
Exploring Multi-Task Learning in the Context of
Two Masked AES Implementations

Thomas Marquet1 and Elisabeth Oswald1,2[0000−0001−7502−3184]

1 Digital Age Research Center (D!ARC), University of Klagenfurt, Austria
2 University of Birmingham, UK

Abstract. This paper investigates different ways of applying multi-task
learning in the context of two masked AES implementations (via the
ASCAD-r and ASCAD-v2 databases). Enabled by multi-task learning,
we propose novel ideas based on the encoding of relationships between
the multiple learning tasks. Our work provides a wide range of experi-
ments to understand the performance of multi-task strategies against the
current state of the art. We show that multi-task learning benefits from
the accumulation of constraints to guide the propagation of the gradient.
Such strategies achieve novel milestones against protected implementa-
tions when the knowledge of randomness isn’t assumed. We propose a
new state of the art on ASCAD-r and ASCAD-v2, along with models that
defeat for the first time all masks of the affine masking on ASCAD-v2.

Keywords: Side Channel Attacks · Masking · Deep Learning · Multi
Task Learning

1 Introduction

Deep learning techniques have fast become an alternative to the use of clas-
sical statistics in the context of profiled side-channel attacks, because of their
unrivaled ability to efficiently utilise information across many tracepoints. The
approach taken by many deep learning architectures still somewhat depends on
the thinking found in traditional statistics-based attacks: a single intermediate
target is learned at a time (thus a single learning task is performed).

Recent publications have begun to move beyond this single-task learning
paradigm towards a multi-task learning approach: Mahgrebi [4] explores a deep
learning architecture to learn two intermediate values (bit-wise) on an AES im-
plementation simultaneously; Masure and Strullu [7] revisit Mahgrebi’s idea and
learn many intermediate values simultaneously. They set a new record for a
“non-dissecting” approach for the ASCAD-v2 dataset and successfully recover
the key bytes with 60 traces when assuming knowledge of the masks during pro-
filing. Their paper concludes by reflecting on the potential power of multi-task
learning: “A further study of the advantages and drawbacks of such paradigm
is yet to be done. Still, this could lead to help the SCA practitioner towards
new milestones against protected implementations.” (p. 21, [7]). Marquet et Os-
wald [5] further entertain this idea in their work, where the authors claim that

multi-task learning models have an edge over single-task models in a scenario
where knowledge of the masks isn’t assumed.

1.1 Summary of Contributions and Outline

We focus on the application of multi-task learning in the context of the masked
AES-128 implementations that are the basis of the ASCAD-r and ASCAD-v2
databases. After providing some notation and background in Sect. 2, we intro-
duce our multi-task designs along with the hyperparameter choices in Sect. 3,
we present our wide range of experimental results in Sect. 4 on both datasets
and finally we discuss how to extract points of interest from traces using our
designs in Sect. 5. Whereby our innovations are as follows:

Contributions

– we propose to leverage multi-task learning to enable collaboration between
different intermediates, and/or different bytes of the same intermediates.

– we suggest that multi-task learning allows an attacker to leverage constraints
to ”guide” the learning of the model.

– we provide experimental evidence that such constraints are beneficial, on the
overall performance of the model, but also its convergence speed.

– we explain how to recover points of interest from raw traces using our designs.
– we compare those architectures against state-of-the-art single-task designs.
– we provide state-of-the-art results for ASCAD-r and ASCAD-v2, with the

first model to defeat both multiplicative and additive mask in the affine
masking scheme of ASCAD-v2.

1.2 Relevant related works

Masure and Strullu [7] introduce the ASCAD-v2 database and provide a first
characterisation of the included traces. They provide the first attacks on the
ASCAD-v2 dataset, showcasing multiple scenarios including experiments where
part of the countermeasures are unknown to the attacker.

Hu et al. [2] explains that it can be beneficial to use the data from the process-
ing of the AES state bytes to train a single model representing an intermediate
value. This is possible in the case of many software implementations because
each state byte undergoes the same operations (the same sequence of Assembly
instructions) which means that their leakage is very similar. Ngo et al. [8] shows
a similar technique in order to reduce the size of the dataset to attack a masked
Saber implementation.

Ngo et al. [8] and later on, Masure et al. [6] consider the possibility of assum-
ing the presence of masking during the training of two models and propagating
a loss on the combined probabilities from both outputs. Such training relieves
the network by giving it a better understanding of what it should learn. The
first authors, however, present bit-wise designs, while the latter performs the

conditional probabilities over one hot encoded bytes. Furthermore, Masure et
al. [6] explain the impact of masking on the optimisation problem.

Perin et al. [9] investigate the impact that the selection of points of interest
has when training deep networks. They observe that working with raw traces is
sometimes possible (i.e. no points of interest are selected), which leads to a black
box attack scenario, where an adversary needs no information about randomness
during the training. They provide the best results for the ASCAD-v1 database:
they achieve key recovery with just a single trace in many scenarios.

Marquet and Oswald [5] propose extensive experiments in order to compare
single-task and multi-task learning strategies. Solely focusing on a scenario where
countermeasures are not assumed, the authors show that multi-task models yield
more often models that converge towards successful attacks.

