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Abstract. Generating supersingular elliptic curves of unknown endo-
morphism ring has been a problem vexing isogeny-based cryptographers
for several years. A recent development has proposed a trusted setup
protocol to generate such a curve, where each participant generates and
proves knowledge of an isogeny. Thus, the construction of efficient proofs
of knowledge of isogeny has developed new interest.
Historically, the isogeny community has assumed that obtaining isogeny
proofs of knowledge from generic proof systems, such as zkSNARKs,
was not a practical approach. We contribute the first concrete result in
this area by applying Aurora (EUROCRYPT’19), Ligero (CCS’17) and
Limbo (CCS’21) to an isogeny path relation, and comparing their perfor-
mance to a state-of-the-art, tailor-made protocol for the same relation.
In doing so, we show that modern generic proof systems are competitive
when applied to isogeny assumptions, and provide an order of magnitude
(3-10×) improvement to proof and verification times, with similar proof
sizes. In addition, these proofs provide a stronger notion of soundness,
and statistical zero-knowledge; a property that has only recently been
achieved in isogeny PoKs. Independently, this technique shows promise
as a component in the design of future isogeny-based or other post-
quantum protocols.

Keywords: Isogeny, Zero-knowledge, zkSNARK, Interactive Oracle Proof,
MPC-in-the-Head

1 Introduction

Isogeny-based cryptography was first introduced with the CGL hash function [CLG09]
by Charles, Goren and Lauter, where the core hardness assumption is that, given
two isogenous elliptic curves, it is hard to recover an isogeny between them.
Several other isogeny-based protocols were proposed, including SIDH [JD11],
which relaxes the assumption by giving additional torsion point information;
CSIDH based on group actions [CLM+18, Onu21]; SQI-Sign [DKL+20]; and
pSIDH. [Ler21]. Even though there was a recent cryptanalysis breakthrough
on SIDH [CD22,Rob22], other cryptosystems (not based on SIDH) remain un-
affected, such as [CLM+18,DKL+20,Ler21]. Additionally, a variety of advanced
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schemes and protocols based on isogenies, such as oblivious transfer and exotic
signatures, have been proposed in the literature [BKV19,BKP20,LGd21,BD21,
BDK+22].

In every isogeny-based cryptosystem, isogeny walks start from a public curve.
In the literature, the candidate is usually one of the j-invariants 0 or 1728 with a
known endomorphism ring. In isogeny-based constructions, sampling an isogeny
without knowing its endomorphism ring [BBD+22,MMP22], is a notorious bot-
tleneck, and is essential in some constructions and applications [CLG09,LGd21,
BD21,AEK+22,Ste22]. From a cryptanalytical perspective, having a public curve
with an unknown endomorphism ring significantly reduces the information an at-
tacker/analyst may have. A recent proposal [BCC+22] suggests a trusted setup
ceremony to resolve this problem. In the ceremony, every party computes an
isogeny path from the previous curve to another, produces a proof that the
isogeny was generated honestly, and disposes of the path. They then publish
their new curve and associated proof publicly, which all parties verify. Once ev-
ery participant has completed their round, the ceremony outputs the final curve.
As long as at least one party behaves honestly, recovering the final curve’s en-
domorphism ring is difficult, even if the rest of the participants collude.

However, generating a zero-knowledge proof of an isogeny path is not a trivial
task in general. In the realm of group actions, it is not difficult to achieve and the
proofs for more sophisticated relations can be made [BKV19,BKP20,BDK+22,
ABCP22]. However, out of realm of the group actions, the task has been known
to be difficult to achieve either soundness (for the exact relation) or (statistical)
zero-knowledge, with some protocols requiring ad-hoc security assumptions. The
state-of-the-art line of work is given in [DFJP14,GKPV21,DDGZ21,BCC+22],
yet there is still room for improvement. Suppose 300 participants run the cer-
emony single-threaded on a normal machine, the protocol will take roughly an
hour to complete for λ = 128, and 13 hours for λ = 256.

Historically, it was assumed that tailor-made proof systems for isogeny rela-
tions performed better than generic ones. However, the developments of generic
proof systems, such as zkSNARKs3, which allow a prover to prove or argue
the knowledge of any NP relation, have advanced the field significantly in re-
cent years. zkSNARKs enable a prover to produce a publicly-verifiable proof in
a zero-knowledge and non-interactive manner. Moreover, the proof size is suc-
cinct, sublinear in the size of the witness, and the verification time is much
shorter than producing the proof. The area of zero-knowledge proof systems
has been very active [IKOS09, BCC+16, AHIV17, KKW18, BCR+19, BFH+20,
dOT21] (see [Tha20, Ish20] for surveys). These generic proof systems work well
with symmetric primitives and have applications in post-quantum cryptosys-
tems [ZCD+20,GMNO18,dDOS19,BdK+21,FJR22,FMRV22], and privacy-preserving
blockchain protocols such as [BCG+14].

Applying generic proof systems to isogeny-based cryptography remains un-
common. Though there exists a verifiable delay function from isogenies using

3 zero-knowledge, succinct, non-interactive, arguments of knowledge

2



a SNARG4, it is not in zero-knowledge, and the result remains theoretical in
nature, with unclear practicality. In particular, due to the complexity of com-
puting isogenies, size and the structure of the operating field, using generic
proof systems in isogeny-based cryptography appears challenging and impracti-
cal. Generic proof systems have been applied to protocols utilising fields of bit
length at most 256-bits, whereas many isogeny-based protocols utilise field ex-
tensions of a field of upwards of 512-bits. Due to these factors, it was previously
assumed these proof systems did not scale well with isogeny-based protocols.
In the isogeny community, the plausibility of the following question was largely
disputed:

Can generic proof systems serve as a practical tool in isogeny-based
cryptography?

1.1 Contribution

We affirm the question above. That is, generic proof systems are remarkably
efficient for isogeny-based cryptography. Specifically, our contributions are:

– We propose a non-interactive protocol to prove knowledge of an isogeny
path using a generic zkSNARK proof system for R1CS (rank-1 constraint
systems). We achieve this by re-writing the isogeny path relation into a
compact R1CS representation and then applying existing (plausibly) post-
quantum proof systems [BCR+19, dOT21, AHIV17]. The PoK inherits the
properties of soundness and statistical zero-knowledge from the underlying
proof systems, and supports supersingular isogeny graphs operating over any
cryptographically sized prime of the form p = 2a3bf ± 1, with isogeny paths
of arbitrary length.

– We provide an alternative set of parameters of the form p = 2a3bf + 1
with equivalent security to those from SIKE to aid in our testing. These
parameters are designed to better support the requirements of the underlying
proof systems.

– Our protocol is implemented as a proof of concept, and we report benchmark
results for a variety of parameters. Using our R1CS instances from above,
the generic proof systems yield competitive results as isogeny identification
schemes. In particular, by utilising Aurora [BCR+19] our proof systems are
3-12 times faster than the state-of-the-art [BCC+22] of the same walk length,
while maintaining a similar proof size.

1.2 Related Work

The motivation behind this work is to construct an efficient isogeny proof of
knowledge. One such application of which is a multi-party setup protocol to gen-
erate a supersingular curve of unknown endomorphism ring, introduced in [BCC+22].

