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Abstract

Recent years have witnessed a push to bring multi-party computation (MPC) to practice and make it
accessible to the end user/programmer. Despite novel ideas, on frontend language design (e.g., Wysteria,
Viaduct), backend protocol design and implementation (e.g., ABY, MOTION), or both (e.g., SPDZ),
classical compiler optimizations remain largely under-utilized (if not completely unused) in MPC pro-
gramming. A likely reason is that such optimizations are often applied on a middle-end intermediate
representation such as SSA.

We put forth a methodology for an MPC programming compilation toolchain, which by mimick-
ing the compilation methodology of standard imperative languages enables middle-end optimizations
on MPC, yielding significant improvements. To this direction we devise an MPC circuit compiler that
allows MPC programming in what is essentially Python, and inherits the structure (and therefore op-
timization opportunities) of the classical compilation pipeline. Our key conceptual contribution is ad-
vancing an intermediate language, which we call MPC-IR, that can be viewed as the analogue, in an
MPC program’s compilation, of (enriched) SSA form. MPC-IR is a particularly appealing intermedi-
ate language as it allows backend-independent optimizations, a close analogy to machine-independent
optimizations in classical compilers. Demonstrating the power of our approach, we focus on a specific
backend-independent optimization, SIMD-vectorization: We devise a novel classical-compiler-inspired
automatic SIMD-vectorization on MPC-IR, which we show leads to significant speedup in circuit gener-
ation time and running time, as well as significant reduction in communication size and number of gates
over the corresponding iterative schedule.

We implement and benchmark our compiler from a Python-like program to an optimized circuit that
can be fed into an MPC backend (for our benchmarks we make use of the MOTION backend for MPC). We
view our exhaustive benchmarks as both a way to validate our optimization and end-to-end compiler,
and as a contribution, by itself, to a more complete benchmarks suite for MPC programming—such
benchmarks suites are common in classical compilers.

1 Introduction

Multi-party computation (MPC) allows N parties P1, . . . , PN to perform a computation on their private
inputs securely. Informally, security means that the secure computation protocol computes the correct
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output (correctness) and it does not leak any information about the individual party inputs beyond what
can be deduced from the output (privacy).

MPC theory dates back to the early 1980s [Yao82; GMW87; BGW88; CCD88]. Long in the realm
of theoretical cryptography, MPC has seen significant advances in application in recent years. New tools
and compilers bring MPC closer to practice and wider applicability, e.g., [Bog+09; BG11; MZ17; MR18].
The overarching goal of the relevant research has been to build toolchains (high-level languages, compilers,
circuits, and protocol implementations) that enable non-expert programmers to write secure and efficient
programs without commanding extensive knowledge of cryptographic primitives.

Recent advances in MPC programming technology tend to focus on either frontend language design (e.g.,
Wysteria [RHH14a] and Viaduct [Aca+21]) or backend circuit/protocol design and implementation (e.g.,
SPDZ family[KOS16; Ara+18; Kel20], MOTION [Bra+22]). The former, frontend-focused thread devised
high-level constructs to express multiple parties, computation by different parties, and information flow
from one party to another [RHH14a; Aca+21]. The latter, backend-focused thread devised cryptographic
protocols, typically at the circuit-level [DSZ15; Ara+18; Bra+22; Pat+21; KOS16]. The two large categories
here are gate-by-gate, i.e., GMW-style [GMW87], evaluation backends and garbled-circuits based [Yao82]
constructions. (A line of work focuses on optimal combination, aka mixing [Büs+18; Aca+21]).

(frontend) (backend)(middle end)
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OblivM

Fairplay DSL
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ABY/ABY3/ABY 2.0

Fairplay/FairplayMP

SPDZ VM

MOTIONMPC-IR
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... others ...
... others ...
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Figure 1: In the classical compiler context, our focus is on the middle-end.

In this work we focus on the middle end. We formalize an intermediate representation (IR) tailored to
MPC, called MPC-IR, and focus on what we call backend-independent optimizations, a close analogue to
machine-independent optimization in the classical compiler. Fig. 1 depicts our position in the compiler stack.
As in classical compilers, we envision different front ends compiling into MPC-IR—the front-end used in this
work is IMP Source, an easy to use Python-like language (cf. comparison below).

