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Abstract

The purpose of this article is to present,illustrate and to put in evidence a new side-
channel attack on RSA cryptosystem based on the generation of prime numbers. The
vulnerability of the cryptosystem is spotted during the execution of the key generation
step.The probability of success of the attack is around 10-15% in the case of realistic
parameters.
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1. Introduction
Since the first practical use of RSA cryptosystem, many researchers and dedicated people tried

to find vulnerabilities of cryptosystem based on properties of the elements mathematical defined.
At the time of the its formulation RSA proved to be a safe and secure cryptosystem,its security
being based on one of the hardest problem in computer science,the prime factorization of very large
numbers. Over time many attacks which exploits the vulnerabilities of RSA were implemented. The
author of [1] put in evidence a series of attacks of RSA of different types like integer factorization
attacks, discrete logarithm attacks, exponentiation attacks or side-channel aspects. Our paper
focus on a side-channel attack during the execution of key generation step. Also other side-channel
attacks on RSA are described in [2, 3, 4, 5] which proves the fact that side-channel attacks have a
long tradition.

Those attacks have as an objective the discovery of private key d through the RSA exponenti-
ation procedure. Another important aspect is that the idea to develop a side-channel attack which
concentrates on the generation of the prime numbers p,q, the private key d and the public key e
(e,n=pq) can be found also in other papers [6, 7, 8].

The main difference from the side-channel attacks on RSA exponentiation with the secret key
d consist in the situation of a potential attacker which seems to be much harder because the key
pair is generated just once without using any known or chosen external input. [8]

The power attack proposed in this paper exploits a straight-forward implementation for gen-
erating prime numbers where each number is incremented by 2. In order to generate a prime
candidate c, a set of trial divisions must be passed entirely and also a number of Miller-Rabin
primality tests . An assumption is made regarding the number of trial divisions for each prime
candidate, which yields information on p and q,namely p(mod s) and q(mod s) where s is a prod-
uct of small primes. The attack finish with success if s is big enough.The probability of success of
the attack is around 10-15% in the case of realistic parameters [8].
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Our goal is to present a side-channel attack on key generation step which use prime generation
methods. On the other hand we want to notify that the community that the key generation step
of RSA plays an important role in terms of security and side-channel analysis especially in case of
insecure environments for execution.

The paper is organized as follows: In Section 2 a closer look is took at the RSA prime generation
step. In Section 3 the attack alongside its theoretical background is explained. In 4 we present the
mathematical background needed for understanding the NP-hard problem on lattices,SVP. Results
from simulations and conclusions from the power analysis of an exemplary implementation on a
standard microcontroller are presented in 5. The ending of the paper is marked by countermeasures
and conclusions.

2. Methods of generation prime candidates.

The step of key generation for RSA is constituted by the generation of prime candidates. In
this section our focus is concentrated on some generation methods of prime candidates also making
some remarks regarding the side-channel leakage that can appear.

Definition 1 For any k ∈ N a k-bit integer is an integer that is contained in [2k−1, 2k) and its
binary representation has the length equal with k. Let be m≥2 we define Zm := {0, 1..m − 1} and
also Z∗

m := {a ∈ Zm|gcd(a,m) = 1}.

Algorithm 1 Prime generation algorithm.

Input: k ∈ N
Output: v - k-bit prime integer

1 v ← RandomOddIntegerFromInterval([2k−1, 2k));
2 if isPrime(v) then
3 return v
4 else
5 rerun algorithm
6 end

Algorithm 1 can be used in order to generate the p and q from the key generation step . Making
trial divisions by small primes from a set C := {c2, ...cN} and to those candidates that are not
multiple of any element from the set C , the Miller-Rabin primality test [9] is applied several times.
Taking in consideration the fact that this algorithm is running until it founds a prime number being
making numerous calls to RNG ( random number generator ) ,which may be time and resource
consuming for many applications the authors of [8] propose a new algorithm below which resolve
this problem requiring just one k -bit random number per generated prime. [10]

Assumptions 1 1. The implementation of the algorithm will be made on a target device.

2. It can be identified by a potential attacker which trial division failed and for which possible
prime candidate and also the number of Miller-Rabin tests made. [8]

Observations .

1. The Miller-Rabin test and trial division algorithm prove to be protected against a side-
channel attack meaning that there are no leakage information on the dividend of the trial
division.