4 succinct, non-interactive argument
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We give a brief history of prior works on proving isogeny knowledge, which differs
from our approach.

Prior to this work, isogeny proofs of knowledge have existed in different forms,
notably [DJP11,DDGZ21]. These are Σ-protocols, tailored to the specific nature
of isogeny computation, and follow a direction to the original DJP identification
protocol. These protocols can be viewed as revealing different edges on the SIDH
square (Fig. 1) in order to prove knowledge of the isogeny ϕ : E0 → E1 of degree
ℓeAA . To generate the square, the prover computes an isogeny ψ : E0 → E2 of
degree ℓeBB . The prover then determines the isogenies ϕ′ and ψ′ by their kernels,
such that kerϕ′ = ψ(kerϕ) and kerψ′ = ϕ(kerψ).

E0 E1

E2 E3

ϕ

ψ ψ′

ϕ′

(1)

Fig. 1. The SIDH square

In the original De Feo-Jao-Plût identification protocol, in each iteration of
the Σ-protocol, the prover generates a new SIDH square in the manner described
above (with a fresh choice of ψ). The prover reveals the curves E2, E3. The verifier
then sends a binary challenge b. If b = 0, the prover sends the vertical isogenies
to the verifier, who checks if they are indeed isogenies of correct degree, domain,
and codomain. Likewise, if b = 1, the prover sends the horizontal isogeny ϕ′, and
the prover verifies the isogeny is of correct degree and domain/codomain.

However, this protocol suffered from various issues. Aside from an ad-hoc se-
curity assumption, it did not achieve statistical zero-knowledge (since the side ϕ′
is strongly correlated to the side ϕ), and possessed issues with its proof of sound-
ness (see [DDGZ21, GPV21]). De Feo et al. ’s protocol increases the challenge
space to 3, and proposed a solution to soundness by including a commitment to
ℓeBB -torsion bases of E2 and E3, such that the latter is the image of the former
under ϕ′.

The latest work, Secuer PoK [BCC+22], resolves the problem of statistical
zero-knowledge (and forgoing the need for additional assumptions) by extending
the degree of ϕ and ψ by composing isogenies and gluing SIDH squares together
such that the walk ψ causes uniform mixing in a particular lift of the supersingu-
lar isogeny graph5, causing the distribution of (E1, ϕ

′) to be statistically close to
uniform. In addition, also they extend the path length of the ϕ to guarantee the
image curve of the isogeny is uniform. This means that in their setup protocol,
provided a participant is honest, the output j-invariant is uniformly at random
in the set of supersingular elliptic curves.

However, there are still some problems with these approaches. The increased
challenge space of [BCC+22,DDGZ21] yields a knowledge error of 2

3 per round,
5 The supersingular isogeny graph with level d Borel structure, where d = | kerϕ|
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which increases the number of repetitions required to achieve a sufficient sound-
ness level. Furthermore, secuer PoK relies on a relaxed assumption to sound-
ness, namely that the extractor may not obtain the original isogeny ϕ, but an
isogeny ϕ′ = [ℓ2iB ] ◦ ϕ for some i ≤ eB .

We forgo these approaches (and their soundness issues) by viewing the isogeny,
ϕ, as a walk on the supersingular ℓA-isogeny graph and then proving the knowl-
edge of the walk with a generic proof system. Provided the prover can efficiently
compute the intermediate j-invariants on the walk, which is done in practice
using Vélu’s formulae, this provides the same functionality as the proof systems
above.

2 Preliminaries

2.1 Notations

A function f : N→ R+ is negligible if for every polynomial p there is an N such
that for all n > N it holds that f(n) < 1

p(n) . Given a relation R, we say that
L(R) is the set of all elements x such that there exists a w where (x,w) ∈ R.

2.2 Isogeny Graphs

This section recalls a few essential properties of supersingular elliptic curves
relevant for our work. We refer to [Was08,Sil09] for a more extensive exposition.

Elliptic Curves An elliptic curve is a projective non-singular curve of genus
1. We say a curve is defined over a field K if its coefficients are. The K-rational
points, E(K), form a group under an additive operator. Elliptic curves over a
field may be uniquely identified (up to isomorphism) by a single field element,
called the j-invariant. The j-invariant is efficiently computable given a curve’s
coefficients.

Isogenies An isogeny is a morphism of elliptic curves preserving both geometric
structure (as a rational map) and group structure (as a group homomorphism).
The degree of a (separable) isogeny is the size of its kernel as a group homomor-
phism. We say an isogeny is an ℓ-isogeny if it has degree ℓ, and that two elliptic
curves are ℓ-isogenous if there exists an ℓ-isogeny between them. We shall assume
all isogenies discussed in this work are separable (but need not necessarily be
cyclic).

Supersingular ℓ-Isogeny Graph We denote the supersingular ℓ-isogeny graph
over Fp2 as Gℓ(p), whose vertices are the supersingular elliptic curves over the
field (up to isomorphism), with an edge between two vertices if they are ℓ-
isogenous. It is a well known fact that for ℓ ̸= p, Gℓ(p) is a Ramanujan graph
[Piz90], an optimal expander graph.
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Modular Polynomial The modular polynomial Φℓ(X,Y ), is a symmetric poly-
nomial of degree ℓ+1 whose roots over Fp2 correspond to every pair of ℓ-isogenous
j-invariants of elliptic curves over Fp2 . This allows us to efficiently determine if
two elliptic curves are ℓ-isogenous over a given field. For ℓ = 2, we have the
modular polynomial

Φ2(X,Y ) = X3 + Y 3 − 162000(X2 + Y 2) + 1488XY (X + Y )−X2Y 2

+ 8748000000(X + Y ) + 40773375XY − 157464000000000. (2)

So, two j-invariants j1, j2 are adjacent in Gℓ(p) if and only if Φℓ(j1, j2) = 0
mod p.

2.3 Proof Systems

Zero-knowledge succinct Non-interactive Arguments of Knowledge
In the (explicitly programmable) random oracle model, a zero-knowledge non-
interactive succinct argument6 of knowledge (zkSNARK) for a relation R =
{(x,w)} is a tuple (P, V ) where P, V are probabilistic polynomial time (PPT)
algorithms with access to a random oracle ρ which satisfy the following proper-
ties:

– Completeness: For every (x,w) ∈ R, λ ∈ N,

Pr[V ρ(x, π) = 1 | π ← P ρ(x,w)] = 1

– Soundness: Given negligible soundness s, for every PPT P̃ , x /∈ L(R), and
λ ∈ N:

Pr[V ρ(x, π) = 1 | π ← P̃ ρ(x)] ≤ s(x, λ).
– Proof of Knowledge: Given negligible knowledge error κ, there exists a

PPT extractor E such that, for every x, PPT P̃ , λ ∈ N,

Pr[(x,w) ∈ R | w ← EP̃ (x, 1λ)]− Pr[V ρ(x, π) = 1 | π ← P̃ ρ] ≤ κ(x, λ).

