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Abstract. The private heavy-hitters problem is a data-collection task where many clients possess
private bit strings, and data-collection servers aim to identify the most popular strings without learning
anything about the clients’ inputs. The recent work of Poplar constructed a protocol for private heavy
hitters but their solution was susceptible to additive attacks by a malicious server, compromising both
the correctness and the security of the protocol.
In this paper, we introduce PLASMA, a private analytics framework that addresses these challenges
by using three data-collection servers and a novel primitive, called verifiable incremental distributed
point function (VIDPF). PLASMA allows each client to non-interactively send a message to the servers
as its input and then go offline. Our new VIDPF primitive employs lightweight techniques based on
efficient hashing and allows the servers to non-interactively validate client inputs and preemptively
reject malformed ones.
PLASMA drastically reduces the communication overhead incurred by the servers using our novel
batched consistency checks. Specifically, our server-to-server communication depends only on the num-
ber of malicious clients, as opposed to the total number of clients, yielding a 182× and 235× improve-
ment over Poplar and other state-of-the-art sorting-based protocols respectively. Compared to recent
works, PLASMA enables both client input validation and succinct communication, while ensuring full
security. At runtime, PLASMA computes the 1000 most popular strings among a set of 1 million
client-held 32-bit strings in 67 seconds and 256-bit strings in less than 20 minutes respectively.
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1 Introduction

In today’s technology-driven world, companies are constantly collecting user data to perform data analysis,
compute statistics, expose patterns in user behaviors, and apply them to improve their products [33, 41, 19,
46]. Common practices for data analytics resort to histograms, where client data are aggregated together in
predefined and non-overlapping buckets. Each bucket may represent a quantitative range (e.g., salary) or a
categorical value (e.g., profession). The resulting histogram displays the frequencies of each bucket based on
multiple aggregated participant (or client) responses.

Private Histograms. When computing statistics using histograms, it is crucial to maintain client privacy, such
as preventing data collection servers from inferring additional information about clients’ inputs. Existing
solutions for privacy-preserving histograms can solve this problem efficiently, given a relatively small number
of buckets [26, 8, 29, 53, 2, 11]. Nevertheless, histograms tend to be resource-intensive on the server side when
the goal is to find the most popular entries among the clients’ inputs. For instance, assume clients that hold
GPS coordinates of their location and servers aiming to discover crowded areas without compromising client
privacy. The naive solution of creating a histogram over all possible inputs results in sparsely populated sets
over all possible inputs, which wastes server-side computational power due to sparse inputs. Conversely, in
an optimal solution the server computation should scale with the most popular inputs (instead of all possible
inputs).

Private Heavy-Hitters. This problem is addressed by the concept of “heavy hitters”. T -heavy hitters allow
computing the T most popular responses (for a given threshold T ) among clients’ inputs and have a broad
range of applications: from finding popular websites that users visit or malicious URLs that cause browsers
to crash [40, 16], to discovering commonly used passwords [55], learning new words typed by users and
identifying frequently used emojis [34], to name a few. Private heavy-hitters allow computing these results
while also preserving client privacy. Existing protocols (such as [25, 57, 55, 16, 2, 15]) only focus on the
“popular” inputs and disregard other inputs that appear less than T times (i.e., they are pruned by the
protocol). This renders private heavy-hitters a suitable candidate for finding the most common client entries,
such as computing crowded areas using client-provided GPS coordinates.

Different Approaches. The literature considers the setting where two or more servers collect client inputs
and run the private heavy-hitters protocol among these servers. A notable approach is based on differential
privacy (DP), and the current state-of-the-art is [2]; we discuss more DP-based solutions in our related works
(Section 1.2). While these protocols are computationally fast, an important drawback is that they are limited
to DP-based privacy guarantees for the client. Likewise, MPC-based solutions (such as [15]) employ general-
purpose secure computation frameworks (e.g., MP-SPDZ [44], SCALE-MAMBA [1], Sharemind [14]), but
these methods fall short of practical expectations. Thus, recent works introduced customized MPC-based
techniques to solve the private heavy-hitters problem [5, 42]. The underlying protocols perform secure sorting
of client inputs under MPC [39, 9, 13, 4] and then aggregate the sorted data. This guarantees that the
clients’ inputs remain hidden when a majority of the servers are honest. However, all the aforementioned
solutions incur server-to-server communications that scale linearly with the total number of clients, which is
unfavorable when this number increases.

Distributed point functions (DPF) [37, 17, 18] offer an alternative approach for private histograms.
Informally, DPF allows a client to generate and send succinct shares of a point function corresponding to
their private inputs to two servers. The servers then use these shares to locally evaluate the point function
on every possible input in the entire input space and add the resulting outputs to obtain additive shares of
a histogram. However, this approach incurs quadratic (i.e., O(n2)) client-to-server communication (where n
is the number of bits required to represent a client’s input) for privately computing heavy hitters.

Poplar. Recent work in Poplar [16] extends the DPF approach by introducing the notion of incremental DPF
(IDPF) (more details in Section 2.3). Poplar provides an IDPF-based solution for the private heavy-hitter
in the two-server setting, which reduces the quadratic client-server communication of DPF-based solutions
to linear. Their server-to-server communication depends only on the input string length in the semi-honest
setting. For security against malicious clients, the servers validate every client’s input so that malformed
inputs are preemptively detected by the servers and discarded from the computation. This is referred to as
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client input validation and it prevents a malicious client from causing an abort in the entire protocol involving
other clients. Poplar requires additional checks to perform input validation against malicious clients, which
results in the server-to-server communication to scale linearly with the total number of participating clients.

Motivation. Since all aforementioned solutions incur server-to-server communication that scales linearly
with the number of clients, they are prohibitive for most real-world applications that require millions of
participating clients for data collection. Likewise, neither Poplar nor the DP-based solutions [15, 2] can
tolerate additive attacks from a malicious server, which results in incorrect outputs when one of the servers
do not follow the protocol steps. More formally, they fail to provide full security (i.e., both correctness and
privacy) against the collusion of a malicious server and malicious clients. In this regard, we summarize the
above solutions in Table 1 and ask the following motivating question:

Can we obtain a protocol for private heavy hitters that guarantees full security with succinct
server-to-server communication?

1.1 Our Contributions

We answer the aforementioned research question by presenting PLASMA, a framework for private and
lightweight statistics that provides full security (against a malicious server + against malicious clients) while
maintaining efficiency. We compare our work with others in Table 1 and summarize our main contributions
below:

Verifiable incremental DPF (VIDPF). First, we introduce a new primitive called verifiable incremental
DPF (VIDPF), which builds upon incremental DPFs (IDPF) [16] and verifiable DPFs (VDPF) [32]. VIDPF
allows us to verify that clients’ inputs are valid by relying on hashing while preserving the client’s input
privacy.

Batched Consistency Check. Next, we introduce a novel batched consistency check which allows us to
drastically reduce the server-to-server communication for the private heavy hitters and make it independent
of the total number of clients. At a high level, we succinctly validate the inputs of ℓ clients using a Merkle tree
and identify the malformed ones using logarithmic communication. This optimization reduces our server-to-
server communication from O(κℓ) to O(κ log2 ℓ) bits, where κ is the security parameter, for O(1) malicious
clients. More formally, for ℓ′ malicious clients each server communicates O(κ)×min(ℓ′ log ℓ, (ℓ− ℓ′) log ℓ

ℓ−ℓ′ )
bits.

PLASMA framework. We combine the above two techniques to construct PLASMA, a protocol for pri-
vate histograms and private heavy hitters in the three-party setting that guarantees full security against a
malicious server and malicious clients while maintaining succinct server-to-server communication. PLASMA
relies only on efficient hashing and cheap field additions rather than expensive general-purpose MPC or field
multiplications. Due to our novel VIDPF primitive, PLASMA outperforms Poplar with regards to runtime
by a factor of 3 − 6×. Similarly, our batched consistency check optimization enables us to drastically out-
perform both Poplar and the sorting-based protocols in terms of server-to-server communication by factors
of 182× and 235×, respectively. PLASMA is the first work to consider different thresholds for heavy hitters
based on pre-agreed prefixes by the servers, allowing for more elaborate private statistics, such as the GPS
application discussed later.

Real-world applications. We evaluate PLASMA for two applications of private heavy hitters: one that
detects frequently visited URLs and another that identifies popular areas.

– Popular URLs. A prominent application (discussed both in [5] and [16]) is identifying which URLs crash
the clients’ browsers more frequently. In this scenario, each client has a string of n bits that represents
the last URL that crashed their browser. In our evaluations (Section 7), we consider n = 256 bits, which
is sufficient for standard domain names. PLASMA computes the heavy hitter URLs that caused more
than T = 0.1% of client browsers to crash. We perform the task in 20 minutes for 1 million clients while
incurring 200 MB of server-to-server communication.
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– Popular GPS coordinates. We demonstrate a new application where PLASMA identifies popular areas
without sacrificing user privacy. This can help with restaurant recommendations, traffic avoidance, as
well as advertising (e.g., businesses can identify crowded shopping areas and target their marketing
efforts) while ensuring the GPS coordinates of the users remain private to the servers. Likewise, ride-
sharing services can enhance vehicle distribution in busy areas and proactively dispatch more drivers
to active areas during rush hour. This is possible by encoding the client GPS coordinates as plus codes
[47]; PLASMA represents plus codes using 64-bit strings to compute the most popular neighborhoods
among a set of client-provided GPS coordinates. We compute the heavy hitter plus codes (i.e., popular
coordinates) that more than T = 0.1% of clients submitted in less than 3 minutes for 1 million clients.

Table 1: Threat model comparisons, client input validation, and server-to-server communication. All works
protect privacy against a malicious server.

Protocol

Correctness & Privacy
Against Malicious Corruption

Client
Input

Validation

Succinct
Server-to-Server
Communication

Clients Server
Server & Clients
(Full Security)

DPF [17, 18, 37]

Poplar (IDPF) [16]

Bucketization (DP) [2]

MPC-based [15] †

Sorting-based [5, 42]

PLASMA (this work)

† [15] is using general-purpose MPC and its security relies on the underlying MPC framework. The authors provide
both semi-honest and maliciously secure implementations with MP-SPDZ [44] and SCALE-MAMBA [1], respec-
tively.

1.2 Related Work

In this section, we discuss several recent works for private heavy hitters. These works can be classified into
four main groups: those based on DPFs, those based on differential privacy (DP), those based on MPC
sorting techniques, and finally those based on general-purpose MPC. We summarize the threat models of
related works and their server-to-server communication in Table 1.

1.2.1 DPF-based. Distributed point functions [37, 17, 18] offer a straightforward solution for private
histograms but they fail for heavy-hitters due to the quadratic blowup in key-size. This was addressed by
Poplar [16], which uses two non-colluding servers and introduces the notion of incremental DPFs to allow
efficient evaluation of strings based on prefixes. Poplar is robust against malicious clients but is susceptible
to additive attacks by a malicious server. To address this, a non-interactive zero-knowledge (NIZK) proof
[21, 12, 54, 10, 24] could be implemented to prove the server-side computation without exposing private
information; however, this would not be a practical solution. Another possibility is to design customized
interactive zero-knowledge (ZK) protocols [36, 49, 52, 50, 51, 58] based on efficient OT/VOLE protocols
[45, 56, 23, 22, 60, 30], but that requires designing a custom circuit for proving incremental DPFs, which can
be efficiently proven in ZK. In contrast, PLASMA provides full security against both malicious clients and
a malicious server. Also, Poplar still leaks some information about the heavy hitter prefixes to the servers
as the servers reconstruct the roots of the paths before they prune them. On the other hand, PLASMA
performs a secure comparison over the secret shares and either keeps the node with its sub-tree if T > count
or prunes the sub-tree.
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1.2.2 DP-based. There is also a body of work based on local DP and randomized responses to compute
the heavy hitters [28, 7, 57, 6, 20, 61]. These techniques only involve a single server collecting data from clients.
However, this method introduces a trade-off between utility and privacy, as it leaks some information about
the clients’ private data to the server. In contrast, other methods that provide stronger privacy guarantees
would require at least two not-colluding servers. Notably, secure computation-based solutions can be modified
to achieve DP either by using local DP with similar techniques or by adding a smaller amount of noise in
MPC and achieving higher data utility while maintaining privacy.

Likewise, bucketization [2] computes approximate statistics on a permuted version of the clients’ data
combined with dummy data that are sampled as differentially private noise. Bucketization ensures security
against malicious clients, but similarly to Poplar, it does not guarantee correctness (only privacy) in the
presence of a malicious server. In contrast, PLASMA focuses on exact statistics and is secure against both
malicious clients and a malicious server.

