
Exploring Multi-Task Learning in the Context of
Two Masked AES Implementations

Thomas Marquet1 and Elisabeth Oswald1,2[0000−0001−7502−3184]

first-name.last-name@aau.at

1 Digital Age Research Center (D!ARC), University of Klagenfurt, Austria
2 University of Birmingham, UK

Keywords: Side Channel Attacks · Masking · Deep Learning · Multi-Task
Learning

Abstract. This paper investigates different ways of applying multi-task
learning in the context of two masked AES implementations (via the
ASCAD-r and ASCAD-v2 databases). Enabled by multi-task learning,
we propose novel architectures that significantly increase the consistency
and performance of deep neural networks in a context where the attacker
can not access the randomness of the countermeasures during profiling.
Our work provides a wide range of experiments to understand the bene-
fits of multi-task strategies against the current single-task state of the art.
We show that multi-task learning is significantly more performant than
single-task models on all our experiments. Furthermore, such strategies
achieve novel milestones against protected implementations as we pro-
pose a new best attack on ASCAD-r and ASCAD-v2, along with models
that defeat for the first time all masks of the affine masking on ASCAD-
v2.

1 Introduction

Deep learning techniques have fast become an alternative to the use of classical
statistics in the context of profiled side-channel attacks, because of their un-
rivalled ability to efficiently utilise information across many trace points. The
approach taken by many deep learning architectures still somewhat depends on
the thinking found in traditional statistics-based attacks: a single intermediate
target is learned at a time (thus a single learning task is performed).

Recent publications have begun to move beyond this single-task learning
paradigm towards a multi-task learning approach: Mahgrebi [4] explores a deep
learning architecture to learn two intermediate values (bit-wise) on an AES im-
plementation simultaneously; Masure and Strullu [7] revisit Mahgrebi’s idea and
learn many intermediate values simultaneously. They set a new record for a
“non-dissecting” approach for the ASCAD-v2 dataset and successfully recover
the key bytes with 60 traces when assuming knowledge of the masks during pro-
filing. Their paper concludes by reflecting on the potential power of multi-task
learning: “A further study of the advantages and drawbacks of such paradigm



is yet to be done. Still, this could lead to help the SCA practitioner towards
new milestones against protected implementations.” (p. 21, [7]). Marquet et Os-
wald [5] further entertain this idea in their work, where the authors claim that
multi-task learning models have an edge over single-task models in a scenario
where knowledge of the masks isn’t assumed.

1.1 Summary of Contributions and Outline

We focus on the application of multi-task learning in the context of the masked
AES-128 implementations that are the basis of the ASCAD-r and ASCAD-v2
databases introduced in Prouff et al. [11]. After providing some notation and
background in Sect. 2, we introduce our multi-task designs along with the hy-
perparameter choices in Sect. 3, we present our experimental results in Sect. 4
on both datasets, and finally we discuss how to extract points of interest from
traces using our designs in Sect. 5. Whereby our innovations are as follows:

Contributions

– we propose to leverage multi-task learning to enable collaboration between
different intermediates, and/or different bytes of the same intermediates.

– we suggest that multi-task learning allows an attacker to leverage constraints
to ”guide” the learning of the model.

– we provide experimental evidence that such constraints are beneficial, on the
overall performance of the model, but also its convergence speed.

– we explain how to recover points of interest from raw traces using our designs.
– we compare those architectures against state-of-the-art single-task designs.
– we provide new best attacks for ASCAD-r and ASCAD-v2, with the first

model to defeat both multiplicative and additive masks in the affine masking
scheme of ASCAD-v2.

1.2 Relevant related works

Masure and Strullu [7] introduce the ASCAD-v2 database and provide a first
characterisation of the included traces. They provide the first attacks on the
ASCAD-v2 dataset, showcasing multiple scenarios including experiments where
part of the countermeasures are unknown to the attacker.

Hu et al. [3] explains that it can be beneficial to use the data from the
processing of the AES state bytes to train a single model representing an in-
termediate value. This is possible in the case of many software implementations
because each state byte undergoes the same operations (the same sequence of
Assembly instructions) which means that their leakage is very similar. Ngo et
al. [8, 9] shows a similar technique to reduce the size of the dataset to attack a
masked Saber implementation.

Ngo et al. [8] and later on, Masure et al. [6] consider the possibility of assum-
ing the presence of masking during the training of two models and propagating a



loss on the combined probabilities from both outputs. Such training relieves the
network by giving it a better understanding of what it should learn. The first
authors, however, present bit-wise designs, while the latter’s designs are over one
hot encoded byte.

Perin et al. [10] investigate the impact that the selection of points of interest
has when training deep networks. They observe that working with raw traces is
sometimes possible (i.e. no points of interest are selected), which leads to a black
box attack scenario, where an adversary needs no information about randomness
during the training. They provide the best results for the ASCAD-v1 database:
they achieve key recovery with just a single trace in many scenarios.

Marquet and Oswald [5] propose extensive experiments to compare single-
task and multi-task learning strategies. Solely focusing on a scenario where coun-
termeasures are not assumed, the authors show that multi-task models yield
more often models that converge towards successful attacks, however, the au-
thors only explore scenarios where all targeted intermediate share the same mask.

2 Preliminaries

We consider side-channel attacks that operate in two stages: a leakage identifi-
cation stage where (if necessary) points of interest are selected and deep nets
are trained, and a leakage exploitation stage, where the trained nets are used as
classifiers in the context of differential side-channel attacks.

