
PROLEAD_SW
Probing-Based Software Leakage Detection for ARM Binaries

Jannik Zeitschner∗ , Nicolai Müller∗ and Amir Moradi

Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

Abstract. A decisive contribution to the all-embracing protection of cryptographic
software, especially on embedded devices, is the protection against Side-Channel
Analysis (SCA) attacks. Masking countermeasures can usually be integrated into the
software during the design phase. In theory, this should provide reliable protection
against such physical attacks. However, the correct application of masking is a
non-trivial task which often causes even experts to make mistakes. In addition to
human-caused errors, micro-architectural Central Processing Unit (CPU) effects can
lead even a seemingly theoretically correct implementation to fail satisfying the
desired level of security in practice. This originates from different components of
the underlying CPU which complicates the tracing of leakage back to a particular
source and hence avoids to make general and device-independent statements about
its security.
In this work, we adapt PROLEAD for the evaluation of masked software, which has
recently been presented at CHES 2022 and originally developed as a simulation-
based tool to evaluate masked hardware designs. We enable to transfer the already
known benefits of PROLEAD into the software world. These include (1) evaluation
of larger designs compared to the state of the art, e.g. a full Advanced Encryption
Standard (AES) masked implementation, and (2) formal verification under the well-
established robust probing security model. In short, together with an abstraction
model for the micro-architecture, the robust probing model allows us to efficiently
detect micro-architectural leakages while being independent of a concrete CPU design.
As a concrete result, using PROLEAD_SW we evaluated the security of several publicly
available masked software implementations and revealed multiple vulnerabilities.
Keywords: Side-Channel Analysis · Leakage Detection · Software · Masking

1 Introduction
Nowadays, researches greatly understand how to design cryptographic algorithms that
guarantee security in a black-box model. However, even two decades after the first
introduction of Side-Channel Analysis (SCA) attacks by Kocher et al. [Koc96, KJJ99], the
secure implementation of cryptography, assuming a grey-box scenario, is still a complicated
task. In particular, the last twenty years have shown a wide range of successful SCA
attacks exploiting the physical leakage of cryptographic implementations. In particular, by
observing physical characteristics of the target device, often power consumption [KJJ99]
or electromagnetic radiation [GMO01], an adversary can recover secrets stored in and
processed by the underlying device. To prevent SCA attacks at the algorithmic level, the
masking countermeasure, based on secret sharing [Sha79], is a popular approach [CJRR99].
If a masking scheme satisfies some basic assumptions, i.e., uniform sharing and sufficient
noise, its security becomes abstractable under formal adversary models [ISW03, DDF14].

∗These authors contributed equally to this work.

https://orcid.org/0000-0003-3682-1567
https://orcid.org/0000-0002-3286-4722
https://orcid.org/0000-0002-4032-7433
mailto:jannik.zeitschner@rub.de, nicolai.mueller@rub.de, amir.moradi@rub.de

2 PROLEAD_SW

However, the naive integration of masking only rarely leads to the expected result.
Multiple factors at different abstraction levels can cause even a theoretically correct masked
implementation to leak. For example, if the masked implementation is provided in a high-
level language, the compiler settings, later used, are crucial [BWG+22]. Optimizations
during compilation can modify the implementation so that basic principles of masking
are broken, e.g., share independence. Moreover, cryptographic software executed on an
arbitrary Central Processing Unit (CPU) may leak information due to physical defaults
occurring on the underlying CPU’s (micro-)architecture [FGP+18]. Typical examples
include (1) transitions while updating particular registers or the Random Access Memory
(RAM) leaking information about the new and the overwritten memory state [PV17],
and (2) glitch-related leakage due to the internal hardware architecture of the pipeline or
Arithmetic-Logic Unit (ALU) [CGD18].

In addition to the correct implementation of a masking scheme, it is, therefore, crucial
to examine and prove its proper security. In recent years there have been some attempts to
evaluate masked software implementations reliably. A detailed summary of existing works is
given in Table 1 of [BBYS22]. Usually, their underlying approaches can be broadly divided
into two categories with individual drawbacks. Formal verification makes it possible to
prove the security of short building blocks such as gadgets or small S-boxes encompassing a
low number of instructions. However, proving the security of an implementation consisting
of thousands of instructions, e.g., a complete Advanced Encryption Standard (AES)
implementation in software, becomes infeasible due to the higher run-time and memory
requirements.

Another branch of research focuses on the simulation of leakages. As the simulation
considers only a fixed set of input vectors, the evaluation is accelerated significantly but
at the cost of a lower accuracy. Hence, leakage simulators can evaluate implementations
that are out of the scope of formal verification but can only give a preliminary intuition of
the leakage instead of a security proof. Moreover, the evaluation applies simple heuristics
such as Hamming Weight (HW) or Hamming Distance (HD) and is not in line with formal
security models.

At CHES 2022, a combination of formal verification and leakage simulation was
presented for the first time. The resulting framework, called PROLEAD [MM22], verifies the
security under a formal adversary model by simulating intermediate signals of the target
hardware circuit. The simulation-based approach makes it possible to formally analyze
even larger designs, e.g., a complete masked AES core, without resorting to inaccurate
heuristics. PROLEAD has thus made it possible to detect so far unnoticed vulnerabilities in
previously published designs (see Table 2 of [MM22]). However, PROLEAD can only evaluate
masked hardware designs and does not cover software implementations.

1.1 Contributions
We adapt the working principle of PROLEAD to evaluate masked software implementations
independent of an actual CPU design. The resulting framework PROLEAD_SW is publicly
available via GitHub1and extends the original PROLEAD with the ability to evaluate the
robust d-probing security of any binary compiled for the ARMv6-M, ARMv7-M, and
ARMv7E-M architecture. More precisely, we put no restrictions on the code structure, i.e.,
we are able to handle recursions, loops, conditional branches and even non-constant time
code.

1.2 Existing Tools
In the following, we compare PROLEAD_SW to the existing works from the open literature.

1https://github.com/ChairImpSec/PROLEAD

https://github.com/ChairImpSec/PROLEAD

J. Zeitschner, N. Müller, A. Moradi 3

1.2.1 Formal Verification

The purpose of maskVerif [BBC+19] is to verify higher-order masked software for probing-
security, NI [BBD+15], and SNI [BBD+16] notions under the ISW model [ISW03] with
transitions. Given a program written in an intermediate representation, maskVerif checks
based on probabilistic information flow tracking whether leakages are independent of secrets
for each possible observation set. The tool is sound and complete for linear equations and
reduces the occurrence of false negatives in non-linear cases.

The compiler framework TORNADO [BDM+20] aims to generate provable secure masked
and bitsliced C code for arbitrary orders under the d-probing model, respectively register
probing model [BDM+20]. It receives a cipher written in the domain-specific language
Usuba and verifies the security under the desired attacker model with TightPROVE+, an
extension of the original TightPROVE [BGR18]. If an attack is detected, TORNADO introduces
refresh gadgets based on sound heuristics.

COCO [GHP+21] is a white-box verification tool, which maps the verification of masked
software to a hardware verification problem. Its underlying formal verification approach is
based on REBECCA [BGI+18], which uses correlation sets and SAT-solver to detect leakage.
By providing a gate-level netlist and an assembly implementation COCO verifies the secure
execution under the time-constrained probing model. This approach enables COCO to
make practical statements about the implementation’s security. Nevertheless, COCO cannot
evaluate software with a non-constant control flow as well as arithmetic masking.

1.2.2 Leakage Simulation

The goal of ASCOLD [PV17] is to detect the violation of Independent Leakage Assumption
(ILA) by simulated information flow tracking. The tool considers micro-architectural effects
observed on an AVR micro-controller. It operates on masked AVR assembly code with
annotated inputs (random or masked) and propagates them through the entire execution.
Hence, ASCOLD can guarantee the detection of an ILA violation even if they are caused
by memory overwrites (transitions) or neighbor leakage effects. However, not all share
re-combinations leak which makes ASCOLD over-conservative.

The intention of MAPS [CGD18], a power-simulator for the Cortex-M3 processor, is
to examine the security of software designs by considering target-specific leakages, with
a particular focus on leakage introduced by hidden pipeline registers. Based on the
CPU netlist, which the authors possess, they are able to model this behavior during the
simulation. MAPS cross-compiles C code with optional inline assembly to an ARMv7-M
binary whose HD leakage is simulated and evaluated by applying Welch’s t-test.

ELMO [MOW17] simulates the power consumption of Cortex-M0 and M4 processors
at the instruction level. It makes use of a power model achieved by performing linear
regression on physical measurements. Thus, the goal of ELMO is to generate accurately
simulated power traces tailored to a specific CPU. After generating the power model,
ELMO receives a compiled binary as input and simulates the power consumption according
to its adapted model. The generated traces can then be evaluated with known leakage
assessment techniques. A recent extension ELMO∗ [SSB+21] further models leakage between
non-consecutive instructions, i.e. leakages due to short pipelines, and identifies leaking
storage elements.

RootCanal follows a white-box approach to identify the origin of SCA leakages, which
either comes from the executed instructions or the underlying hardware. Given the
assembly-level source code and an SoC design in a Hardware Description Language (HDL),
RootCanal performs non-specific architecture correlation analysis on simulated power
traces. If leakage is detected, RootCanal backtraces the leakage to the actual high-level
source, i.e., the executed software instruction or modules in the HDL source.

4 PROLEAD_SW

1.2.3 Comparison

In the following, we elaborate on the most important differences between PROLEAD_SW and
the works mentioned above.

Usability. RootCanal and COCO suffer from the same downside as both require the
hardware netlist (which is not publicly available in several cases including Advanced
Risc Machines (ARM)) limiting their application mostly to pre-tapeout verifications.
We remark that PROLEAD_SW requires only the binary to analyze, which expands its
applicability. Further, ASCOLD, MAPS, and ELMO implement only a subset of their underlying
Instruction Set Architecture (ISA). This obviously limits the high-level functionality of the
implementations which can be examined. As an (incomplete) example, ASCOLD supports
no loops, MAPS supports no conditional branches, and ELMO implements only a subset of
21 instructions. In contrast, PROLEAD_SW supports the complete ARMv7E-M ISA2. More
concretely, none of the aforementioned simulators (ASCOLD, MAPS, ELMO) is applicable to
the examples we give in Section 5 without severe modifications either to the simulator or
to the examples to be in line with the respective simulator boundaries.