2 Preliminaries

We consider side-channel attacks that operate in two stages: a leakage identifi-
cation stage where (if necessary) points of interest are selected and deep nets
are trained, and a leakage exploitation stage, where the trained nets are used as
classifiers in the context of differential side-channel attacks.

We stick to as simple notation as possible and stay with the variable naming
conventions of the ASCAD databases: upper case letters denote sets (which we
overload and simultaneously use as random variables), and lower case letters
denote realisations of the random variables (and equivalently elements of a set).
All variable/set names are taken (without renaming) from the original papers
(implementations/data sets), such that “matching up” of our work with these
original implementations is straightforward. The index i refers to the ith state
byte, and we generally drop any indexing referring to points within a trace from
our notation. Occasionally we require to refer to the j-th trace, which we put as
an index (alongside the index indicating the state byte) to a variable. We note
σ as the softmax function. Furthermore, we note the activated output of task x
as sigmax = σ(αx), with αx being the inactive output.

2.1 Profiling based on Deep Learning

For the purpose of building a classifier for newly observed traces during the
exploitation phase, a deep learning approach uses one (or more) trained models,
which output values that can be understood as likelihood scores. In the context
of our work, we are interested in recovering information about key values. Thus,
our networks are configured to return per-trace log-likelihood scores Si for 8-
bit chunks of an AES secret key. To derive the log-likelihood score for the ith
key chunk given an attack set of Na traces, we just compute the sum d[ki] =∑Na

j=1 Si,j .

Training Methodology We use the same methodology across all datasets. To
enable meaningful comparisons, we use the same overall architecture for single

models and multi-task models, with the same learning rate and optimizer. The
only difference between the models is the number of fully connected branches
and how the branches are connected. We design one branch per intermediate
value, whereby an intermediate value may also refer to a mask value.

As per good practice, we divide the available data into training data, vali-
dation data, and attack (=test) data. All training happens on the training data
set. We validate a learned model on a validation set of size Nv. During this val-
idation phase, we monitor the validation accuracy. Our best training model is
selected based on the best validation loss, and we use a Tensorflow callback to
retrieve this model. We then test the best model on the full Na attack dataset,
retrieving accuracy-based metrics.

2.2 Computing resources

We’re using a single GPU Nvidia A6000 Ada with 48GB of dedicated memory. In
addition to the GPU, we’re using 4 cores of an AMD EPYC at 2.6GHz with 128
GB of RAM. All that is running on an Ubuntu 22.04.1 kernel, with Tensorflow
2.9nv.1 and cuda 12.2.

2.3 Data Sets and Corresponding Notation

Our work is based on the ASCAD datasets, which are both based on masked
AES implementations. We assume familiarity with low-order masking, as well
as typical software implementations of low-order masking on standard micro-
controllers, as we keep the following text as short as possible.

ASCAD-r The original ASCAD database (v1) features one data set of a masked
AES implementation (on a simple 8-bit microcontroller) with varying keys, which
we utilise in our work. The database is generous, each side channel trace offers
many data points for inclusion in training. We select in the dataset, 60k traces
from the random key split for training (Nt = 50k traces) and validation (Nv =
10k traces), and 10k from the fixed key split for the attack dataset (Na = 10k
traces).

The datasets contain the information that relates to the masked compu-
tation of the AES SubBytes operation. The masking scheme is a simple two-
share scheme, which precomputes a masked AES SubBytes Table SubBytes∗

prior to encryption. The masked SubBytes table is defined as SubBytes∗[x] =
SubBytes[x⊕rin]⊕rout. During the computation of a masked encryption round,
all state bytes ti (i refers to the state byte index) are masked by a state mask ri.
Prior to the masked SubBytes step, the state bytes are remasked, so that the in-
put to SubBytes∗ is masked by rin, and because of the definition of SubBytes∗,
the corresponding output is masked by rout. The SubBytes output is then again
remasked so that it is protected by the state mask ri. The accompanying write-
up for the database already performs an analysis to highlight the most leaky
intermediate variables, which are the masked input and output of the SubBytes

operation (ti ⊕ rin, si ⊕ ri) as well as the two involved masks ri and rin. Whilst
the output mask rout and the masked intermediate si ⊕ rout also leak, their
leakage is weak and hence typically ignored.

There have been a number of papers that reported, for a variety of network
architectures and approaches, results for this database. Our approach is to work
with the raw traces (thus no points of interest selection take place). With this
setting in mind, the best previous work is [9], which reach single trace success
one some key bytes — culminating to 3 traces for the most resilient key bytes.

ASCAD-v2 The ASCAD-v2 dataset contains traces from a masked and shuffled
AES implementation (on a more complex 32-bit architecture). The full dataset
contains 800k traces with random keys and inputs. Each trace has 1 million
sample points: therefore we extract only a subset of the available points for
training/attack purposes. After shuffling all traces, we split the available data
into training (Nt = 450k traces), validation (Nv = 45k traces), and attack (Na
= 5k traces) data sets.

The masking scheme is slightly more complex. It uses both a non-zero multi-
plicative mask β, as well as a Boolean mask α, i.e. each intermediate value x is
represented by three shares: (x⊗β⊕α,β, α) (the multiplication must be under-
stood over the appropriate finite field). The SubBytes operation is based again
on a pre-computed table. Shuffling happens throughout the encryption rounds: a
permutation over 16 elements is used for all round operations bar MixColumns,
in which only the column elements are permuted. The permutation affects the
index of the state bytes.