We stick to as simple notation as possible and stay with the variable naming
conventions of the ASCAD databases: upper case letters denote sets (which we
overload and simultaneously use as random variables), and lower case letters
denote realisations of the random variables (and equivalently elements of a set).
All variable/set names are taken (without renaming) from the original papers
(implementations/data sets), such that “matching up” of our work with these
original implementations is straightforward. The index i refers to the ith state
byte, and we generally drop any indexing referring to points within a trace from
our notation. Occasionally we require to refer to the j-th trace, which we put as
an index (alongside the index indicating the state byte) to a variable.

2.1 Profiling based on Deep Learning

For the purpose of building a classifier for newly observed traces during the
exploitation phase, a deep learning approach uses one (or more) trained models,
which output values that can be understood as likelihood scores. In the context
of our work, we are interested in recovering information about key values. Thus,
our networks are configured to return per-trace log-likelihood scores Si for 8-
bit chunks of an AES secret key. To derive the log-likelihood score for the ith
key chunk given an attack set of Na traces, we just compute the sum d[ki] =∑Na

j=1 Si,j .



Training Methodology We use the same methodology across all datasets. To
enable meaningful comparisons, we use the same overall architecture for single
models and multi-task models, with the same learning rate and optimizer. The
only difference between the models is how the branches are connected.

As per good practice, we divide the available data into training data, vali-
dation data, and attack (=test) data. All training happens on the training data
set. We validate a learned model on a validation set of size Nv. During this val-
idation phase, we monitor the validation accuracy. Our best training model is
selected based on the best validation loss, and we use a Tensorflow callback to
retrieve this model. We then test the best model on the full Na attack dataset,
retrieving accuracy-based metrics.

2.2 Computing resources

We’re using a single GPU Nvidia A6000 Ada with 48GB of dedicated memory. In
addition to the GPU, we’re using 4 cores of an AMD EPYC at 2.6GHz with 128
GB of RAM. All that is running on an Ubuntu 22.04.1 kernel, with Tensorflow
2.9.1 and cuda 11.2.

2.3 Data Sets and Corresponding Notation

Our work is based on the ASCAD datasets, which are both based on masked
AES implementations. We assume familiarity with low-order masking, as well
as typical software implementations of low-order masking on standard micro-
controllers, as we keep the following text as short as possible.

ASCAD-r The original ASCAD database (v1) features one data set of a masked
AES implementation (on a simple 8-bit microcontroller) with varying keys, which
we utilise in our work. The database is generous, each side channel trace offers
many data points for inclusion in training. We select in the dataset, 110k traces
from the random key split for training (Nt = 100k traces) and validation (Nv =
10k traces), and 10k from the fixed key split for the attack dataset (Na = 10k
traces).

The datasets contain the information that relates to the masked compu-
tation of the AES SubBytes operation. The masking scheme is a simple two-
share scheme, which precomputes a masked AES SubBytes Table SubBytes∗

prior to encryption. The masked SubBytes table is defined as SubBytes∗[x] =
SubBytes[x⊕rin]⊕rout. During the computation of a masked encryption round,
all state bytes ti (i refers to the state byte index) are masked by a state mask ri.
Prior to the masked SubBytes step, the state bytes are remasked, so that the in-
put to SubBytes∗ is masked by rin, and because of the definition of SubBytes∗,
the corresponding output is masked by rout. The SubBytes output is then again
remasked so that it is protected by the state mask ri. The accompanying write-up
for the database already performs an analysis to highlight the leakiest intermedi-
ate variables, which are the masked input and output of the SubBytes operation



(ti⊕ rin, si⊕ ri) as well as the two involved masks ri and rin. Whilst the output
mask rout and the masked intermediate si⊕ rout also leak, their leakage is weak
and hence typically ignored.

There have been several papers that reported, for a variety of network ar-
chitectures and approaches, results for this database. Our approach is to work
with the raw traces (thus no points of interest selection take place). With this
setting in mind, the best previous work is [10], which reach single trace success
one some key bytes — culminating in 3 traces for the most resilient key bytes.

ASCAD-v2 The ASCAD-v2 dataset contains traces from a masked and shuffled
AES implementation (on a more complex 32-bit architecture). The full dataset
contains 800k traces with random keys and inputs. Each trace has 1 million
sample points: therefore we extract only a subset of the available points for
training/attack purposes. After shuffling all traces, we split the available data
into training (Nt = 450k traces), validation (Nv = 45k traces), and attack (Na

= 5k traces) data sets.
The masking scheme is slightly more complex. It uses both a non-zero multi-

plicative mask β, as well as a Boolean mask α, i.e. each intermediate value x is
represented by three shares: (x⊗β⊕α,β, α) (the multiplication must be under-
stood over the appropriate finite field). The SubBytes operation is based again
on a pre-computed table. Shuffling happens throughout the encryption rounds: a
permutation over 16 elements is used for all-round operations bar MixColumns,
in which only the column elements are permuted. The permutation affects the
index of the state bytes.

The specific notation for the intermediate values is akin to the notation in
ASCAD-r and works as follows. The variable ti denotes the i-th state byte before
the SubBytes operation, si is the result of SubBytes. Key bytes are denoted by
ki. The multiplicative mask is called rm (it is the same for all state bytes), and
the additive masks are called rin (before SubBytes), rout (after SubBytes), and
ri (everywhere else).

The point selection strategy (based on computing the SNR of intermediate
values) detailed in Masure and Strullu [7], even though sufficient to perform
successful attacks, omits the inclusion, of what we found to be the leakiest part
of the implementation: much leakage about the input mask rin is not included.
Therefore we extract our datasets.