Completeness. RootCanal and COCO can identify processor-specific leakages most accu-
rately due to their white-box approach. They do not have to define micro-architectural
effects, but directly track leakages back to the hardware source. While ELMO is a grey-box
tool, it does not pre-define the detectable micro-architectural effects but rather handles
micro-architectural behavior that are observable during the pre-processing step. Besides
being non-trivial to generate the model and tailored to one specific micro-controller, ELMO
depends on the accuracy of the measurements, i.e., order of instructions, amount of traces,
and applied modeling technique. In the case of TightPROVE+, no micro-architectural
effects are covered, while maskVerif can only cover transitions, leaving other known
effects undetected. While MAPS and ASCOLD deal with some security reduction effects,
their evaluation is limited to first-order designs. Contrary, PROLEAD_SW incorporates more
micro-architectural leakage effects than TightPROVE+, maskVerif, MAPS, and ASCOLD while
being independent of the applied CPU and applicable to higher order.

Performance. As formal verification is exhaustive, meaning that it checks all possible
input vectors, the evaluation of larger implementations becomes infeasible. As an example,
we consider the software case studies of maskVerif available online3. Most experiments
target small S-boxes at low security orders while evaluating the probing security of larger
designs, e.g. a complete AES in software is not possible. The same restrictions hold for COCO.
In particular, the largest implementation in the case studies of COCO is a single masked AES
S-box running for 1900 cycles. Simulation based approaches, such as PROLEAD_SW, evaluate
even larger designs with acceptable resources, e.g. complete AES masked implementations
executing more than 100,000 instructions.

Confidence. Formal verification tools, i.e. maskVerif, TightPROVE, and COCO, are free
of false negatives. Hence, a positive result proves the security of the implementation
under a certain model. However, some formal verification tools such as maskVerif
and TightPROVE+ (accepting only abstracted Usuba code) evaluate software abstractions.
Therefore, both tools do not verify the actual instructions executed on a CPU but an
abstract representation. PROLEAD_SW removes any uncertainty regarding translations to
intermediate representations or compiler optimizations. Nevertheless, PROLEAD_SW and
other leakage simulators (except ASCOLD) are not exhaustive. Hence, they cannot prove the

2Floating point instructions are excluded, but it should not limit any cryptographic implementations.
3https://cryptoexperts.com/maskverif/

https://cryptoexperts.com/maskverif/

J. Zeitschner, N. Müller, A. Moradi 5

security of a given implementation and their accuracy depends on the number of simulations,
as for ELMO and MAPS. However, PROLEAD_SW reports its accuracy, i.e. probability for false
positives and false negatives.

1.3 Outline
In Section 2, we introduce the basic concepts of Boolean masking and the probing security
model. Moreover, we highlight the most relevant characteristics of the ARM architecture.
Based on this, we present the original PROLEAD framework and the applied ARM emulator,
called M-Ulator, in Section 3. Next in Section 4, we present the workflow of PROLEAD_SW
while we focus on covering micro-architectural leakages. Finally, we evaluate multiple
masked software implementations in Section 5, and discuss the results and the limitations
of PROLEAD_SW. We finally conclude the paper in Section 7.

2 Background

2.1 Notation
We denote single elements with lower case letters, e.g. a single-bit value v ∈ F2, a single
instruction i, a single register r, or a single probe p. For a set of elements we use bold upper
case letters, e.g. V denotes a set of values, I denotes a set of instructions, R denotes a set
of registers, and P denotes a set of probes. A single element inside a set can be indicated by
its corresponding index, e.g. v0 ∈ V denotes the first value in V. We distinguish between
sets where the order of their elements matters, e.g. I = ⟨i0, ..., i|I|−1⟩, and sets where the
order of their elements does not matter, e.g. P = {p0, ..., p|P|−1}. Further, we denote sets
containing all elements of a specific type with calligraphic font, e.g. R denotes a set with
all registers and P denotes a set of all possible probes. Finally, we denote functions of a
particular software implementation with serif fonts, e.g. main or cipher.

2.2 Boolean Masking
Masking [CJRR99] is a common and well-studied approach to protect cryptographic
implementations against SCA attacks. In d-order Boolean masking, a set of d + 1 ≥ 2
independently and uniformly distributed shares {x0, ..., xd} ∈ Fd+1

2 represents a sensitive

variable x ∈ F2 such that x =
d⊕

i=0
xi. To get the sharing of x, we can choose the shares in

{x0, . . . , xd−1} ∈ Fd
2 uniformly at random and compute xd as xd =

(d−1⊕
i=0

xi
)
⊕ x. To avoid

any leakage revealing information about x, all executed instructions process {x0, . . . , xd},
i.e., the shared (and randomized) representation of x, instead of x itself.

2.3 Probing Security
The simple and abstract d-probing model [ISW03] formalizes a d-probing adversary by
gaining access to up to d values {x0, . . . , xd−1} via placing probes on internal wires of
the circuit. Hence, an implementation is d-probing secure if no d-probing adversary
can extract any sensitive information from {x0, . . . , xd−1}. Nevertheless, even probing
secure implementations often fail to achieve the desired level of security in practice due
to unintentional physical effects inside the circuit (e.g. CPU). Physical defaults such as
glitches and transitions have been identified as the main reasons for the security degradation
of a practical masking scheme running on a hardware platform. To consider physical

6 PROLEAD_SW

defaults during the security evaluation, the robust d-probing model [FGP+18] extends the
basic probing model.

Glitches. As hardware circuits are not ideal, imbalanced routing and switching delays
inside the CPU may lead to input signals which arrive asynchronously at their corresponding
gate. Such timing differences can result in a glitch, i.e., an unexpected but temporary
output change before the output signal reaches its intended state. The robust probing
model covers glitches by allowing an adversary to place glitch-extended probes on arbitrary
wires of the circuit.

Definition 1 (Glitch-extended Probe). A glitch-extended probe on wire w models the
impact of glitches by recording all stable signals that contribute to w.

Transitions. If an instruction changes a wire or register state, the resulting transitions
may reveal information about the old and the new values based on the number of changed
bits during the overwrite. In order to model transitions in the robust probing model, an
adversary gains the ability to place transition-extended probes on arbitrary wires of the
circuit.

Definition 2 (Transition-extended Probe). A transition-extended probe on wire w models
the impact of transitions by recording two consecutive values carried by w.

Consequently, the effects of glitches and transitions during the evaluation of masked
software depend on the underlying hardware, i.e. the micro-architecture of the processor.
Hence, to model the leakage correctly, the processor’s hardware design must be considered.
The first step in this direction is the adaption of non-completeness to cover at least a
subset of micro-architectural effects. Gaspoz et al. [GD22] summarized their observations
in the following lemmas.

Lemma 1. Software storing all shares of a secret bit within the same register may leak.

Lemma 2. Software storing all shares of a secret bit on the same register index may leak.

However, the practical leakage of masked software strongly depends on the (often secret)
design of the CPU. Moreover, fulfilling Lemma 1 and Lemma 2 does only protect against
micro-architectural issues considered in [GD22] while every other micro-architectural effect
needs additional consideration.

2.4 Advanced Risc Machines (ARM)
In this work, we target Cortex-M processors [Yiu16]. Compared to other ARM processor
families, Cortex-M processors are efficient in terms of area, energy, and price. Today,
different Cortex-M processors, including low-energy ones, such as the M0+, up to high-end
ones, such as Cortex-M7, exist on the market. Hence, the designers can choose the most
fitting CPU based on their particular needs. The large variety of Cortex-M processors leads
to a wide range of possible applications, reaching from Internet of Things (IoT) devices for
consumers to automated industrial applications. In this work, we focus on the ARMv6-M,
ARMv7-M, and ARMv7E-M ISAs that allow us to evaluate implementations for Cortex-M0
up to the Cortex-M7 processors. All these CPUs are common in having fifteen 32-bit
general purpose registers {r0, .., r14}, the Program Counter (PC) (r15) and the Program
Status Register (PSR) (r16). We refer to the list of all registers with R = {r0, ..., r16}.
The ARMv6-M architecture implements a comparably small instruction set, resulting in a
simple processor design. However, this ISA limits the effective register usage to the lower
eight registers. The instruction set of the ARMv7-M allows more complex operations and
supports advanced data processing and bit field manipulations. Finally, the ARMv7E-M

J. Zeitschner, N. Müller, A. Moradi 7

architectures extend the ARMv7-M ISA by Digital Signal Processing (DSP) operations.
As the instruction set of a higher architecture is a superset of a lower one, Cortex-M
binaries provide upward compatibility.

3 Related Works
3.1 PROLEAD

PROLEAD [MM22] is a probing-based hardware leakage detection tool combining the benefits
of formal verification and leakage simulation. It evaluates the robust-probing security
of a given gate-level netlist of the circuit under test by simulating the underlying logic.
Its abilities include the consideration of glitches and transitions as well as univariate
and multivariate adversaries at arbitrary security orders. Internally, PROLEAD considers
every possible robust-probing adversary by generating a list of all possible probing sets
observed by an attacker. By simulating the netlist, PROLEAD estimates the distributions
of each probing set under different input settings. Finally, it checks the independence of
distributions based on a statistical hypothesis test. If a significant dependency is detected
for at least one probing set, PROLEAD reports a general information leakage and details of
the most leaking probing set.

Efficiency. Publicly available benchmarks show that PROLEAD can easily handle first-order
masked cipher hardware cores in minutes to hours. However, naturally increasing the
security order increases the runtime of PROLEAD exponentially. While evaluating second-
order masked cipher cores is still possible, the authors of PROLEAD only evaluated a single
third-order masked AES S-box. PROLEAD’s runtime and the amount of necessary RAM
space strongly depends on the probing set size, i.e. the number of considered probes in
a probing set while the number of possible adversaries, i.e. the number of probing sets,
plays a subordinate role.

Reliability. For each test result, PROLEAD calculates the statistical power of the underlying
test procedure to evaluate the result’s reliability. Formally, PROLEAD estimates the false-
positive probability p, and false-negative probability β based on a fixed effect size φ. Hence,
if PROLEAD detects leakage, it informs the user about the probability that the leakage is a
false-positive result, and that the design might be secure. By default, PROLEAD reports
leakage with a false-positive probability of p < 10−5. Moreover, if PROLEAD detects no
leakage, it informs the user about the probability that the result is a false negative, i.e.
that no leakage with an effect size φ was detected. By default, PROLEAD reports a design
as secure with a false-negative probability of β < 10−5 and φ = 0.1. All parameters can be
adjusted by the user, e.g. to detect smaller leakages (by decreasing φ) or to increase the
reliability of the results (by decreasing p and β). We remark that the number of simulations
has a decisive influence on reliability. That is why PROLEAD continuously monitors the
remaining number of simulations required to achieve the specified parameters.