Where the extractor E may program the responses to random oracle queries
of P̃ , and either get a response of the next query or output π, at which
point P̃ goes to the start of its computation with the same randomness and
auxiliary input.

– Zero Knowledge: A non-interactive protocol (P, V ) is statistical zero-
knowledge (with negligible function z) in the explicitly programmable ran-
dom oracle model (EPRO)7, if there exists a PPT simulator S, such that for
every (x,w) ∈ R and unbounded distinguisher D:

Pr[Dρ[µ](π) = 1 | (π, µ)← Sρ(x)]−Pr[Dρ(π) = 1 | π ← P ρ(x,w)] ≤ z(x, λ),
6 Typically, a non-interactive random-oracle proof system is a proof (NIZKPoK) only

if the definition of soundness holds given a computationally unbounded prover, and
is otherwise called an argument. We may use the terms interchangeably to refer to
both.

7 We include the definition of zero-knowledge in the EPRO model, which is required
in the application of the BCS transform—the Fiat-Shamir analogue for IOPs.
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where the EPRO, ρ[µ], outputs µ(x) if x is in the domain of µ, otherwise
it outputs ρ(x). The distributions are taken over the uniformly at random
instantiation of ρ and the randomness of P, V .

– Succinctness: A proof system (P, V ) for a relation R is succinct, if, for
any (x,w) ∈ R and corresponding proof π ← P ρ(x,w), π grows polyloga-
rithmically in w. In particular, |π| = poly(λ, |x|, log(|w|)).

Interactive Oracle Proofs An interactive oracle protocol between two PPT
algorithms A and B over k rounds is a protocol where at the ith round, A sends
an i-th message mi to B, who responds with a random access oracle fi which
may be queried in consequent rounds. After k rounds, A either accepts or rejects
(see [BCS16] for details).

An Interactive Oracle Proof (P, V ) for a relation R with round complexity
k and soundess s satifies the following properties:

– Completeness: For every (x,w) ∈ R, (P (x,w), V (x)) is a k(x)-round in-
teractive protocol with accepting probability 1.

– Soundness: For every x /∈ L(R) and every P̃ , (P̃ , V (x)), is a k(x)-round
interactive oracle protocol with accepting probability at most s(x).

Interactive Oracle Proofs (IOPs), introduced by Ben-Sasson et al [BCS16],
are a generalisation of both Interactive Proofs (IPs) and Probabilistically Check-
able Proofs (PCPs). One may note that IOPs directly generalise PCPs to multi-
ple rounds. The motivation behind the construction of IOPs is that of efficiency,
by minimising redundancy that might be present in a traditional 1 round PCP
construction. Analogously to IPs and PCPs, an IOP may also satisfy the proper-
ties of zero-knowledge, proof of knowledge, and succinctness, as well as a trans-
formation which performs similarly to the Fiat-Shamir transform [FS87]. Thus,
zkSNARKs can be obtained from IOPs. Intuitively, succinct proofs are achiev-
able when the prover sends random access oracles (instantiated via Merkle trees
with a CRH function), rather than full length messages.

Theorem 1 (BCS Transform). There exists a transform T that inputs an
IOP (P, V ) and outputs a non-interactive argument of knowledge (P ∗, V ∗) that
preserves proof of knowledge and succinctness. Moreover, when the underlying
IOP is statistically zero-knowledge, the resulting protocol is statistically zero-
knowledge under the EPRO model.8

Proof. See [BCS16, Sec. 6]

In this work, we consider IOPs that satisfy all of these properties and are
also transparent. That is, secure in the absence of the common reference string
(CRS) model, in which protocols require trusted setup.

8 In particular, the extractor in the transformation T is straight-line, and does not
apply the forking lemma.
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2.4 Rank-1 Constraint Systems

We recall the definition of rank-1 constraint systems (R1CS), which some zk-
SNARKs (e.g., Aurora) take as an input. R1CS is parameterized by n,m ∈ N and
a prime power q, and consists of instance-witness pairs ((A,B,C, v), w) where
A,B,C ∈ Fm×(n+1)

q and v,w are vectors over Fq such that

Az ◦Bz = Cz

for z := (1, v, w) ∈ Fn+1
q , where ◦ denotes coordinate-wise (Hadamard) product.

Conceptually, A,B,C encode constraints on variables v, w; where v contains
(public) auxiliary input, and w contains both secret input and intermediate
variables in a computation.

R1CS typically encodes arithmetic circuit satisfiability. However, we work
with modular polynomials and show how to an isogeny path relation directly
into a R1CS together with some optimisations in Sec. 3.4.

2.5 MPC-in-the-Head

The MPC-in-the-Head (MPCitH) paradigm was introduced in the seminal work
of Ishai et al. [IKOS07] Suppose the prover wishes to convince a verifier of an
NP relation R in zero-knowledge, where x is the instance and w is the witness.
The prover simulates a semi-honest MPC protocol with n parties locally (in its
head) and commits to the transcript. The verifier asks the prover to decommit
a subset of the transcript and check whether the messages are consistent and
that the reconstructed output is 1, meaning that the relation R holds. If there
are no failures during the verification, the verifier accepts the proof. Intuitively,
completeness holds trivially, (statistical) zero-knowledge holds if the decommit-
ted transcript is not enough to reveal the full transcript (e.g., revealing n − 1
transcripts reveals nothing about the full transcript when using additive secret
sharing). Regarding soundness, the prover may cheat if the faulty transcript is
not challenged by the verifier. Nevertheless, it is possible to boost the soundness
by repeating the protocol many times. Using the Fiat-Shamir transform [FS87]
it is possible to convert an interactive protocol to a non-interactive one.

Limbo Limbo [dOT21] is the state-of-the-art non-interactive zero-knowledge
proof of knowledge for arithmetic circuit satisfiability protocol based on the
MPCitH paradigm. Despite not satisfying the asymptotic definition of succinct-
ness, Limbo has proven to have good concrete efficiency for small to medium
sized circuits (i.e. circuits with less than 500000 multiplication gates). Thus we
include it in our consideration. For the detailed description, we refer the reader
to the paper.

2.6 Reed-Solomon IOPs

The other line of protocols [BCR+19,AHIV17,BFH+20] we consider in this work
is called Reed-Solomon IOPs. In contrast to the MPCitH-based approach above,
these protocol achieve the property of succinctness.

8



At a high level, in RS-IOPs, the witness w corresponds to the input plus
all the intermediate variables in the computation. The prover transforms the
witness w into various vectors, depending on the proof system, which are then
encoded with a RS code. The verifier engages in various sub-protocols with the
prover to check conditions on the RS encoded values to convince itself that the
encoded values form valid RS codewords and satisfies the constraints given in
the relation.

Reed-Solomon Codes Given an ordered subset L = {ℓ1, ..., ℓk} of a field Fq

and α ∈ (0, 1], we denote RS[L,α] ⊆ Fk
q to be the set of evaluations over L

of all polynomials of degree less than αk. That is, a codeword c is in RS[L,α]
if and only if there exists a polynomial p of degree less than αk such that the
c = (p(ℓ1), ..., p(ℓk)).