We perform a subsampling, using a moving average in the way of Perin et
al. [10] on ASCAD-r. This divides the number of total samples by 4. For the
masks rm, rin, and rout, we select an arbitrary number of points with the highest
SNR. For the masked intermediates rm⊗ sj ⊕ rout and rm⊗ tj ⊕ rin, we extract
the S-box operation samples, which happens to be where both our targets are
leaking. This corresponds to 93 samples per byte. Permutations are disabled
in this work, as their access is assumed during profiling and attack.

This dataset has successful attacks in two situations where the countermea-
sures are toned down. The first one by Masure et Strullu. [7] has a successful
attack without requiring the knowledge of the permutations, but also without



requiring the knowledge of the multiplicative mask. The paper Marquet et Os-
wald. [5], provides successful attacks when the additive mask rin is unknown.
The best results for a full key recovery attack depend on the scenario. For a
scenario where knowledge of masks and permutations is assumed during profil-
ing, but not during an attack, the best attack of Masure et Strullu. [7] takes
60 traces. The best attacks of Marquet et Oswald. [5] take 21 traces, assuming
knowledge of permutations, and the multiplicative mask rm during attack and
profiling. Among the results we provide, such a scenario is explored in Sect 4.1.

2.4 Breaking free of the ”Plateau”

Masure et al. [6], discuss the problem that the training of deep learning models
faces when applied in a side-channel context, in the presence of masking. In the
first epochs, the learning of the model is very slow and suddenly blows up. The
gradient descent is stuck, as no single point in the trace is giving up information
about the labels given to the model. Since no point is leaking the information it
is looking for, the network first has to understand which points are useful to its
task, and then how to combine them. We show examples of such plateaus based
on our following experiments in the Figure 1.

Fig. 1: Example of models breaking through the ”plateau” during the experi-
ments from Sect4.1



Overcoming this initial challenge is a precondition to a successful network
during inference. Therefore, when defining deep learning architectures, we argue
that the ability of a design to consistently break through the initial plateau
should be a defining criterion to judge the quality of said design. With this idea
in mind, we take a special interest at which epoch the model breaks through the
plateau since it is the moment when the model gathered enough knowledge to
understand how to overcome masking. This epoch can be clearly identified as
seen in Figure 1, the losses vary significantly at those points.

2.5 Metrics

The metrics of interest are the following :

– Number of traces to reach rank(key) < 21 . We note it Twin.
– Ratio of seeds leading to a full recovery of the key. We note it
nwin/nseeds.

– Epoch of convergence.

2.6 Custom layers: Xor and inverse multGF256

Introduced in Masure et al. [6], as a custom layer performing conditional prob-
abilities between the softmax layers of two models trained during the same pro-
cess. Our iteration of this layer performs the following computation given two
vectors x and y of size 256 :

f⊕(x, y)[i] =

255∑
j=0

x[j]× y[i⊕ j] ∀ i ∈ [0, 255] (1)

f⊗(x, y)[i] = x[0] +

255∑
j=1

x[j]× y[i⊗ j] ∀ i ∈ [0, 255] (2)

The function f⊗ has to discriminate the first case where j = 0, being a null
element. We decided that in this case, the probabilities of x should be unchanged.

3 Multi-Task Learning

Multi-task learning has been introduced by Caruana [1], and has become the
state of the art in many pattern recognition domains. Given two tasks xa and
xb, a multi-task model can help in the following ways:

– Input explainability : Without the labels from xa, it’s signal will be noise to
xb, and this both ways. This might be a problem when the inputs are large
and/or the training set is reduced.

– Noise cancellation: If xa and xb share features, the gradient will be averaged
over both tasks, therefore reducing the noise.



– Eavesdropping : xa might share features with xb. Let’s say that xa has a
stronger signal and is easier to learn than xb. Then, training both at the
same time is beneficial for xb

– Regularisation effect: The overall gradient being composed, it will rather go
in valleys that are beneficial for all tasks. Effectively restraining the shared
weights towards a representation that is good for all tasks.

In the deep learning community, Mahgrebi [4] was the first to pick up on
the idea of multi-task learning. An improved design by Masure and Strullu [7]
achieves impressive results for the ASCAD-v2 database. The core idea behind the
existing architectures in these two previous works is that each intermediate value
is learned by an independent branch of the deep net and that all branches are
connected to several shared layers dealing with the higher-level features. This is
the canonical design of multi-task networks, as summarised in [12]. Even though
the work Masure and Strullu [7] introduces multi-task learning in a scenario
where randomness is not known, their designs are not taking advantage of the
idea of Masure et al. [6], which demonstrate the benefits of layers that perform
combined probabilities between two branches of a network to encode the masking
scheme in the architecture. Marquet et Oswald. [5] showcase the benefits of
taking advantage of such principles in a multi-task architecture. Demonstrating
the superiority of multi-task learning through the many advantages it has over
single-task learning, at least in a scenario where masks are unknown.

With profiled attacks, the most challenging setting is the one where knowl-
edge of the countermeasures is not assumed. In the context of masked imple-
mentations, we would then assume that —because of a lack of access to internal
randomness— the training data cannot be labeled with masks or masked values,
but only the (unmasked) intermediate values. Again, due to the absence of ran-
domness information, a point of interest selection might not be feasible. Given
that the application of multi-task learning to masked implementations is based
on designing branches that learn masks and masked values, it is non-trivial to
come up with a way to apply multi-task learning when masks are unknown. For
this reason, we target multiple bytes at the same time to leverage common fea-
tures between the masks of the targets. For example, a mask might be shared
across bytes, but also, in the case of a state mask, the leakage of each byte of
the mask might be related to the others.

3.1 Single-task designs

We define a single-task model as a model trained using the knowledge of only
one label. In our scenario, where access to internal randomness is not assumed,
this means a model labeled with the unmasked value of an intermediate. State-
of-the-art single-task designs against masked implementations are composed of
two branches networks in the like of Masure et al. [7] and Ngo et al .[8]. One
branch is fed the mask leakages, while the other, the masked intermediate, and
the branches are regrouped by a layer using conditional probabilities.