3.2 M-Ulator

To execute ARM binaries on non-ARM processors we need an emulator that replicates
the environment by providing the same behavior as the target platform. For PROLEAD_SW
we have chosen M-Ulator introduced in [HSP21] and publicly available on GitHub4. The
tool was originally written for fault simulation on ARMv6-M and ARMv7-M binaries
and implements its functionality based on publicly available architecture specifications.
M-Ulator is not bounded to a specific processor but rather supports every core running the

4https://github.com/emsec/arm-fault-simulator

https://github.com/emsec/arm-fault-simulator

8 PROLEAD_SW

provided ISA. As it is not dedicated to a particular processor, it allows only instruction-
accurate simulation. However, this permits a wider range of applications.

The advantages of this emulator are manifold. Unlike graphical emulators such as
VisUAL5, we can observe intermediates as well as their changes in registers and in the
memory at every single stage of the execution. As we need to directly probe the simulated
intermediates, having a detailed insight is a necessary condition. Additionally, an emulator
that can run the compiled machine code gives us a more realistic behavior than evaluating
high-level descriptions. As our probing-based approach requires computation-intense tasks
the emulator should be preferably as fast as possible. According to [HSP21], M-Ulator
outperforms state-of-the-art emulators in terms of speed, e.g., compared to the QEMU-based
Unicorn6.

4 Technique
We model each software, i.e., a compiled binary, as an ordered set of instructions I =
⟨i0, ..., i|I|−1⟩ while each instruction executes its mnemonic m on a given set of operands. For
the operands, we differentiate between source locations s ∈ S ⊆ S, i.e., memory locations
to read, and destination locations d ∈ D ⊆ D, i.e., memory locations to write. Here, we
denote S (resp. D) as the set of all possible sources (resp. destinations). Both can be either
registers or a memory cell of the RAM while hard-coded constants are possible sources as
well. To distinguish locations, we define a type function that outputs type(s) = reg if s is a
register index, type(s) = mem if s is a RAM address, and type(s) = const if s is a constant
value. Consequently, we formalize an instruction i ∈ I as a triple i = (m, S, D) storing the
instruction’s mnemonic, a list of sources, and a list of destinations.

4.1 A CPU-Independent Software Leakage Model
As software abstracts the underlying hardware’s behavior, applying the robust d-probing
model on the CPU design while executing a software would reduce the problem of verifying
software to the formal verification of hardware. However, the ARM processor design,
e.g. a hardware netlist, is most likely not available, which makes the hardware’s formal
verification impossible. This lack of information motivates the need for a CPU-independent
adversary model used as a baseline for verifying masked software. Initially, we define
abstract probes for evaluating software in line with the d-probing model. To model probes
on arbitrary locations of the RAM, we extend R by an imaginary register r17 representing
the currently targeted position in RAM. We denote the extended register list as R∗.

Definition 3 (Standard Probe). A standard probe p = (i, r, b) with i ∈ I, r ∈ R∗, and
b < 32 is placed on the bit b of register r during instruction i.

Definition 4 (Transition-extended Probe). A transition-extended probe p = (⟨i, i′⟩, r, b)
with i, i′ ∈ I, r ∈ R∗, and b < 32 records bit b of register r during instructions i and i′. It
holds that i′ denotes the last instruction that modified r before executing i.

Definition 5 (Probing Set). A probing set P = {p0, ..., p|P|−1} defines a set of multiple
probes.

From Lemma 1 and Lemma 2 we derive horizontal and vertical probes as a new class
of probes for modeling micro-architectural effects. However, both are in line with robust-
probing security as they are the possible outcome of a single glitch-extended probe. We
remark that both definitions describe extended probes. Hence, horizontal and vertical
probes expand to an equivalent probing set containing standard probes.

5https://salmanarif.bitbucket.io/visual/index.html
6https://www.unicorn-engine.org/

https://salmanarif.bitbucket.io/visual/index.html
https://www.unicorn-engine.org/

J. Zeitschner, N. Müller, A. Moradi 9

r16

r0

r1

...

0 1 . . . 31
(a) Standard probe (b) Transition-extended probe

(c) Horizontal probe (d) Pairwise horizontal probe (e) Vertical probe

Figure 1: Different abstract probes on the registers.

Definition 6 (Horizontal Probe). A horizontal probe ph = (i, r, B) with i ∈ I, r ∈ R∗,
and B ⊆ J0, 32J records all bits b ∈ B of register r during instruction i.

Definition 7 (Vertical Probe). A vertical probe pv = (i, R, b) with i ∈ I, R ⊆ R, and
b < 32 records bit b of all registers r ∈ R during instruction i.

4.1.1 Modeling Micro-Architectural Effects

We remark that Definition 6 and Definition 7 allow the verification under fine-grained
leakage models if we match R and B to a concrete CPU. However, CPU designs are usually
missing why we restrict our model to worst-case evaluations with R = R∗ and B = J0, 31K.
Every horizontal probe records all bits of a register, and every vertical probe records bits
with the same index in all registers. Next, we discuss various micro-architectural leakage
sources and show how we model them with horizontal and vertical probes.

Neighbor Leakage Effect. Whenever the CPU interacts with a register, e.g., by reading
or writing its state, a multiplexer tree guides the value from the register to the ALU
or pipeline and vice-versa. Therefore, the multiplexer tree connects multiple registers
and decides the forwarded register state based on a select signal, i.e., the register or
memory address. We remark that, for example, the Cortex-M3 implements this particular
scheme [CGD18] along with other CPUs [GHP+21] (see Figure 2). The resulting leakage is
commonly referred to as neighbor leakage effect [PV17]. As the multiplexer tree connects
bits with the same index from multiple registers, placing a glitch-extended probe on one
multiplexer-tree output bit cascades to probes on multiple registers. Hence, this effect
confirms Lemma 2 and indicates that vertical probes model the neighbor leakage effect.

Proposition 1 (Model Neighbour Leakage Effects). A vertical probe pv = (i,R, b) with
i ∈ I and b < 32 covers all possible leakages sources by neighbour leakage effects on bit
index b and during instruction i.

To model all possible occurrences, i.e. for every instruction and bit index, we consider
vertical probes on all i ∈ I and on all b < 32.

10 PROLEAD_SW

D Q

r14

D Q

r2

D Q

r1

D Q

r0

D Q

ra

ALU

D Q

rb

Barrel Shifter

PC

imm

PC

imm To Load Store Unit (LSU)

To Register File

Figure 2: Simplified ARM Cortex-M3 pipeline structure [CGD18].

Bit-wise Interaction Leakage. While executing an instruction, the ALU may combine
different bits of an operand register through combinational logic [GD22]. In particular,
combining multiple register bits is necessary to perform arithmetic operations, e.g., ADD
or SUB. Therefore, placing a glitch-extended probe on one ALU output results in probes
on multiple bits of the operand register. Hence, this effect confirms Lemma 1 and indicates
that horizontal probes model bit-wise interaction leakage.
Proposition 2 (Model Bit-wise Interaction Leakages). A horizontal probe ph = (i, r, J0, 31K)
with i ∈ I and r ∈ R∗ covers bit-wise interaction leakages in register r during instruction i.

As the ALU processes two operands, the bit-wise interaction leakage is not bounded
one register but to bits within both source registers of an instruction. To model bit-wise
interaction leakage for a particular register pair, we define pairwise horizontal probes.
Definition 8 (Pairwise Horizontal Probe). A pairwise horizontal probe ph = (i, {r0, r1}, B)
with i ∈ I, r0, r1 ∈ R, and B ⊆ J0, 31K records all bits b ∈ B of registers r0 and r1 during
instruction i.

We place pairwise horizontal probes on all register tuples in every instruction i ∈ I.
However, as only the value of the destination register changes during an instruction, the
tuples encompassing the destination register are enough. If we add pairwise horizontal
probes with the destination register for every instruction, we cover all register combinations.
As r17 does not connect to the multiplexer tree we ignore r17 while building pairwise
horizontal probes, but we place an additional horizontal probe on r17 if i decodes an
interaction with the RAM to model the multiplexers between r17 and the registers, as
shown in [MPW22].

Memory Overwrite Effect. If an instruction overwrites a storage element, the correspond-
ing transition leaks information about the old and new states. To abstract transitional
leakage, we can apply transition-extended probes as defined in Definition 4.
Proposition 3 (Model Memory Overwrite Effects). If instruction i ∈ I modifies r ∈ R∗

it holds that a transition-extended probe p = (⟨i, i′⟩, r, b) with i′ ∈ I and b < 32 covers

J. Zeitschner, N. Müller, A. Moradi 11

all memory overwrite effects on register index b while i′ denotes the last instruction that
modified r before executing i.

Consequently, every aforementioned probe must become transition-extended in order
to capture all possible memory overwrite effects. Further, we cover memory overwrites on
the RAM by placing transition-extended probes on every targeted address of the RAM.

Memory Remnant Effect. While overwriting effects lead to transitions on the same
destination register, it was shown in [PV17] and experimentally verified in [MPW22] that
consecutive memory accesses lead to leakage even if the source and destination registers
are different. One explanation is that a hidden (shadow) register caches values for any
RAM activities (either writing to or reading from RAM) or that the related data bus acts
as a hidden register [MMT20]. Hence, transitions on the hidden register cause the memory
remnant effect. Moreover, the results in [MPW22] regarding memory bus width indicate
that the hidden register has a size of 32 bits. Hence, instructions interacting with the
RAM to load/store only 16 or 8 bits lead to the same transition similar to the related
instruction processing a 32-bit word while a multiplexer tree forwards particular byte(s) to
the corresponding register.

Proposition 4 (Model Memory Remnant Effects). If instruction i ∈ I interacts with the
RAM, i.e. reading the new state of r ∈ R from RAM or writing r to the RAM, it holds
that a transition-extended probe p = (⟨i, i′⟩, r17, b) with i′ ∈ I and b < 32 covers all memory
remnant effects on register index b while i′ denotes the last instruction that interacted with
the RAM before executing i.

This proposition corresponds to transition-extended probes on all bits of r17 for every
instruction that accesses the RAM. Moreover, the results in [MPW22] revealed combined
leakage from different bits of r17 highlighting the need for a horizontal probe on r17.

Pipeline Register Overwrites. If the CPU implements a pipeline, the integrated pipeline
registers are prone to transitions combining operands of two consecutive instructions.
Again, the Cortex-M3 implements a transition-prone pipeline (cf. Figure 2) [PV17].
Moreover, the pipeline effects of various ARM CPUs has been shown through practical
experiments in [MPW22]. According to the robust probing model, we consider transitions
in the pipeline by probing consecutive instructions.