Aurora Aurora is a transparent zkSNARK for the R1CS relation secure in the
EPRO. At a high level, Aurora’s underlying IOP reduces to proving the following
two subproblems:

– Rowcheck: Given vectors a, b, c ∈ Fm
q , test whether a ◦ b = c

– Lincheck: Given vectors x ∈ Fm
q , y ∈ Fn+1

q , and matrix M ∈ Fm×(n+1)
q ;

test whether x =My.

Given IOPs for these problems, one may construct an IOP for R1CS. Given
an R1CS instance ((q, n,m,A,B,C, v), w), the prover sends four oracles to the
verifier: the satisfying assignment for z, yA := Az, yB := Bz, and yC := Cz.
The prover then engages in parallel execution of the following:

– An IOP for Rowcheck to verify that yA ◦ yB = yz.
– An IOP for Lincheck to verify that yA = Az, yB = Bz, and yC = Cz.

Finally, the verifier checks that z is consistent with the auxiliary input v.
However, such a protocol would be neither succinct, nor zero-knowledge.

In order for the protocol to achieve sublinear communication complexity, the
subprotocols for Lincheck and Rowcheck both utilise Reed-Solomon encoded
variants. In this case, foregoing zero-knowledge, the subroutines for Lincheck
and Rowcheck encode the vectors yA, yB , yC as the coefficients of a unique
polynomial that matches them over some H1 ⊂ Fq where |H1| = m, and likewise
for z, as the coefficients of a polynomial that matches z over some H2 ⊆ Fq

where |H2| = n+ 1. In addition, some extra work is done to check the degree of
the polynomials is consistent with the input via a low-degree test. Aurora utilises
the FRI protocol [BBHR18] to achieve this efficiently.

Zero knowledge is achieved by encoding a vectors Az,Bz,Cz not as unique
polynomial of degree |H1|−1 matching the entries of Az,Bz,Cz on H1, but as a
random polynomial of degree |H1|+m conditioned on matchingAz,Bz,Cz onH1

(the same process applies to z with domain H2). The polynomial is represented
as evaluations over a domain L disjoint from H1 and H2 such that m queries
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cannot leak any information about v. In order to guarantee these subsets are
disjoint, over a prime field, the subsets H1, H2 are chosen to be multiplicative
subgroups of the field (of order a power of two such that H1 ⊆ H2 or H2 ⊆ H1),
and the evaluation domain L is a multiplicative coset of a subgroup of H1 ∪H2.

Ligero Ligero [AHIV17] is another transparent zkSNARK based on a RS-IOP
for boolean or arithmetic circuit satisfiability (technically, an IPCP, as it only
comprises of a single round). Given an arithmetic circuit C of N gates, a Ligero
prover represents the satisfying assignment of the s (≈ N) wires of C into a
slightly redundant matrix representation of size O(

√
s) × O(

√
s), and encodes

each row of this matrix using an (interleaved) RS code. The verifier challenges
the prover to reveal linear combinations of the entries of the codeword matrix,
which is checked against λ randomly selected columns of the matrix which are
consequently revealed by the prover.

Aside from the underlying proof relation, the key distinction between Aurora
and Ligero is informed by two design decisions: Ligero encodes its oracles with
O(
√
N) RS codewords of length O(

√
N), rather than by a single RS codeword of

length O(N). In addition, it uses a direct (single-round) low-degree test rather
than the FRI IOP.

3 Construction

3.1 Hardness assumptions and relations

Recent attacks have rendered the SIDH assumption broken [CD22] [Rob22].
The key insight is that the Castryck-Decru and Robert attacks require the im-
age of the torsion points P1, Q1, however, the following, more general isogeny
path-finding problem below, historically used to cryptanalyse SIDH, remains
unaffected.

Problem 1 ( IsoPath). Given supersingular elliptic curves E0, E1 defined over
Fp2 , find an isogeny ϕ : E0 → E1 such that deg ϕ = ℓk for a fixed prime ℓ and
k ∈ Z.

We define the following relation based on the hardness of IsoPath:

Rℓk-IsoPath = {((E0, E1), ϕ) : ϕ : E0 → E1 is an isogeny, deg ϕ = ℓk, k ∈ Z}

The isogeny witness ϕ is typically represented by fixing a basis of the ℓk-torsion
group, and giving a kernel generator, a point on E0 of order ℓk. Instead, we
choose to represent our witness isogeny ϕ in the relation above by using the
modular polynomial. Recall, two elliptic curves E,E′ are ℓ-isogenous if and only
if Φℓ(j(E), j(E′)) = 0. Then an isogeny ϕ : E0 → E1 of degree ℓk can equivalently
be represented as a sequence of intermediate j-invariants j1, j2, ..., jk−1 such that

Φℓ(j(E0), j1) = 0

Φℓ(ji, ji+1) = 0 for all i ∈ {1, ..., k − 2}
Φℓ(jk−1, j(E1)) = 0

10



Hence, more precisely, the relation we prove is as follows:

Rℓk-ModPoly =
{(

(E0, E1), (ji)i∈{1,...,k−1}
)
:
Φℓ(j(E0), j1) = 0, Φℓ(jk−1, j(E1)) = 0
Φℓ(ji, ji+1) = 0 ∀i ∈ {1, ..., k − 2}

}
When generating isogeny path instances, we want the length k to be small

enough to be efficient, but large enough to prevent meet-in-the-middle and colli-
sion search claw-finding type attacks [Gal99,vW99,ACC+19], whose classical and
quantum heuristic run times are Õ(ℓk/2) and Õ(ℓk/3) respectively. One might
therefore take k ≈ 2λ as reasonable security trade-off.

Remark 1. Note that in this case, the isogeny may not necessarily be cyclic. In
fact, the isogeny walk taken could indeed contain backtracking. In the applica-
tions we discuss in this work, this is not a problem, since an honest prover would
honestly generate a non-backtracking isogeny of degree k, which would hence be
cyclic. If one wishes to guarantee non-backtracking walks, this problem can be
resolved by adding the requirement that ji−1 ̸= ji+1 for all i in {1, ..., k − 1}.
We explain how to prove this with a cheap overhead in App. A.

3.2 High-Level Overview

The reader might wonder, what in particular does our isogeny representation
achieve? What makes this relation so amenable to generic proof systems is its
low-depth, highly regular decision circuit. That is, an arithmetic circuit C where
C(x,w) = 1 if and only if (x,w) ∈ Rℓk-ModPoly. In this case, C may simply be
a sequence of parallel evaluations of the modular polynomial on each pair of
adjacent j-invariants. This allows us encode the relation in a highly compact
(but equivalent) intermediate representation, to be fed into the proof system.

The general roadmap to utilising the generic proof systems is as follows:

1. Encode the relation Rℓk-ModPoly and pair (x,w) into an equivalent R1CS,
denoted by R′

ℓk-ModPoly and (x′, w′) respectively.
2. Use a generic zkSNARK for R1CS (resp. arithmetic circuits) to argue the

knowledge of a witness w′ such that (x′, w′) ∈ R′
ℓk-ModPoly.