T

mθ(r, xi⊕r)

mθxi⊕rmθr

f⊕

xi

(a) Single-task models on ASCAD-r

Tr Txi⊕r

mθxi⊕rmθr

f⊕

xi

(b) Single-task models on ASCAD-v2

Fig. 2: Single-task architectures

On the ASCAD-r, we assume we cannot extract points and use the raw
traces. To process the raw traces, the first layers are shared by both branches,
then split apart to finally be combined at the end. On the ASCAD-v2 dataset,
as the samples are extracted to reduce the dataset size and ease the problem, we
leverage this and feed to each branch, only the samples related to the distribution
expected to be learned. Such a principle will also be used in the multi-task designs
on ASCAD-v2.

3.2 Multi-task designs

Naive modelling (noted m0). The idea of splitting the network into two sets
of layers respectively expected to fit respectively x ⊕ r, r and then regrouping
them with f⊕ can be naively applied to multi-task learning. However, it can be
improved to maximise the sharing of features. In the very specific case where
masks are shared among all bytes of the targeted intermediate, one can very
successfully design a model such as in Figure 3. This model has an ”expert”
branch for the mask that is shared among all tasks and makes a bridge between
them to allow collaboration. The f⊕ layer is acting as a constraint already in the
single-task scenario, forcing each branch to take a very specific representation
(conditional probabilities). The cumulative effect of those constraints, thanks
to multi-task learning, is a natural improvement as showed in Marquet et Os-
wald [5]. However, in the case where masks are not shared, one has to find other
ways to further leverage the multi-task process.

Hard-parameter sharing. Hard parameter sharing is simply when multi-
ple tasks share a set of layers. By this logic, sharing convolutions or layers at the
beginning of the network is already hard-parameter sharing. However, sharing



T

mθ(r, x1⊕r, ... , xn⊕r)

mθx1⊕rmθr mθxn⊕r

f⊕ f⊕

x1 xn

Fig. 3: Shared mask architecture

layers close to the input is usually made to share higher-level features. Going
further down the network with shared layers means on the contrary sharing
lower-level features. The difficulty of sharing lower-level features comes from the
fact that the output must be different but obtained with similar input and the
same weights. To do so, one has to separate the network into multiple channels,
either by splitting the input inside the network, or through mid-level unshared
layers. The design used in this paper is the latter and presented in Fig 5. There-
fore, the network is built in a sequence of shared-unshared-shared layers.

Shared branches models (noted mshared). Using the idea presented in
the last paragraph, we design models that maximise the sharing of weights for
all tasks. Such networks reduce the overall number of weights in the model
while keeping the same number of weights per task. We believe this idea is
key to reducing the difficulty to pass the ”plateau” induced by the masking
countermeasures. As the difficulty increase exponentially with the number of
shares, it is crucial to maximise the propagation of the knowledge that one can
assume. Furthermore, this reduces the amount of representation weights can
take, as they have to satisfy all the bytes instead of just one, which increases
consistency between different initialisations. Such low-level sharing works with
minimum impact on total performance as the same intermediate bytes share a
certain amount of low-level features. Strategies, where one leverages the common
features between bytes, are very successful in a single-task scenario [3, 8, 2, 9].
Our strategy is the direct adaptation of such a technique in a multi-task learning
scenario. However, our modeling does not need the extraction and alignment of
each byte leakage in the trace, as it is done by the network instead of being a
pre-processing step.



T

mθ(r, x1⊕r, ... , xn⊕r)

mθxn⊕r
mθx1⊕r

mθ(x1⊕r, ... , xn⊕r)mθr

f⊕ f⊕

x1 xn

Fig. 4: Shared mask architecture using hard-parameter sharing

T

mθ(r1, x1⊕r1, ... , rn, xn⊕rn)

mθr1
mθrn mθxn⊕rn

mθx1⊕r1

mθ(x1⊕r1, ... , xn⊕rn)
m(θr1, ... , rn)

f⊕ f⊕

x1 xn

Fig. 5: Not shared mask with hard parameter sharing on both sides



3.3 Hyperparameters

ASCAD-r We build different models for the ASCAD-r database. In order to
have a meaningful comparison, we chose the same core hyperparameters from
the single-task models to the most complex multi-task architectures. One can see
the single-task models as submodels from the corresponding multi-task models.
Or the other way around, the multi-task models are simply single-task models
branched together. The chosen core hyperparameters are listed in the following:

– Weighted Pooling Inspired by Perin et al. [10] we are using custom layers
to perform a weighted average pooling on the raw traces to reduce the size
of the following network. We are pooling a total of 4 times to reduce the size
from 250k samples to 15625 points. After each average pooling, we perform
a batch normalization and an alpha dropout.

– Convolution block. We use the convolutions from a CNN proposed by
Perin et al.[10]. It consists of only one convolution layer (kernel 34, strides
17, and filters 4) followed by average pooling (pool size 2) and batch nor-
malization.

– Dense block. Each prediction branch possesses 2 dense layers of 200 units
and one output layer followed by a softmax. The units in the dense layers
are activated using a SeLu function.

– Training hyperparameters. All models are trained for 100 epochs, using
a fixed learning rate of 0.001 with an Adam optimiser.