The specific notation for the intermediate values is akin to the notation in
ASCAD-r and works as follows. The variable ti denotes the i-th state byte before
the SubBytes operation, si is the result of SubBytes. Key bytes are denoted by
ki. The multiplicative mask is called rm (it is the same for all state bytes), and
the additive masks are called rin (before SubBytes), rout (after SubBytes), and
ri (everywhere else).

The point selection strategy (based on computing the SNR of intermediate
values) detailed in Masure and Strullu [7], even though sufficient to perform
successful attacks, omits the inclusion, of what we found to be the leakiest part
of the implementation: much leakage about the input mask rin is not included.
Therefore we extract our datasets.

We perform a subsampling, using a moving average in the way of Perin et al.
[9] on ASCAD-r. This divides the number of total samples by 4. For the masks
rm, rin, and rout, we select an arbitrary number of points with the highest SNR.
For the masked intermediates rm⊗ sj ⊕ rout and rm⊗ tj ⊕ rin, we extract the S-
box operation samples, which happens to be where both our targets are leaking.
This corresponds to 93 samples per byte. Permutations are disabled in this
work, as their access is assumed during profiling and attack.

This dataset has a state-of-the-art in two situations where the difficulty is
reduced. The first one by Masure et Strullu. [7] has a successful attack with-
out requiring the knowledge of the permutations, but also without requiring the

knowledge of the multiplicative mask. The paper Marquet et Oswald. [5], pro-
vides successful attacks when the additive mask rin is unknown. The best results
for a full key recovery attack depend on the scenario. For a scenario where knowl-
edge of masks and permutations is assumed during profiling, but not during an
attack, the best attack of Masure et Strullu. [7] takes 60 traces. The best attacks
of Marquet et Oswald. [5] take 21 traces, assuming knowledge of permutations,
and the multiplicative mask rm during attack and profiling. Among the results
we provide, such a scenario is explored in Table. 2.

2.4 Metrics

The metrics of interest are the following :

– Accuracy. We use the minimum accuracy and maximum accuracy of a
subkey ki, noted respectively min(ki) and max(ki).

– Number of traces to reach rank(key) < 21 . We note it Trank<1.

2.5 Custom layers: Xor and inverse multGF256

Introduced in Masure et al. [6], as a custom layer performing conditional prob-
abilities between the softmax layers of two models trained during the same pro-
cess. Our iteration of this layer performs the following computation given two
vectors x and y of size 256 :

f⊕(x, y)[i] =

255∑
j=0

x[j]× y[i⊕ j] ∀ i ∈ [0, 255] (1)

f⊗(x, y)[i] = x[0] +

255∑
j=1

x[j]× y[i⊗ j] ∀ i ∈ [0, 255] (2)

The function f⊗ has to discriminate the first case where j = 0, being a null
element. We decided that in this case, the probabilities of x should be unchanged.

3 Multi-Task Learning

Multi-task learning has been introduced by Caruana [1], and has become the
state of the art in many pattern recognition domains. Given two tasks xa and
xb, a multi-task model can help in the following ways:

– Input explainability : Without the labels from xa, it’s signal will be noise to
xb, and this both ways. This might be a problem when the inputs are large
and/or the training set is reduced.

– Noise cancellation: If xa and xb share features, the gradient will be averaged
over both tasks, therefore reducing the noise.

– Eavesdropping : xa might share features with xb. Let’s say that xa has a
stronger signal and is easier to learn than xb. Then, training both at the
same time is beneficial for xb

– Regularisation effect: The overall gradient being composed, it will rather go
in valleys that are beneficial for all tasks. Effectively restraining the shared
weights towards a representation that is good for all tasks.

In the deep learning community, Mahgrebi [4] was the first to pick up on
the idea of multi-task learning. An improved design by Masure and Strullu [7]
achieves impressive results for the ASCAD-v2 database. The core idea behind the
existing architectures in these two previous works is that each intermediate value
is learned by an independent branch of the deep net and that all branches are
connected to several shared layers dealing with the higher-level features. This is
the canonical design of multi-task networks, as summarised in [10]. Even though
the work Masure and Strullu [7] introduces multi-task learning in a scenario
where randomness is not known, their designs are not taking advantage of the
idea of Masure et al. [6], which demonstrate the benefits of layers that perform
combined probabilities between two branches of a network to encode the masking
scheme in the architecture. Marquet et Oswald. [5] showcase the benefits of
taking advantage of such principles in a multi-task architecture. Demonstrating
the superiority of multi-task learning through the many advantages it has over
single-task learning, at least in a scenario where masks are unknown.

With profiled attacks, the most challenging setting is the one where knowl-
edge of the countermeasures is not assumed. In the context of masked imple-
mentations, we would then assume that —because of a lack of access to internal
randomness— the training data cannot be labeled with masks or masked values,
but only the (unmasked) intermediate values. Again, due to the absence of ran-
domness information, a point of interest selection might not be feasible. Given
that the application of multi-task learning to masked implementations is based
on designing branches that learn masks and masked values, it is non-trivial to
come up with a way to apply multi-task learning when masks are unknown. For
this reason, we target multiple bytes at the same time to leverage common fea-
tures between the masks of the targets. For example, a mask might be shared
across bytes, but also, in the case of a state mask, the leakage of each byte of
the mask might be related to the others.