3. The prover’s knowledge of w′ will imply the knowledge of w such that
(x,w) ∈ Rℓk-ModPoly.

Since we have to perform field arithmetic over a quadratic extension field we
can either work over the base field (where each Fp2 -multiplication will dictate a
series of underlying Fp multiplications), or adapt the proof system implementa-
tion to be suitable for quadratic extensions. The security of the proof systems
in question are independent of field choice, but the efficiency of Reed Solom
based protocols is subject to a requirement. Namely, being capable of perform-
ing efficient FFT and IFFT operations. Broadly speaking, working over a field
K, we require that K× contains a subgroup of order 2m for an integer m such
that c ≤ 2m, where c = max{m,n} for n variables and m constraints in a given
R1CS. When working with isogenies, we typically choose primes of the form
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p1 = 2a3bf−1, or p2 = 2a3bf+1. It is clear that Fp2
would satisfy the condition

above, provided m ≤ a, but Fp1
would not, since |F×

p1
| = p1 − 1 = 2(2a3bf − 1).

The first solution is to simply instantiate the proof system only over the base field
with p2 primes, however this admits several problems. Firstly, Fp1

2 operations are
slightly more efficient. Since −1 is a non quadratic residue, Fp1

2 ∼= F(i) which
allows for more efficient multiplication, inversion and squarings. Secondly, we
want our protocol to be compatible with common choices of parameters, which
typically use p1 primes for efficiency reasons. Thus, we instantiate the proof sys-
tem over the extension field, whose multiplicative order is p2−1 = (p−1)(p+1).
This satisfies either choice of prime.

3.3 From Isogeny Relation to R1CS Instance

In order to apply our proof systems, we transform the modular polynomial rela-
tion into an R1CS with n variables and m constraints. Concretely, we consider
an R1CS consisting of the statement A,B,C ∈ Fm×(n+1)

p2 and a witness z ∈ Fn+1
p2

such that
Az ◦Bz = Cz.

In this formulation, A,B,C are public matrices which correspond to an instantia-
tion of the language dependent on p, ℓ, k. The vector z consists of 1, the auxiliary
input: j-invariants of the starting and ending curve, and the secret input: the
j-invariant sequence (as well as intermediate variables dependent on the inputs).
Each row of A,B,C will encode a linear constraint on the variables. One of these
rows must encode the isogeny modular polynomial Φℓ(ji, ji+1) = 0, which shows
that two adjacent j-invariants are isogenous. For representation compactness,
we arrange the modular polynomial in the following form:

− 1488XY (X + Y − 1488−1XY ) = X3 + Y 3 − 162000(X2 + Y 2)+

8748000000(X + Y ) + 40773375XY − 157464000000000 (3)

3.4 Optimization for R1CS over Fp2

We then encode matrices A,B,C such that a row evaluates the equation above
and performs intermediate variable consistency checks. Note that we can do far
better than the naive approach, where each row of the matrices correspond to
a single multiplication or addition of variables in z, and the entries of z contain
every intermediate variable obtained. In loose terms, in R1CS, each row can
encode: linear expression × linear expression = linear expression.

Suppose the isogeny path in question is of length k. If k = 1, ℓ = 2 then by
Eq. (2), we obtain:

z = ( 1 j0 j1 j20 j21 j30 j31 j0j1 )
T

with the matrices:

A =

 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1

, B =

 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 c4 c4 0 0 0 0 −1

, C =

 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
c0 c1 c1 c2 c2 1 1 c3
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where

c0 = −157464000000000 c1 = 8748000000 c2 = −162000
c3 = 40773375 c4 = 1488,

where the ci’s are derived from Eq. (3). The first 5 rows provide consistency
checks on each variable, including square, cube, and multiplication. The last
row checks the evaluation of the polynomial Eq. (3). Now we can to extend
this to a path of length k > 1, for each j-invariant ji, we will introduce an
additional 4 variables (including input): ji, j2i , j3i , ji−1ji. We note that the
squarings and cubings for each j-invariant need only be checked once. Hence, we
obtain n := 4k + 3 variables.

For each j-invariant in the sequence (including j0) there will be 2 constraints
for squaring and cubing consistency checks. For each adjacent pair ji−1, ji, there
will be 2 constraints: one checking consistency of the variable ji−1ji, and one the
evaluation of the modular polynomial. This gives us m := 4k + 2 constraints.

3.5 Optimization for Lifting to Fp × Fp

This subsection presents several techniques to reduce the overhead to lift arith-
metic over a quadratic field to a vector space of the prime field. We consider a
quadratic field Fp2 ∼= Fp[α] where α2 = d for some non-square d ∈ Fp.

The motivation is that, generally, the j-invariant of an elliptic curve is taken
over Fp2 while some proof systems only support arithmetic over a prime field.
Indeed, arithmetic compuations over Fp[α] can be viewed as arithmetic com-
putations over an Fp-vector space natively. That is, for x1, x2, y1, y2 ∈ Fp to
represent x1 + x2α ∈ Fp[α], by mapping x1 + x2α to (x1, x2) the addition is
(x1 + y1, x2 + y2) and the multiplication is (x1y1 + x2y2d, x1y2 + x2y1). Naively,
this results in 4 (variable) Fp-multiplications for one (variable) Fp2-multiplication
(i.e. x1x2, y1y2, x1y2, x2y1). In fact, with a few well-known tricks, this can be done
more efficiently:

Arithmetic. We start with multiplications.
– u1 = x1y1
– u2 = y2y2
– u3 = (x1 + x2)(y1 + y2), then
– x1y1 + x2y2d = u1 + u2d
– (x1y2 + x2y1) = u3 − u1 − u2

By using the trick, there are only 3 (variable) Fp-multiplications now. The
saving depends on the proof system to be used. In many proof systems, it is much
more expensive to verifiy a (variable) multiplication relation than a (variable)
linear relation.

Let x+ yα ∈ Fp[α], there is a trick for variable squaring:
– u1 = xy
– u2 = (x+ y)(x+ yd), then
– (x2 + y2i2) = u2 − (d+ 1)u1
– 2xy = 2u1

13



Application to R1CS Matrices. Now we can apply the abovementioned tech-
niques to our R1CS matrices. Recall that in Sec. 3.4, we have a witness vector z
over Fp × F7

p2 . To lift it into Fp, we firstly naturally embed it into Fp × F14
p . We

explain how to build a submatrices and introduce intermediate variables for each
constraint as follows. As an abuse of notation, given an element x := a + bα ∈
Fp[α], we refer to a as Re(x) and b as Im(x) respectively.

Squaring. For the squaring relation, it is fairly simple. Take the subvector
(1,Re(x), Im(x),Re(x2), Im(x2)) for instance, the corresponding submatrices for
this constraint are respectively[

0 2 0 0 0
0 1 1 0 0

]
,

[
0 0 1 0 0
0 1 d 0 0

]
,

[
0 0 0 0 1
0 0 0 1 2−1(d+ 1)

]
,

which represents 2Re(x)Im(x) = Im(x2) and (Re(x) + Im(x))(Re(x) + dIm(x)) =
Re(x2) + 2−1(d+ 1)Im(x2), resp.