1.2.3 Sorting-based. The recent works of [5, 42] provide new secure sorting algorithms and construct
private heavy-hitter protocols based on the sorted data. They provide security against malicious servers
and clients in the three-server setting, where one of the servers can be malicious. However, these solutions
incur heavy communication overheads by performing a secure sort under MPC. We also demonstrate a
235× improvement in server-to-server communication of PLASMA compared to [5] as shown in Fig. 14.
Notably, these protocols do not ensure client input validation and will abort if one of the clients behaves
maliciously.3 This is problematic for realistic applications where multiple untrusted clients are involved. In
contrast, PLASMA preemptively detects a malicious client input and discards it from the computation.
Finally, PLASMA can be modified to permit different thresholds for heavy-hitters based on pre-agreed
prefixes, allowing for more elaborate statistics. This is not possible for sorting-based heavy-hitter protocols.

1.2.4 General MPC-based. One could use generic honest-majority MPC protocols [35, 27] to compute
private heavy hitters, but an efficient representation of the heavy-hitters problem in terms of addition and
multiplication gates is not known. In fact, the work by Böhler and Kerschbaum [15] provides a generic
MPC-based protocol for computing differentially private heavy hitters. These authors use MPC frameworks
like MP-SPDZ [44] and SCALE-MAMBA [1] to achieve semi-honest and malicious security, respectively, but
their solution suffers from high communication and slow runtimes.

2 Preliminaries

In this section, we discuss the underlying cryptographic primitives and assumptions used for developing our
framework.

2.1 Threat Model

Our threat model assumes three non-colluding servers (S0,S1,S2) that run the histogram/heavy-hitters
protocol and ℓ clients. The clients provide inputs to the servers and the servers do not possess any private
input. We assume that a central adversary A maliciously corrupts one of the servers and ℓ̃ < ℓ clients.
Clients. Malicious clients may try to deviate from the protocol in order to disproportionally influence the
result or even completely corrupt the output of the protocol. PLASMA is robust against malicious clients
and preemptively rejects any malformed client input before incorporating it into the computation.
Servers. Similarly, a malicious server may try to deviate from the protocol specification for different reasons.
First, a malicious server may attempt to learn private user inputs; PLASMA protects input privacy against
one malicious server. Another possible attack for a malicious server would be to over-influence or corrupt the

3 While these protocols can be modified to detect malformed inputs, this requires additional checks per client that
rely on expensive field multiplications or use multi-verifier zero-knowledge [3, 59], which results in significant
overheads.
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result of the protocol. Contrary to some prior works [16, 2], PLASMA protects correctness against a malicious
server. We say that PLASMA is robust against a malicious server, since it protects both correctness and
privacy. Hence, PLASMA provides full security against the collusion of one malicious server and malicious
clients.

2.2 Notation

We denote the computational security parameter by κ and the statistical security parameter by µ. Let
PRG : {0, 1}κ → {0, 1}2(κ+1) be a pseudorandom generator and Convert : {0, 1}κ → G be a map converting

a random κ-bit string to a pseudorandom group element of G. We use := for assignment,
R←− D for sampling

from distribution D, = for checking equality, and ∥ for concatenation. We define a public set X with m
n-bit strings as X := {x1, x2, . . . , xm} where the ith bit string is denoted as xi for i ∈ [m] and the jth bit
in xi ∈ {0, 1}n is denoted as xi,j for j ∈ [n]. We denote the first L bits of xi as xi,≤L := (xi,1, xi,2, . . . xi,L)
for L ≤ n. Finally, we denote a private n-bit string α and its bit decomposition as α1, . . . , αn ∈ {0, 1}n. Let
Sb denote the bth server, for b ∈ {0, 1, 2}; we consider b + 1 := (b + 1) mod 3 and b + 2 := (b + 2) mod 3.
Servers do not possess any input. All our protocols assume ℓ clients, each denoted as Ci for i ∈ [ℓ]. Each
client Ci has an n-bit input string αi ∈ X, for i ∈ [ℓ].

2.3 Distributed Point Functions (DPF)

Function secret sharing (FSS) [37, 17, 18] enables secret sharing a function into separate keys, where each
party’s key allows the party to efficiently generate an additive share of the output f(x) on a given input
x. DPFs are a special case of FSS where the function f is a point function fα,β(x) := β if x = α and 0,
otherwise. A DPF consists of two algorithms Gen and Eval. The Gen algorithm takes as input the function
fα,β and outputs two keys key0 and key1. The Eval algorithm is the evaluation algorithm on an input x such
that Eval(0, key0, x) + Eval(1, key1, x) = β for x = α, and 0 for x ̸= α. Privacy ensures (α, β) remains hidden
from an adversary in possession of one of the keys (but not both).

Efficient implementations for DPFs allow sharing 2n elements with shares of only O(n) size [37, 17, 18,
16, 31]. The latest DPF protocols rely on the GGM construction [38] and evaluate a pseudorandom function
(PRF) to expand a tree of pseudorandom number generators (PRGs) and output of the PRF tree leaves.
Each DPF input has a distinct path through the tree and generates a unique leaf. By secret sharing the
initial seeds between two parties, these parties have a zero function for each leaf. This function can be turned
into a point function by puncturing a single path in this tree (i.e., input α), where the values at the GGM
nodes differ and the leaf value corresponds to β. For all the other inputs the PRG seeds are programmed to
be the same. This correction operation is designed to fix at most one difference per level and is the backbone
for most of the aforementioned works.

Incremental and Verifiable DPF (IDPF and VDPF). The IDPF [16] and VDPF [32] build on standard
DPFs to secret share the weights of a tree w.r.t. a single non-zero path. IDPFs perform this task with linear
cost in the number of bits n for strings that share common prefixes [16], whereas using standard DPFs this
cost would grow to O(n2). IDPFs rely on expensive malicious secure sketching checks to ensure that an IDPF
key is not malformed. Meanwhile, the work of [32] considers efficient hashing-based verifiable properties to
ensure that a DPF (not IDPF) key is well-formed. Moreover, [32] enables a batched verification procedure
with communication proportional to the security parameter. However, VDPFs work only for DPF and not
IDPF. We present the VDPF algorithms below:

– VDPF.Gen(1κ, fα,β) → (key0, key1). Given the security parameter 1κ and a function f , output keys
key0, key1.

– VDPF.BatchEval(b, keyb,X) → (Yb, πb) : For b ∈ {0, 1}, batch verifiable evaluation takes a set X :=
{x1, x2, . . . , xm}, where each xi ∈ {0, 1}n. It outputs Yb := {yb,1, yb,2, . . . , yb,m} such that Y0 + Y1 =
fα,β(X). πb is a proof that is used to verify the well-formedness of the output.
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Privacy ensures that an adversary in possession of one of the keys (but not both) does not obtain any
information about the function f . The verifiability property of VDPF ensures that the proofs π0 and π1 are
same iff they have been generated from valid keys key0 and key1 of a point function.

3 Technical Overview

In this section, we recall the histogram and heavy-hitters protocol by Poplar [16]. Then, we describe our
histogram protocol for the sake of exposition. Finally, we describe our heavy hitters protocol.

3.1 Histogram Protocol of Poplar

Poplar first considers the problem of computing private subset histograms. The ideal functionality for the
histogram can be found in Fig. 6. In the histogram problem, each client holds an n-bit string α and the
servers S0, S1 have a small set X := {x1, x2, . . . , xm} of m n-bit strings. Each client secret shares its input
α using a DPF as (key0, key1) := DPF.Gen(1κ, α, 1,G). The client sends key0 to S0 and key1 to S1. Upon
receiving the keys, each server Sb evaluates the DPF on all the strings xi ∈ X and computes the output
share yb ∈ Fm by aggregating the evaluated values as yb :=

∑
xi∈X DPF.Eval(b, keyb, xi). The servers perform

the same protocol for multiple clients and aggregate the yb values in an accumulator Yb. Finally, the servers
exchange Y0 and Y1 to compute the output histogram as Y := Y0 + Y1. This protocol requires the client to
communicate one key to each server and the server-to-server communication is independent of the number
of clients since Y0 and Y1 are aggregated values. This protocol preserves client privacy.

However, a malicious client can double vote by generating the DPF keys maliciously such that it contains
more than one non-zero point or the DPF output at α is greater than 1. To tackle this issue, Poplar introduces
a malicious sketching protocol that ensures that the client input is well-formed. The client runs the same
protocol twice, once with the actual input vector v = 0 . . . 010 . . . 0 (where v contains 1 only at the αth

position) and once with ϕv = 0 . . . 0ϕ0 . . . 0 for a random ϕ
R←− F. The client also sends some correlated

randomness between the two sessions to allow the servers to verify the well-formedness. Upon receiving the
DPF keys for the two runs and the correlated randomness, the servers evaluate the DPFs following the

previous protocol to obtain yb, ỹb ∈ Fm. Then the servers sample random field elements r
R←− Fm to perform

a random linear combination over yb and ỹb, and utilize the correlated randomness and ϕ to verify the client
input’s well-formedness. If the client passes the checks, then the client’s DPF output yb is aggregated in Yb

by server b, otherwise, it is ignored. This approach enforces malicious clients to provide correct inputs. It
also preserves the client’s privacy against a malicious server. However, it allows a malicious server, say S0, to
introduce additive errors (e.g., δ ∈ Fm) in Y ′0 := Y0 + δ. That way, the output Y of the histogram would be
biased by δ as Y := Y ′0 + Y1 = Y0 + Y1 + δ. The honest server fails to detect such an additive attack, leading
to an error in the correctness of the protocol. Moreover, Poplar also requires m field multiplications leading
to an 8× computational overhead (for their maliciously secure protocol over their semi-honest counterpart),
and requires O(ℓ) server-to-server communication.

3.2 Our Histogram Protocol

We improve upon Poplar’s limitations by (1) introducing one additional server, (2) building upon the prim-
itive of verifiable DPF [32] (Section 2.3), and (3) introducing novel consistency checks in the three-party
setting. We claim the following benefits over Poplar:

1. Robustness against a collusion of a malicious server and malicious clients,

2. Lightweight consistency checks for malicious behavior (using only symmetric key operations and field
additions),

3. Server-to-server communication is independent of the total number of clients.
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In fact, our work provides the first maliciously secure protocol whose server-to-server communication is
independent of the total number ℓ of clients. Our servers communicate O(L) hashes for the consistency

checks, where L := min(ℓ̃ log2 ℓ, ℓ) and ℓ̃ is the number of corrupt clients. Similar to Poplar, we also ensure
client input validation against malicious clients (i.e., honest servers preemptively detect inconsistent client
input and discard it). We first discuss our basic histogram protocol (with O(ℓ) server communication) and
then we optimize the server-to-server communication.

3.2.1 Basic Protocol We describe our protocol in the three-server setting by demonstrating the necessary
modifications as follows:

Robustness against a Malicious Server. The histogram protocol of Poplar is not robust against a
malicious server. Hence, we consider a third server S2 to allow an honest majority to obtain security against
one malicious server with improved efficiency. Each client runs three DPF sessions, one between each pair of
servers, with independent randomness but the same input α (i.e., the pairwise evaluation of the DPF keys on
point α outputs secret shares of one). The client sends the DPF keys for the sessions to the servers and each
server obtains two keys. Upon obtaining the DPF keys, each server evaluates the DPF on all input points in
X. It is ensured that if the client behaved honestly then at least one of the three sessions will be evaluated
honestly since two of the servers are honest. After aggregating all the clients’ inputs, the output histogram
is reconstructed across the three sessions. If the output is the same between each pair of servers then the
servers behaved honestly and that is considered as the output. If the output is inconsistent across a pair of
servers then it indicates that one of the servers behaved maliciously (by launching an additive attack) and
the honest servers abort - thus providing robustness against the malicious server.

Client Input Validation. The above protocol assumes that the client computes the DPF evaluation keys
honestly and sends them to the servers. A malicious client could construct malformed DPF keys such that
the client’s input gets counted more than once. To prevent such an attack, the work of Poplar considered
a consistency check by performing random linear combinations. This led to an 8× overhead in terms of
computation as it involved O(|X|) multiplications for each client. We avoid such heavy computation and
only rely on hashing to perform the consistency check.

We first ensure that the DPF output is non-zero at a single point. The work of [32] introduces the
primitive of verifiable DPF (VDPF). It is a stronger notion of DPF, where the servers obtain proof (of
correct evaluation) π upon evaluating a pair of DPF keys on a given input point. The two servers obtain
the same proof π if the client generated the DPF keys honestly (i.e., the DPF output is non-zero at a single
point α). Multiple proofs corresponding to different evaluation points are batch verified. Next, we ensure
that the DPF output value at the non-zero point is indeed 1. Our protocol also instructs the servers to sum
up all the output shares (corresponding to each point in X) of the client and reconstruct the output. If the
reconstructed output is not 1, then the client’s input is discarded since it is not well-formed. If the output
is 1, i.e., the client has behaved honestly, then the DPF output shares are aggregated by the server in the
output histogram share. This does not quite provide full security against a malicious client since a malicious
client could provide inconsistent inputs across the three server sessions.

3.2.2 Final Protocol We further optimize our protocol to reduce server-to-server communication and
computation. We also detect a client providing inconsistent input across the three server sessions.