Proposition 5 (Model Pipeline Register Overwrites). A transition-extended probe p =
(⟨i, i′⟩, r, b) with i, i′ ∈ I, r ∈ R, and b < 32 covers all pipeline register overwrites on
register r index b while i′ denotes the last instruction that was executed right before i.

Pipeline register overwrites are already covered by vertical probes as both values (old and
new) inside the pipeline are stored in their original registers as well.

4.1.2 Combined Occurrence of Glitches and Transitions

In contrast to [GD22], we consider glitches and transitions simultaneously and discuss
their combined leakage. Therefore, we extend all glitch-extended probes, i.e. horizontal
and vertical probes, by exchanging all resulting standard probes with transition-extended
probes. In particular, if the state of a register r changes during instruction i all probes
p = (i, r, b) become transition-extended probes p′ = (⟨i, i′⟩, r, b) while i′ denotes the last
instruction that changes the state of r before i. For registers that keep their value during
an instruction, no transition extension is needed. For horizontal and vertical probes, we
define their transition-extended variants as follows and visualize the concept in Figure 3.

12 PROLEAD_SW

(a) Transition-extended horizontal probe (b) Transition-extended vertical probe

Figure 3: Different transition-extended probes on the registers.

Definition 9 ((Pairwise) Transition-extended Horizontal Probe). A transition-extended
horizontal probe ph = (⟨i, i′⟩, {r, r′}, B) with i, i′ ∈ I, r, r′ ∈ R, and B ⊆ J0, 31K records all
bits b ∈ B of registers r and r′ during instruction i and all bits b ∈ B of register r during
instruction i′, while i′ denotes the last instruction that modified r before executing i.

Definition 9 denotes r as destination register of i. Hence, all probes on r during i become
transition-extended, while for probes on r′, no transition-extension happens.

Definition 10 (Transition-extended Vertical Probe). A transition-extended vertical probe
pv = (⟨i, i′⟩, R, b) with i, i′ ∈ I, R ⊆ R, and b < 32 records the b-th bit of all registers in
R ⊆ R during instruction i and the b-th bit of register r ∈ R during instruction i′, while
i′ denotes the last instruction that modified r before executing i.

Again, r is the destination register of i while bit b of r is the only bit changing in the
vertical probe. Hence, only p = (i, r, b) becomes transition-extended. We remark that in
PROLEAD_SW based on the settings defined by the user/evaluator, we generate all above
explained probes for every instruction.

4.2 Input Files
Configuration. First, PROLEAD_SW receives all evaluation settings in form of a user-defined
configuration file. In particular, the configuration file contains the following settings.

• Compiler options, such as the compiler flags to use, e.g. level of optimization.

• Simulation settings, such as the primary inputs given to M-Ulator, the number of
simulations, and the number of instructions to evaluate.

• Evaluation settings, such as statistical parameters, physical defaults to consider, and
the underlying security order.

Source Code. Second, the user has to provide the source code, written in C or ARM
assembly. To increase accuracy, we try to minimize the gap between the provided source
code and the final software running on a CPU. Therefore, we reduce the necessary
constraints to a minimum. The remaining restrictions, which are commonly present in
source files running on a CPU anyway, are the following.

• As PROLEAD_SW needs a starting point to emulate, we pre-empt the presence of a
main function.

• Moreover, the source files must contain a cipher function encompassing the sequence
to evaluate. Instructions outside of cipher, i.e., within main but not inside cipher, are

J. Zeitschner, N. Müller, A. Moradi 13

not part of the evaluation. This is reasonable as it allows the user to do pre-processing
and post-processing, e.g., (un-)masking with a dedicated algorithm which would
naturally cause leakage when this instruction sequence is probed.

• The user has to define global variables with the associated names of the primary
inputs in the configuration file. This creates a link for PROLEAD_SW between the
configuration and source files and ensures that the inputs will have a dedicated range
in memory. Otherwise we cannot guarantee that writing the inputs into memory
does not interfere or overwrite other elements, e.g. global arrays that were defined in
the source file.

Linker. Third, a linker script is necessary to describe how sections, e.g., RAM or Flash,
should be mapped, thus controlling the memory layout. To find the global input’s memory
address, we require the existence of the _edata symbol within the linker script to denote
the end of the data section. Additionally, the user can introduce a four-byte .randomness
section in memory containing a single 32-bit random value, which gets refreshed whenever
accessed. We recommend using the given randomness to seed user-provided Pseudo-
Random Number Generator (PRNG) implementations, since utilizing the randomness
source solely would result in a different binary running on the actual micro-controller. This
is because while we have a dedicated memory area from which we load fresh randomness,
micro-controllers need to sample their randomness either from a peripheral or implemented
PRNG, which results in different instructions and register utilization.

Binary. As an alternative to linker and source files, the user can compile the source
code outside of PROLEAD_SW and provide the compilation results, including the binary as
Executable and Linking Format (ELF), the corresponding map file, and a disassembly
file of the binary in text format. Note that all constraints explained above (in paragraph
Source Code) still apply if the compilation is done outside of PROLEAD_SW. The map file
contains the address and size of every load region, execution region, and input section of
the binary. PROLEAD_SW demands this file to initialize the emulator correctly.

4.3 Evaluation
Figure 4 describes the high-level procedure of PROLEAD_SW. If required, the source files
and the linker file are compiled to the final binary and passed to the M-Ulator. It parses
the required information from the output of the previous step to instantiate the emulator.
Together with the information provided in the configuration file, M-Ulator executes one
instance of the binary. During the execution, it simulates the intermediate states of the
considered registers and generates all possible probes which can be placed by an adversary.
Afterwards, multiple probes build different probing sets accordingly to the user given
configuration. Further, statistical tests evaluate the independence of observations within
every probing set individually. In the following, we take a deeper look at each stage
and describe its operations. We remark that we mainly adjust the simulation and the
generation of probes compared to the original hardware version of PROLEAD while the
statistical evaluation is generic and can therefore be used for both hardware and software.

4.4 Compilation
If the user provides only the source files and corresponding linker file, PROLEAD_SW itself
invokes the compiler with the specified compiler flags from the configuration file. To
compile the source-code we apply the arm-none-eabi-gcc compiler7. The compilation

7https://github.com/marketplace/actions/arm-none-eabi-gcc-gnu-arm-embedded-toolchain

https://github.com/marketplace/actions/arm-none-eabi-gcc-gnu-arm-embedded-toolchain

14 PROLEAD_SW

Config File

Linker File

Source Files

Compilation Simulation Generate
Probing Sets

Statistical
Evaluation

Output

Figure 4: High-level overview of PROLEAD_SW.

step generates the required ELF binary together with the disassembly file and map file. We
note that the user is free to use arbitrary compilers if it provides the required information,
such as the map file, the disassembled binary, and a compiled source code for the ARMv6-M,
ARMv7-M, or ARMv7E-M architecture.

4.4.1 Initialization

Initially, PROLEAD_SW allocates three empty data structures with the following properties.

• P is an empty set that stores all probes placed during one simulation.

• G is an empty set that stores the probing sets of all simulations and their corresponding
distributions in form of contingency tables.

• V is a (|I|, |R∗|, 32)-matrix that stores all changes on a simulated state.

Based on the information provided in the map file, PROLEAD_SW extracts the starting
address and the size of RAM, respectively Flash, together with the memory location of
the global inputs and, if available, the position of the dedicated .randomness section.
Subsequently, M-Ulator copies the start address of main into the PC and the start address
of the stack into the Stack Pointer (SP). Next, PROLEAD_SW randomly selects one of the
user-defined groups, which describes the values of the inputs for the current simulation. For
example, in a fixed-vs-random setting with an input size of 32 bits, the user specifies the two
groups 32’hda39a3ee and 32’h$$$$$$$$ in the configuration file where 32’hda39a3ee
denotes a fixed input and 32’h$$$$$$$$ a random vector. If the configuration denotes
certain inputs to be presented in a Boolean shared form, PROLEAD_SW masks those inputs
automatically, i.e., generates a fresh sharing of every corresponding bit at the start of
every simulation. Afterwards, the inputs will be placed in the dedicated memory regions
reserved for the global inputs from the source file. The last step of the initialization phase
simulates the binary until the beginning of the cipher function, where the actual probe
generation starts.

4.5 Simulation
To support a broader range of binaries, we extended the capabilities of M-Ulator to
handle the ARMv7E-M ISA, which enables the use of DSP instructions commonly used
in post-quantum schemes. In the following, we shortly explain the general procedure
during the simulation of a single instruction i ∈ I. For more detailed explanations, we
refer to the original M-Ulator paper [HSP21]. First, M-Ulator fetches the PC register
value. Afterwards, it computes the memory address of i, loads the encoded instruction

J. Zeitschner, N. Müller, A. Moradi 15

(a) Pairwise vertical probe (b) Transition-extended pairwise vertical probe

Figure 5: Pairwise vertical probes to improve efficiency.

from memory, and passes it to the decoder. The decoder translates the opcode into a
machine-readable operation. The execution unit performs the actual logic of the operation
and sets all internal modifications, such as status flags, according to the specification.
After the execution, we store the content of all registers that changed during instruction i
in the matrix V. Particularly, we go through all destination locations d ∈ D and store
each bit at bit-position b at position (i, d, b) in V, i.e., vi,d,b. To be able to quickly identify
the instruction i′ ∈ I that contributed to the previous change of register r ∈ R∗ we extend
M-Ulator further by storing the previous instruction i′ that changed the value of the
register r.

4.5.1 Generation of Probes

If an instruction i is part of the cipher function, we place sufficient probes to detect
possible leakages in i. Additionally, we place subsets of each vertical probe, so-called
pairwise vertical probes as visualized in Figure 5. We would like to remark that the
pairwise vertical probes are already covered by complete vertical probes. However, pairwise
modeling leads to smaller probing sets which are more efficient to evaluate. Moreover, we
expect to detect pairwise leakages faster than with vertical probes, i.e. by less simulations.
Nevertheless, depending on the ALU design, if glitches reveal information about more than
two registers at the same time, the vertical probes must be considered. This is among the
configurations of PROLEAD_SW which can be set by the user.

We formalize our procedure in Algorithm 1. In Line 3, PROLEAD_SW checks whether the
result of i is stored in a register or in RAM. If i writes its result in a register, we create
standard probes on all bits of the destination register r, i.e., p0 = (i, r, 0), . . . , p31 = (i, r, 31)
as done in Line 15. If enabled, PROLEAD_SW will further create horizontal and vertical probes.
Following Definition 6 and Definition 7, an additional horizontal probe ph = (i, r, J0, 31K)
(cf. Line 6) jointly probes all bits of r while an additional vertical probe pv = (i,R, b) (cf.
Line 18) probes the b-th bit of all registers. However, reading or writing data from or to
RAM invokes the hidden memory register r17. Hence, if i interacts with the RAM, as
checked in Line 11, we instantiate additional standard probes on r17. Finally, P stores all
probes of the current simulation.