Multiplication. For the multiplication relation, we need an additional variable
u over Fp. We take the subvector (1,Re(x), Im(x),Re(y), Im(y), u,Re(xy), Im(xy))
for instance. The corresponding submatrices for this constraint are respectively0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0

 ,
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0

 ,
0 0 0 0 0 1 0 0
0 0 0 0 0 −d 1 0
0 0 0 0 0 1− d 1 1

 ,
which represents Im(x)Im(y) = u, Re(x)Re(y) = Re(xy) − ud, and (Re(x) +
Im(x))(Re(y) + Im(y)) = Im(xy) + Re(x)Re(y) + u, respectively.

Constraint Eq. (3). We can apply our multiplication technique above to the
constraint Eq. (3). Recall that the final constraint from the modular polynomial
is (−xy)(c4x + c4y − xy) = x3 + y3 + c2(x

2 + y2) + c1(x + y) + c3xy + c0.
The insight is every coefficient ci is over Fp so Re(·) has the linear proposition
Re(c4x + c4y − xy) = c4Re(x) + c4Re(y) − Re(xy) and so does the imaginary
part Im(·). Therefore, we can use three constraints for the real part and the
imaginary part of x3 + y3 + c2(x

2 + y2) + c1(x + y) + c3xy + c0 in terms of
Re(X), Im(X),Re(Y ), Im(Y ) where X = −xy and Y = c4x + c4y − xy as the
method described above.

Concretely, for a subvector

z′ = (1 Re(x) Im(x) Re(y) Im(y) Re(x2) Im(x2) Re(y2) Im(y2)

Re(x3) Im(x3) Re(y3) Im(y3) Re(xy) Im(xy) u)

the corresponding submatrices for this constraint are respectively0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

 ,
0 0 c4 0 c4 0 0 0 0 0 0 0 0 0 −1 0
0 c4 0 c4 0 0 0 0 0 0 0 0 0 −1 0 0
0 c4 c4 c4 c4 0 0 0 0 0 0 0 0 −1 −1 0

 ,
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 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
c0 c1 0 c1 0 c2 0 c2 0 1 0 1 0 c3 0 −d
c0 c1 c1 c1 c1 c2 c2 c2 c2 1 1 1 1 c3 c3 (1− d)

 ,
which respectively represents

Im(X)Im(Y ) = u

Re(X)Re(Y ) = Re(Z)− ud
(Re(X) + Im(X))(Re(Y ) + Im(Y )) = Im(Z) + Re(Z) + (1− d)u,

where

X = −xy
Y = c4x+ c4y − xy
Z = x3 + y3 + c2(x

2 + y2) + c1(x+ y) + c3xy + c0.

In summary, for any isogeny path over any quadratic field Fp2 of length k, we can
transform it into an R1CS relation with 11k+4 variables and 11k+3 constraints
over Fp.

3.6 Parameter choice

In order to offer a wider degree of flexibility, we apply our R1CS relation over
both Fp and Fp2 arithmetic, which allows for the support of:

– isogeny-based protocols (working over Fp2) with primes of the form p =
2a3bf + 1 with proof system operating over Fp,

– and isogeny-based protocols with primes of the form p = 2a3bf±1 operating
over Fp2 .

Once an isogeny path has been obtained, it is straightforward to obtain either
R1CS instance given the methods described in Sec. 3.4 and Sec. 3.5. We leave
the manner in which the isogeny paths are computed open to a more detailed
implementation. One such approach would be to use optimized SIDH imple-
mentations [CLN16, ACC+17], with some modifications needed to support p2
primes. Note that since p2 ≡ 1 mod 4, the curves of j-invariant 0, 1728 are not
supersingular. In this setting, one can find a starting curve by using a root of the
Hilbert class polynomial mod p [Brö08, Sec 3.2]. The public parameters p, ℓ, k
are sufficient for a verifier to efficiently construct the R1CS matrices A,B,C
offline, which minimises the communication and storage cost.

In evaluating performance for comparison with [BCC+22], we have included
the standard SIKE parameters, but also include primes of comparable parame-
ters of the p2 form in order to compare performance of over different base fields,
which should offer equivalent security at the cost of slightly reduced performance
of isogeny path computation. These primes are the smallest primes p2 = 2a3bf+1
such that for a corresponding SIKE prime p1 = 2a

′
3b

′
f ′−1 we have that a ≥ a′,

b ≥ b′ and f ′ ≥ f . Due to the flexibility of the underlying proof systems, the
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protocol can operate over arbitrary choices of k, and primes of this form. We
have fixed the path length k to the corresponding lengths of the Secuer PoK
2-isogeny path, which is of sufficient length to guarantee a uniformly distributed
end point, assuming a random walk. In fact, this is a conservative choice. It is
conjectured that non-backtracking walks can converge to the stationary distri-
bution in shorter walks than compared to [BCC+22]. See [Ste22, Conjecture 4.3].
We stress that in many applications, uniform mixing is not necessary. In order
to guarantee minimal security, the path’s length must be approximately 2λ. For
the parameters and results of our proof for minimally secure path lengths, see
Sec. 4.2.

Remark 2. The choice of benchmarking this protocol with parameters obtained
from the now defunct SIKE may seem somewhat arbitrary. We do so to compare
our results to [BCC+22], whose implementation is limited to SIKE primes. A
pragmatic course of action might be to determine concrete parameters that are
practical and secure in the setting of isogeny commitments and hashing.

R1CS Param.

p k Variant n m Security Level

p434 22163137 − 1
705

Fp2 2823 2822
λ = 128

p441+ 2218313837 + 1 Fp 7759 7758

p503 22503159 − 1
774

Fp2 3099 3098
λ = 128

p509+ 2252315931 + 1 Fp 8518 8517

p610 23053192 − 1
1010

Fp2 4043 4044
λ = 192

p619+ 23073192119 + 1 Fp 11114 11113

p751 23723239 − 1
1280

Fp2 5123 5122
λ = 256

p761+ 23723239701 + 1 Fp 14084 14083

Table 1. Our parameter sets for the evaluation of isogeny PoK in R1CS representation.

4 Implementation and Evaluation

In evaluating the performance of our isogeny proof of knowledge, we considered
protocols which support finite fields of prime characteristic9, that are statistical
zero-knowledge, plausibly post-quantum and transparent (see Tab. 2).

Virgo and Orion [ZXZS19,XZS22] do satisfy these properties. However, we
excluded them from our testing as their implementation does not easily support
generic fields, but we hope to include them in future testing. Theoretically, Virgo
performs well for low-depth, uniform circuits such as our own.

9 Subject to FFT performance conditions.
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The state-of-the-art is given by Ligero++; a protocol that combines aspects
of Virgo and Ligero, trading-off marginally higher verification times for faster
prover times than Aurora, with comparable proof sizes. However, it does not
have any open source implementations. Brakedown, Shockwave [GLS+21]; and
the recent LaBRADOR [BS22] are candidates of interest. However, they do not
yet offer zero-knowledge. There are no clear obstructions to them achieving zero-
knowledge, and provide promising results, so are worth considering in future lines
of work.