Batched Client Verification. Our basic histogram protocol incurs a server-to-server communication of
O(κ) bits for each client to verify the proofs for validating the clients’ inputs. This results in O(κ × ℓ)
server-to-server communication for ℓ clients.

We propose a technique that allows us to reduce the server-to-server communication. This optimization
allows us to batch all the clients’ VDPF evaluations using a Merkle tree that has ℓ leaves for ℓ clients. First,
the servers succinctly check the equality of ℓ leaves between two servers using hashes. If the roots match
then the leaves are the same. If they differ then the servers recursively repeat the same process for each of
the two children of the parent node. Proceeding this way, the servers identify the malformed leaves on which
the two trees differ. This reduces our server-to-server communication for the consistency check to O(κ log2 ℓ)
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bits if ℓ′ = O(1) clients behave maliciously. More details can be found in Section 6. For ℓ′ malicious clients,
each server sends O(κ)×min(ℓ′ log ℓ, (ℓ− ℓ′) log ℓ

ℓ−ℓ′ ) bits.

key(0,1), key(0,2), key(2,1)

key(1,0), key(1,2), key(2,0)

key(2,1), key(2,0)

Ci S1

S0

S2

Fig. 1: Distribution of session keys by client Ci.

Reducing Server-to-Server Latency. We empirically observed that the server-to-server latency increases
if there is pairwise communication between the three servers for consistency checks. There are three server-
to-server sessions for each client, and the third server S2 is involved in two of the three sessions: specifically,
sessions S1−S2 and S2−S0. The client generates (key(0,1), key(1,0)) for session S0−S1, (key(1,2), key(2,1)) for
session S1−S2, and (key(0,2), key(2,0)) for session S2−S0. S0 receives key(0,1) and key(0,2) from the client for
sessions S0 − S1 and S2 − S0, respectively. S1 receives key(1,0) for session S0 − S1 and key(1,2) for S1 − S2,
while S2 receives key(2,1) and key(2,0) for sessions S1−S2 and S2−S0, respectively. Additionally, the protocol
instructs the client to send key(2,1) to server S0 and key(2,0) to server S1 respectively. The key distribution
process by the client can be visualized in Fig. 1.

This optimization allows S2 to replicate the computation of S0 in session S1−S2 (because they both have
key(2,1)) and S2 acts as an attestator by sending hashes to S1 of the same messages as S0 should send. These
hashes prevent S0 from acting maliciously. Similar protocol steps are run by S2 to attest the S2−S0 session
and prevent S1 from acting maliciously. We depict this attestation process in Fig. 2. This optimization allows
us to batch-verify all three sessions as a single session between S0 and S1 using hashes. Combined with the
previous optimization (i.e., batched client verification), we can further reduce the communication needed for
consistency checks by three times, where each Merkle tree leaf corresponds to three sessions (instead of one).
It also allows us to ensure client input consistency across sessions, as described next.

key(0,1) (S0 − S1) session key(1,0)

key(0,2) (S2 − S0) session key(2,0)

key(2,1) (S1 − S2) session key(1,2)

hashes for
(S2 − S0)

hashes for
(S1 − S2)

S0 S1

S2

Fig. 2: Session keys and attestation by S2.

Client Input Consistency Across Sessions. A malicious client can provide inconsistent inputs across the
three server sessions by providing DPF keys for different points α1, α2, and α3 for three different sessions.
The verifiability of the VDPF fails to detect it since each of the individual VDPFs is valid.

To address the issue, we construct a novel consistency check that relies on a single hash verification.
Let us denote Y(0,1), Y(0,2), and Y(2,1) be the output of VDPF evaluation by S0 on keys key(0,1), key(0,2),
and key(2,1) corresponding to sessions between S0 − S1, S0 − S2, and S2 − S1, respectively. Similarly, let
us denote Y(1,0), Y(2,0), and Y(1,2) be the output of VDPF evaluation by S1 on keys key(1,0), key(2,0),
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and key(1,2) corresponding to sessions between S0 − S1, S0 − S2, and S2 − S1, respectively. By definition,
reconstructing each pair of secret shared outputs (e.g., Y(0,1), Y(1,0)) results in a vector of zeros except a
single location. Note that the client has also sent key(2,1) to S0 and key(2,0) to S1 respectively. Server S0 sends
hash h := H(Y(0,1)−Y(0,2) ∥Y(0,2)−Y(2,1)) to S1, who verifies that h = H(Y(2,0)−Y(1,0) ∥Y(1,2)−Y(2,0)).
The verification of the hash h ensures that the client’s input is consistent between: (1) the sessions S0 − S1
and S0−S2, as well as (2) the sessions S0−S2 and S2−S1. By transitivity, all three sessions are consistent if
the hash verification succeeds. Observe that if the servers acted honestly, Y(0,1) +Y(1,0) = Y(0,2) +Y(2,0) =
Y(1,2) +Y(2,1) and thus, Y(0,1) −Y(0,2) = Y(2,0) −Y(1,0) and Y(0,2) −Y(2,1) = Y(1,2) −Y(2,0). Our novel
check requires additions (without any multiplications) and a cheap hash computation. The communication
cost is one hash of size κ bits.

We refer to Section 4 for the detailed protocol description and Fig. 7 for the formal protocol details
respectively.

3.3 Our Heavy Hitters Protocol via T -Prefix Count Queries

The work of Poplar reduced the problem of computing heavy hitters to the problem of computing prefix
count queries for a given prefix p ∈ {0, 1}∗ over client inputs. Then, they implemented prefix count queries by
relying on incremental distributed point functions (IDPF in Section 2.3). However, their protocol leaks the
count of strings that contain the T heavy-hitting prefix p due to the reliance on a prefix-count query oracle
that outputs the exact count. To tackle this leakage, we introduce the notion of T -threshold prefix-count
queries which returns 1 if at least T of clients’ input strings contain prefix p, otherwise, it returns 0. We
define it as follows:

Definition 1 (T -Prefix-count queries). Return 1 (on input prefix p ∈ {0, 1}∗) if prefix p appears at least
T times in the clients’ input strings α1, α2, . . ., αℓ ∈ {0, 1}∗ where client Ci has input string αi for i ∈ [ℓ],
otherwise, return 0.

Next, we present the high-level idea behind our construction of a T -heavy hitters protocol (for threshold
T ) given an oracle Ωα1,...,αℓ

(p, T ) for securely computing T -prefix-count queries over prefix p for the client
input strings α1, . . . , αℓ.

T -Heavy hitters. The T -Heavy hitters algorithm is provided with oracle
Ωα1,...,αℓ

(p, T ) for computing T -prefix count. The algorithm starts from the empty string ϵ. At each level k,

it considers the heavy-hitter prefixes p ∈ {0, 1}k of length in set HHk, which contains the list of k-bit strings
that appear at least k times. The algorithm performs a breadth-first search of the prefix tree. It includes k+1
bit length strings p ∥ 0 in HHk+1 if p ∥ 0 occurs at least T times in the input strings (α1, . . . , αℓ), otherwise it
gets pruned along its subtree. This is performed by querying the oracle Ωα1,...,αℓ

(p ∥ 0, T ). The same process

is repeated for p ∥ 1. The algorithm repeats this for all k-bit strings in HHk (which updates HHk+1 based on
the search and pruning of set HHk). At the end of the breadth-first search and the pruning, the algorithm
outputs the set of strings that are T -heavy hitters. Our formal algorithm is presented in Fig. 3.

Efficiency. There are ℓ input strings in total. For any string of length k, there are at most ℓ/T candidate
heavy hitter strings. At each level k, the algorithm makes at most one oracle query per heavy hitter string.
Hence, the algorithm makes at most nℓ/T prefix-count-oracle queries for n levels. If we set the threshold to
be a constant fraction of all input strings (e.g., T = 0.01ℓ), then the number of prefix-count queries are
independent of the number of input strings (e.g., nℓ/T = nℓ/0.01ℓ = 100n).

3.4 Implementing T -Prefix Count Queries via Verifiable Incremental DPF

We implement the T -Prefix Count Queries from Def. 1 by relying on a new primitive called verifiable
incremental DPF (VIDPF) and invoking the ideal functionality FCMP (Fig. 9) for comparison.
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T -Heavy Hitters from T -prefix count queries

Parameters: Threshold T ∈ N and string length n ∈ N.
Inputs: The algorithm has no explicit input. It has access to t-prefix count query oracle Ωα1,...,αℓ

(p, t) for securely computing
t-prefix-count queries over prefix p for strings α1, . . . , αℓ.

Outputs: The set of T -heavy-hitter strings in α1, α2, . . . , αℓ.

Algorithm:

– Initialize HH≤n = {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ and HH1, . . .HHn are empty sets.

– For each prefix p ∈ HHk of length k-bits in set HHk (where k = 0, 1, 2, . . . n− 1) :

• If Ωα1,...,αℓ
(p ∥ 0, T ) = 1, HHk+1 := HHk+1 ∪ {p ∥ 0}.

• If Ωα1,...,αℓ
(p ∥ 1, T ) = 1, HHk+1 := HHk+1 ∪ {p ∥ 1}.

– Output T -heavy hitters HH≤n = {HH0,HH1, . . .HHn}.

Fig. 3: Algorithm for computing T -heavy hitters from T -prefix count queries.

3.4.1 Verifiable Incremental DPF (VIDPF) A DPF allows a client to succinctly share a vector of
size 2n with a single non-zero point. Meanwhile, an incremental DPF (introduced by Poplar and denoted as
IDPF) allows the client to succinctly secret share a path in the binary tree (used for representing 2n leaves in
binary format) and each node in the path can hold non-zero values. Our novel VIDPF primitive offers strong
integrity guarantees over IDPFs, since the evaluation of the client keys also provides proofs (π1, . . . , πn)
to the servers ensuring that the VIDPF output is non-zero along a single path in the binary tree. It also
allows incremental evaluation of the VIDPF over an input x ∈ {0, 1}k, given state stk−1b and proof πk−1

b ,
corresponding to VIDPF evaluation of the first k−1 bits of x. The incremental evaluation enables a evaluator
(possessing keyb) to evaluate one level and obtain the secret sharing of output f(x), a new state stkb , and a
new proof πk

b corresponding to the VIDPF evaluation of the path involving x. More formally, we capture the
high-level ideas of VIDPF using the following two algorithms:

– Gen(1κ, 1n, α, (β1, β2, . . . , βn),G) → (key0, key1) : Given security parameter κ, input size n, an input
string α ∈ {0, 1}n and values β1, β2, . . . βn the key generation algorithm outputs two VIDPF keys key0
and key1.

– EvalPrefix(b, keyb, x ∈ {0, 1}k, stk−1b , πk−1
b )→ (stk, yb, π

k
b ) : Given a VIDPF key keyb and an input string

x ∈ {0, 1}k of length k ≤ n bits, the evaluation algorithm outputs an internal state stk, secret-shared
value yb ∈ G and a proof πk

b ∈ {0, 1}∗.

Correctness of the VIDPF ensures that for all input points α ∈ {0, 1}n, output values β1, . . . , βn ∈ G,
VIDPF keys generated as (key0, key1) ← Gen(α, β1, β2, . . . , βn,G) and all values x ∈ {0, 1}k, where k ≤ n,
the following holds for all k ≤ n:

πk
0 = πk

1 and y = (y0 + y1) =

{
βk, if x is a prefix of α,

0, otherwise,

where (stk0 , y0, π
k
0 ) := EvalPrefix (0, key0, x, st

k−1
0 , πk−1

0 ) and (stk1 , y1, π
k
1 ) := EvalPrefix (1, key1, x, st

k−1
1 , πk−1

1 ).
For security guarantees, we require two additional properties from the VIDPF primitive:

– Input Privacy. The security of VIDPF guarantees that an adversarial evaluator in possession of either
key0 or key1 (but not both), does not learn any information about either the input α or the outputs
β1, . . . , βn of the client.

– Verifiability. The verifiability property states that if two proofs (e.g., πk
0 and πk

1 ) are the same, then
there is at most one path of length k in the binary tree whose evaluation with keys (key0, key1) outputs
(β1, β2, . . . , βk). More formally, for any k ∈ [1, . . . n] there exists a single k-bit string x̃ ∈ {0, 1}k such
that if πk

0 = πk
1 , then the following holds:

10



EvalPrefix(0, key0, z, st
k−1
0 , πk−1

0 )+

EvalPrefix(1, key1, z, st
k−1
1 , πk−1

1 )

=

{
βk, if z = x̃,

0, if z = {0, 1}k \ {x̃},

where stk−10 , πk−1
0 and stk−11 , πk−1

1 are obtained by running the EvalPrefix algorithm on k − 1 bits of z
respectively. The evaluators initialize st00 := st01 := 0 and π0

0 := π0
1 := 0.

We provide a construction of VIDPF in Figs. 4 and 5 based on length doubling PRG in the random oracle
model.