3.1 Single-task designs

We define a single-task model as a model trained using the knowledge of only
one label. In our scenario, where access to internal randomness is not assumed,
this means a model labeled with the unmasked value of an intermediate. State-
of-the-art single-task designs against masked implementations are composed of
two branches networks in the like of Masure et al. [7] and Ngo et al .[8]. One
branch is fed the mask leakages, while the other, the masked intermediate, and
the branches are regrouped by a layer using conditional probabilities.

T

mθ(r, xi⊕r)

mθxi⊕rmθr

f⊕

xi

(a) Single-task models on ASCAD-r

Tr Txi⊕r

mθxi⊕rmθr

f⊕

xi

(b) Single-task models on ASCAD-v2

Fig. 1: Single-task architectures

On the ASCAD-r, we assume we cannot extract points and use the raw
traces. To process the raw traces, the first layers are shared by both branches,
then split apart to finally be combined at the end. On the ASCAD-v2 dataset,
as the samples are extracted to reduce the dataset size and ease the problem, we
leverage this and feed to each branch, only the samples related to the distribution
expected to be learned. Such a principle will also be used in the multi-task designs
on ASCAD-v2.

3.2 Multi-task designs

Naive modelling (noted m0). The idea of splitting the network into two sets of
layers respectively expected to fit respectively x⊕r, r and then regrouping them
with f⊕ can be naively applied to multi-task learning, as it was done previously
in the white-box scenario. However, it can be improved to maximise the sharing
of features. In the very specific case where masks are shared among all bytes of
the targeted intermediate, one can very successfully design a model such as in
Figure 2. This model has an ”expert” branch for the mask that is shared among
all tasks and makes a bridge between them to allow collaboration. The f⊕ layer
is acting as a constraint already in the single-task scenario, forcing each branch
to take a very specific representation (conditional probabilities). The cumulative
effect of those constraints thanks to multi-task learning is a natural improvement
as showed in Marquet et Oswald [5].

Hard parameter sharing. Hard parameter sharing is simply when multi-
ple tasks share a set of layers. By this logic, sharing convolutions or layers at
the beginning of the network is already hard parameter sharing. Sharing layers
close to the input is usually made to share higher-level features. Going further

T

mθ(r, x1⊕r, ... , xn⊕r)

mθx1⊕rmθr mθxn⊕r

f⊕ f⊕

x1 xn

Fig. 2: Shared mask architecture

down the network with shared layers means on the contrary sharing lower-level
features. The difficulty of sharing lower-level features comes from the fact that
the output must be different but obtained with the same weights. To do so, one
has to separate the network into multiple channels, either by splitting the input
or inside the network, through mid-level unshared layers. The technique used in
this paper is the latter and presented in Fig 4. The network is built in a sequence
of shared-unshared-shared layers.

Shared branches models (noted mshared). Using the trick presented in
the last paragraph, we can design models that maximise the sharing of weights
for all tasks. The benefit of such networks is to reduce the difficulty to pass the
”plateau” induced by the masking countermeasures. As the difficulty increase
exponentially with the number of shares, it is crucial to constrain the network
further, reducing the amount of representation weights can take, as they have to
satisfy all the bytes instead of just one. This technique works with minimum im-
pact on total performance as the same intermediate bytes share a certain amount
of low-level features. Strategies, where one leverages the common features be-
tween bytes, are very successful in a single-task scenario [2, 8]. Our strategy is the
direct adaptation of such a technique in a multi-task learning scenario. However,
our adaptation is superior as the extraction and alignment of each byte leakage
in the trace, is done by the network instead of being a pre-processing step.

Balancing tasks through regularisation. The obvious problem of hard-
parameter sharing is that weights might tend to take a representation biased
against the less leaky bytes. We introduce a regularisation loss to counter such
negative interaction. We note the default loss as Lm0

, and is the sum of all cross-
entropy losses. Our loss is noted Lmreg

, and the use of the loss is signified in the
name of the model (i.e. mreg and mreg−shared).

T

mθ(r, x1⊕r, ... , xn⊕r)

mθxn⊕r
mθx1⊕r

mθ(x1⊕r, ... , xn⊕r)m(θr

f⊕ f⊕

x1 xn

Fig. 3: Shared mask architecture using hard-parameter sharing

T

mθ(r1, x1⊕r1, ... , rn, xn⊕rn)

mθr1
mθrn

mθxn⊕rn
mθx1⊕r1

mθ(x1⊕r1, ... , xn⊕rn)m(θr1, ... , rn)

f⊕ f⊕

x1 xn

Fig. 4: Not shared mask with hard parameter sharing on both sides

Lm0
=

nt∑
i

CCE(σxi
, Xi) (3)

Lmreg = Lm0 +
1

nt

nt∑
i

(CCE(σxi , Xi)−
Lm0

nt
)2 (4)

3.3 Hyperparameters

ASCAD-r We build different models for the ASCAD-r database. In order to
have a meaningful comparison, we chose the same core hyperparameters from
the single-task models to the most complex multi-task architectures. One can see
the single-task models as submodels from the corresponding multi-task models.
Or the other way around, the multi-task models are simply single-task models
branched together. The chosen core hyperparameters are listed in the following:

– Weighted Pooling Inspired by Perin et al. [9] we are using custom layers
to perform a weighted average pooling on the raw traces to reduce the size
of the following network. We are pooling a total of 4 times to reduce the size
from 250k samples to 15625 points. After each average pooling, we perform
a batch normalization and an alpha dropout.