ASCAD-v2 The ASCAD-v2 database is considerably newer and therefore
much less analysed. In Masure et Strullu [7] the authors provide an excellent
characterisation of the traces, and we took full advantage of this information in
our work. Since the dataset is extracted, we choose a multi-input architecture
as defined in 2b. Each branch x of the network will learn from a different input
with a different set of hyperparameters θx. We define the most basic hyperpa-
rameters for the single-task models and by extension the multi-task models in
the following :

– Mask branches. Leakages from the masks are strong and dispersed on
many samples, therefore we choose very simple CNNs composed of a single
convolution/pooling/batch-normalisation block. Kernel size is fixed to 32,
filters to 16, and pooling size to 5 for all of the branches, while strides are
chosen to scale based on the input size of each branch, respectively 10, 5,
and 2.

– Intermediate branches. The input of the intermediate branch is the full
execution of the S-box operation from the first round as 32-bit leakages are
present. Therefore it is necessary to include the computation of the next
bytes to capture the most information. The intermediate branches are 3
layers MLP with (64,8,8) units and a batch normalisation after each layer.
The branch ends on a fully connected layer of 256 units.



– Cyclic training. All models are trained with 3 cycles of respectively 25,
4, and finally 1 epochs, with a decreasing learning rate at each cycle. The
learning rates are 0.001, 0.0001, and finally 0.00001 with an Adam optimiser.
This allows us to annihilate overfitting and maximise the performance of our
models.

4 Experimental results

Throughout our experiments, we wish to discuss the performance of our designs
against single-task learning but also the improvement from sharing weights at
a lower level of the network. To do so, we train our designs 10 times using a
different seed of initialisation. Effectively observing the resilience of the different
architecture against multiple starting points. Each design possesses the same
number of weights for each task, the difference is the total amount of weights as
some weights are used for different targets. Multi-task models m0 are single-task
models that share high-level weights. While mshared, are the same models sharing
also low-level weights. We hope to entertain a discussion in the community about
the importance of collaboration across many signals. As it is a way to efficiently
utilise all the information available in one trace, to maximise the chances of
breaking through the plateau effect.

4.1 Leveraging shared masks across bytes of the S-box operation

The idea with this model is to leverage the leakage of masks that are shared
between bytes of a targeted intermediate. Fortunately, on both ASCAD datasets,
such weaknesses are found. On ASCAD-r, all bytes of the SubBytes inputs share
a strongly leaking mask rin, and on ASCAD-v2, all bytes share rin for the S-box
inputs, and rout for the S-box outputs. We train an architecture with a common
branch for the mask we need the model to learn. This shared branch will act as
an ”expert” specialised to fit the distribution of the mask and is connected to all
the others with a xor-like (f⊕) layer. The idea is that while learning ((xi⊕r)⊕r),
it might be beneficial to learn at the same time ((xi+1 ⊕ r)⊕ r). This repeated
for all the attackable bytes.

ASCAD-r On this dataset, the targeted leakage pair is (t⊕ rin, rin). Using the
raw traces, we train a multi-task model based on the design in Figure 3 noted
m0, and a multi-task model based on Figure 4 that we note mshared. Finally,
we train 14 single-task models (msingle) according to the design in Figure 2a.
We show a scatter plot of the epochs of convergence for each target byte and
all approaches. Then, we perform a full key recovery attack, 1000 times over
100 randomly picked raw traces from the attack dataset, and note the results
in Table 4.1. We include in this table the ratio of seeds nwin/nseeds leading to a
successful attack, along with the average performance of successful seeds Twin,
and finally the performance of the best seed best Twin.



Fig. 6: Epoch of convergence and failure rate, per target byte and seed, for models
targeting the S-box input pair (t⊕ rin , rin)

Observing the epoch where each model breaks free of the plateau caused
by masking, we first see that the learning of single-task models varies greatly.
Depending on the seed, the msingle converges around the epoch 20, 30, or 70, or
not at all. We can see that such erratic behavior is erased from multi-task models.
Many multi-task-induced effects can be the cause of such consistent behavior.
The first one is the regularisation from the shared mask. All bytes collaborate to
learn the mask, and therefore the branch of the mask benefits from the average
of multiple gradients, effectively canceling noise in the inputs. In addition, the
weights from individual bytes are not free to explore representations that do not
benefit others. This effect is further reinforced by the sharing of low-level weights.
As the model mshared improves significantly the baseline model m0, respectively
reaches convergence for most seeds at epoch 25-30, and 40-50. Moreover, while
the baseline model m0 often fails to converge, the model using hard-parameter
sharing consistently converges toward significant learning.

No seed allowed the single-task models to converge on all bytes. As training
a deep net is a stochastic procedure, depending on the initialisation some bytes
might benefit from a better starting point to pass through the increased complex-
ity of masking. Multi-task procedure makes it more resilient to such problems
because of the effect of multiple gradients. Among the multi-task models, we
see that hard-parameter sharing impacts overall negatively the performance in
this experiment. As the model mshared possesses fewer weights, the maximum



Table 1: Performance metrics for the experiment leveraging the S-box input
leakage pair (t⊕ rin , rin) on ASCAD-r

Model type nwin/nseeds Twin best Twin

msingle 0.0 >100 >100

m0 0.6 4.33 4

mshared 1.0 5.8 2

amount of knowledge it can contain is smaller than the baseline model m0. Even
though, one outlier run of the model mshared recovers the full key in two traces
consistently over all experiments.

ASCAD-v2 To further investigate the impact of constraints on multi-task mod-
els, we experiment with a scenario where only the additive masks rin and rout
are unknown. We give the knowledge of rm to the network during profiling and
attack, reducing the masking scheme to first order. Therefore, we investigate
two intermediates, with two different masks. The first target is the pair, masked
S-box inputs rm ⊗ t ⊕ rin, with the mask rin. The second is the pair of the
S-box outputs, rm ⊗ s ⊕ rout with the mask rout. To increase the difference in
performance between each approach, we reduce the size of the training dataset
to only 225k traces. The architectures used in this experiment are the same as in
the previous one, with a multi-input design since the dataset is extracted. This
corresponds to the difference presented in 2. Again, we show a scatter plot of
the epochs of convergence for each target byte and all approaches in Figures 8
and 7, and note the performance metrics in Table 4.1.