Primitives: PRG : {0, 1}κ → {0, 1}2κ+2 is a pseudorandom generator. H1 : {0, 1}∗ × {0, 1}κ → {0, 1}2κ and
H2 : {0, 1}2κ → {0, 1}2κ are random oracles.

Gen(1κ, 1n, α, (β1, β2, . . . βn),G): ▷ Generate DPF keys.

1: Sample s
(0)
b

R←− {0, 1}κ for b ∈ {0, 1} ▷ Secret seeds.

2: Let t
(0)
0 := 0 and t

(0)
1 := 1

3: for i := 1 to n do ▷ For each bit of α.

4: sLb ∥ t
L
b ∥ s

R
b ∥ t

R
b := PRG(s

(i−1)
b ) for b ∈ {0, 1} ▷ Parse the output of PRG as a sequence of (κ ∥ 1 ∥ κ ∥ 1) bits.

5: if αi = 0 then Diff := L, Same := R ▷ Set right children to be equal.

6: else Diff := R, Same := L ▷ Set left children to be equal.

7: scw := sSame
0 ⊕ sSame

1

8: tLcw := tL0 ⊕ tL1 ⊕ αi ⊕ 1 ▷ Left control bits not equal if αi = 0.

9: tRcw := tR0 ⊕ tR1 ⊕ αi ▷ Right control bits not equal if αi = 1.

10: s̃
(i)
b

:= sDiff
b ⊕ t

(i−1)
b · scw for b ∈ {0, 1} ▷ Correction.

11: t
(i)
b

:= tDiff
b ⊕ t

(i−1)
b · tDiff

cw for b ∈ {0, 1} ▷ Correction.

12: s
(i)
b ∥W

(i)
b

:= Convert(s̃
(i)
b ) for b ∈ {0, 1}

13: W (i)
cw := (−1)t

(i)
1 · [βi −W

(i)
0 + W

(i)
1 ] ▷ Output correction.

14: cw(i) := scw ∥ tLcw ∥ t
R
cw ∥W

(i)
cw ▷ Correction word for level i.

15: π̃
(i)
b = H1(α≤i ∥ s

(i)
b )

16: cs(i) = π̃
(i)
0 ⊕ π̃

(i)
1 .

17: keyb := (s
(0)
b ∥ cw(1) ∥ . . . ∥ cw(n) ∥ cs(1) ∥ . . . ∥ cs(n)) for b ∈ {0, 1} ▷ Key for party b.

18: return keyb for b ∈ {0, 1}

Fig. 4: Protocol πVIDPF for Verifiable incremental DPF (continues in Fig. 5).

Next, we outline our protocol for securely implementing T -prefix count queries using VIDPF and the
comparison functionality FCMP.

3.4.2 Implementing T -Prefix Count Queries Each client generates three pairs of VIDPF session
keys, one for each pair of servers, with independent randomness but the same input point α and output
values (1, 1, . . . , 1). The client sends the VIDPF keys for the sessions to the respective participating servers
similarly to our histogram protocol, as indicated in Fig. 1.

Basic Protocol. As depicted in Fig. 2, S2 behaves as an attestator for the S0−S2 session and sends hashes
of the messages that S1 should send. The hash prevents server S1 from acting maliciously corresponding to
the S0 − S2 session. Similar protocol steps are run by S2 for the session between S1 − S2, where S2 sends
hashes to S1. Hence, S0 and S1 run three sessions, and S2 runs two of those sessions in parallel. Next, we
describe the protocol to compute a T -prefix count query on a string p ∥ 0 ∈ {0, 1}k (note, the same process
can be repeated for query string p∥1). The servers S0 and S1 evaluate the VIDPF keys for the three sessions
on p∥0 and obtain a secret share of the output yp∥0 and proof π. Ideally, yp∥0 should be βk = 1 for an honest
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EvalNext(b, i, st(i−1), cw(i), cs(i), x≤i, π): ▷ Evaluate xi.

1: Parse st(i−1) as (si−1 ∥ ti−1).

2: scw ∥ tLcw ∥ t
R
cw ∥W

(i)
cw := cwi ▷ Parse correction word.

3: s̃L ∥ t̃L ∥ s̃R ∥ t̃R := PRG(s(i−1)) ▷ Parse the output of PRG as a sequence of (κ ∥ 1 ∥ κ ∥ 1) bits.

4: τ(i) := (s̃L ∥ t̃L ∥ s̃R ∥ t̃R)⊕ (t(i−1) · [scw ∥ tLcw ∥ scw ∥ t
R
cw])

5: sL ∥ tL ∥ sR ∥ tR := τ(i) ▷ Parse τ(i).

6: if xi = 0 then s̃(i) := sL, t(i) := tL ▷ Keep left path.

7: else s̃(i) := sR, t(i) := tR ▷ Keep right path.

8: s(i) ∥W (i) := Convert(s̃(i)) ▷ New seed and output for level i.

9: st(i) := s(i) ∥ t(i) ▷ Save the state.

10: y(i) := (−1)b · [W (i) + t(i) ·Wcw] ▷ Compute output at level i.

11: π̃(i) = H1(x
≤i ∥ s(i)).

12: π = π ⊕ H2(π ⊕ (1− t(i)) · π̃(i) ⊕ t(i) · cs(i)).
13: return (st(i), y(i), π)

EvalPrefix(b, key, x ∈ {0, 1}n, st(d−1), d, π): ▷ Evaluate one public bitstring x on all it’s bits xi for i ∈ [n].

1: Parse key as s(0) ∥ cw(1) ∥ . . . ∥ cw(n) ∥ cs(1) ∥ . . . ∥ cs(n). ▷ Parse key for party b.

2: if (d ̸= 1) then parse st(d−1) as (s(d−1) ∥ t(d−1)),

3: else t(0) := b, st(0) := s(0) ∥ t(0).
4: for i := d to n do ▷ For each bit of x.

5: (st(i), y(i), π) := EvalNext(b, i, st(i−1), cwi, x≤i, π).

6: return (st(n), y(n), π)

Fig. 5: Protocol πVIDPF for Verifiable incremental DPF (continuing from Fig. 4).

client. However, a malicious client could construct malformed VIDPF keys such that the client’s input gets
counted more than once.

Client Input Validation. We introduce the following consistency checks to validate a client’s input:

1. The servers S0 and S1 first verify that the proofs π are the same for all three sessions. This ensures that
there is at most one path in the binary tree that is non-zero.

2. Next, for the root level (i.e., k = 0), the servers evaluate the VIDPF keys on the empty string ϵ and
verify that it is 1.

3. Finally, the servers need to verify that yp∥0 is either 0 or 1, without reconstructing the output. This is
ensured by performing a novel consistency check on the subtree involving p ∥ 0. The servers evaluate the
VIDPF keys on the parent string p and sibling (of p ∥ 0) string p ∥ 1 to obtain secret shares of the output
of yp and yp∥1 respectively. The servers reconstruct yp− (yp∥0+ yp∥1) and verify that it is 0 (at most one
child can equal 1 when a parent holds a value of 1). This ensures that the subtree involving p ∥ 0 is valid.
This step is repeated iteratively for the path (in the subtree) involving p, until all layers are processed.
Combining all k checks ensures that yp∥0 = 1 iff yp = 1 and yp∥1 = 0, else yp∥0 = 0. The servers also
verify the corresponding proofs π generated during the VIDPF evaluation along the path to ensure there
is at most one path in the entire binary tree that is non-zero.

4. The servers also need to ensure that the client input is consistent across the three server sessions. This is
ensured by computing the difference of the reconstructed outputs across the sessions and verifying that
they are equal to 0 by matching their hash values.

Output Phase. Once the client’s VIDPF output yp∥0 is verified, the secret shares of yp∥0 are aggregated
into county∥0. The servers repeat the above steps for all the clients in parallel to obtain secret shares of yp∥0.
The servers invoke the comparison functionality FCMP (Fig. 9) with the secret shares of count and threshold
T . FCMP reconstructs count and it outputs 1 if count ≥ T , otherwise, it outputs 0. This is returned by
the servers as the output of the T -prefix count oracle query response to the string y ∥ 0. The comparison
functionality FCMP is securely implemented using the state-of-the-art protocol of Rabbit [48].

Robustness Against a Malicious Server. The third server ensures that if the client behaved honestly
then at least one of the three sessions will be evaluated correctly since two of the servers are honest. After
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aggregating all the client’s inputs, count is reconstructed across the three sessions by FCMP. If count is
inconsistent across any pair of servers then FCMP returns ⊥ indicating that one of the servers behaved
maliciously by launching an additive attack. This will cause the honest servers to abort, providing robustness
against the malicious server.

In our final protocol, we verify multiple client inputs at each level in one batch, similar to our histogram
protocol. This ensures that our server-to-server communication is independent of the total number of clients,
and depends only on the number of malicious clients and the number of heavy-hitter prefix strings. We refer
the reader to Section 5 for the protocol description and Figs. 10 and 11 for the formal protocol details. We
also present our heavy-hitters protocol for different thresholds in Appendix A.

4 Private Histogram

We provide the ideal functionality FHIST for histogram between three servers and ℓ clients in Fig. 6. An
adversary A can maliciously corrupt any one of the servers and multiple clients.

Functionality FHIST

Parameters: Servers S0,S1 and S2, and ℓ clients Ci for i ∈ [ℓ]. Servers S0, S1 and S2 agree upon:

– X to be a public set of m n-bit strings X := {x1, x2, . . . , xm}.
– A bound ℓ on the number of client submissions.

Inputs:

– Servers S0,S1,S2: No input.

– Clients Ci: A point αi ∈ X for i ∈ [ℓ].

Outputs: Initialize HIST := 0m. Compute histogram HIST := {y1, . . . , ym} based on client inputs αi for i ∈ [ℓ] and j ∈ [m]:

yj :=

{
yj + 1, if αi = xj ,

yj , otherwise.

FHIST outputs the following:

– Servers S0,S1,S2: Histogram HIST

– Clients Ci: No output for i ∈ [ℓ]

Corruption: Adversary A maliciously corrupts one server and multiple clients together. If A instructs the functionality to abort
by sending ⊥, the functionality instructs the honest servers to output ⊥.

Fig. 6: The ideal FHIST functionality for histogram.

Our detailed protocol πHIST that implements FHIST appears in Fig. 7, and high-level ideas of our protocol
can be found in Section 3.2. Our πHIST protocol computes a private histogram that represents the data
distribution of ℓ clients while protecting the privacy of the individual data points. πHIST runs on three servers
(S0,S1,S2) that utilize the verifiable DPF (VDPF) protocol [32] to privately aggregate the clients’ data
points. Additionally, πHIST runs three VDPF sessions, which guarantees security against a malicious server.
We denote the secret shared variables of a session between Sb1 and Sb2 with a subscript of (b1, b2) if they
are local to Sb1 and with a subscript (b2, b1) if they are local to Sb2 . Our protocol proceeds in three phases:
a client computation phase, a server computation phase, and an output phase.

Client Computation. During the client computation phase, each client C prepares three pairs of VDPF
keys for their private data point α ∈ X and output value 1 using independent randomness for each key
generation. Using three pairs of keys essentially allows us to run three separate VDPF sessions. S0 and
S1 each have one key for each of the three sessions, while S2 acts as a consistency checking server and
shares one key with each of the other two servers. More specifically, the client generates (key(0,1), key(0,2))
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for S0, (key(1,0), key(1,2)) for S1, and (key(2,1), key(2,0)) for S2. The client sends (key(0,1), key(0,2), key(2,1)) to
S0, (key(1,0), key(1,2), key(2,0)) to S1, and (key(2,1), key(2,0)) to S2 as shown in Fig. 1.

Server Computation. Each server first initializes one histogram for each session (e.g., HIST(b1,b2) for
b1, b2 ∈ {0, 1, 2} and b1 ̸= b2) with m zeros (where |X| = m). The servers start accepting VDPF keys from
the clients and perform the following:

(a) Each of the servers evaluates each client submission on all m data points in X and computes a secret
shared vector Y(b1,b2) and a hash π(b1,b2) that is used for consistency checking by relying on the integrity
guarantees of VDPF [32]. By the VDPF construction, Y(b1,b2) is a vector of additive shares of zeros in
m− 1 positions and one share of one in a single position indicated by the client’s input ai. We denote
each index j for these shares as y(b1,b2),j where b1 and b2 indicate the two servers Sb1 and Sb2 that run
each session. Each server Sb1 then computes τ(b1,b2) by locally adding the y(b1,b2),j values for all j ∈ [m].
S0 and S1 communicate the τ(b1,b2) and π(b1,b2) values for all sessions between them. In particular, S0
sends (τ(0,1), π(0,1), τ(0,2), π(0,2), τ(2,1), π(2,1)) to S1 and S1 sends (τ(1,2), π(1,2), τ(1,0), π(1,0), τ(2,0), π(2,0))
to S0. S2 sends H(τ(2,0), π(2,0)) to S0, and H(τ(2,1), π(2,1)) to S1. Finally, S0 computes a hash h :−
H(Y(0,1) −Y(0,2) ∥Y(0,2) −Y(2,1)) and sends it to S1.