– Convolution block. We use the convolutions from a CNN proposed by
Perin et al.[9]. It consists of only one convolution layer (kernel 34, strides 17,
and filters 4) followed by average pooling (pool size 2) and batch normaliza-
tion.

– Dense block. Each prediction branch possesses 2 dense layers of 200 units
and one output layer followed by a softmax. The units in the dense layers
are activated using a SeLu function.

– Training hyperparameters. All models are trained for 100 epochs, using
a fixed learning rate of 0.001 with an Adam optimiser.

ASCAD-v2 The ASCAD-v2 database is considerably newer and therefore
much less analysed. In Masure et Strullu [7] the authors provide an excellent
characterisation of the traces, and we took full advantage of this information in
our work. Since the dataset is extracted, we choose a multi-input architecture
as defined in 1b. Each branch x of the network will learn from a different input
with a different set of hyperparameters θx. We define the most basic hyperpa-
rameters for the single-task models and by extension the multi-task models in
the following :

– Mask branches. Leakages from the masks are strong and dispersed on
many samples, therefore we choose very simple CNNs composed of a single
convolution/pooling/batch-normalisation block. Kernel size is fixed for all of
the branches, while strides and pooling size are chosen to scale based on the
input size of each branch.

– Intermediate branches. The input of the intermediate branch is the full
execution of the S-box operation from the first round because 32-bit leakages
are present. Therefore it is necessary to include the computation of the next
bytes to capture the most information. The intermediate branches are 3
layers MLP with (64,8,8) units and a batch normalisation after each layer.
The branch ends on a fully connected layer of 256 units.

– Cyclic training. All models are trained with 3 cycles of 25 epochs, with a
learning rate decreasing at each cycle. This allows us to annihilate overfitting
as it can be seen in Figures 6, 7, 9 and maximise the performances of our
models. The learning rates are 0.001, 0.0001, and finally 0.00001 with an
Adam optimiser.

4 Experimental results

4.1 Leveraging shared masks across bytes of the S-box operation

The idea with this model is to leverage the leakage of masks that are shared
between bytes of a targeted intermediate. Fortunately, on both ASCAD datasets,
such weaknesses are found. On ASCAD-r, all bytes of the SubBytes inputs share
a strongly leaking mask rin, and on ASCAD-v2, all bytes share rin for the S-box
inputs, and rout for the S-box outputs. Since all bytes of those intermediates
are masked with the same randomness, we train an architecture with a common
branch for each mask we need the model to learn. This shared branch will act
as an ”expert” specialised to fit the distribution of the mask and is connected
to all the others with a xor-like (f⊕) layer for the additive mask, or an inverse
multiplication (f⊗) for the multiplicative mask. The idea is that while learning
((xi ⊕ r)⊕ r), it might be beneficial to learn at the same time ((xi+1 ⊕ r)⊕ r).
This repeated for all the attackable bytes.

ASCAD-r On this dataset, the targeted leakage pair is (t ⊕ rin, rin). Using
the raw traces, we train 2 multi-task models based on the design in Figure 2
noted m0 and mreg, and 2 multi-task models based on Figure 3 that we note
m0−shared and mreg−shared. Finally we train 14 single-task models (msingle), that
are submodels of the design of the m0 model, with only one branch mθxi⊕r

. We
plot the evolution of the losses during training of all models in the Figure 8,
besides single-tasks where we plot only the best subkey rescaled to be easily
compared. As the main performance metric, we perform a full key recovery
attack, 1000 times over 100 randomly picked raw traces from the attack dataset,
and note the results in Table 3. We add to this table the worst (and the best)
key byte ki accuracy.

Single-task models do not succeed in recovering the full key, even though
some bytes successfully managed to converge since the maximum subkey accu-
racy is relatively high. As training a deep net is a stochastic procedure, depend-
ing on the initialisation some bytes might benefit from a better starting point to
pass through the increased complexity of masking. Multi-task procedure makes

Table 1: Performance metrics for the experiment leveraging the S-box input
leakage pair (t⊕ rin , rin) on ASCAD-r

Model type min(ki) max(ki) Trank<1

msingle 0.32 30.21 >100

m0 19.85 43.14 8

m0−shared 18.16 24.81 18

mreg 23.35 43.45 7

mreg−shared 16.49 25.49 18

it more resilient to such problems because of the effect of multiple gradients.
Beyond this fact, the accuracies reached by the single models even after con-
vergence are inferior to most multi-task models. Two factors can explain such
differences. First is the ability of multi-task learning to make sense of the differ-
ent signals with a smaller training set because of the multiple labels. Second, is
the regularisation effect over the shared mask. Among the multi-task models, we
see that hard-parameter sharing impacts the performance significantly in this
experiment, as the models m0−shared and mreg−shared effectively possess fewer
weights to learn the same amount of tasks. The model mreg is the close winner
against the baseline model m0 recovering the full key respectively with 7 and 8
traces.