Looking at the Figure 7, we can observe another example of the inconsis-
tency of single-task models msingle, as different seeds lead to drastic differences
in terms of convergence. Even in this heavily simplified scenario, some seeds
prevent single-task models to learn the given target byte. On the other hand, all
multi-task models successfully converge, with most of them fitting properly the
leakage at epoch 2-3. Interestingly, the mshared seem to struggle on some seeds
to converge toward their goal and only baseline multi-task models consistently
do so at epoch 2-3. On the other intermediate however, Figure 8, we observe
a similar scenario as on the ASCAD-r dataset, where oftentimes the baseline
model does not converge at all, struggling to make sense of the samples. The
performance of the mshared model also coincide with the previous dataset, as
it consistently outperforms the baseline model, and manages to converge on all
seeds. Finally, on this intermediate, no single-task model managed to learn its
target byte. Another example of the superiority of multi-task approaches is in
this scenario where masks are shared among different intermediates.

Single-task models are successful on all seeds when performing the key recov-
ery targeting the S-Box inputs. However, their performance are worse than both
multi-task models. This is in line with the work in the same setup from Marquet



Fig. 7: Epoch of convergence and failure rate, per target byte and seed, for models
targeting the S-box input pair rm ⊗ tj ⊕ rin , rin)

Table 2: Performance metrics for two experiments leveraging first the S-box input
leakage pair, and then the S-box output leakage pair on ASCAD-v2

(rm ⊗ t⊕ rin, rin) (rm ⊗ s⊕ rout, rout)

Model type nwin/nseeds Twin best Twin nwin/nseeds Twin best Twin

msingle 1.0 29.5 25 0.0 >200 >200

m0 1.0 20 19 0.6 134 98

mshared 1.0 20.6 20 1.0 118.1 92

et Oswald .[5], as the regularisation effect on the mask branch improves greatly
the network performance-wise. Similarly to the previous scenario, we see that
baseline multi-task models m0 are more performant than mshared due to their
greater number of weights. On the other hand, when information is scarcer due
to lower leakages, the single-task models fail once again to recover the key, as
was expected since no model converged. Moreover, the baseline multi-task model
starts to show weaknesses, as its average, and best performance are slightly lower
than mshared. It has to be noted that the average performance is only calculated
on the successful models, therefore the real delta is greater in favor of the shared
parameters model.



Fig. 8: Epoch of convergence and failure rate, per target byte and seed, for models
targeting the S-box output pair (rm ⊗ sj ⊕ rout rout)

4.2 Leveraging state masks with different values

When masks are not shared, it is not possible to train one expert shared among
all tasks as in the previous section. However, it is still possible to use hard-
parameter sharing, this time on both sides of the masking scheme in the manner
of Figure 5. The idea is that sharing the weights on both branches will reduce
the representations that can be taken by the model. This design is used by the
model named mshared in this experiment. The baseline multi-task model m0

is naturally the same model but without hard parameter sharing. The single
models (msingle) are again submodels of the latter design. The targeted leakage
pair in this experiment is the S-box outputs with the state mask, i.e. s⊕ r, and
r. We continue with the scatter plot of the epochs of convergence for each target
byte and for all approaches in Figure 4.2, and note the performance of a full
key recovery targeting the S-boxes output in the same setup as the previous
experiment in Table 3.

Similar results can be observed in the previous scenario on ASCAD-r. Single-
task models msingle are inconsistent and mostly converge after the multi-task
models. Looking closely, one can see that not all bytes even converge in this
experiment. Moving on to the multi-task models, we can see the epoch of con-
vergence being a lot more inconsistent that in the previous experiments where
the mask was shared by all bytes. This indicates that the shared mask had a
strong impact on the training process. While for the single-task models, the



Fig. 9: Epoch of convergence and failure rate, per target byte and seed, for models
targeting the S-box output pair (s⊕ ri , ri)

number of successful convergences is inferior that in the previous experiment,
the baseline model m0 learns overall seeds, more bytes. As the mask isn’t shared
anymore, individual branches are allowed to learn their target byte, when overall
the model does not succeed in learning all of them. This problematic competi-
tion of losses is fixed in model design mshared, as it successfully converges on all
seeds. The sharing of weights managed to force collaboration between each byte,
leading to consistent learning. We also observe a faster convergence for the latter
model than any other one, once again hinting at its superior learning ability.

Table 3: Performance metrics for the experiment leveraging the S-box input
leakage pair (s⊕ ri , ri) on ASCAD-r

Model type nwin/nseeds Twin best Twin

msingle 0.0 >100 >100

m0 0.4 6 5

mshared 0.8 2.13 2

Once again, no seed led to successful key recovery using the single-task mod-
els msingle. Furthermore, no seed allowed byte 12 to converge, and therefore even



by picking the best models across all seeds, a successful attack would not have
been possible. The baseline model m0 succeed on 4 seeds to recover the key, with
an average performance of 6 traces. Finally, hard-parameter sharing successfully
improved the success rate of multi-task models, as mshared recovers the full key
with around 2 traces on average. However, even though all seeds led to conver-
gence, 100 traces was not enough for two seeds, as the learning suffered from too
much overfitting.