(b) S0 and S1 can now locally check that, within each session, all the π values match and that all the τ
values add up to 1. This guarantees that there were no additive attacks introduced. Finally, S1 verifies
the clients’ input consistency by checking that the value h received from S0 is equal to H(Y(2,0) −
Y(1,0) ∥Y(1,2) −Y(2,0)). Each server can then aggregate Y(b1,b2) in their histogram HIST(b1,b2), which
results in increasing only the bucket that the client’s private data point ai indicates.

Output Phase. After all ℓ client submissions have been processed, each two servers Sb and Sb+1 (for b ∈
{0, 1, 2}) exchange the secret shared values (HIST(b,b+1) and HIST(b+1,b)) and reconstruct the final histograms
as HISTb := HIST(b,b+1) + HIST(b+1,b). Both S0 and S1 verify that HIST = HIST0 = HIST1 = HIST2. In the
formal protocol, the servers first send commitments to their shares via hashes and then open the shares. This
is required for the formal simulation-based security proof against a rushing adversarial server. In addition,
S2 also attests to the computation corresponding to the two sessions (involving S2) by sending hashes.

This completes the description of our protocol πHIST (Fig. 7). The security of our protocol is captured in
Theorem 1. Formal protocol details can be found below.

Theorem 1. Assuming VDPF is a verifiable DPF and H is a random oracle then πHIST (Fig. 7) implements
the FHIST functionality in the random oracle model against malicious corruption of one server and corruption
of ℓ̃ ≤ ℓ clients.

Proof Sketch. The adversary is allowed to corrupt ℓ′ ≤ ℓ clients and one of the servers. The other two
servers remain uncorrupted. We discuss the ways a malicious client can attempt to inject an error and we
demonstrate our consistency checks for each of the cases.

– Client VDPF keys are malformed. A malicious client can attempt to provide malformed VDPF keys
which are non-zero in more than one leaf in the binary tree (of 2n leaves). This gets detected in the
session involving the honest servers due to the verifiable property of the VDPF when the servers verify
the proofs generated during the VDPF evaluation. If the checks pass, then it is ensured that the VDPF
keys provided by the client are valid.

– Client VDPF input is malformed. Next, a malicious client can try to double-vote on its input point α
by constructing the VDPF on (α, β̃). i.e., f(α) = β̃, where β̃ > 1, instead of (α, 1). This is detected by
the honest servers since the honest servers reconstruct the sum of all the VDPF evaluations over the m
input points. This is performed in parallel for all three sessions. The servers verify that the reconstructed
output sum is 1 to ensure that the client has voted only once on its secret input point.

– VDPF input is inconsistent across sessions. Finally, a malicious client can try to provide different VDPF
keys in different sessions, for example it constructs VDPF keys for input (α1, 1) for the S0 − S1 session,
(α2, 1) for the S1 − S2 session, and (α3, 1) for the S2 − S0 session, where α1 ̸= α2 ̸= α3. The above two
checks would still pass since they ensure client input validation within each session but not client input

14



Private Histogram πHIST

We denote a vector Y ∈ Fm component-wise as Y := {y1, y2, . . . , ym}, where yj ∈ F for j ∈ [m].

– Input: Each client Ci has an input point αi ∈ X for i ∈ [ℓ].

– Output: S0, S1, S2 output a histogram of the ℓ clients’ data. If the servers abort then it denotes a malicious server involvement.

– Primitive: VDPF := (Gen,BatchEval) is a verifiable distributed point function. H is a random oracle.

1: Client C Computation. (Repeated for ℓ clients, each of which has their own private input α.)

(a) Client C with input α prepares three pairs of DPF keys with independent randomness u, v, w
R←− {0, 1}κ, as follows:

(key(0,1), key(1,0)) := Gen(1κ, α, 1,G), (key(1,2), key(2,1)) := Gen(1κ, α, 1,G), (key(2,0), key(0,2)) := Gen(1κ, α, 1,G)

(b) The client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2.
2: Server Computation. (Repeated for ℓ clients, each of which has sent their own keys.)

If this is the first client, each server Sb initializes HIST(b,b+1) and HIST(b+1,b) for b ∈ {0, 1, 2} as follows:

S0 initializes HIST(0,1) := 0
m
,HIST(0,2) := 0

m
, and HIST(2,1) := 0

m

S1 initializes HIST(1,2) := 0
m
,HIST(1,0) := 0

m
, and HIST(2,0) := 0

m
, S2 initializes HIST(2,0) := 0

m
and HIST(2,1) := 0

m

(a) Each server Sb computes Y(b,b+1) and Y(b,b+2) for b ∈ {0, 1, 2} as follows:

S0 computes Y(0,1), π(0,1) := VDPF.BatchEval(0, key(0,1),X) and Y(0,2), π(0,2) := VDPF.BatchEval(1, key(0,2),X)

S1 computes Y(1,2), π(1,2) := VDPF.BatchEval(0, key(1,2),X) and Y(1,0), π(1,0) := VDPF.BatchEval(1, key(1,0),X)

S0 and S2 compute Y(2,1), π(2,1) := VDPF.BatchEval(1, key(2,1),X)

S1 and S2 compute Y(2,0), π(2,0) := VDPF.BatchEval(0, key(2,0),X)

Each server Sb computes τ(b,b+1) and τ(b,b+2) for b ∈ {0, 1, 2} as follows:

S0 parses Y(0,1) = {y(0,1),1, y(0,1),2, . . . , y(0,1),m} and computes τ(0,1) :=
∑m

j=1 y(0,1),j

S0 parses Y(0,2) = {y(0,2),1, y(0,2),2, . . . , y(0,2),m} and computes τ(0,2) :=
∑m

j=1 y(0,2),j

S1 parses Y(1,2) = {y(1,2),1, y(1,2),2, . . . , y(1,2),m} and computes τ(1,2) :=
∑m

j=1 y(1,2),j

S1 parses Y(1,0) = {y(1,0),1, y(1,0),2, . . . , y(1,0),m} and computes τ(1,0) :=
∑m

j=1 y(1,0),j

S1 and S2 parse Y(2,0) = {y(2,0),1, y(2,0),2, . . . , y(2,0),m} and compute τ(2,0) :=
∑m

j=1 y(2,0),j

S0 and S2 parse Y(2,1) = {y(2,1),1, y(2,1),2, . . . , y(2,1),m} and compute τ(2,1) :=
∑m

j=1 y(2,1),j

S0 sends (τ(0,1), π(0,1), τ(0,2), π(0,2), τ(2,1), π(2,1)) to S1. S1 sends (τ(1,2), π(1,2), τ(1,0), π(1,0), τ(2,0), π(2,0)) to S0. S2 sends
H(τ(2,0), π(2,0)) to S0, and H(τ(2,1), π(2,1)) to S1. S0 also sends hash h to S1, where h is of the form h = H(Y(0,1)−Y(0,2) ∥
Y(0,2) −Y(2,1)).

(b) Each server Sb sets verb := 1 for b ∈ {0, 1}. Then, the servers locally perform the following computation:

S0 and S1 sets ver0, ver1 := 0 if (π(0,1) ̸= π(1,0)) ∨ (π(0,2) ̸= π(2,0)) ∨ (π(2,1) ̸= π(1,2))∨

(τ(0,1) + τ(1,0) ̸= 1) ∨ (τ(0,2) + τ(2,0) ̸= 1) ∨ (τ(2,1) + τ(1,2) ̸= 1)

S1 sets ver1 := 0 if h ̸= H(Y(2,0) −Y(1,0) ∥Y(1,2) −Y(2,0))

S0 and S1 broadcast ver0 and ver1. Ignore the client’s input if either is 0. Else, aggregate the client input into the histogram
as follows:

S0 updates HIST(0,1) := HIST(0,1) + Y(0,1),HIST(0,2) := HIST(0,2) + Y(0,2) and HIST(2,1) := HIST(2,1) + Y(2,1)

S1 updates HIST(1,2) := HIST(1,2) + Y(1,2),HIST(1,0) := HIST(1,0) + Y(1,0) and HIST(2,0) := HIST(2,0) + Y(2,0)

S2 updates HIST(2,0) := HIST(2,0) + Y(2,0) and HIST(2,1) := HIST(2,1) + Y(2,1)

3: Output Phase.

(a) Each two servers Sb and Sb+1 exchange H(HIST(b,b+1), r(b,b+1)) and H(HIST(b+1,b), r(b+1,b)) for random r(b,b+1), r(b+1,b)
R←−

{0, 1}κ.
(b) S0 sends (HIST(0,1),HIST(0,2),HIST(2,1), r(0,1), r(0,2)) to S1. S1 sends (HIST(1,2),HIST(1,0),HIST(2,0), r(1,2), r(1,0)) to S0. S2

broadcasts (r(2,0), r(2,1)).

(c) S0 and S1 verify the above hashes. If any of the hashes fail then the servers abort. Else, they perform the following:

S0 and S1 compute HIST0 := HIST(0,1) + HIST(1,0),HIST1 := HIST(1,2) + HIST(2,1), and HIST2 := HIST(2,0) + HIST(0,2)

(d) S0 and S1 abort if HIST0 ̸= HIST1 or HIST1 ̸= HIST2. Else, they output HIST where HIST = HIST0 = HIST1 = HIST2.

Fig. 7: Private Histogram Protocol πHIST.
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consistency across the three sessions. To ensure this, the servers match the difference of the reconstructed
output of S0 − S1 and S2 − S0 session, and the difference of the reconstructed output of S2 − S0 and
S1 − S2 session, to verify that they are all 0. By transitivity, it is ensured that if and only if this check
passes then the output of the VDPF evaluation would be the same across the three sessions, ensuring
that α1 = α2 = α3.

A malicious server could collude with malicious clients. It can be observed that the honest clients’ inputs
are always hidden from the adversary due to input privacy of VDPF, since no server possesses more than
one VDPF key. Next, A malicious server could attempt to incorporate an erroneous VDPF evaluation (from
a malformed client input key) or inject additive errors into the output. We show how this is tackled in the
protocol based on the server corruption:

– S0 is corrupt. In this case, the session between S1 − S2 is honest. S0 runs this session with S1 since it
obtained key(2,1) from the client. However, S2 behaves as an attestator by sending hashes of the messages
that S0 is supposed to send. This forces S0 to act honestly in the S1−S2, otherwise, it leads to an abort.
Another way a malicious S0 can behave badly is by colluding with a malicious client. The client could
provide malformed inputs in S0 −S1/S2 −S0 session or inconsistent inputs across the three sessions. In
such a case, a malicious S0 could compute an incorrect hash h := H(Y′(0,1) −Y′(0,2) ∥Y

′
(0,2) −Y(2,1)),

where Y′(0,1) and Y′(0,2) are incorrect. This would allow the S0 to introduce an additive error into the

histogram (for the S0 − S1 and S2 − S0 sessions) by incorporating the client’s malformed input into the
output histogram. However, this gets detected when the output histogram is reconstructed for all three
sessions and compared. The output of S0 − S1 and S2 − S0 sessions will not match with the output of
S1 − S2 session denoting that one of the servers behaved maliciously, hence leading to an abort.

– S1 is corrupt. This case is very similar to the above one where S0 was corrupt. In this case, the session
between S2−S0 is honest. S1 runs this session with S0 since it obtained key(2,0) from the client. However,
S2 behaves as an attestator by sending hashes of the messages that S1 is supposed to send. This forces
S1 to act honestly in the S2−S0, otherwise, it leads to an abort. Another way a malicious S1 can behave
badly is by colluding with a malicious client. The client could provide malformed inputs in S0−S1/S1−S2
session or inconsistent inputs across the three sessions. In such a case, a malicious S1 simply ignore the
hash h := H(Y′(0,1) −Y(0,2) ∥Y(0,2) −Y′(2,1)) (where Y′(0,1) and Y′(2,1) are incorrect) sent by S0. This
would allow the S1 to introduce an additive error into the histogram (for the S0−S1 and S1−S2 sessions)
by incorporating the client’s malformed input into the output histogram. However, this gets detected
when the output histogram is reconstructed for all three sessions and compared. The output of S0 − S1
and S1 − S2 sessions will not match with the output of S2 − S0 session denoting that one of the servers
behaved maliciously, hence leading to an abort.

– S2 is corrupt. In this case, the session between S0−S1 is honest. If S2 behaves as a malicious attestator
by sending incorrect hashes for the S1 − S2 or S2 − S0 sessions then the honest servers abort. Another
way a malicious S2 can behave badly is by colluding with a malicious client. The client could provide
malformed inputs in the three sessions. If the client provides malformed inputs in S0 − S1 session then
it gets detected due to verifiability of the VDPF, since both S0 and S1 are honest. It could provide
malformed (allows double voting) VDPF keys key′(2,0) and key′(2,1) to S1 and S0 for the sessions involving
S2. However, that again gets detected since the server S0 computes the hash h honestly and the S1
verifies it honestly.