Looking at the evolution of the losses, we see that the first single-task model
to pass the plateau is slower to converge than the multi-task models. Further-
more, it seems like the model doesn’t completely pass the plateau, as the loss
drops significantly multiple times. The same goes for the multi-task models that
do not use hard-parameter sharing m0 and mreg. While the other multi-task
models plunge towards the maximum learning of the model a few epochs after
passing the plateau. Eavesdropping is the main reason why this sudden plunge
happens. Since all bytes share features, when one byte manages to find the way
to the goal, the other bytes quickly understand that this distribution is benefiting
them. Finally, regularisation seems to decrease the number of epochs needed to
converge, as models with extra regularisation are faster than the baseline model
m0. Finally, the regularisation loss Lmreg

seems to stabilise the hard-parameter
sharing model, as the validation loss from mreg−shared is more stable than it’s
counterpart m0−shared.

ASCAD-v2 To further investigate the impact of constraints on multi-task mod-
els, we experiment with a scenario where only the additive masks rin and rout
are unknown. We give the knowledge of rm to the network during profiling and
attack, reducing the masking scheme to first order. Therefore, we investigate
two intermediates, with two different masks. The first target is the pair, masked
S-box inputs rm ⊗ t ⊕ rin, with the mask rin. The second is the pair of the
S-box outputs, rm ⊗ s ⊕ rout with the mask rout. To increase the difference in
performance between each approach, we reduce the size of the dataset available

Fig. 5: Loss and validation loss evolution for models targeting the S-box input
pair (t⊕ rin , rin)

to only 225k traces. The architectures used in this experiment are the same as in
the previous one, with a multi-input design since the dataset is extracted. This
corresponds to the difference presented in 1. We plot the evolution of the losses
during training in Figures 6 and 7, and note the performance metrics in Table 2.

Table 2: Experimental results for S-box input leakage pair, and the S-box output
leakage pair on ASCAD-v2

rm ⊗ t⊕ rin, rin rm ⊗ s⊕ rout, rout
Model type min(kj) max(kj) Trank<1 min(kj) max(kj) Trank<1

msingle 1.00 1.74 32 0.24 0.54 >200

m0 1.78 2.30 20 0.46 0.86 128

m0−shared 1.78 2.44 19 0.48 0.94 95

mreg 1.76 2.44 20 0.48 0.88 119

mreg−shared 1.68 2.28 20 0.58 0.92 98

Single-task networks only manage to lead to successful attacks on the more
leaky S-box inputs, even in this simplified scenario. As the leakages are extracted
and fed directly to the network, the most significant effect that allows multi-task
learning to outperform single-task learning is the extra regularisation from the
shared mask branch. It is hard to distinguish between the multi-task models

on the S-boxes inputs intermediate, as the difference performance-wise is non-
significant. However, on the less leaky S-boxes outputs, we can observe a clear
performance difference between the shared weights models and their counter-
parts. Regularisation seems to be again the cause of this performance gain, as
the baseline model m0 is outperformed by all models including mreg.

Fig. 6: Loss and validation loss evolution for models targeting (rm⊗tj⊕rin , rin)

The evolution of losses tells us a different story than in the raw traces sce-
nario. While single-task models were slower to converge towards significant infor-
mation on the ASCAD-r dataset, it is quite the opposite on ASCAD-v2, at least
when the signal is strong enough. The training loss of the best single-task model
is drastically faster on the S-boxes inputs but overfits because of the lack of
regularisation. This overfitting is quite clear when looking at cycle 2, where the
validation loss of the multi-task models is already flat, while the single-task loss
is spiking from time to time. In the special case of multi-task models, the shared
weights models m0−shared and mreg−shared are consistently converging faster than
the baseline model m0 by a significant margin. Finally, mreg is also faster than
its basic counterpart, hinting again at the importance of regularisation.

4.2 Leveraging state masks with different values

When masks are not shared, it is not possible to train one expert shared among
all tasks as in the previous section. However, it is still possible to use hard-

Fig. 7: Loss and validation loss evolution for models targeting (rm⊗sj⊕rout rout)

parameter sharing, this time on both sides of the masking scheme in the manner
of Figure 4. The idea is that sharing the weights on both branches will reduce
the representations that can be taken by the model. This design is used by two
models in this experiment, namedm0−shared andmreg−shared. Their counterparts,
m0 and mreg, are naturally the same models but without hard parameter sharing.
The single models (msingle) are therefore submodels of the latter design. The
targeted leakage pair in this experiment is the S-box outputs with the state
mask, i.e. s ⊕ r, and r. We present the evolution of the losses of all multi-task
models in Figure 8, along with the best single-task model, which was tasked
to learn the 3rd byte of the S-boxes output. We perform a full key recovery
targeting the S-boxes output in the same setup as the previous experiment on
ASCAD-r.