2. The assumption that is made about the attack is fulfilled if the beginning or the end of each
trial division.

3. There are more efficient algorithms in terms of time and space complexity that solve our
problem of prime generation candidates. [6, 11]
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Algorithm 2 Prime generation algorithm

Input: k, t ∈ N
Output: v - k-bit prime integer

1 v ← RandomOddIntegerFromInterval([2k−1, 2k));
2 i← 2;
3 while i ≤ N do
4 if v%ci == 0 then
5 v ← v + 2;
6 GOTO step 2;
7 end
8 i← i+ 1;
9 end

10 b← 1;
11 while m ≤ t do
12 if not MillerRabbinTest(v) then
13 v ← v + 2;
14 GOTO step 2;
15 else
16 b← b+ 1;
17 end
18 end

3. The attack

3.1. Description attack

Let’s consider vm := v0 + 2m as the prime number generated by Algorithm 2. Also, let’s be
vj = v0 +2j ,vj ≡ 0 (mod ci) the value for which the Algorithm 2 returned to step 2 after the trial
division by ci. [8] Taking in consideration it can be concluded that :

p = vm = vj + 2(m− j) ≡ 2(m− j) ( mod ci ) (1)

Ap := {2} ∪ {c ∈ C| division by c caused a return to step 2 for at least one vj } (2)

The expression ’caused a return to step 2’ doesn’t mean the fact that at least one vj is divided
by c because it may happen that c can happen to be in C \Ap when divides vj but the loop finish
earlier due to other divisor of vj . [8] By combining all the formulas of type (1) or by applying
Chinese Remainder Theorem (CRT) it can obtain :

wp ≡ p (mod sp) where ap is known value and sp =
∏
b∈Ap

b (3)

Knowing that n = pq we have :
wq :≡ q ≡ w−1

p n(mod sp) (4)

By examining the method of generating q, it can derive :

zq ≡ q(mod sq) and zp ≡ p ≡ z−1
q n(mod sq) (5)

Note : The sets Ap and Aq are defined in a analogously way and also the values sq and sp. From
the equations (3),(4),(5) we get the CRT integers hp,hq and s :

s := lcm(sp, sq) , hp ≡ p(mod s) , hq ≡ q(mod s) with 0 ≤ hp, hq ≤ s (6)

And using (6) => :

p = sxp + hp and q = syq + hq the pair (xp, yq) ∈ N2 [8] (7)

Knowing that hp, hq, s can be determined the problem of finding the pair (p, q) it comes down to
the problem of finding the roots of a bivariate polynomial over Z.[8]

3



Lemma 1 1. The pair (xp, yq) is the solution of the polynomial

f : Z× Z→ Z, f(x, y) = hpy + hqx− t+ sxy where t = (n− hphq)/s (8)

2. In a particular mode
t ∈ N, f is irreducible over Z , and (9)

0 < xp, yq < max{p
s
,
q

s
} < 2k

s
(10)

[8]

Proof. In order to proof the first point of this lemma we can use (9),in order to check if (xp, yq)
is the solution, 0 = pq−n = (sxp+hp)(syq+hq)−n = s2xpyq+shpyq+shqxp−(n−hphq). The proof
for the other point we observe that n ≡ hphq (mod s) ⇒ t ∈ Z. Seeing that hp ≡ p ̸≡ 0 (mod cj)
and hq ≡ q ̸≡ 0 (mod cj) ⇒ ∀cj − divisor prime of s we observe that gcd(s, hp) = gcd(s, hq) = 1
and gcd(s, hp, hq, t) = 1. We rewrite f(x, y) = (ax+by+c)(dx+ey+f) where a, b, c, d, e, f ∈ Z after
comparing the coefficients ⇒ (a = e = 0) or (b = d = 0). Applying the greatest common divisor
properties ⇒ gcd(bd, bf) = gcd(bd, cd) = 1 and gcd(ae, af) = gcd(ae, ce) = 1 , b = d = a = e = 1
which leads to contradiction.

The problem of finding solutions for polynomials with multiple variables over Z proves to be
difficult. Despite the fact that it seems to be a difficult problem a well-known solving exists which
succeeds to find solutions using the LLL-algorithm [12] which reduces this problem to SVP. [13]

Theorem 1 (1) Let be p(x, y) - irreducible polynomial with two variables over Z and γ the maxi-
mum degree in each variable separately. Let be X,Y the upper bounds for |x0| and |y0| where (x0, y0)
- solution. Define v(x, y) := p(xX, yY ) and W the absolute value of biggest coefficient of w.

If XY < W 2/(3γ) ⇒ exists an algorithm which runs in polynomial time with the purpose of
finding all the pairs (x0, y0) with p(x0, y0) = 0,|x0| < X and |y0| < Y .