4.6 Generation of Probing Sets
According to Algorithm 1, every simulation of the binary results in a set P encompassing
all relevant probes for evaluation. To reflect the capabilities of a d-probing adversary,
we combine the individual probes to all possible d-probing sets, i.e., the information a
d-probing adversary gains. We store all probing sets belonging to a certain simulated
execution in the set P∗. PROLEAD already implements a method to combine probes into

16 PROLEAD_SW

Algorithm 1 Probe Generation
Input: i = ⟨m, S, D⟩ ▷ An instruction considered for evaluation
Input: P ▷ Set of probes
Input: R ▷ A list of all registers
Output: P ▷ Updated set of probes according to the execution of i

1: D∗ ← ∅
2: for ∀d ∈ D do
3: if type(d) = reg then
4: r ← d ▷ The corresponding target register
5: D∗ ← D∗ ∪ {r}
6: ph ← (i, r, J0, 31K) ▷ Place a complete horizontal probe on register r
7: P ← P ∪ {ph}
8: for ∀r′ ∈ R\r do
9: ph ← (i, {r, r′}, J0, 31K) ▷ Place a pairwise horizontal probe on register r

10: P ← P ∪ {ph}
11: if type(d) = mem ∨ ∃s ∈ S s.t. type(s) = mem then
12: D∗ ← D∗ ∪ {r17} ▷ Add the hidden memory register
13: for ∀r ∈ D∗ do
14: for ∀b ∈ J0, 31K do
15: p← (i, r, b) ▷ Place a standard probe on bit b of register r
16: P ← P ∪ {p}
17: if r ̸= r17 then
18: pv ← (i,R, b) ▷ Place a complete vertical probe on bit b
19: P ← P ∪ {pv}
20: for ∀r′ ∈ R\r do
21: pv ← (i, {r, r′}, b) ▷ Place a pairwise vertical probe on bit b
22: P ← P ∪ {pv}

probing sets (see. Algorithm 2 of [MM22]) which we also apply. On the one hand, a
univariate attacker places d probes during the same instruction i ∈ I. Hence, we construct
d-combinations of probes p ∈ P that were generated during every instruction i individually
and add them to P∗. On the other hand, a multivariate attacker can place probes on
arbitrary instructions in I. In such a case, we need to allow a combination of every d
arbitrarily probes in P and add them to P∗. Contrary to the hardware evaluation, we
cannot precompute the probing sets for software as the evaluated software may not achieve
constant time. In such a case, the generated probing sets may differ between multiple
simulations. Therefore, we create new probing sets for every simulation and insert them
into the global set G. In particular, for every probing set P in P∗, we check whether P
already exists in G. If so, we update the distribution of the corresponding entry in G based
on the simulated values observed by P. Otherwise, P is inserted into G.

4.7 Probe Extension
During the insertion of a new probing set P into G we have to extend every probe in P
according to [FGP+18], i.e., we transfer all probes to standard probes. This is necessary
to cover the physical defaults and micro-architectural effects. As follows, we express the
procedure for the extension of probes based on glitches and transitions separately.

Glitch-Extension. We remark that we apply horizontal and vertical probes to cover
leakages originating from glitches. Thus, we extend all ph and pv by substituting them with
multiple standard probes recording all single bits recorded by ph or pv. For example consider

J. Zeitschner, N. Müller, A. Moradi 17

a horizontal probe ph = (i, r2, J0, 31K) observing all 32 bits of register r2. After extension,
the corresponding probing set contains 32 probes p0 = (i, r2, 0), . . . , p31 = (i, r2, 31). The
same applies for the extension of a vertical probe. Let us examine pv = (i,R, 5), i.e.,
probing the 5-th bit of every r ∈ R. The extended probing set consists of 17 probes
p0 = (i, r0, 5), . . . , p16 = (i, r16, 5).

Transition-Extension. If we consider transitions, Algorithm 1 automatically generates
transition-extended probes p = (⟨i, i′⟩, r, b) instead of standard probes p = (i, r, b). Hence,
to extend p, we generate a tuple of standard probes (p, p′) with p = (i, r, b) and p′ =
(i′, r, b). The same procedure applies for horizontal probes, i.e., Algorithm 1 stores
ph = (⟨i, i′⟩, r, J0, 31K) instead of ph = (i, r, J0, 31K) what corresponds to 32 tuples (ph, p

′

h)
and 64 standard probes in total. For vertical probes, only transitions during instruction
i = (m, S, D), i.e., on its destinations, are considered. Therefore, a transition-extended
vertical probe pv = (i, R, b) just extends pv with a standard probe p′ = (i′, r, b). The same
applies for pairwise horizontal probes.

4.8 Statistical Evaluation

Every probing set in G stores the distribution of the associated observation for every
considered group in form of a contingency table. As shown in Section 4.4.1, the user
specifies the underlying test procedure by setting the number of groups and a (fixed
or random) value for each group. For example, a user can decide to perform a fixed
versus fixed (resp. fixed versus random) test by specifying two groups with fixed but
different group values (resp. one fixed and one random group value). Especially, fixed
versus random tests are commonly known in the context of SCA. Note that similar to the
hardware PROLEAD, the user can define more than two groups, e.g. different fixed values
for each group. After each simulation, we update the contingency tables of all probing
sets in G which observed in the last simulation. PROLEAD_SW quantifies the statistical
independence of all groups through the G-test. For each probing set, PROLEAD_SW returns
the false-positive probability by means of a p-value and reports detectable leakage if the
p-value becomes smaller than 10−5.

4.8.1 Confidence

Similar to PROLEAD, we satisfy the confidentiality of PROLEAD_SW by estimating the test
metric’s statistical power. Further, we rely on the same parameters, i.e., a false-positive
and false-negative probability threshold of 10−5 and an effect size of ϕ = 0.1. To compute
the required number of simulations to reach the given parameters, we apply the same
numerical estimation as PROLEAD. For an extensive explanation of the methodology, we
refer to the original PROLEAD paper [MM22]. However, we point out the most important
difference between the confidentiality of hardware and software results. First, we remark
that each probe, investigated by PROLEAD is glitch-extended and therefore expands to a
probing set whose size is bounded by the underlying circuit. Contrary, each probe in
the software scenario expands to a fixed-size probing set making the number of required
simulations more predictable. Further, if PROLEAD_SW evaluates an implementation without
considering horizontal or vertical probes, each probe expands to at most two standard
probes, i.e., when the standard probe is transition-extended. This leads to confident results
based on a few thousand simulations which are usually not feasible for hardware. On the
other side, considering all micro-architectural effects, especially by including horizontal or
vertical probes, requires significantly more simulations to achieve a confident result.

18 PROLEAD_SW

5 Case Studies
To show the importance of PROLEAD_SW for the evaluation of masked software and to
be able to make practical statements concerning its performance, we examined real-
world case studies based on publicly available implementations. In summary, PROLEAD_SW
detects security flaws in almost all investigated implementations. Based on the reports
of PROLEAD_SW, we can precisely isolate the leakage source and give practical hints for
avoidance. A summary of the considered implementations and details of the detected
leakages including the required resources and the performance of PROLEAD_SW are given in
Table 1.

5.1 Setup
We evaluated all implementations based on a fixed-vs-random setting. Hence, we considered
two groups, one with a fixed vector as input, and the other one a random input. For all
AES implementations we used the fixed plaintext 0xda39a3ee5e6b4b0d3255bfef95601890,
and the key 0x2b7e151628aed2a6abf7158809cf4f3c. Our general procedure is as follows.
First, we evaluate all implementations by considering normal probes only. If PROLEAD_SW
detects no leakage, we continue the evaluation considering transitions as well as probes
on the RAM. Again, if no leakage is detected, we rerun the evaluation and, in addition,
consider horizontal and vertical probes. Finally, if PROLEAD_SW does not report any leaking
probes, we consider the implementation as secure. As we want to be comparable to the
similar experimental analysis reported in [BWG+22], we restrict the number of simulations
to 10 000.

We ran PROLEAD_SW in a Linux subsystem, containing a Ubuntu 20.04 LTS 64-bit
distribution, on a Windows server with an AMD EPYC 7352 CPU. While the CPU
contains 48 hyper-threading cores operating at 2.3 GHz, we limited the number of parallel
threads to 30. Moreover, the server has 500 GB of RAM, which is more than enough to
keep all probing sets, including contingency tables, in the RAM. As all experiments are
possible with a smaller amount of RAM, we report the RAM usage for each experiment
separately. We compiled the source files with the 9-2019-q4-major arm-none-eabi-gcc
version.

5.2 Provable Secure Software Masking in the Real-World
We start with investigating a collection of four AES implementations from different authors
experimentally evaluated in [BWG+22]. The underlying masking schemes differ across the
implementations. For their experimental analysis, the authors of [BWG+22] imitated the
compiler optimizations from the given makefiles of the original implementations/repositories.
All of their software was compiled with -O3 except the Inner Product Masking (IPM)
scheme, which was compiled with -O1. We follow the same principle for compilation
and evaluation to allow a meaningful comparison of the results. In short, the authors
detected first-order leakage for all implementations based on a Test Vector Leakage
Assessment (TVLA) with 10 000 traces on an STM32F415 micro-controller with Cortex-
M4.

5.2.1 Provably Secure Higher-Order Masking of AES

Rivain and Prouff [RP10] adapted the hardware-oriented masking scheme by Ishai et
al. [ISW03] for software and extended it to higher security orders. More specifically, they
generalized the protected multiplication from Ishai et al. [ISW03] over F2 to Fn

2 . Further,
they implemented the non-linear part of the AES Sbox computation, i.e., x254 in F8

2, by
replacing all unprotected multiplications of the multiplication chain with their secure

J. Zeitschner, N. Müller, A. Moradi 19

version. A reference implementation for arbitrary security orders is publicly available on
GitHub8. We remark that the given masking scheme is provably d-probing secure.

Results. Without considering physical effects and memory probes, PROLEAD_SW confirms
its d-probing security using on 10 000 simulations. However, if PROLEAD_SW covers leakages
due to transitions, a few hundred simulations are enough to detect significant first-
order leakage. We analyzed the source of leakage in depth using PROLEAD_SW’s provided
information and visualized it with the provided disassembled code snippet.
<multshare.constprop.0 >:

[...]
(496) eors r3 , r1 // calculate result , store one share in r3
[...]

