates the cross entropy between the predictions at the end of the518

mask branch, and the average mask prediction from the other branches. It is possible to519

recover this average mask prediction from the masked intermediate branches, simply by520

doing a xor operation between the labels Yi and the predictions of the expected masked521

intermediates αi. The losses Lm calculated for each models are the following:522

Lm0 =
16∑

i=3
crossentropy(αi, Yi)

Lmcross
= Lm0 + crossentropy(1

14

16∑
i=3

f⊕(αxi⊕m, Yi), αm)

18 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

Figure 6: Comparison of unlabelled models against their labelled counterparts

This will perform a reindexing of the scores gathered on the xi ⊕ m branch since Yi523

correspond to the one hot encoded labels of ti. Then with the summed scores, we add a524

cross entropy between the output of the mask branch and the information gathered on the525

rest. This technique will give a hint to the network.526

We see clearly that the bottleneck of information reached by the labelled version isn’t527

too far away from the best unlabelled models. We also see that linking the knowledge528

learned on the different branches, further improve the training. However, this is a special529

case where all bytes share a mask, which isn’t always possible.530

5.1.1 Is multi task learning helpful ?531

To verify this, we trained 14 models in a two branches architecture. This scenario would be532

similar to the one in [MCLS22]. However, the models struggle to succesfully gather infor-533

mation on all bytes with our set of hyperparameters. This means that the hyperparameters534

would need to be tuned for each byte instead of together, increasing the tuning overhead.535

We can further hypothesize, that the amount of good set of hyperparameters with multi536

task learning should be greater than in single byte scenario, while the single byte scenario537

should be overall better (i.e. no free lunch theory). However, as the performances seen in538

6, we’re already reaching labelled performances, with our unlabelled networks.539

6 Conclusion540

Our results contribute to the research into using multi-task deep learning models in541

the context of side channel key recovery attacks. We make the suggestion of not just542

using multi-task models, but to exend them encoding hierarchical information about the543

relationships between the branches into the model. We observe that this can, sometimes544

significantly, improve the accuracy and with it the success rate in full key recovery. We also545

observe that using multiple related (shared) intermediate values is preferential over using546

just a single share and shared intermediate value. We propose new designs, which enable547

us also, for the first time, to design a multi-task learning model that does not require the548

knowledge of masks during training.549

We believe more research is warranted for our new methods of multi-target and550

hierarchical multi-task training: the core of our idea is to encode relationships , and to551

propagate learned distributions from the branches of the multi-task model into a further552

Thomas Marquet, Elisabeth Oswald 19

shared layer. This bears some resemblence to previous works on belief propagation. We553

also believe that our approach of defining custom layers is largely unexplored. The high554

customizability of libraries like TensorFlow makes this approach very practical, which555

enables more more tuned networks than what perhaps have been used by the side channel556

community so far.557

20 Exploring Multi-Task Learning in the Context of Two Masked AES Implementations

References558

[BCS21] Olivier Bronchain, Gaëtan Cassiers, and François-Xavier Standaert. Give me 5559

minutes: Attacking ASCAD with a single side-channel trace. Cryptology ePrint560

Archive, Report 2021/817, 2021. https://eprint.iacr.org/2021/817.561

[Car98] Rich Caruana. Multitask learning. In Sebastian Thrun and Lorien Y. Pratt,562

editors, Learning to Learn, pages 95–133. Springer, 1998.563

[GBO19] Joey Green, Tilo Burghardt, and Elisabeth Oswald. Not a free lunch but a564

cheap lunch: Experimental results for training many neural nets. IACR Cryptol.565

ePrint Arch., page 1068, 2019.566

[HWW21] Fanliang Hu, Huanyu Wang, and Junnian Wang. Cross-subkey deep-learning567

side-channel analysis. Cryptology ePrint Archive, Report 2021/1328, 2021.568

https://eprint.iacr.org/2021/1328.569

[Mag20] Houssem Maghrebi. Deep learning based side-channel attack: a new profiling570

methodology based on multi-label classification. Cryptology ePrint Archive,571

Report 2020/436, 2020. https://eprint.iacr.org/2020/436.572

[MCLS22] Loïc Masure, Valence Cristiani, Maxime Lecomte, and François-Xavier Stan-573

daert. Don’t learn what you already know: Grey-box modeling for profiling574

side-channel analysis against masking. Cryptology ePrint Archive, Report575

2022/493, 2022. https://eprint.iacr.org/2022/493.576

[MOW14] Luke Mather, Elisabeth Oswald, and Carolyn Whitnall. Multi-target DPA577

attacks: Pushing DPA beyond the limits of a desktop computer. In Palash578

Sarkar and Tetsu Iwata, editors, Advances in Cryptology - ASIACRYPT 2014579

- 20th International Conference on the Theory and Application of Cryptology580

and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.581

Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science, pages582

243–261. Springer, 2014.583

[MS21] Loïc Masure and Rémi Strullu. Side channel analysis against the ANSSI’s584

protected AES implementation on ARM. Cryptology ePrint Archive, Report585

2021/592, 2021. https://eprint.iacr.org/2021/592.586

[PWP21] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection587

scenarios for deep learning-based side-channel analysis. Cryptology ePrint588

Archive, Report 2021/1414, 2021. https://eprint.iacr.org/2021/1414.589

[PWP22] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection590

scenarios for deep learning-based side-channel analysis. IACR Transactions on591

Cryptographic Hardware and Embedded Systems, 2022, Issue 4, 2022.592

[Rud17] Sebastian Ruder. An overview of multi-task learning in deep neural networks.593

CoRR, abs/1706.05098, 2017.594

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft595

analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata, editors,596

Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on597

the Theory and Application of Cryptology and Information Security, Kaoshiung,598

Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of599

Lecture Notes in Computer Science, pages 282–296. Springer, 2014.600

https://eprint.iacr.org/2021/817
https://eprint.iacr.org/2021/1328
https://eprint.iacr.org/2020/436
https://eprint.iacr.org/2022/493
https://eprint.iacr.org/2021/592
https://eprint.iacr.org/2021/1414

	Introduction
	Summary of Contributions and Outline
	Relevant related works

	Preliminaries
	Profiling based on Deep Learning
	Computing resources
	Data Sets and Corresponding Notation

	Multi-Target and (Hierarchical) Multi-Task Deep Learning
	Multi-Target Learning
	Task and branches
	Custom layers used to regroup branches
	Multi-Task Learning
	Hierarchical Multi-Task Learning
	Scheme-aware Multi-Task Learning

	Multi task learning in a white box scenario
	Assumptions, contributions and state of the art
	Ascadv1-r
	ASCADv2

	Multi task learning in a scheme-aware scenario
	Leveraging the subbytes inputs to unmask themselves

	Conclusion