As in the previous scenario on ASCAD-r, single-task models do not converge
for all bytes. However, one model reaches a very high accuracy and recovers its
designated key byte in only 1 trace. The signal is high, the difficulty comes from
finding the leakage in the raw traces rather to utilise it. The baseline model
m0 and the regularised version mreg, suffer from the competition of the different
losses, as none of them collaborate by default. Since tasks learned in those models
do not share any features. Finally, the two models with shared weights are the
only ones recovering the key, both in 2 traces, setting a new state of the art in
this specific raw traces setup. The extra regularisation present in the mreg−shared

is demonstrated to be useful for the first time in this experiment, managing to
increase accuracies reached, even though it doesn’t improve on the number of

Table 3: Performance metrics for the S-box output leakage pair s⊕ r, r experi-
ment on ASCAD-r

Model type min(ki) max(ki) Trank<1

msingle 0.30 97.77 >100

m0 0.30 0.52 >100

m0−shared 12.93 24.99 2

mreg 0.26 0.50 >100

mreg−shared 53.89 88.05 2

traces required to recover the full key. Looking at the loss evolution, however, it
is likely that more epochs would improve the network, while the model m0−shared

reached its peak.

Fig. 8: Loss and validation loss evolution for all multi-task models

Focusing on the models that successfully converged, we can observe three
successful convergences. The first one is also the best model m0−shared, learn-
ing meaningful information, for all bytes, from epoch 20 onwards, as one can
see with the spike on the validation loss. The best single-task model passes the
plateau around epochs 63-64. Finally mreg−shared is slower than it’s counterpart
m0−shared, but steadier. The forced collaboration through shared weights and
regularisation losses implemented in the design of the model mreg−shared, suc-

cessfully intensifies the accumulation of knowledge about the different shares,
and yields an almost linear evolution of the training and validation loss from
epoch 50 onwards.

4.3 Leveraging the S-box inputs and outputs to recover the shared
multiplicative mask

On the ASCAD-v2 dataset, the affine masking scheme shares the multiplicative
mask between rm ⊗ sj ⊕ rout and rm ⊗ tj ⊕ rin. This allows us to design a
model that learns the unmasked S-box input and output at the same time. Both
learning tasks depend on the same branch, we expect the model to collaborate to
understand how to fit the multiplicative mask. To better understand the impact
of training multiple intermediates, we train the same models, but only without
this ”multi-target” approach. We note m0−t, the model learning only tj through
the triplet (rm⊗tj⊕rin , rm , rin), and m0−t−shared, the same model using hard-
parameter sharing. We note the main performance metrics after performing the
usual full key recovery in Table 4, and plot the evolution of the losses in Figure 9.

Table 4: Performance metrics against the full affine masking on the ASCAD-v2
dataset

Model type min(ki) max(ki) Trank<1

m0−t 0.28 0.70 >200

m0−t−shared 0.34 0.60 >200

m0 0.24 0.56 >200

m0−shared 2.42 3.34 16

The two models m0−t and m0−t−shared trying to recover only the S-boxes
inputs, fail to converge even though the leakage from the triplet (rm ⊗ tj ⊕
rin , rm , rin) is considerably higher than the second triplet linked to the S-
boxes. Interestingly, the only model converging towards a successful attack is
the model leveraging a multi-target strategy during training, also learning the
less leaky triplet. This is to the best of our knowledge, the first attack utilising
such a strategy, along with the first model being able to learn all masks of the
ASCAD-v2 dataset.

If one compares the evolution of the losses from Figure 9 with the ones from
Figure 6 and 7, one can observe the effect of adding an extra share in the
optimisation problem. The flat evolution of the losses and then the sudden drop
and almost immediate convergence towards maximum information available is
endemic to masking according to Masure et al. [6] and increases with the number
of shares.

Fig. 9: Loss and validation loss evolution for all multi-task models

5 Explainability and point of interest extraction

Deep learning networks are often obscure boxes where explainability is traded
against performances. In side-channel analysis, a clear correlation between what
is processed by the network and the input can be made. As the networks always
leverage signals that could be observed if knowledge of the different shares was
accessible. However, the classic designs struggled to be transparent as everything
was processed by the same layers. Clever occlusion techniques have been designed
to explain some of the mystery behind what has been learned. However, Masure
et al. [6] showed that when training models with multiple branches such as
our designs, one could recover at the output of those branches, a predicted
probability distribution close enough to the true probability distribution of the
targeted intermediates. Even though this distribution is not giving away the
values of the targeted intermediates, a δ is introduced on both sides of the xor
operation, effectively canceling during the xor layer. When training single-task
models, one does not have certainty about the intermediate that it recovers
on each branch, as it could be either x ⊕ r or r. However, with our designs,
such certainty is assured since branches collaborate to force one to fit a certain
distribution, at least with the shared mask designs.

Using the model mreg from the attack on the S-boxes input in section 4.1, we
try to recover the points of interest of each targeted share. To do so, we recover
the values going through the model at the end of each branch. Those values
are extracted after a softmax operation and therefore represent probability-like

scores. We take the values with the highest score to label the traces for the
distinguisher. We evaluate and plot in Figure. 10 the recovered correlations using
a simple SnR analysis with the predicted ”labels” and compare against the SnR
analysis obtained with the real labels.

Fig. 10: Predicted SnR from the input mask rin, and the corresponding masked
S-Boxes inputs

To confirm such results on both datasets, with the most intermediates. We
select the best models trained in our previous experiments, collect their predic-
tions, and label each trace with the value with the maximum score. Then, using
the real labels from each intermediate, we perform an SnR analysis and collect
the npoi samples that have the highest signal-to-noise ratio. This leaves some
points of interest aside, but make sure that the points with the most informa-
tion are captured.