<cipher >:
[...]

bl 0x80f8 <multshare.constprop.0 >
(500) ldrb.w r2 , [sp , #181]
(501) ldrb.w r3 , [sp , #180] // Write second share in r3
[...]

The multshare function performs a shared multiplication resulting in two output shares.
Instruction 496 writes one of the output shares into register r3 before terminating the
function. After termination, instruction 501 stores a value from memory into register r3
overwriting the shared output of multshare. However, the memory state depends on the
second share leading to transitional leakage during the overwrite on r3. We point out that
transitional leakage does not violate the author’s claim of d-probing security. However,
transitional leakage due to a register overwrite is not bounded to a specific CPU but makes
the implementation insecure in practice and for arbitrary CPUs. Hence, a practically
secure implementation must avoid transitional leakages due to memory overwrites.

5.2.2 Higher order Masking of Look-up Tables

Contrary to [RP10], the construction of Coron does not compute any multiplication in
F8

2 [Cor14] but generalizes the randomized table countermeasure [CJRR99] to arbitrary
orders. The idea of the author in the first-order case is to start randomizing the Sbox
table S(x) in memory by computing T (x′) = S(x⊕ r)⊕ s, with input mask r and output
mask s. A table look-up with x′ = x ⊕ r being the masked input is then the memory
access of T (x′). This process of recomputing the randomized table with inputs blinded by
r followed by a masked table look-up is repeated for every access to T . The underlying
implementation can be found on GitHub9.

Results. PROLEAD_SW confirms the first-order probing security of the implementation using
10 000 simulations when considering only normal probes. Nevertheless, PROLEAD_SW detects
transitional leakage running a few hundred simulations. Again, using extra information
provided by PROLEAD_SW enabled us to track security violations, such as the transition of
two shares in the following code snippet. The leakage is caused by far-reaching compiler
optimizations. In particular, the compiler merges ShiftRows and MixColumns operations.
Consequently, MixColumns accesses the bytes as if they were already shifted and writes
the result to the correctly shifted position. In this context, instruction 70152 loads one
share from memory into register r0 on which linear operations are performed.
<cipher >:

[...]
(70152) ldr.w r0 , [r7 , #128] // load one share
[...] // code does not change content of r0
(70163) ldrb.w r0 , [fp, #15] // load second share

8https://github.com/coron/htable
9https://github.com/coron/htable

https://github.com/coron/htable
https://github.com/coron/htable

20 PROLEAD_SW

[...]

Afterwards, the function linearly processes the second share after writing it into r0.
Therefore, the transition on r0 leaks information about the unshared state. For this
example, PROLEAD_SW detects such transitions across multiple instructions with different
distances in time. Again, the implementation becomes insecure on arbitrary CPUs due to
the memory overwrite effect.

5.2.3 Side-Channel Masking with Pseudo-Random Generator

The third masking scheme, which is also available on GitHub10, adapts the Rivain-Prouff
countermeasure in addition to a Final Locality Refresh (FLR) in each gadget [CGZ20].
The randomness locality l depicts the amount of random bits required to calculate each
value in the circuit with only the original input and at most l bits of randomness [IKL+13].
The goal of improving the locality is to require less random bits in total. To create the
required randomness different independent PRNGs are instantiated.
<multshare_flr_mprgmat >:

[...]
(537) ldrb r3 , [r5 , #0] // contains first share
(538) ldrb r2 , [r5 , #1] // contains second share
(539) strb r0 , [r5 , #0]
(540) eors r3 , r2 // recombination of shares
[...]

We confirm the observation in [BWG+22] that the underlying masking scheme on the
compiled binary provides no security in the first round. In fact, we could verify that the
compiler causes undesired recombination of the shares by XOR-ing the corresponding
registers together. When evaluating by only normal probes, PROLEAD_SW’s provided
information helped us to identify the snippet shown above as a hazardous example. After
loading the two shares in r3 and r2, instruction 540 reveals the unshared value. Strictly
speaking, this is not a micro-architectural leakage but a security flaw in the implementation.
Thus, this is independent of the employed platform.

5.2.4 Detecting Faults in Inner Product Masking (IPM) Scheme

Cheng et al. [CCG+21] combined IPM and fault detection techniques to create a masked
AES implementation11, which also detects faults. As PROLEAD_SW cannot detect faults,
we solely concentrate on the IPM scheme. To represent variable x in a masked form, two
random vectors L = (l1, . . . , ln) and R = (r1, . . . , rn) are constructed, such that x is the
inner product of the vectors L and R [BFGV12]. Cheng et al. further adapted inner
product operations such as addition, multiplication, and refresh to their needs to handle
the combination of masking and fault detection.

Results. PROLEAD_SW detects first-order leakage within a set of 10 000 simulations using
normal probes, i.e., no transitional, horizontal, or vertical. However, the observed leakage,
i.e., the g-statistic value, grows slower compared to previously evaluated implementations.
All investigated leaking instructions are located within the GF256_Mult function, computing
multiplications in F8

2, but from different function calls. We give the source code of
GF256_Mult below.
uint8_t GF256_Mult(uint8_t a, uint8_t b) {

int x = a, y = b, m, res = 0;
for (unsigned char i = 0; i < 8; i++) {

m = -(y & 1); //m is either 0xffff or 0x0000
res ^= (x & m);

10https://github.com/coron/htable
11https://github.com/Qomo-CHENG/IPM-FD

https://github.com/coron/htable
https://github.com/Qomo-CHENG/IPM-FD

J. Zeitschner, N. Müller, A. Moradi 21

y >>= 1;
x <<= 1;
m = -((x >> 8) & 1); //MSB
x ^= (m & 0x1b);

}
return (uint8_t)res;

}

Concretely, the XOR operation (highlighted in red) causes leakage due to a potentially
non-uniform sharing. We note that the leakage only occurs during particular function
calls, e.g. if the input sharing is not uniform. However, this violates the practical security
independent of the underlying platform.

5.3 Hardened Library for AES-128 Encryption/Decryption on ARM
Cortex-M4 Architecture

The French government agency referred to as ANSSI12 made use of affine masking [FMPR10]
to create a first-order protected AES implementation available via GitHub13, also known
as ASCAD_v2. Its (input and key) state X ∈ (F8

2)16 is of the form r × xi ⊕mi while
r ∈ F8

2 denotes a non-zero random value as multiplicative mask, xi ∈ F8
2 one byte of the

state, and mi ∈ F8
2 one byte of a random 128-bit vector. The finite-field multiplication in

F8
2 using Rinjdael polynomial is indicated by ×. Further, the implementation combines

masking with random shuffling of the operations order. An encryption procedure is divided
into three steps. First, the pre-processing step performs precomputations of the tables and
the masked key schedule. Second, actual AES round computations are carried out. Finally,
the post-processing step unmasks the state to generate a valid ciphertext. The authors
experimentally verified the SCA resistance of their implementation on a ChipWhisperer
board based on an STM32F303RCT7 chip with a Cortex-M4 core by performing CPA
attacks on 50 000 traces.

Results. This example demonstrates the ability of PROLEAD_SW to handle pre-compiled
binaries, i.e. providing a binary as input. The authors provided a makefile generating
a ready-to-use firmware binary for the STM32F4 discovery board. We used the same
makefile to generate the binary outside of PROLEAD_SW, i.e. before invocation. We only
commented out hardware-specific operations, e.g., flushing the board, initializing LEDs
etc., and added the generation of the map and disassembled files. We provided PROLEAD_SW
with the path to our binary, map file and disassembled file and started the evaluation
process. The result of our first-order assessment with all effects enabled did not show
any leakage for 10 000 simulations. Therefore, we confirm the first-order security of the
underlying implementation.

5.4 Bitslicing Arithmetic/Boolean Masking Conversions
Efficient conversions between arithmetic and Boolean masking are of great importance
for the performance of lattice-based Key Encapsulation Mechanisms (KEMs). Such post-
quantum schemes combine bit-level logical with arithmetic operations modulo p. Both
Boolean and arithmetic masking achieve performance improvements in their respective
field. Bronchain and Cassiers [BC22] introduced efficient masked bitsliced Arithmetic-
to-Boolean (A2B) and Boolean-to-Arithmetic (B2A) conversion gadgets for arbitrary
orders. Additionally, the authors introduced a gadget computing addition over Boolean
masked variables without any conversions. All gadgets are secure under the Probe-Isolating
Non-Interference (PINI) notion [CS20] and are hardened to cope with micro-architectural
effects, such as transitions or overwrites in memory paths.

12https://www.ssi.gouv.fr/
13https://github.com/ANSSI-FR/SecAESSTM32

https://www.ssi.gouv.fr/
https://github.com/ANSSI-FR/SecAESSTM32

22 PROLEAD_SW

We used the dedicated test cases, provided by the authors on GitHub14 for the
evaluation of all three gadgets used in their K3 and S3 implementation of Kyber [BDK+18],
respectively Saber [DKRV]. For the sake of consistency with other parts of the paper, we
evaluated the first-order security of all gadgets, i.e., with two shares, and using only 10 000
simulations. Moreover, we set the modulus to p = 3329. We imitated the compiler flags
for the test cases except for the floating point option, which is currently not supported by
PROLEAD_SW.

5.4.1 Secure Addition

The secure addition function SecAdd implements a key component of the following conver-
sion gadgets.

Results. By PROLEAD_SW we confirm its 1-probing security, as no leakage was found
within a set of 10 000 simulations using only normal probes. However, PROLEAD_SW detects
significant transitional leakages after processing a few hundred simulations. We identified
the most significant bit of the Program Status Register (PSR) as the source of leakage.
Therefore, we searched for instructions updating the PSR in the manually written assembly
code and identified two occurrences.
<loop_cross_ext >:

[...]
eors r2 , r2 , r0 // r2 = bj ^ r, updates PSR
[...]
eors r2 , r2 , r0 // r2 = bj ^ r, updates PSR
[...]

Here, both instructions overwrite the most significant bit of the PSR with the most
significant bit of the instructions’ result. Consequently, the PSR leads to transitional
leakage if the given instructions operate on both shares separately. To avoid transitional
leakage, we remove the status flag specifier, i.e., we replace all eors with eor. By this
the correct functionality of the gadget is still maintained, and we did not detect any
transitional leakages by up to 10 000 simulations. In fact, even if we consider all effects
(vertial and horizontal probes), PROLEAD_SW still detects no leakages. For the following
evaluations, we removed the status update flag from all such instructions.