4.3 Leveraging the S-box inputs and outputs to recover the shared
multiplicative mask

On the ASCAD-v2 dataset, the affine masking scheme shares the multiplicative
mask between rm ⊗ sj ⊕ rout and rm ⊗ tj ⊕ rin. We design models that learn
the unmasked S-box input and output at the same time, allowing us to take
advantage of the shared multiplicative mask. We expect branches learning the
different intermediates to collaborate on how to fit rm. Based on this idea we
train the two usual models, m0 and its counterpart mshared using hard-parameter
sharing on the end layers. Finally, to understand the impact of training multiple
intermediates, we additionally train a model without this ”multi-target” ap-
proach. We note this model mt−shared, as it learns only tj through the triplet
(rm ⊗ tj ⊕ rin , rm , rin), using hard-parameter sharing. We note the main
performance metrics after performing the usual full key recovery in Table 4.3,
and plot the evolution of the losses in Figure 10.

The model mt−shared, trained using only the labels from the unmasked S-
box inputs, fail to converge even though the leakage from the triplet (rm ⊗
tj ⊕ rin , rm , rin) is considerably higher than the second triplet linked to the
S-box outputs. Moreover, the model m0 using a multi-target strategy during
training, also fails to converge even once. The only model converging multiple
times is the model leveraging a multi-target strategy during training and low-
level hard-parameter sharing mshared. This feat, repeated 5 times while the other
model never converges, is a testimony towards the importance of linking potential
collaboration between intermediates even during training.

Table 4: Performance metrics against the full affine masking on ASCAD-v2

Model type nwin/nseeds Twin best Twin

mt−shared 0.0 >200 >200

m0 0.0 >200 >200

mshared 0.5 17.6 16

Observing the performances of the different models on a full key recovery
attack, we see that every seed leading to convergence during training, also leads
to successful attacks with good performances. Our best model, recovers the full



Fig. 10: Epoch of convergence and failure rate, per target byte and seed, for
models targeting the full affine masking

key in only 16 traces, and is to the best of our knowledge, the best attack on
ASCAD-v2, even in this simplified scenario, where PoIs from the masks are
assumed, and permutations are disabled. We believe that strategies leveraging
even more intermediates, for example the intermediates from the next rounds,
would lead towards raw traces attack on ASCAD-v2. Even though one might
not use those intermediates during the attack, the fact that the 10 rounds share
the same masks would increase the regularisation factor by 10.

5 Explainability and point of interest extraction

Deep learning networks are often obscure boxes where explainability is given
away in the hope of better performance. In side-channel analysis, a clear corre-
lation between what is processed by the network and the input can be made.
As the networks always leverage signals that could be observed if knowledge of
the different shares was accessible. However, the classic designs struggled to be
transparent as everything was processed by the same layers. Clever occlusion
techniques have been designed to explain some of the mystery behind what has
been learned. However, Masure et al. [6] showed that when training models with
multiple branches such as our designs, one could recover at the output of those
branches, a predicted probability distribution close enough to the true probabil-
ity distribution of the targeted intermediates. Unfortunately, this distribution is



not giving away the values of the targeted intermediates as a δ is introduced on
both sides of the xor operation, effectively canceling during the xor layer.

Using the model mshared from the attack on the S-boxes input in Sect 4.1,
we recover the points of interest of each targeted share. To do so, we extract
the values going through the model at the end of each branch (i.e. inputs of the
f⊕ layer). Those values are extracted after a softmax operation and therefore
represent probability-like scores. Then, we ”label” the traces using the value with
the highest score. We evaluate using a simple SnR analysis with the predicted
”labels” and plot in Figure. 11 the recovered correlations, along with the SnR
analysis obtained with the real labels.

Fig. 11: Predicted SnR from the input mask rin, and the corresponding masked
S-Boxes inputs

To continue on both datasets, and with all intermediates, we select the best
models trained in our previous experiments, collect their predictions, and label
each trace with the value with the maximum score. Then, using the real labels
from each intermediate, we perform an SnR analysis and collect the npoi samples
that have the highest signal-to-noise ratio. This leaves some points of interest
aside, but make sure that the points with the most information are captured.
On the ASCAD-v2 dataset, as the samples related to the masks are already
extracted using SnR analysis, we are discussing the quality of the recovery of



the 10% most leaky samples. As we create fake labels from predictions of the deep
nets, we unfortunately often label the traces with the wrong value. This isn’t a
problem for intermediates that strongly leak such as on ASCAD-r, or the masks
of ASCAD-v2. However, we found simple SnR analysis to be imprecise for the
PoI recovery of rm⊗sj⊕rout, and rm⊗tj⊕rin. To reduce the loss of information
during the creation of the ”predicted” labels, we regroup predictions according
to the hamming weight of their corresponding intermediate guess. After the SnR
analysis using the predicted labels, we rank the npoi samples with the highest
SnR value. We then calculate the ratio rx of correspondence between the samples.
We average this ratio across all bytes of intermediate x, when it has multiple
bytes, and note it in Table 5.

Table 5: Percentage of point of interest recovered with our best models, per
intermediate

Dataset ASCAD-r ASCAD-v2

x r rin s⊕ r t⊕ rin rm rin rout rm ⊗ s⊕ rout rm ⊗ t⊕ rin
npoi 50 50 50 50 200 100 20 10 10

rx (%) 81.86 100.0 81.71 91.57 99.0 99.0 95.0 79.38 88.13

From Table 5, we can observe a high recovery rate of the points of interest,
especially of the shared masks. The shared branches are exceptionally accurate
because of the regularisation imposed by the multiple branches depending on
it. However, for the non-shared masks such as r on the ASCAD-r dataset, even
though an overall higher accuracy is achieved for the network, the network shows
a tendency to fit a hybrid distribution. In addition, it is impossible to know which
side is the mask or the masked intermediate with this design. The PoIs of the
masked intermediates of the ASCAD-v2 dataset are also accurately recovered.
Those results have to be nuanced. Just as with the single-task models, one needs
at least a minimum of information recovered by the model to identify any points
of interest. However, one could imagine an iterative training where one would
start with a very large number of samples, obtain an underperforming model,
and retrain using a reduced set of points to improve performance.