Prover time Verifier time Proof size
Limbo [dOT21] O(N) O(N) O(N)

Ligero [AHIV17] O(N logN) O(N) O(
√
N)

Aurora [BCR+19] O(N logN) O(N) O(log2 N)
Virgo [ZXZS19] O(N + n logn) O(D logN + log2 n) O(D logN + log2 n)
Ligero++ [BFH+20] O(N logN) O(N) O(log2 N)
Orion [XZS22] O(N) O(log2 N) O(log2 N)

Table 2. Asymptotic cost various transparent, post-quantum, zero-knowledge generic
proof systems, applied to an arithmetic circuit of N gates, n inputs, and depth D over
a fixed field.

Implementation As a proof of concept, we evaluate the performance of our
isogeny proof of knowledge via:

– Aurora and Ligero through a fork of libiop10, modified to support larger
prime fields and quadratic field extensions. Ligero’s original implementation
is closed source, but an adaptation is included in libiop. While originally
designed for arithmetic circuit satisifiability, libiop’s implementation sup-
ports R1CS instead, at claimed no extra cost.

– Limbo, through an implementation obtained via private correspondence
(the publicly available implementation is only available for binary fields).
Limbo is interfaced with our R1CS instances directly, with an arithmetic
circuit that evaluates Az ◦ Bz − Cz and then checking that the resulting
vector equals to zero.

Aurora and Ligero are directly tested with R1CS instances of size given in Tab. 1.
We separate the results for the standard SIKE parameters for direct comparison
with Secuer PoK, and include a second table of results (Tab. 4) for the smooth
primes which operate over Fp. Limbo is directly interfaced to prove the given
R1CS instance in a manner described in Sec. 2.5.

10 Original source code available at https://github.com/scipr-lab/libiop. Our fork
can be found at https://github.com/levanin/libiop-other-primes.
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4.1 Comparison to Secuer PoK

To make a comparison, we include the results from the Secuer PoK [BCC+22],
through the reference implementation11. The Secuer PoK is a direct proof of
knowledge for a relaxed notion of the relation R2k-IsoPath, so provides compar-
ison as a tailored protocol to our results from applying generic proof systems.

Remark 3. In the previous version, our implementations are inconsistent with
[BCC+22] regarding the walk length. The Secuer PoK reports results for walks
of sufficient length in order to guarantee uniform mixing in the supersingular
isogeny graph. For consistency, we now evaluate our results based on the same
parameters. This is a desired feature in the setup ceremony protocol introduced
in their work. However, this is not a strict requirement in isogeny-based protocols.
We include an additional set of results in Sec. 4.2 which include results for walk
lengths which are minimally secure for the respective security levels, which may
be of interest in wider applications.

Our Work

Parameter Aurora Ligero Limbo Secuer PoK

p434
P 4,204ms 1,479ms 1,073ms 12,369ms
V 378ms 1,899ms 874ms 1,399ms
S 277kB 3,281kB 8,133kB 191kB

p503
P 4,944ms 1,722ms 1,379ms 19,296ms
V 440ms 2,171ms 1,146ms 2,173ms
S 313kB 3,778kB 10,335kB 216kB

p610
P 6,457ms 3,331ms 3,156ms 60,915ms
V 888ms 3,102ms 2,616ms 6,646ms
S 570kB 4,568kB 24,427kB 404kB

p751
P 12,555ms 5,243ms 7,702ms 141,043ms
V 1651ms 13,509ms 6,587ms 15,931ms
S 688kB 11,302kB 50,670kB 663kB

Table 3. Table of results comparing several generic proof systems operating over Fp2
for the R1CS instantiation of R2k-MP, and the isogeny Seceur PoK in [BCC+22].
Security level and walk length is set according to Tab. 1 and P , V , S correspond
to proof time, verification time, and proof size respectively. Results displayed are for
single-threaded performance.

Results The experiments are run on a Intel® Core™ i9-9900 CPU @ 3.10GHz.
The benchmarks include only single-threaded results as the libiop package does
11 Source code available at https://github.com/trusted-isogenies/SECUER-pok
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Parameter Aurora Ligero Limbo

p441+
P 2,313ms 879ms 1,037ms
V 158ms 1017ms 835ms
S 152kB 2,803kB 11,217kB

p509+
P 5,999ms 1301ms 1,304ms
V 455ms 1370ms 1,066ms
S 214kB 3,402kB 14,205kB

p619+
P 9,424ms 2,822ms 2,962ms
V 895ms 2,030ms 2,451ms
S 409kB 4,149kB 33,746kB

p761+
P 12,555ms 2,873ms 7,062ms
V 1,651ms 4,464ms 5,823ms
S 687kB 7,212kB 70,018kB

Table 4. Table of results comparing generic proof systems operating over Fp for the
projected R1CS instantiation of R2k-MP operating over fields with characteristic of
the form 2a3bf + 1. Security level and walk lengths set according to Tab. 1. Results
displayed are for single threaded performance.

not properly implement multi-threading and did not provide accurate results.
Nevertheless, Aurora and Ligero should reflect similar optimizations to that
of [BCC+22] from a well supported multi-threaded implementation, as the pro-
tocols are well suited to parallelisation. In particular, the protocols run parallel
compositions of the proof in order to achieve necessary soundness level.

We see that Aurora, the best overall performer, provides a 3-12 times im-
provement to proof and verification times compared to secuer PoK, with 0-30%
increase in proof length. If we consider smooth primes which allow for operation
over Fp, Aurora allows for similar improvements to proof and verification times
but with smaller proofs than secuer PoK when compared with parameters of
similar bit length. Limbo, as expected, performs well for smaller parameters at
the cost of much longer proof lengths. Conversely, Ligero is better suited to
larger parameters than Limbo but still suffers from long proofs. These results
should serve as evidence to support the choice of Aurora as a platform for this
application.

4.2 Identification Scheme for Moderate Length Walks

Our proof system may also serve as an identification scheme to validate a public
key (E,E′), where the prover can use our zkSNARK construction to demonstrate
their knowledge of a walk from E to E′, of sufficient length to resist the most
efficient generic algorithm for recovering the secret isogeny (i.e. the claw finding
algorithm). In this section, we demonstrate the effectiveness of our proof system
in this regard.
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We show in Tab. 5 the R1CS parameter set (m,n) over Fp and Fp2 and the
isogeny walk length k with respect to the security parameter λ. A concrete result
is given in Tabs. 6 and 7 regarding the prover time, the verifier time and the
proof size for different forms of the primes.