5.4.2 Secure Arithmetic-to-Boolean Masking Conversion Modulo p

The A2B gadget follows a recursive divide-and-conquer approach. The gadget converts two
halves of the shares to their Boolean form and adds them by applying the secure addition
modulo p.

Results. As before, PROLEAD_SW detects no leakage even considering transitional probes
on registers or memory read and writes. However, contrary to the experimental results
shown in [BC22], PROLEAD_SW detects first-order leakage after a few hundred simulations
if vertical probes are covered. We used PROLEAD_SW’s output to trace the vertical probe
back to its assembly instruction. The first standard probe is inside the secadd_constant
function, which gets called internally. Inside this function a local array is declared, which
during the execution contains the copy of the bit-wise inversion of one input share. On
the assembly level, this translates to an instruction storing the contents on register r14.
The content of r14, i.e., the bit-wise inversion of the share, does not get cleared until we
reach the second probe of our probing set. This probe contains the second input share
by loading the value into register r4 during the copy_sharing function call, subsequent to
secadd_constant function. When we now place a vertical probe on r4, which also receive
information about r14, we indeed created a probing set which combines both shares.

14https://github.com/uclcrypto/pqm4_masked

https://github.com/uclcrypto/pqm4_masked

J. Zeitschner, N. Müller, A. Moradi 23

<secadd_constant >:
[...]
(1750) str r14 , [r8]
[...]

<copy_sharing_loop >:
[...]
(2696) ldr r4 , [r3 , #0]
[...]

The reason why the authors did not experimentally see such a leakage can be threefold.
PROLEAD_SW does not assume a specific target architecture but evaluates a generic model.
As our model is designed to capture all possible occurrences of specific physical defaults (in
this case, neighbor leakage effects), it tends to be over-conservative. A particular neighbor
leakage effect does not necessarily occur on every device. Here, the concrete occurrence
of leakages depends on the implementation of the multiplexer-tree between registers and
the ALU. Nevertheless, PROLEAD_SW makes it possible to evaluate physical security for
arbitrary designs and independent of the targeted CPU. In other words, the leakage
detected by PROLEAD_SW might be observed in practice if the experiments are conducted
on a different CPU than that of [BC22]. Further, the underlying evaluation schemes differ
slightly, as we evaluate the implementation with a probing-based fixed-vs-random test,
while the authors have evaluated their implementation with a fixed-vs-fixed t-test. Lastly,
we note that the compiler flags do not perfectly match the ones used by Bronchain and
Cassiers as M-Ulator lacks a Floating Point Unit (FPU) and, thus, the compiled binaries
might be different.

5.4.3 Secure Boolean-to-Arithmetic Masking Conversion Modulo p

Contrary to all previous case studies, the B2A gadget is not constant-time as the underlying
algorithm probabilistically samples randomness from Zp.

Results. PROLEAD_SW can also handle implementations that are not constant-time in a
reasonable amount of time. If we enable all effects except vertical probes, PROLEAD_SW
detects no leakages after simulating 10 000 runs. However, when we enable vertical probes,
we detect first-order leakages similar to the above explained test on the A2B conversion
gadget. This stems from multiple internal calls to the arithmetic to Boolean conversion
function evaluated in the previous section.

5.5 Threshold Implementations in Software: Micro-Architectural Leak-
ages in Algorithms

Gaspoz and Dhooge [GD22] designed first-order secure software threshold implementations
by achieving register non-completeness and uniformity based on the properties described
in Lemma 1 and Lemma 2. They provided a first-order masked PRESENT implementa-
tion, two variants of the Keccak-f permutation, and the masked representation of 4-bit
quadratic bijective classes. Security of all implementations were experimentally verified
on a CW308T-STM32F target board with a STM32F415RG Cortex-M4 micro-controller.
They collected one million measurements and performed fixed-vs-random first-order t-tests.
All implementations stayed within the threshold boundaries. Their implementations are
publicly available on GitHub15. We evaluated all schemes with 10 000 simulations and
enabled transitions, horizontal probes and vertical probes. While we could verify the
non-completeness and uniformity properties of the quadratic classes and Keccak-f imple-
mentations, we identified leakage from vertical probes in the PRESENT implementation.

15https://github.com/KULeuven-COSIC/Software-masked-Keccak-and-PRESENT

https://github.com/KULeuven-COSIC/Software-masked-Keccak-and-PRESENT

24 PROLEAD_SW

5.5.1 PRESENT

The masked cipher takes two shares of the 64-bit plaintext as inputs. In order to ensure
register non-completeness, the authors have shifted one share of the sensitive values one
bit to the right. Then, the permutation layer of PRESENT is performed share-wise. As
the non-linear layer contributes to the highest overheard in terms of runtime, the authors
performed the Sbox computations in parallel by bitslicing the shares and calculating the
output based on the algebraic normal form of the component functions.

Results. With PROLEAD_SW, we detected subtle leakages across multiple instructions that
violate the register non-completeness property with only a few hundred simulations. More
specifically, we are able to find vertical probes that combine bits of both shares during
the bitslice generation for the Sbox inputs. After the orr instruction in line 121 shown
below, r2 contains the least significant bits of all state nibbles of the first share. As follows,
we visualize the content of r2 where each position of the register contains the symbolic
representation of the share and its corresponding bit index.

<sbox_player >:
[...]
(121) orr r2 , r2 , r11
[...]
(469) lsr r11 , r10 , #9
[...]

unused

31 ... 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s0
32 s0

36 s0
40 s0

44 s0
48 s0

52s0
52 s0

56 s0
60 s0

0 s0
4 s0

8 s0
12 s0

16 s0
20 s0

24 s0
28

The content of r2 does not change until we reach the lsr instruction in line 469. Here,
r10 contains the higher 32 bits of the second share. Because the second share is rotated by
one bit, we can symbolically represent the contents of r10 as s1

32 at the most significant
bit position, followed by s1

63, s1
62, s1

61 and so forth until we end up with s1
33 at the least

significant bit position. If we shift r10 now by nine positions to the right and write the
result into r11 (as done by the instruction in line 469), we end up with the state given
below.

31 30 29 ... 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s1
41 s1

40
. . . s1

55 s1
54 s1

53 s1
52s1
52 s1

51 s1
50 s1

49 s1
48 s1

47 s1
46 s1

45 s1
44 s1

43 s1
42

We can see that at index 10 of registers r2 and r11 both shares of bit 52 are vertically
at the same position, thus violating the register non-completeness property. Again, the
question whether the leakage is observable in practice depends on the way the ALU is
designed and constructed.

6 Limitations
While PROLEAD_SW enables the evaluation of large software designs, which are out of the
scope of the known formal verification tools, there is still plenty of work to be done. Below,
we discuss all features missing in M-Ulator and PROLEAD_SW. Integrating these features
can help to further improve assessment of masked software implementations.

J. Zeitschner, N. Müller, A. Moradi 25

6.1 M-Ulator Limitations
Currently, M-Ulator supports only the instructions of ARMv6-M, ARMv7-M, and ARMv7E-
M ISAs. Other architectures, e.g., ARMv8-M, are not supported yet. Further, the uti-
lization of floating point registers as temporary storage elements may reduce the runtime
and enable higher flexibility, especially for post-quantum schemes [ACC+21, CHK+21],
but cannot be emulated as the FPU is not supported by M-Ulator. Almost all CPUs that
implement the currently supported ISAs do not come with built-in caches. Contrary, the
Cortex-M7 implementing the ARMv7E-M ISA utilizes a 64 kB instruction and data cache
which is not supported by M-Ulator.

6.2 PROLEAD_SW Limitations
The evaluation procedure is generic in the sense that the CPU-netlist is not required.
In other words, PROLEAD_SW does not ask for any detailed information about the exact
physical behavior of the CPU. Consequently, if all micro-architectural effects (transitions,
vertical, horizontal probes, etc.) are enables, its evaluation tends to be conservative as
it covers a worst-case scenario, i.e., a CPU whose detailed internal architecture is not
known. Therefore, the leakages detected by PROLEAD_SW may not be observable in practice
for every realization/implementation of the underlying CPU. However, if PROLEAD_SW
reports the security of an implementation when covering all micro-architectural effects,
the implementation would very likely stay secure in practice.

To the best of our knowledge, no other generic formal verification tool considers
more micro-architectural effects than PROLEAD_SW, but it even still misses some micro-
architectural sources of leakage. These include but not limited to leakages due to branch
prediction, speculative execution, and caches. Covering such missing micro-architectural
effects would be a beneficial improvement to PROLEAD_SW. Similar to [PV17], we believe
that a single probing set encompassing standard probes on all bits of every register at
the same time would be able to cover more, even unnoticed, micro-architectural effects.
However, such a model limits the designer to store only an incomplete set of shares in
the entire registers and requires an infeasible amount of simulations and/or computing

Table 1: Evaluation results. Effects column indicates the first configuration with which we
detected leakages. Effects are ordered and abbreviated as N=normal probe, T=transition,
M=memory, H=horizontal, V=vertical.

Design Effects Security #Instr Performance
(order, achieved) [#sets] [RAM] [time]

AES, RP [RP10] T (1, ✗) 11 520 741 856 5.5 GB 14 sec
AES, Htable [Cor14] T (1, ✗) 71 033 4 168 384 9.8 GB 1 min
AES, IPM [CCG+21] N (1, ✗) 113 301 8 122 880 13 GB 35 min
AES, FLR [CGZ20] N (1, ✗) 25 208 1 567 680 5.8 GB 22 sec
ANSSI AES* [FMPR10] (1, ✓) 2 854 358 096 21 GB 17 min
SecAdd [BC22] (1, ✓) 4 024 3 808 448 18.3 GB 27 min
SecB2AModp [BC22] V (1, ✗) variable† 89 686 816 123 GB 21 h
SecA2BModp [BC22] V (1, ✗) 9 852 9 648 224 45 GB 10 min
PRESENT [GD22] V (1, ✗) 2 799 1 401 856 14 GB 4 min

∗ specific GitHub implementation13 † on average approximately 50 000 instructions

26 PROLEAD_SW

resources to get an insight about the security/vulnerability of the implementation under
test. In fact, evaluating the implementations from [GD22] under this additional restriction
exhibits leakage as all of the shares are simultaneously present in the register banks.

In the context of performance, PROLEAD_SW can analyze the security of first-order
masked implementations within minutes to hours as shown in Section 5. The analysis of
higher-order schemes forthright follows the approach in Section 4.6 but is computationally
more intense, especially in multivariate scenarios.