We rank the npoi samples using either a simple SnR analysis or a Kruskal-
Wallis [3] distinguisher for rm⊗ s⊕ rout and rm⊗ t⊕ rin. We then calculate the
ratio rx of correspondence between the samples. We average this ratio across all
bytes of intermediate x, when it has multiple bytes, and note it in Table. 5.

From Table 5, we can observe a high recovery rate of the points of interest,
especially of the shared masks. The shared branches are exceptionally accurate
because of the regularisation imposed by the multiple branches depending on

Table 5: Percentage of point of interest recovered with our best models, per
intermediate
Dataset ASCAD-r ASCAD-v2

x r rin s⊕ r t⊕ rin rm rin rout rm ⊗ s⊕ rout rm ⊗ t⊕ rin
npoi 50 50 50 50 200 100 20 10 10

rx (%) 73.28 98.00 75.50 89.28 97.50 98.00 75.00 81.25 87.50

it. However, for the non-shared masks such as r on the ASCAD-r dataset, even
though an overall higher accuracy is achieved for the network, the network shows
a tendency to fit a hybrid distribution. In addition, it is impossible to know which
side is the mask or the masked intermediate with this design.

The PoIs of the masked intermediates of the ASCAD-v2 dataset are also
accurately recovered with the KW distinguisher. Those results have to be nu-
anced. Just as with the single-task models, one needs at least a minimum of
information recovered by the model to recover any points of interest. But such
a technique could lead to a kind of cyclic training where one would start with
a very large number of samples, and ultimately reduce to only a few points to
improve performances.

6 Conclusion

The key takeaways of our experiments are the following :

– Multi-task learning is a natural improvement of single-task learning in a
scenario where the knowledge of randomness cannot be accessed.

– Hard-parameter sharing allows multi-task learning to benefit from the learn-
ing of multiple bytes at the same time, even when the masks are not shared.

– Leveraging multi-tasking to add constraints on the network increases the
chances of the attacker to build successful attacks, as it increases the speed
of convergence.

– Multi-task learning allows an attacker to take advantage of multi-target
strategies during profiling.

– Branch designs, along with multi-task learning can lead to accurate recovery
of the shares distributions of a masking scheme.

Our results contribute to the research into using multi-task deep learning
models in the context of side-channel key recovery attacks. We extend previous
results from Marquet et Oswald [5] to more challenging scenarios where masks
are not shared by multiple potential targets. We show that linking potential
common features while accumulating constraints on the network benefits the
network by reducing overfitting and further enables models to lead successful
attacks. In addition, we target the multiple masks of the ASCAD-v2 and suc-
cessfully build an attack using the previously introduced concepts. We suggest
that more complex architectures, adding helpful constraints on the network,

would further improve the chances of an attacker finding successful attacks in a
given time.

Acknowledgments Thomas Marquet has been supported by the KWF under
grant number KWF-3520—31870—45842. Elisabeth Oswald has been supported
in part by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 725042).

References

1. Caruana, R.: Multitask learning. In: Thrun, S., Pratt, L.Y. (eds.) Learning to
Learn, pp. 95–133. Springer (1998). https://doi.org/10.1007/978-1-4615-5529-2 5,
https://doi.org/10.1007/978-1-4615-5529-2_5

2. Hu, F., Wang, H., Wang, J.: Cross-subkey deep-learning side-channel analysis.
Cryptology ePrint Archive, Report 2021/1328 (2021), https://eprint.iacr.org/
2021/1328

3. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. Jour-
nal of the American statistical Association 47(260), 583–621 (1952)

4. Maghrebi, H.: Deep learning based side-channel attack: a new profiling method-
ology based on multi-label classification. Cryptology ePrint Archive, Report
2020/436 (2020), https://eprint.iacr.org/2020/436

5. Marquet, T., Oswald, E.: A comparison of multi-task learning and single-
task learning approaches. Cryptology ePrint Archive, Paper 2023/611 (2023).
https://doi.org/10.1007/978-3-031-16815-4, https://eprint.iacr.org/2023/

611, https://eprint.iacr.org/2023/611
6. Masure, L., Cristiani, V., Lecomte, M., Standaert, F.X.: Don’t learn what you

already know: Grey-box modeling for profiling side-channel analysis against mask-
ing. Cryptology ePrint Archive, Report 2022/493 (2022), https://eprint.iacr.
org/2022/493

7. Masure, L., Strullu, R.: Side channel analysis against the ANSSI’s protected AES
implementation on ARM. Cryptology ePrint Archive, Report 2021/592 (2021),
https://eprint.iacr.org/2021/592

8. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack
on a masked ind-cca secure saber kem implementation. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2021(4), 676–707
(Aug 2021). https://doi.org/10.46586/tches.v2021.i4.676-707, https://tches.

iacr.org/index.php/TCHES/article/view/9079

9. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenarios for
deep learning-based side-channel analysis. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2022(4), 828–861 (Aug 2022).
https://doi.org/10.46586/tches.v2022.i4.828-861, https://tches.iacr.org/

index.php/TCHES/article/view/9842

10. Ruder, S.: An overview of multi-task learning in deep neural networks. CoRR
abs/1706.05098 (2017)