R1CS Param.

p k Variant n m Security Level

p434 22163137 − 1
216

Fp2 867 866
λ = 128

p441+ 2218313837 + 1 Fp 2380 2379

p503 22503159 − 1
250

Fp2 1003 1002
λ = 128

p509+ 2252315931 + 1 Fp 2754 2753

p610 23053192 − 1
305

Fp2 1223 1222
λ = 192

p619+ 23073192119 + 1 Fp 3359 3358

p751 23723239 − 1
372

Fp2 1491 1490
λ = 256

p761+ 23723239701 + 1 Fp 4096 4095

Table 5. Our R1CS parameter set (m,n) over Fp and Fp2 and the isogeny walk length
k with respect to the security parameter λ and the prime p.
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Our Work

Parameter Aurora Ligero Limbo

p434
P 934ms 587ms 354ms
V 99ms 847ms 273ms
S 194kB 1,849kB 2,598kB

p503
P 1,138ms 686ms 479ms
V 114ms 959ms 380ms
S 219kB 2,127kB 3,456kB

p610
P 3,175ms 2,488ms 989ms
V 472ms 2614ms 818ms
S 517kB 4,084kB 7,607kB

p751
P 3,882ms 1,951ms 2,131ms
V 824ms 6407ms 1,793ms
S 828kB 6,394kB 15,104kB

Table 6. Table of results comparing several generic proof systems operating over Fp2 for
the R1CS instantiation of R2k-MP without relaxations. The soundness/zero-knowledge
security level is set according to Tab. 5 and P , V , S correspond to proof time, ver-
ification time, and proof size respectively. Results displayed are for single-threaded
performance.

Parameter Aurora Ligero Limbo

p441+
P 1,216ms 427ms 330ms
V 98ms 493ms 264ms
S 166kB 1,733kB 3,496kB

p509+
P 1,440ms 537ms 438ms
V 120ms 603ms 342ms
S 182kB 1,967kB 4,657kB

p619+
P 2,287ms 1,130ms 922ms
V 239ms 849ms 746ms
S 338kB 2,414kB 10,327kB

p761+
P 3,030ms 1,044ms 1,938ms
V 431ms 1,951ms 1,594ms
S 551kB 4,004kB 20,588kB

Table 7. Table of results comparing generic proof systems operating over Fp for the
projected R1CS instantiation of R2k-MP operating over fields with characteristic of
the form 2a3bf + 1. Soundness/zero-knowledge security levels set according to Tab. 5.
Results displayed are for single threaded performance.
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5 Conclusion

In conclusion, we show that generic proof systems are competitive when applied
to isogeny-based relations, by giving a proof of concept for an isogeny proof
of knowledge using a compact R1CS instance, whose security is based on the
underlying proof systems. Our best experimental result shows an order of mag-
nitude improvement for prover and verifier time compared to the state-of-the-art
tailor-made isogeny protocol, Secuer PoK.

A remark on signatures. Several post-quantum signature schemes have been
proposed by applying MPCitH proof systems to PRFs, such as [dDOS19,ZCD+20,
Bd20,BdK+21]. The approach follows one of two processes, given a uniform se-
cret key k:

1. The public key is y such that f(k) = y for a one-way function f . A signature
corresponds to a non-interactive proof that “I know a k such that f(k) = y”
where the message m is incorporated into the randomness of the challenges.

2. The public key is PRFk(0
λ), and a signature is then an evaluation of PRFk(m)

attached with a proof that “I know a k such that I can compute both PRFk(m)
and PRFk(0

λ)”.

Given a secure PRF, the latter approach is somewhat agnostic to the proof
system in question. However, in the former case, it is unclear that proofs ob-
tained from the BCS transform applied to IOPs can yield a secure signature
scheme analogous to Fiat-Shamir applied to Σ-protocols. Some works [FKMV12,
GKK+22] indicate the non-malleability or simulation extractability is an impor-
tant notion in the security of this construction. Simulation extractability pro-
vides that a malicious prover cannot forge a valid proof without knowledge of
the witness, even after seeing polynomially many valid proofs. In particular, this
notion seems to yield a direct reduction to EUF-CMA. To this date, the security
of the BCS transform with messages incorporated into the verifier’s randomness
lacks sufficient analysis, and it is unclear as to what property is necessary and
sufficient in order to construct signatures by (1). If this is achieved, it is straight-
forward to convert the isogeny proof of knowledge into a signature scheme based
on the hardness isogeny path-finding, where the one-way function is essentially
the CGL hash function.
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A Preventing Backtracking

In some applications, one might want a guarantee that the isogeny proven is
cyclic, which in our setting, is equivalent to showing that the isogeny walk is
non-backtracking. That is, a walk which does not immediately traverse the same
edge twice.

Theorem 2. An isogeny ϕ : E0 → Ek of degree 2k is cyclic if and only if ϕ’s
decomposition into 2-isogenies as a walk on the supersingular isogeny graph is
non-backtracking.

Proof. See [CLG09, Prop. 1] [DPB17, Prop. 3.2]

In the modular polynomial relation we introduce, we do not provide any
guarantee that our isogeny is non-backtracking (and hence cyclic). However,
with minor overhead, it is possible to add this requirement. Observe that, given
an isogeny walk from E0 to Ek of length k, with a j-invariant sequence j0, ..., jk,
a backtracking walk implies that there exists an i ∈ {1, ..., k − 1} such that
ji−1 = ji+1. So it suffices to show that

δi = ji−1 − ji+1 ̸= 0 for all i ∈ {1, ..., k − 1}.

One can realise inequality in an arithmetic circuit with the following process:
given two numbers a, b, we may show that they are distinct if and only if there
exists an inverse of (a− b) over the field. Alternatively, there exists c such that
(a− b) · c = 1. The inverse c := (a− b)−1 can be precomputed by the prover and
given as a part of the input.

We can perform an additional optimization step to minimise the number
of precomputed inverses for the prover, the calculation of which is expensive.
Indeed, the prover can accumulate the product of the difference terms δi, and
check that the product is nonzero. In particular, our resulting conditions to
prevent backtracking are that:

1. Compute δ =
∏
δi =

∏k−1
i=1 (ji−1 − ji+1).

2. Input δ′ such that δδ′ = 1,

where the δ term will be non-zero if and only if all δi are non-zero, which is true
if (but not only if) the walk is non-backtracking. We note that this check will
also prevent the use of 2-cycles (with two distinct edges), which may be cyclic,
but are of little consequence in practice.

It is straightforward to add these constraints to our previous R1CS instance.
In the Fp2 setting, this would add an additional k−1 constraints and variables for
the product check; and one constraint and variable (the inverse given as input)
for the inverse check. This version yields 5k+3 variables and 5k+2 constraints
in total, which means only a 25% overhead if compared to the original instance
size. We expect this to subject only a minor performance cost, as the protocol
scales well with instance size (as seen in the difference between Sec. 4.2 and
Sec. 4.1).

28


	Efficient Isogeny Proofs Using Generic Techniques
	Introduction
	Contribution
	Related Work

	Preliminaries
	Notations
	Isogeny Graphs
	Elliptic Curves
	Isogenies
	Modular Polynomial

	Proof Systems
	Zero-knowledge succinct Non-interactive Arguments of Knowledge
	Interactive Oracle Proofs

	Rank-1 Constraint Systems
	MPC-in-the-Head
	Limbo

	Reed-Solomon IOPs
	Reed-Solomon Codes
	Aurora
	Ligero


	Construction
	Hardness assumptions and relations
	High-Level Overview
	From Isogeny Relation to R1CS Instance
	Optimization for R1CS over Fp2
	Optimization for Lifting to Fp Fp 
	Parameter choice

	Implementation and Evaluation
	Comparison to Secuer PoK
	Identification Scheme for Moderate Length Walks

	Conclusion
	A remark on signatures.

	Preventing Backtracking