6.3 Benchmarks

Finally, we show the capabilities of PROLEAD_SW by evaluating a masked implementation
computing a bitsliced Boolean AND operation receiving two 32-bit operands and generating
the corresponding 32-bit output. The implementation is publicly available via GitHub16,
and can be compiled for arbitrary security orders, i.e. with different numbers of shares,
and is hardened against all micro-architectural leakage sources considered by PROLEAD_SW.
Consequently, we detect no univariate leakage for the first three security orders using 1000
simlulations. The benchmarking results, visualized in Figure 6, are twofold. First, we
conducted the evaluations without considering any micro-architectural effects (indicated
by dotted lines). Then, we enabled the detection of any covered micro-architectural effect
and reran the evaluations (indicated by solid lines).

1 2 3
Security Order

100

101

102

103

104

St
or
ag

e
(G
B)

100

102

104

106

Ru
nt
im

e
(S
ec
on
ds
)

(a) Resources of PROLEAD_SW

1 2 3
Security Order

102

103

104

#I
ns
tru

ct
io
ns

103

106

109

#P
ro
bi
ng

 S
et
s

(b) Design characteristics

Figure 6: Benchmark results of PROLEAD_SW for different security orders using 1000
simulations. Curves with dotted lines indicate the results when no micro-architectural
effects are considered, and curves with solid lines when all micro-architectural effects are
covered.

The runtime and the required RAM of PROLEAD_SW grow exponentially with the security
order which is due to the exponentially increasing number of probing sets and size of the
underlying contingency tables. Therefore, we guess that the evaluation of larger masked
designs with PROLEAD_SW is limited to the first two orders when multivariate leakages
are expected to be covered. However, similar to PROLEAD for hardware, the evaluation
can be restricted to particular parts of the code, particular probing sets, and particular
micro-architectural effects. Hence, even if a full evaluation with all micro-architectural
effects on the entire software is not feasible, PROLEAD_SW may help software engineers to
find potential security flaws.

16https://github.com/uclcrypto/pqm4_masked

https://github.com/uclcrypto/pqm4_masked

J. Zeitschner, N. Müller, A. Moradi 27

7 Conclusions
In this work, we presented PROLEAD_SW, an extension of the hardware-based leakage
evaluator PROLEAD to verify the probing security of masked software implementations.
More concretely, PROLEAD_SW targets software implementations for Cortex-M processors
at the binary level. Its highly-accelerated simulation-based approach – based on the
open-source ARM emulator M-Ulator – allows the assessment of large implementations
in a reasonable amount of time, which is infeasible when using state-of-the-art formal
verification tools. To support a broad range of applications, we extended M-Ulator by
additionally supporting the ARMv7E-M ISA excluding floating point operations. Contrary
to other leakage simulators, we are not bounded to a hypothetical power consumption
model, and can handle arbitrary logic in implementations. More specifically, PROLEAD_SW
can handle recursions, branches, conditions, and non constant-time codes. PROLEAD_SW
can detect a wide range of micro-architectural effects leading to some form of glitches
and transitions while being in line with the robust probing security model. We have
shown the efficiency, accuracy, as well as importance of PROLEAD_SW through multiple case
studies. By means of PROLEAD_SW, we identified leakage due to several micro-architectural
effects during the execution of binaries leading to security degradation in several publicly
available masked software implementations. We highlight that we confirmed the findings
of PROLEAD_SW by carefully examining its reports, i.e., the identified source of leakages.

Acknowledgments
The work described in this paper has been supported in part by the German Research
Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972,
and by the Federal Ministry of Education and Research of Germany through the Project
DevToSCA (16KIS1603).

References
[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,

Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial Multiplication
in NTRU Prime Comparison of Optimization Strategies on Cortex-M4. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):217–238, 2021.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskVerif: Automated Verification
of Higher-Order Masking in Presence of Physical Defaults. In ESORICS 2019,
volume 11735 of LNCS, pages 300–318, 2019.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order Mask-
ing. In EUROCRYPT 2015, volume 9056 of LNCS, pages 457–485. Springer,
2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. pages 116–129. ACM,
2016.

[BBYS22] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. SoK:
Design Tools for Side-Channel-Aware Implementations. In ASIA CCS 2022,
pages 756–770. ACM, 2022.

28 PROLEAD_SW

[BC22] Olivier Bronchain and Gaëtan Cassiers. Bitslicing Arithmetic/Boolean Masking
Conversions for Fun and Profit with Application to Lattice-Based KEMs. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):553–588, 2022.

[BDK+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYS-
TALS - kyber: A cca-secure module-lattice-based KEM. In EuroS&P, 2018,
pages 353–367. IEEE, 2018.

[BDM+20] Sonia Belaïd, Pierre-Évariste Dagand, Darius Mercadier, Matthieu Rivain,
and Raphaël Wintersdorff. Tornado: Automatic Generation of Probing-Secure
Masked Bitsliced Implementations. In EUROCRYPT 2020, volume 12107 of
LNCS, pages 311–341, 2020.

[BFGV12] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, and Ingrid Verbauwhede.
Theory and practice of a leakage resilient masking scheme. In ASIACRYPT,
2012, volume 7658 of LNCS, pages 758–775. Springer, 2012.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal Verification of Masked Hardware
Implementations in the Presence of Glitches. In EUROCRYPT 2018, volume
10821 of LNCS, pages 321–353. Springer, 2018.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight Private Circuits:
Achieving Probing Security with the Least Refreshing. In ASIACRYPT 2018,
volume 11273 of LNCS, pages 343–372. Springer, 2018.

[BWG+22] Arthur Beckers, Lennert Wouters, Benedikt Gierlichs, Bart Preneel, and Ingrid
Verbauwhede. Provable Secure Software Masking in the Real-World. In
COSADE 2022, volume 13211 of LNCS, pages 215–235. Springer, 2022.

[CCG+21] Wei Cheng, Claude Carlet, Kouassi Goli, Jean-Luc Danger, and Sylvain Guilley.
Detecting faults in inner product masking scheme. volume 11, pages 119–133,
2021.

[CGD18] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural
Power Simulator for Leakage Assessment of Cryptographic Software on ARM
Cortex-M3 Processors. In COSADE 2018, volume 10815 of LNCS, pages 82–98.
Springer, 2018.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-Channel
Masking with Pseudo-Random Generator. In EUROCRYPT 2020, volume
12107 of LNCS, pages 342–375. Springer, 2020.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-
unfriendly Rings New Speed Records for Saber and NTRU on Cortex-M4 and
AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–188, 2021.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO 1999,
volume 1666 of LNCS, pages 398–412. Springer, 1999.

[Cor14] Jean-Sébastien Coron. Higher Order Masking of Look-Up Tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 441–458. Springer, 2014.

J. Zeitschner, N. Müller, A. Moradi 29

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Trans. Inf. Forensics Secur., 15:2542–2555, 2020.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In EUROCRYPT 2014,
volume 8441 of LNCS, pages 423–440. Springer, 2014.

[DKRV] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-lwr based key exchange, cpa-secure encryption
and cca-secure KEM. In AFRICACRYPT, 2018, volume 10831 of Lecture
Notes in Computer Science, pages 282–305. Springer.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FMPR10] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
Affine Masking against Higher-Order Side Channel Analysis. In SAC 2010,
volume 6544 of LNCS, pages 262–280. Springer, 2010.

[GD22] John Gaspoz and Siemen Dhooghe. Threshold implementations in software:
Micro-architectural leakages in algorithms. IACR, page 1546, 2022.

[GHP+21] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Roderick
Bloem. Coco: Co-Design and Co-Verification of Masked Software Implementa-
tions on CPUs. In USENIX Security 2021, pages 1469–1468, 2021.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
Analysis: Concrete Results. In CHES 2001, volume 2162 of LNCS, pages
251–261. Springer, 2001.

[HSP21] Max Hoffmann, Falk Schellenberg, and Christof Paar. ARMORY: Fully
Automated and Exhaustive Fault Simulation on ARM-M Binaries. IEEE
Trans. Inf. Forensics Secur., 16:1058–1073, 2021.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and David Zuckerman. Robust Pseudorandom Generators. In
ICALP 2013, volume 7965 of LNCS, pages 576–588. Springer, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO 1999, volume 1666 of LNCS, pages 388–397. Springer, 1999.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO 1996, volume 1109 of LNCS, pages
104–113. Springer, 1996.

[MM22] Nicolai Müller and Amir Moradi. PROLEAD A Probing-Based Hardware Leak-
age Detection Tool. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(4):311–
348, 2022.

30 PROLEAD_SW

[MMT20] Lauren De Meyer, Elke De Mulder, and Michael Tunstall. On the Effect of the
(Micro)Architecture on the Development of Side-Channel Resistant Software.
IACR Cryptol. ePrint Arch., page 1297, 2020.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards Practical
Tools for Side Channel Aware Software Engineering: ’Grey Box’ Modelling for
Instruction Leakages. In USENIX Security 2017, pages 199–216, 2017.

[MPW22] Ben Marshall, Dan Page, and James Webb. MIRACLE: MIcRo-ArChitectural
Leakage Evaluation A study of micro-architectural power leakage across many
devices. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):175–220, 2022.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the Gap: Towards
Secure 1st-Order Masking in Software. In COSADE 2017, volume 10348 of
LNCS, pages 282–297. Springer, 2017.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking
of AES. In CHES 2010, volume 6225, pages 413–427. Springer, 2010.

[Sha79] Adi Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.

[SSB+21] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. Rosita: Towards Automatic Elimination of Power-
Analysis Leakage in Ciphers. In NDSS 2021, 2021.

[Yiu16] Joseph Yiu. ARM Cortex-M for Beginners, 2016. https://community.arm.
com/cfs-file/__key/telligent-evolution-components-attachments/
01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_
M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf, accessed
on Jan. 2023.

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_final-v3_2900_.pdf

	Introduction
	Contributions
	Existing Tools
	Outline

	Background
	Notation
	Boolean Masking
	Probing Security
	Advanced Risc Machines (ARM)

	Related Works
	PROLEAD
	M-Ulator

	Technique
	A CPU-Independent Software Leakage Model
	Input Files
	Evaluation
	Compilation
	Simulation
	Generation of Probing Sets
	Probe Extension
	Statistical Evaluation

	Case Studies
	Setup
	Provable Secure Software Masking in the Real-World
	Hardened Library for AES-128 Encryption/Decryption on ARM Cortex-M4 Architecture
	Bitslicing Arithmetic/Boolean Masking Conversions
	Threshold Implementations in Software: Micro-Architectural Leakages in Algorithms

	Limitations
	M-Ulator Limitations
	PROLEAD_SW Limitations
	Benchmarks

	Conclusions