6 Conclusion

Among all our experiments, we can observe a clear tendency: the more informa-
tion per weight, the better. Hard-parameter sharing allows to focus the propaga-
tion of losses towards fewer weights. This reduces redundancy inside the network
and increases the quality of the learning. However, one has to be assured of the
collaboration between the targets of the network, as losses can compete as much
as they can collaborate. Overall, multi-task learning seems to have a clear edge
over single-task approaches, especially in the context of a side-channel evalua-
tion. The key takeaways are the following :



– Multi-task learning is a natural improvement of single-task learning in a
scenario where the knowledge of randomness cannot be accessed.

– Hard-parameter sharing allows multi-task learning to benefit from the learn-
ing of multiple bytes at the same time, even when the masks are not shared.

– Leveraging multi-tasking to add constraints on the network increases the
chances of the attacker to build successful attacks.

– Multi-task learning allows an attacker to take advantage of multi-target
strategies during profiling.

– Branch designs, along with multi-task learning can lead to accurate recovery
of the shares distributions of a masking scheme.

Our results contribute to the research of multi-task deep learning models
in the context of side-channel key recovery attacks. We extend previous results
from Marquet et Oswald [5] to more challenging scenarios where masks are not
shared by multiple potential targets. We show that linking potential common
features and accumulating constraints on the network benefits the network by
reducing overfitting and further enables models to lead successful attacks. In ad-
dition, we target the multiple masks of the ASCAD-v2 and successfully build an
attack using the previously introduced concepts. We suggest that more complex
architectures, adding helpful constraints on the network, would further improve
the chances of an attacker finding successful attacks.

Acknowledgments Thomas Marquet has been supported by the KWF under
grant number KWF-3520—31870—45842. Thomas Marquet and Elisabeth Os-
wald have been supported in part by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No 725042).

References

1. Caruana, R.: Multitask learning. In: Thrun, S., Pratt, L.Y. (eds.) Learning to
Learn, pp. 95–133. Springer (1998). https://doi.org/10.1007/978-1-4615-5529-2 5,
https://doi.org/10.1007/978-1-4615-5529-2 5

2. Dubrova, E., Ngo, K., Gärtner, J., Wang, R.: Breaking a fifth-order
masked implementation of crystals-kyber by copy-paste. In: Pro-
ceedings of the 10th ACM Asia Public-Key Cryptography Work-
shop. p. 10–20. APKC ’23, Association for Computing Machinery,
New York, NY, USA (2023). https://doi.org/10.1145/3591866.3593072,
https://doi.org/10.1145/3591866.3593072

3. Hu, F., Wang, H., Wang, J.: Cross-subkey deep-learning side-
channel analysis. Cryptology ePrint Archive, Report 2021/1328 (2021),
https://eprint.iacr.org/2021/1328

4. Maghrebi, H.: Deep learning based side-channel attack: a new profiling method-
ology based on multi-label classification. Cryptology ePrint Archive, Report
2020/436 (2020), https://eprint.iacr.org/2020/436



5. Marquet, T., Oswald, E.: A comparison of multi-task learning and single-
task learning approaches. Cryptology ePrint Archive, Paper 2023/611 (2023).
https://doi.org/10.1007/978-3-031-16815-4, https://eprint.iacr.org/2023/611,
https://eprint.iacr.org/2023/611

6. Masure, L., Cristiani, V., Lecomte, M., Standaert, F.X.: Don’t learn what you
already know: Scheme-aware modeling for profiling side-channel analysis against
masking. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2023(1), 32–59 (Nov 2022). https://doi.org/10.46586/tches.v2023.i1.32-59,
https://tches.iacr.org/index.php/TCHES/article/view/9946

7. Masure, L., Strullu, R.: Side-channel analysis against anssi’s protected aes im-
plementation on arm: end-to-end attacks with multi-task learning. Journal of
Cryptographic Engineering 13, 1–19 (03 2023). https://doi.org/10.1007/s13389-
023-00311-7

8. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack
on a masked ind-cca secure saber kem implementation. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems 2021(4),
676–707 (Aug 2021). https://doi.org/10.46586/tches.v2021.i4.676-707,
https://tches.iacr.org/index.php/TCHES/article/view/9079

9. Ngo, K., Wang, R., Dubrova, E., Paulsrud, N.: Higher-order boolean masking does
not prevent side-channel attacks on lwe/lwr-based pke/kems. In: 2023 IEEE 53rd
International Symposium on Multiple-Valued Logic (ISMVL). pp. 190–195 (2023).
https://doi.org/10.1109/ISMVL57333.2023.00044

10. Perin, G., Wu, L., Picek, S.: Exploring feature selection scenar-
ios for deep learning-based side-channel analysis. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems 2022(4),
828–861 (Aug 2022). https://doi.org/10.46586/tches.v2022.i4.828-861,
https://tches.iacr.org/index.php/TCHES/article/view/9842

11. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Canovas, C.: Study
of deep learning techniques for side-channel analysis and introduction
to ascad database. IACR Cryptol. ePrint Arch. 2018, 53 (2018),
https://api.semanticscholar.org/CorpusID:41991837

12. Ruder, S.: An overview of multi-task learning in deep neural networks. CoRR
abs/1706.05098 (2017)