5 Private Heavy Hitters

We provide the ideal functionality FHH for heavy-hitters computation between three servers and ℓ clients in
Fig. 8. Adversary A maliciously corrupts any one of the servers and multiple clients.

Our detailed protocol πHH that implements FHH appears in Figs. 10 and 11. High-level ideas of our
protocol can be found in Sections 3.3 and 3.4. Our πHH protocol privately computes all the T -heavy-hitting
strings (and their heavy-hitting prefixes) given the input data of ℓ clients, while protecting the privacy
of the individual data points. πHH runs on three servers (S0,S1,S2) that utilize our verifiable incremental
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Functionality FHH

Parameters: Servers S0,S1 and S2, and ℓ clients Ci for i ∈ [ℓ]. Servers S0, S1, and S2 agree upon:

– A bound ℓ on the number of client submissions.

– A bound T on the threshold for heavy hitters.

Inputs:

– Servers S0,S1,S2: No input.

– Clients Ci: A point αi ∈ {0, 1}n for i ∈ [ℓ].

Outputs: Initialize HH≤n = {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}. Repeat for length of k bits, where k ∈ [0, 1, . . . n− 1] and for

each prefix p ∈ HHk:

– Update HHk+1 := HHk+1 ∪ (p ∥ 0) if ∑ℓ
i=1

∣∣(αi,≤k+1 = (p ∥ 0))
∣∣ ≥ T .

– Update HHk+1 := HHk+1 ∪ (p ∥ 1) if ∑ℓ
i=1

∣∣(αi,≤k+1 = (p ∥ 1))
∣∣ ≥ T .

FHH outputs the following:

– Servers S0,S1,S2: Set of T -heavy hitters HH≤n.
– Clients Ci: No output for i ∈ [ℓ].

Corruption: Adversary A maliciously corrupts one server and multiple clients together. If A instructs the functionality to abort
by sending ⊥, the functionality returns HH≤n to the adversary and the functionality instructs the honest servers to output ⊥.

Fig. 8: The ideal FHH functionality for T -heavy hitters.

DPF (VIDPF) protocol to privately aggregate the clients’ data points. Specifically, πHH runs three VIDPF
sessions, which guarantees security against a malicious server. Our protocol proceeds in three phases: a client
computation phase, a server computation phase, and an output phase.

Client Computation. This phase is similar to the client computation of our histogram protocol presented
in Section 4, except that the clients use our VIDPF primitive to generate the keys instead of the VDPF
primitive. Each client generates VIDPF keys and sends them to the three servers as shown in Fig. 1.

Functionality FCMP

Inputs: Party P0 has input (a0, b0, c0, d0, e0, T0), Party P1 has input (a1, b1, c1, d1, e1, T1), and Party P2 has input
(a2, b2, c2, d2, e2, T2).
Outputs: Compute the following:

a = a0 + a1 + a2, b = b0 + b1 + b2, c = c0 + c1 + c2

d = d0 + d1 + d2, e = e0 + e1 + e2

– Abort if T0 ̸= T1 ̸= T2.
– Set T = T0.
– Output 1 if a = b = c = d = e and a ≥ T . Else, output 0.

Corruption: Adversary A maliciously corrupts one server. If A instructs the functionality to abort by sending ⊥, the functionality
instructs the honest servers to abort.

Fig. 9: The ideal FCMP functionality for comparison.

Server Computation. Each server first initializes a set of sets for heavy-hitter computation as HH≤n :=
{HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ, HH1, . . . ,HHn are empty sets and
HHk corresponds to the kth level. The servers start accepting VIDPF keys from the clients. As in our
histogram protocol, S2 acts as an attesting server for the sessions involving keys key(2,0) and key(2,1) by
sending hashes (depicted in Fig. 2). Next, for k ∈ [n] the servers perform the following:

17



(a) Initialization. For each k-bit heavy-hitting prefix p ∈ HHk, the servers initialize to 0 a countp∥0 (resp.
countp∥1) variable for each session to keep track of the frequency of prefix p ∥ 0 (resp. p ∥ 1). Later, each
server aggregates for each of the three sessions their additive shares of each frequency in their local
count variables. This is necessary for pruning the nodes later.

(b) VIDPF Evaluation. Next, the servers retrieve the states from memory for VIDPF evaluation in all
three sessions corresponding to prefix p ∈ {0, 1}k for each client. These states are used to incrementally
evaluate the VIDPF on prefix strings γ ∈ {p ∥ 0, p ∥ 1} for every client in all three sessions. For each
client, the servers obtain new evaluation states (corresponding to prefix γ), VIDPF output for prefix
string γ, and proof strings. The states are stored in the memory for future VIDPF evaluations on γ ∥ 0
and γ ∥ 1 in the (k+1)th level. More formally, the servers compute a secret shared vector yγ(b1,b2) and a

hash πγ
(b1,b2)

that is used for consistency checking by relying on the verifiability property of the VIDPF.

Next, the servers validate the client’s input. If k = 1, then the servers reconstruct y0 and y1 for each
client to verify that y0 + y1 = 1. If k ̸= 1, then the servers reconstruct yp − (yp∥0 + yp∥1) and verify
that it is 0. This ensures that the subtrees involving p ∥ 0 and p ∥ 1 are valid. The servers also need
to ensure that the client has provided a consistent input across the three sessions. This is ensured by
computing the difference of the reconstructed outputs across the sessions and verifying that they equal

to 0 by matching their hash values (ĥp∥0) and (ĥp∥1) respectively, where

ĥp∥0 = H1(y
p∥0
(0,1) − y

p∥0
(0,2), y

p∥0
(0,2) − y

p∥0
(2,1)),

ĥp∥1 = H1(y
p∥1
(0,1) − y

p∥1
(0,2), y

p∥1
(0,2) − y

p∥1
(2,1)).

(c) Batch-Verification. The servers perform a batch verification of the hashes and the yp − (yp∥0 + yp∥1)
values of all the clients succinctly by hashing them together and comparing the hashes. This is performed
for all three sessions. If a client’s VIDPF output is validated then they proceed to the aggregation phase,
else their VIDPF output is ignored.

(d) Aggregation. Once a client’s VIDPF output yγ is validated for γ ∈ {p ∥ 0, p ∥ 1}, it is aggregated into
countγ = countγ + yγ . This is locally performed by each server (for all three sessions) using the secret
shares of yγ since it only involves addition. The servers perform this over every validated client output,
and at the end of this phase, the servers possess a secret share of the frequency of p ∥ 0 and p ∥ 1 as
countp∥0 and countp∥1.

(e) Pruning. The servers proceed to the pruning phase where they invoke FCMP (Fig. 9) on the secret shares
of countγ (for γ ∈ {p ∥ 0, p ∥ 1}) for all three sessions and threshold T . Based on the output of FCMP the
following occurs:
– FCMP returns 1 if countγ ≥ T (i.e., γ is a heavy-hitter string). In this case, the prefix γ is added to

the list of k + 1-bit heavy-hitter set (i.e., HHk+1 := HHk+1 ∪ γ).

– FCMP returns 0 if countγ < T (i.e., γ is a non heavy-hitter string). In this case, the prefix γ is
ignored.

– If FCMP returns ⊥, which means that one of the servers behaved maliciously and it was detected,
the servers abort.

This computation is performed in parallel for all (k + 1)-bit prefixes in consideration, and after the
pruning phase, HHk+1 contains the list of (k+1)-bit heavy hitter strings. Next, the above computation
is repeated for (k + 1)-bit strings to compute (k + 2)-bit heavy hitters, until we reach k = n − 1. The
comparison functionality FCMP is securely implemented using the state-of-the-art protocol of Rabbit [48].

Output Phase. At the end of the protocol, the servers output HH≤n = {HH0, HH1, . . . ,HHn} as the set of
T -heavy hitter strings.

This completes the description of our protocol πHH (Figs. 10 and 11).
The security of our protocol is captured in Theorem 2. Formal protocol details can be found below.

Theorem 2. Assuming VIDPF is a verifiable incremental DPF and H is a random oracle then πHH (Figs. 10
and 11) implements the FHH functionality in the random oracle model against malicious corruption of one

server and ℓ̃ ≤ ℓ clients.
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Private T -Heavy Hitters Protocol πHH

– Input: Each client Ci has an input point αi ∈ X for i ∈ [ℓ].

– Output: The servers Sb (for b ∈ {0, 1, 2}) output the set of T -heavy hitters HH≤n := FHH(ℓ, T , {αi}i∈[ℓ]).

– Primitive: VIDPF := (Gen, EvalPrefix, EvalNext) is a verifiable incremental distributed point function.

1: Client C Computation. (Repeated for ℓ clients, each of which has their own private input α)

(a) Client C with input α prepares three pairs DPF keys with independent randomness u, v, w
R←− {0, 1}κ, as follows:

(key(0,1), key(1,0)) := Gen(1κ, 1n, α, (1, 1 . . . , 1),G), (key(1,2), key(2,1)) := Gen(1κ, 1n, α, (1, 1 . . . , 1),G),

(key(2,0), key(0,2)) := Gen(1κ, 1n, α, (1, 1 . . . , 1),G)

(b) The client sends (key(0,1), key(0,2), key(2,1)) to S0, (key(1,0), key(1,2), key(2,0)) to S1 and (key(2,1), key(2,0)) to S2.
2: Server Computation.

– The servers initialize HH≤n = {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ and HH1, . . .HHn are
empty sets.

– Repeat the following steps for length of k bits, where k ∈ [0, . . . , n− 1]:

(a) Initialization. For prefix p ∈ HHk
b , servers initialize the aggregation variables for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows:

S0 sets countγ
(0,1)

:= countγ
(0,2)

:= countγ
(2,1)

:= 0, S1 sets countγ
(1,2)

:= countγ
(1,0)

:= countγ
(2,0)

:= 0

S2 sets countγ
(2,0)

:= countγ
(2,1)

:= 0

(b) VIDPFEvaluation. For prefix p ∈ HH≤k
b , Server Sb computes: (Repeated for ℓ clients)

i. Each server Sb retrieves the following states corresponding to the internal states of πVIDPF computation for prefix
p:

S0 retrieves (stp
(0,1)

, y
p
(0,1)

, π
p
(0,1)

), (stp
(0,2)

, y
p
(0,2)

, π
p
(0,2)

) and (stp
(2,1)

, y
p
(2,1)

, π
p
(2,1)

)

S1 retrieves (stp
(1,2)

, y
p
(1,2)

, π
p
(1,2)

), (stp
(1,0)

, y
p
(1,0)

, π
p
(1,0)

) and (stp
(2,0)

, y
p
(2,0)

, π
p
(2,0)

)

S2 retrieves (stp
(2,0)

, y
p
(2,0)

, π
p
(2,0)

) and (stp
(2,1)

, y
p
(2,1)

, π
p
(2,1)

)

ii. Each server Sb evaluates the VIDPFon the prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows:

S0 computes (stγ
(0,1)

, y
γ
(0,1)

, π
γ
(0,1)

) := EvalPrefix(0, key(0,1), γ, st
p
(0,1)

, k, π
p
(0,1)

) and stores it in memory.

S0 computes (stγ
(0,2)

, y
γ
(0,2)

, π
γ
(0,2)

) := EvalPrefix(1, key(0,2), γ, st
p
(0,2)

, k, π
p
(0,2)

) and stores it in memory.

S1 computes (stγ
(1,2)

, y
γ
(1,2)

, π
γ
(1,2)

) := EvalPrefix(0, key(1,2), γ, st
p
(1,2)

, k, π
p
(1,2)

) and stores it in memory.

S1 computes (stγ
(1,0)

, y
γ
(1,0)

, π
γ
(1,0)

) := EvalPrefix(1, key(1,0), γ, st
p
(1,0)

, k, π
p
(1,0)

) and stores it in memory.

S2 and S1 compute (stγ
(2,0)

, y
γ
(2,0)

, π
γ
(2,0)

) := EvalPrefix(0, key(2,0), γ, st
p
(2,0)

, k, π
p
(2,0)

) and store them in memory.

S2 and S0 compute (stγ
(2,1)

, y
γ
(2,1)

, π
γ
(2,1)

) := EvalPrefix(1, key(2,1), γ, st
p
(2,1)

, k, π
p
(2,1)

) and store them in memory.

iii. If k = 1 : Each server computes the proof that the VIDPFevaluation at the layer sums up to 1:

S0 computes h
∅
(0,1) := H1(∅, 1− y

0
(0,1) − y

1
(0,1)) and h

∅
(0,2) := H1(∅, y0

(0,2) + y
1
(0,2))

S1 computes h
∅
(1,2) := H1(∅, 1− y

0
(1,2) − y

1
(1,2)) and h

∅
(1,0) := H1(∅, y0

(1,0) + y
1
(1,0))

S2 and S1 compute h
∅
(2,0) := H1(∅, 1− y

0
(2,0) − y

1
(2,0)), S2 and S0 compute h

∅
(2,1) := H1(∅, y0

(2,1) − y
1
(2,1))

iv. If k ̸= 1 : Each server computes the proof that the VIDPFevaluation value along prefix p is same as the
VIDPFevaluation value along the children, i.e., for p ∥ 0 and p ∥ 1.