(2) Let be p, q − k-bit primes and n = pq. If s, cp ∈ Z with s ≥ 2
k
2 and cp ≡ p (mod s) ⇒ the

factorization of n can be determined in polynomial time. [8]

Proof. (1) The demonstration can be found in [14], Corollary 2.
(ii) We apply the first point of theorem to the polynomial from Lemma (1). Using (10) we obtain
0 < xp < X := 2k/s and 0 < yq < Y := 2k/s. We define g(x, y) = f(xX, yY ) and W - the absolute
value of biggest coefficient of g.

Knowing W ≥ sXY = 22k

s , and for s > 2
k
2 we conclude XY = ( 2

k

s )2 < ( 2
2k

s )
2
3 ≤W

2
3 .

From the fact that 2k < s the first inequality is obtained and from the fact that γ is one in
each variable by (1) we can find (xp, yq) in O(k). [8]

4. Shortest Vector Problem

Definition 2 L ⊂ Rn is called lattice if it is the set of all integer linear combinations of some
linearly independent basis a1, a2, a3, ...an ∈ Rn.

L := {
n∑

i=1

ziai :, zi ∈ Z}

Definition 3 SVP definition contains in the fact that given a basis A = (a1, ..., an) of a lattice L,
find the shortest non-zero vector in L, that is, a vector s ∈ L such that ||s|| ≤ λ1(L),where λ1(L)
is defined as the minimum of maximum of v1, v1 ∈ L− liniar independent vector .
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Other than the algorithm LLL ([12]), there are numerous papers that focus on finding an
solution to SVP based on different aspects of it. The work papers developed by Pohst ([15]),
Kannan([16]) , and Fincke–Pohst([17]) focuses on enumeration. The way an enumeration algorithm
works is by taking as input a value called enumeration radius R > 0 alongside a basis A =
(a1, ..., an) of a lattice L, and trying to outputs all non-zero vectors s ∈ L such that s ≤ R.

Also the authors of [18] put in evidence an algorithm capable of solving SVP which rely on the
mathematical properties of the Gaussian distribution. New directions of research for solving this
NP-hard problem can be found in [19, 20, 21] which are based on lattices concepts.

5. Empirical and experimental Results

Theorem (1) states that in case of a value s sufficiently large the basic attack proves to be
successful. Also by log2(s) we define the number of bits used by the memory for storing the value,
also we notice that in most cases s ≤

∏
r∈C . Another aspect shown by the results of the experiments

put in the evidence that the bitsize of s is able to vary considerably for different k-bit starting
candidates v0 for Algorithm 2.One mandatory condition for Theorem (1) is that log2(s) >

k
2 ( a

practical view ) or even better log2(s) > G,which allows the running of LLL-algorithm with normal
lattice dimension.

The authors of [8] implemented Algorithm 2 using a number of t = 20 Miller-Rabin tests in
[22] and ran the RSA-generation process 10000 for each pair (k,N). More details about the results
and statistics can be consulted in [8].

From the hardware perspective the fact that the power consumption reveals the number of
trial divisions of the prime candidates v0 = v, v1 = v + 2, .. is the main assumption. This power
consumption can be defined as a voltage drop over a inserted resistor into the GND line of this
chip. The implementation from [22] was done on a standard microcontrolller( Atmel ATmega ).

Finding the parts of the power trace that is able to allow the identification the individual
trial divisions or even the incrementation operations,which are implemented in an 8-bit arithmetic
manne, proves to be the main challenge. More about the experimental results can be found [8].

6. Countermeasures

The main purpose of this chapter is to present some countermeasures in order to provide a new
level of security to those systems that use RSA as method of encryption. The simplest solutions are
an implementation of Algorithm 1,which generate each candidate independent from its predecessors
and dividing each prime candidate by all elements of the trial base. Those solutions prove to be
not so efficient in terms of number of basic operations performed.

The side-channel leakage of the trial divisions of the previous prime candidates or the maximum
information leakage that is possible can be compensated by performing XOR between each prime
candidate and some randoms bits to every candidate.

Other countermeasures consist in either methods of protection in case of side-channel attacks
or other prime generation algorithms like the ones from [23, 24, 25, 26, 27].

7. Conclusions

Side-channel attacks proves to be the most implemented in practice in many contexts with the
purpose of the exploitation of the physical characteristics of the system. The vulnerability spotted
is situated during the execution of the RSA key generation step based on the prime generation
used for p and q.

Under weak assumptions on the side-channel leakage the attack proved to be works and practical
experiments show that the assumption may be realistic. In [27] is debated the fact that the RSA
key generation process may be vulnerable to side-channel attacks.

Other important that by reduction to SVP or other well-known NP-hard problems that can be
resolved in an efficient time the RSA cryptosystem proved to be even theoretical vulnerable.
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