S0 computes h
p
(0,1)

:= H1(p, y
p
(0,1)

− y
p∥0
(0,1)

− y
p∥1
(0,1)

) and h
p
(0,2)

:= H1(p,−(yp
(0,2)

− y
p∥0
(0,2)

− y
p∥1
(0,2)

))

S1 computes h
p
(1,2)

:= H1(p, y
p
(1,2)

− y
p∥0
(1,2)

− y
p∥1
(1,2)

) and h
p
(1,0)

:= H1(p,−(yp
(1,0)

− y
p∥0
(1,0)

− y
p∥1
(1,0)

))

S2 and S1 compute h
p
(2,0)

:= H1(p, y
p
(2,0)

− y
p∥0
(2,0)

− y
p∥1
(2,0)

),

S2 and S0 compute h
p
(2,1)

:= H1(p,−(yp
(2,1)

− y
p∥0
(2,1)

− y
p∥1
(2,1)

)).

S0 also sends hashes (ĥp∥0, ĥp∥1) to S1, where

ĥp∥0 = H1(y
p∥0
(0,1)

− y
p∥0
(0,2)

, y
p∥0
(0,2)

− y
p∥0
(2,1)

) and ĥp∥1 = H1(y
p∥1
(0,1)

− y
p∥1
(0,2)

, y
p∥1
(0,2)

− y
p∥1
(2,1)

).

Fig. 10: Private Heavy Hitters Protocol πHH (continues in Fig. 11).
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2: Server Computation (Continued from Fig. 10)
– (Cont.) Repeat the following steps for length of k bits, where k ∈ [n]:

(c) Batch-Verification.Verify VIDPFevaluations for all k-length prefixes p (and p ∥ 0 and p ∥ 1): (Repeated for ℓ
clients)

S0 computes R
k
(0,1) := H2

(∣∣∣∣∣∣
p∈HHk

(
p, h

p
(0,1)

, π
p∥0
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, π
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))
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S1 computes R
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S2 and S1 compute R

k
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(∣∣∣∣∣∣
p∈HHk

(
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p
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, π
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))
S2 and S0 compute R

k
(2,1) := H2

(∣∣∣∣∣∣
p∈HHk

(
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p
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, π
p∥0
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S0 sends (Rk

(0,1), R
k
(0,2), R

k
(2,1)) to S1. S1 sends (Rk

(1,2), R
k
(1,0), R

k
(2,0)) to S0. S2 sends h̃k

0 := H3(R
k
(2,0)) to S0 and

h̃k
1 := H3(R

k
(2,1)) to S1.

Each server Sb sets verb := 1 for b ∈ {0, 1}. Sb sets verb := 0 if h̃k
b sent by S2 fail to match. Then, the servers locally

perform the following computation:

S0 sets ver0 := 0 if (R
k
(0,1) ̸= R

k
(1,0)) ∨ (R

k
(0,2) ̸= R

k
(2,0)) ∨ (R

k
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k
(1,2))

S1 sets ver1 := 0 if (R
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k
(2,1)) ∨ (R

k
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k
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k
(0,2))∨
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S0,S1 broadcast the ver0 and ver1 bits. If any of the ver0 or ver1 is 0 then ignore this client’s input.

(d) Aggregation. Aggregate the VIDPFoutputs for prefixes γ ∈ {p ∥ 0, p ∥ 1} as follows: (Repeated for ℓ clients)

S0 sets countγ
(0,1)

:= countγ
(0,1)

+ y
γ
(0,1)

, countγ
(0,2)

:= countγ
(0,2)

+ y
γ
(0,2)

, and countγ
(2,1)

:= countγ
(2,1)

+ y
γ
(2,1)

S1 sets countγ
(1,2)

:= countγ
(1,2)

+ y
γ
(1,2)

, countγ
(1,0)

:= countγ
(1,0)

+ y
γ
(1,0)

, and countγ
(2,0)

:= countγ
(2,0)

+ y
γ
(2,0)

S2 sets countγ
(2,0)

:= countγ
(2,0)

+ y
γ
(2,0)

and countγ
(2,1)

:= countγ
(2,1)

+ y
γ
(2,1)

The servers have aggregated the VIDPFevaluations (over all the ℓ clients) for all candidate (k + 1)-bit strings.

(e) Pruning. Prune the non-heavy hitter strings. For every (k + 1)-bit string γ, the servers perform the following:
• The servers invoke FCMP functionality (Fig. 9) with the additive shares of the node frequency. FCMP reconstructs

the individual frequencies, and returns 1 if all the reconstructed frequencies match and the frequency is more than
T , else it returns 0.

S0 invokes FCMP(count
γ
(0,1)

, 0, countγ
(0,2)

, countγ
(2,1)

, countγ
(0,2)

, T )

S1 invokes FCMP(count
γ
(1,0)

, countγ
(1,2)

, 0, countγ
(1,2)

, countγ
(2,0)

, T )

S2 invokes FCMP(0, count
γ
(2,1)

, countγ
(2,0)

, 0, 0, T )

The servers abort if FCMP aborts. If FCMP outputs 1 then the servers include γ to the heavy-hitter set as HHk+1 :=
HHk+1 ∪ γ. Else, if the output is 0 then ignore γ since it is a non-heavy hitter string.

The servers have successfully computed the HHk+1 set. The servers repeat the “Server Computation” steps (starting
from VIDPFevaluation for every client) for k + 1 bit prefixes.

3: Output Phase. The servers output HH≤n as the set of T -heavy hitter strings.

Fig. 11: Private Heavy Hitters Protocol πHH (continuing from Fig. 10).
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Proof Sketch. The adversary is allowed to corrupt ℓ′ ≤ ℓ clients and one of the servers. The rest two servers
remain uncorrupted. We discuss the ways a malicious client can attempt to inject an error and we demonstrate
our consistency checks for them:

– Client VIDPF keys are malformed. A malicious client can attempt to provide malformed VIDPF keys
which are non-zero in more than one path in the binary tree (of 2n leaves). This gets detected in the
session involving the honest servers due to the verifiable property of the VIDPF at each level when the
servers verify the proofs generated during the VIDPF evaluation. If the checks pass, then it is ensured
that the VIDPF keys provided by the client are valid.

– Client VIDPF input is malformed. Next, a malicious client can try to double-vote on an input point, say

p ∥ 0 ∈ {0, 1}k+1 by constructing the VIDPF on (p ∥ 0, β̃k). i.e., f(p ∥ 0) = β̃k, where β̃k > 1, instead
of (p ∥ 0, 1). This is detected by the honest servers since the honest servers perform a local subtree
verification by reconstructing the value yp− (yp∥0− yp∥1) and verifying that it equals 0 for all k > 0. For
the base case, i.e., k = 0, the servers verify that yϵ = 1. Combining all k checks ensures that yp∥0 = 1 if
and only if yp = 1 and yp∥1 = 0, else yp∥0 = 0.

– VIDPF input is inconsistent across sessions. Finally, a malicious client can try to provide different
VIDPF keys in different sessions, for example it constructs VIDPF keys for input (α1, 1) for the S0−S1
session and (α2, 1) for the S1 − S2 session and (α3, 1) for the S2 − S0 session, where α1 ̸= α2 ̸= α3

and α1, α2, α3 ∈ {0, 1}k. The above two checks would still pass since they ensure client input validation
within each session but not client input consistency across the three sessions. To ensure this the servers
match the difference of the reconstructed output of S0 − S1 and S2 − S0 session, and the difference of
the reconstructed output of S2 − S0 and S1 − S2 session, to verify that they are all 0. By transitivity, it
is ensured that if and only if this check passes then the output of the VIDPF evaluation would be the

same across the three sessions, ensuring that α1 = α2 = α3. This is performed by computing the ĥp∥0

and ĥp∥1 hashes for every heavy-hitting prefix p computed by πHH.

A malicious server could collude with malicious clients. It can be observed that the honest clients’ inputs are
always hidden from the adversary due to input privacy of VIDPF, since no server possesses more than one
VIDPF key. Next, A malicious server could attempt to incorporate an erroneous VIDPF evaluation (from
a malformed client input key) or inject additive errors into the output. We show how this is tackled in the
protocol based on the server corruption:

– S0 is corrupt. In this case, the session between S1 − S2 is honest. S0 runs this session with S1 since it
obtained key(2,1) from the client. However, S2 behaves as an attestator by sending hashes of the messages
that S0 is supposed to send. This forces S0 to act honestly in the S1−S2, otherwise, it leads to an abort.
Another way a malicious S0 can behave badly is by colluding with a malicious client. The client could
provide malformed inputs in S0 −S1/S2 −S0 session or inconsistent inputs across the three sessions. In

such a case, a malicious S0 could compute an incorrect hash ĥp∥0 := H1(y
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′
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′
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′
are incorrect. This would

allow S0 to introduce an additive error into the frequency for p ∥ 0 and p ∥ 1 (for the S0 − S1 and
S2 − S0 sessions) by incorporating the client’s malformed input. However, this gets detected when the
output count is secretly reconstructed by the FCMP functionality for all three sessions and compared.
The reconstructed count won’t match and the ideal functionality would return a ⊥ message detecting
that one of the servers behaved maliciously, leading to an abort in the πHH.

– S1 is corrupt. This case is very similar to the above one where S0 was corrupt. In this case, the session
between S2−S0 is honest. S1 runs this session with S0 since it obtained key(2,0) from the client. However,
S2 behaves as an attestator by sending hashes of the messages that S1 is supposed to send. This forces
S1 to act honestly in the S2 − S0, otherwise, it leads to an abort. Another way a malicious S1 can
behave badly is by colluding with a malicious client. The client could provide malformed inputs in
S0 − S1/S1 − S2 session or inconsistent inputs across the three sessions. In such a case, a malicious S1
simply ignores the hash values ĥp∥0 and ĥp∥1 sent by S0. This would allow the S1 to introduce an additive
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error into the frequency for p ∥ 0 and p ∥ 1 (for the S0 − S1 and S1 − S2 sessions) by incorporating the
client’s malformed input. However, this gets detected when the output count is secretly reconstructed by
the FCMP functionality for all three sessions and compared. The reconstructed count won’t match and
the ideal functionality would return a ⊥ message detecting that one of the servers behaved maliciously,
leading to an abort in the πHH.

– S2 is corrupt. In this case, the session between S0−S1 is honest. If S2 behaves as a malicious attestator
by sending incorrect hashes for the S1 − S2 or S2 − S0 sessions then the honest servers abort. Another
way a malicious S2 can behave badly is by colluding with a malicious client. The client could provide
malformed inputs in the three sessions. If the client provides malformed inputs in S0 − S1 session then
it gets detected due to verifiability of the VIDPF and the local subtree verification, since both S0 and
S1 are honest. It could provide malformed (allows double voting) VIDPF keys key′(2,0) and key′(2,1) to S1
and S0 for the sessions involving S2. However, that again gets detected since the server S0 computes the

hashes ĥp∥0 and ĥp∥1 honestly and the S1 verifies them honestly.

6 Optimizing Communication

We now present our novel optimization that enables our server-to-server communication to depend only on
the number of malicious clients ℓ′ and logarithmically on the total number of clients ℓ.

We perform a batched verification (for each server-to-server session) of all the clients’ VDPF (resp.
VIDPF) evaluations in the histogram protocol (resp. each level of the heavy-hitters protocol) between two
servers using a Merkle tree with ℓ leaves. Our problem is equivalent to checking the equality of ℓ leaves
between two servers, out of which ℓ′ leaves can be malformed.

The servers hash their individual leaves and verify the equality of their Merkle tree roots. If the roots are
equal then all the leaves are equal. Otherwise, if the roots are different, the servers verify the equality of the left
children of the root node, and then the equality of the right children of the root node. If the left (resp. right)
children are equal across the servers then the left (resp. right) subtree is equal. If the left (resp. right) children
are different, then the servers apply the above algorithm to the left (resp. right) subtree. Proceeding this way
in a recursive manner down the tree, the servers identify the malformed leaves where the two trees differ.
This reduces our server-to-server communication for the consistency check to O(κ log2 ℓ) bits if ℓ′ = O(1)
clients behave maliciously. For ℓ′ malicious clients, each server sends: O(κ) × min(ℓ′ log ℓ, (ℓ − ℓ′) log ℓ

ℓ−ℓ′ )
bits. We refer to page 10 of [43] for the detailed analysis of the expression.

7 Experimental Evaluations

We implement the PLASMA heavy-hitters protocol πHH in Rust and use the tarpc framework by Google for
asynchronous Remote Procedure Calls (RPC). PLASMA is fully parallelized: all sessions in each server run
in parallel and we employ parallel iterators to process multiple client requests concurrently. We instantiate
the PRG for VIDPF using the AES-NI hardware instructions for AES encryption with a seed length of
κ = 128 bits. The group size for the intermediate levels of the VIDPF tree is 262, whereas for the leaves we
use a finite field of 22κ = 2256 bits.

We report a series of experiments in which we vary both the number of clients (i.e., 103 to 106) and the
size of the input strings (i.e., 32-bit to 256-bit words); 64-bit words are useful for our GPS application, while
256-bit words are useful for finding popular URLs. Additionally, we demonstrate the costs both from a client
and a server perspective. For the clients, we measure the key generation time and the key size, while for the
servers we show the communication size and the end-to-end runtime. Finally, we configure the threshold T
to be more than 0.1% of the clients’ strings.

7.1 Experimental Setup

We evaluate PLASMA on AWS EC2 machines (c5.9xlarge) in the same region, each with 36 vCPUs at 3.60
GHz. PLASMA is compiled using Rust 1.61, and client-side experiments are carried out using a standard
laptop with an Intel i7-8650U CPU (1.90 GHz).
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7.2 Performance Evaluation

In our evaluation, our goal is to answer the following questions:

– How efficient is PLASMA for each client and server (with respect to computation and communication
costs)?

– How does PLASMA compare with similar works (such as Poplar) that leverage DPFs?
– How does PLASMA compare with the related works that provide similar security guarantees, such as

[5]?

7.2.1 Client costs First, we focus on the client-side costs, namely, the time for the key generation and
the key sizes to be transmitted over the network to the servers. Recall that PLASMA requires three servers
that run paired sessions (S0 and S1 run three sessions each and S2 acts as the consistency checking server)
for a total of eight VDPF/VIDPF keys, whereas Poplar runs a single session on two servers for a total of
two DPF keys. However, Poplar also includes an expensive malicious sketching operation that adds up to
both the key sizes and the key generation time.
Key Size. In Fig. 12 (a) we compare the total size of all keys for all sessions that each client transmits to
the servers for PLASMA and Poplar for increasing sizes of input strings. We observe that the client key size
is almost identical between Poplar and PLASMA for 32− 512 bits although PLASMA transmits eight keys.
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Fig. 12: Comparisons of client costs for PLASMA and Poplar. Key size in Kb and key generation time in
microseconds (µs).

Key Generation Time. In Fig. 12 (b) we report the key generation time per client for PLASMA and
Poplar for an increasing number of input bits n. Key generation is very fast even using modest hardware and
PLASMA requires 45 microseconds for 512-bit inputs. For inputs smaller than 128 bits, the key generation
time in the two frameworks takes approximately the same time, whereas Poplar is marginally faster than
PLASMA for input size n ≥ 128 bits.

7.2.2 Server costs Next, we study the server-side overhead of PLASMA and compare it with Poplar [16]
and the sorting-based approach of [5]. Our experiments use an increasing number of clients from 103 to
106 with four different bit-string sizes, ranging from 32-bit words to 256-bit words, and statistical failure
probability of 2−60. We report our observations below.

Total Server Runtime: In Fig. 13 we present the total runtime for the PLASMA and Poplar servers to
process all clients’ requests from the moment they receive all client submissions. We observe that for less
than 104 clients both PLASMA and Poplar perform very similarly. However, after increasing the number of
clients, PLASMA outperforms Poplar by 3 − 6×: For ℓ = 105 clients PLASMA is approximately 3× faster
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Fig. 13: Server runtime for an increasing number of clients and different word sizes.

than Poplar. Notably, this margin increases further as we go to 106 clients, where PLASMA is 6× faster
than Poplar for 32-bit inputs and 3.2× faster for 256-bit inputs.

Although we observe some similarities on how the two frameworks scale due to their reliance on DPFs,
PLASMA significantly outperforms Poplar as the number of clients increases, due to the expensive MPC
sketching performed by Poplar. Conversely, PLASMA employs our efficient VIDPF construction. To fully
understand the performance benefits of PLASMA, we performed additional experiments where we fixed the
number of clients to 106 and completely removed the computation of the hashes from the intermediate levels
of the DPF trees. By omitting the hashes for 32-bit inputs, PLASMA performs 2.5× faster, whereas for 256-
bit inputs it performs 6.5× faster. Although hashes are generally computed very efficiently, in the case of
multiple DPF levels (e.g., 256), each with many active paths, the hash computation becomes the bottleneck
of PLASMA, highlighting the efficiency of the rest of our protocol. Meanwhile, the malicious secure sketching
protocol of Poplar introduces an 8× slowdown on top of their semi-honest protocol.

Finally, for the sake of completeness, we run PLASMA in a similar setup as [5] and observe a 15× slowdown
in server runtime.4 However, these numbers are not comparable since [5] does not provide client input
validation like PLASMA (which if implemented would add significant computational overheads). Moreover,
[5] incurs 235× additional communication overhead, as discussed later.

Total Server-to-Server Communication: We compare the total communication costs incurred by all
servers for an increasing number of clients and 256-bit strings in Fig. 14. We experimentally measured the
cost of PLASMA and Poplar, whereas for the sorting-based approach of [5] we performed a detailed analysis
in Appendix B to the best of our efforts. Both Poplar and the sorting-based approach incur significant
communication overheads, whereas PLASMA achieves almost constant communication for an increasing
number of clients. For reference, the total server-to-server communication cost for computing the heavy
hitters over 106 clients is at least 45 gigabytes for [5] and 35 gigabytes for Poplar. Contrary, PLASMA

4 The code of [5] is not publicly available; we use the runtimes presented in their paper.
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only requires a minimal communication of 200 megabytes for the same parameters. This yields a 182×
improvement over Poplar and over 235× improvement over [5].
Applications. As discussed in Section 1.1, we evaluate PLASMA using two realistic applications as described
below:

1. Popular URLs. In this standard benchmark for heavy hitters, each URL is represented as a 256-bit string.
We report the total server runtime of PLASMA for detecting popular URLs in Fig. 13 (d) and the client
communication costs in Figs. 12 (a) and (b) for n = 256. This benchmark is completed in under 20
minutes for 1 million clients with 200 MB of server-to-server communication, while Poplar incurs 3.3×
additional runtime costs and 34.8 GBs of server-to-server communication.

2. Popular GPS coordinates. We employ plus codes [47] to efficiently encode the client GPS coordinates,
instead of traditional latitude and longitude. This approach uses a grid system aligned on top of the
world map, assigning specific codes to each area. The codes can be as short as two digits, indicating a
general region, and by adding more digits, the position becomes more narrow. One advantage of using
plus codes is that areas with similar codes are located in proximity to each other and a code that is a
prefix of another encompasses the area of the latter. For instance, code 87 represents the North East US
region, while code 87G8 represents a part of New York City. PLASMA uses plus codes to compute the
most popular locations (submitted by more than T = 0.1% of the clients) among a set of client-provided
inputs using 64-bit strings in less than 3 minutes for 106 clients, as shown in Fig. 13 (b). Client cost is
shown in Figs. 12 (a) and (b) for n = 64.

We further extend these applications by considering different heavy hitter thresholds based on some pre-
agreed strings by the servers, which can be beneficial for traffic avoidance, since different roads may have
different densities (e.g., highways are busier than smaller suburban roads). The servers can take that into
consideration during evaluation and use higher T s for highways with more vehicles, and lower thresholds for
smaller roads. For completeness, we present our heavy hitters protocol for different thresholds in Appendix
A.

8 Concluding Remarks

In this work, we present PLASMA: a framework to privately identify the most popular strings – or heavy
hitters – among a set of client inputs without revealing the client data points. Previous works for private
heavy hitters, such as Poplar, only considered security against malicious clients and were prone to additive
attacks by a malicious server, compromising both the correctness and the security of the protocol. To address
this challenge, PLASMA introduces a novel hash-based primitive, called verifiable incremental distributed
point function, which allows the servers to validate client inputs and preemptively reject malformed ones.
Additionally, we introduce a new batched consistency check that drastically reduces the communication
cost for servers, by having the server-to-server communication depend only on the number of malicious
clients, rather than the total number of clients. We have implemented PLASMA using Rust and report our
evaluations for an increasing number of clients and a variety of input string sizes. In our approach, the
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server-to-server communication depends only on the number of malicious clients, as opposed to the total
number of clients, yielding a 182× and 235× improvement over Poplar and other state-of-the-art sorting-
based protocols respectively. PLASMA computes the 1000 most popular strings among a set of 1 million
client-held 32-bit strings in 67 seconds and 256-bit strings in less than 20 minutes.
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A Heavy Hitters with different Thresholds

Our protocol allows us to consider different heavy hitter thresholds Ti based on some pre-agreed strings
xi ∈ X by the servers. This can be beneficial for traffic avoidance since different roads may have different
traffic densities. For example, highways are busier than smaller suburban roads. The servers can take that
into consideration during evaluation, and use higher T s for highways (since there are more vehicles), and
lower thresholds for smaller roads.

We present our algorithm to compute heavy-hitters with different thresholds Ti for string xi ∈ X from
T -prefix oracle query in Fig. 15. The prefix oracle query with different thresholds can be computed using a
simple modification to protocol πHH, where the pruning at the leaf layer is performed based on the threshold
Ti for a given string xi ∈ X instead of a fixed threshold T .
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Different Threshold Heavy Hitters from T -prefix count queries

Parameters: Threshold Ti ∈ N, for string xi ∈ X where |X| = m, and string length n ∈ N.
Inputs: The algorithm has no explicit input. It has access to t-prefix count query oracle Ωα1,...,αℓ

(p, t) for securely computing
t-prefix-count queries over prefix p for strings α1, . . . , αℓ.

Outputs: The set of heavy-hitter strings in α1, α2, . . . , αℓ.

Algorithm:

– Initialize HH≤n = {HH0,HH1, . . .HHn} := {ϵ, ∅, . . . , ∅}, where HH0 contains empty string ϵ and HH1, . . .HHn are empty sets.

– Set T = min(T1, T2, . . . Tm).

– For each prefix p ∈ HHk of length k-bits in set HHk (where k = 0, 1, 2, . . . n− 2) :

• If Ωα1,...,αℓ
(p ∥ 0, T ) = 1, HHk+1 := HHk+1 ∪ {p ∥ 0}.

• If Ωα1,...,αℓ
(p ∥ 1, T ) = 1, HHk+1 := HHk+1 ∪ {p ∥ 1}.

– For each prefix p ∈ HHn−1, perform the following:
• If ∃xi ∈ X such that (p ∥ 0) = xi and Ωα1,...,αℓ

(p ∥ 0, Ti) = 1, then set HHn := HHn ∪ (p ∥ 0).
• If ∃xi ∈ X such that (p ∥ 1) = xi and Ωα1,...,αℓ

(p ∥ 1, Ti) = 1, then set HHn := HHn ∪ (p ∥ 1).
– Output T -heavy hitters HH≤n = {HH0,HH1, . . .HHn}.

Fig. 15: Algorithm for computing heavy hitters with different thresholds from T -prefix count queries.

B Communication Cost of [5]

We now analyze the total server-to-server communication cost for the sorting-based protocol of [5]. We start
from the optimized semi-honest communication cost from Appendix A.3 of [5], shown below:

mn(
7

3
+

32

9
||R||) + 3m||R||+ 2m||R′|| bits.

We ignore the R′ term since it is a payload. For malicious security, the protocol requires two times the
semi-honest protocol, and additionally, the ring needs to be a field of size 2κ size for 2−κ failure probability.
This leads us to the optimized malicious sorting protocol communication cost of:

2mn(
7

3
+

32

9
κ) + 3mκ.

The heavy hitters protocol requires the following for each item out of the total m items:

– Compute two secure comparisons over n bits. Assuming the state-of-the-art secure comparison protocol
of Rabbit [48, Fig. 6], we get ≥ 4mn log n from LTBits and BitAdder as well as mn to open the values.

– One secure multiplication over two secret shared n-bit variables: For m values it would be at least mn
bits.

– Secure shuffling over and n-bit secret shared value, where the semi-honest shuffling takes 2m field element
communication.

For malicious security, we consider the compiler of Chida et al. [27] and the communication cost is 2×
the semi-honest cost:

2(4mn log n+mn+ 2mn) = 8mn · log n+ 6mn.

The per-server communication cost for their maliciously secure heavy-hitters protocol is at least:

2mn(
7

3
+

32

9
· κ) + 3mκ+ 8mn log n+ 6mn bits.

Setting the security parameter κ to 60 bits, the number of items m to 106, and the number of bits of
each item n to 256 bits we get that the communication cost should be at least:

2 · 106 · 256(7
3
+

32

9
60) + 3 · 106 · 60 + (8 · 106 · 256 · log 256 + 6 · 106 · 256) = 14.96 giga bytes

Therefore, the total server-server communication cost is at least 14.96 · 3 ≈ 45 gigabytes for computing the
heavy hitters over 256-bit keys between three servers for 106 clients.
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