The MPC-IR exposes the linear structure of MPC programs, which simplifies program analysis; this
is in contrast to IMP source, which has branching constructs. In the same time, MPC-IR is sufficiently
“high-level” to support analysis and optimizations that take into account control and data flow in a specific
program. As an added benefit, MPC-IR facilitates simple and abstract modeling of (amortized) cost asso-
ciated to different operations. Indeed, this makes MPC-IR particularly suitable for optimizations such as
protocol mixing [Büs+18; IMZ19; Fan+22; Esc+20; MR18] and SIMD-vectorization, which takes advantage
of amortization at the circuit level. For our benchmarks and experiments we use MOTION [Bra+22] as our
backend to demonstrate the advantage of optimizations at the IR level. The main reason of this choice is
that MOTION already embodies different MPC paradigms (e.g., GMW and Yao style protocols), and even
supports protocol-mixing which, as discussed above, can greatly benefit form our IR.1 Nonetheless, all these
optimizations are backend independent, and can be applied to alternative state-of-the-art MPC backends
such as MP-SPDZ [Kel20].

Our Contribution We describe an end-to-end compiler framework that takes a Python-like routine (fron-
tend) and produces optimized MOTION code (backend). More concretely, (a) we describe our (Python-like)

1A natural next step for our work is to add automatic protocol mixing, e.g., [IMZ19], to produce highly vectorized mixed-
protocol MPC programs.
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IMP Source language, its syntax and semantic restrictions; (b) we provide formal specification of MPC-IR;
(c) we devise a translation of IMP Source into MPC-IR, (d) we demonstrate a specific backend-independent
optimization: novel SIMD-vectorization on MPC-IR; and (e) we translate MPC-IR into MOTION code.

We also provide an analytical model for cost estimation of amortized schedules. Our model simplifies the
problem of cost estimations by abstracting away several of the relevant complexities. We note in passing that
such cost modeling is important as it drives not only vectorization but also optimizations such as protocol
mixing and scheduling [Büs+18]. Given the restrictions on MPC programs that are imposed by privacy
requirements—e.g., the need for bounded loops—and the abstactions of our model, one might think that
this problem is simpler for MPC than the classical scheduling problem (which is known to be NP-hard). One
might ask:

Is cost estimation for amortized schedules in MPC (in this model) tractable?

We answer this question to the negative: We show that even in our cost model, the problem remains
NP-Hard; we show this via a reduction to the Shortest Common Supersequence (SCS) problem.

The above demonstrates that optimized MPC scheduling is as an interesting problem as schedule op-
timization in classic compiler—a known hard problem with no exact, efficient solution. In this work, we
provide such optimizations by utilizing our cost model, IR, and taking inspiration from the compilers lit-
erature attacking this problem for classical parallel and high-performance computing (HPC): a common
technique there is vectorization, aka “SIMDification”. Informally, a Single Instruction, Multiple Data (in
short, SIMD) operation works with vectors of data instead of scalars, and replaces N operations on scalars
with a single operation on vectors of size N . Automatic vectorization can therefore drastically improve par-
allel scheduling time, by identifying such “groupable” operations and replacing them with a corresponding
SIMD operation in a given schedule.

In this work, we provide a novel technique for automatic vectorization of MPC-IR programs. Vectorization
not only reduces running time, but also reduces communication by enabling better packing. If the underlying
framework supports SIMD gates—our chosen backend does—this results in a smaller circuit and reduces
circuit generation time as well. We demonstrate expressivity of the source language by running the compiler
on 15 programs with interleaved if- and for-statements. For the backend MPC circuits, we produce code for
Boolean GMW and BMR [BMR90] only (our chosen backend does not support all operations in Arithmetic
GMW protocol and we do not yet support protocol mixing ). Towards evaluation (cf. §7.3), we run
experiments with two parties (2PC) and three parties (3PC). Circuit evaluation time in the 2PC setting
shows improvement of up to 30x (40x for 3PC setting) in GMW and up to 45x (55x for 3PC) in BMR. For
the operations that do not depend on number of parties, Communication size reduces by up to 13x in GMW
and 3x in BMR. Similarly, circuit generation time and number of gates reduce, respectively, by up to 200x
and 480x in GMW, and 80x and 450x in BMR.

Full source code and benchmarks, are available as open source on GitHub (link removed to preserve
anonymity).

Our results emphasize the importance of backend-independent optimizations; we believe that our work can
lead to future work on backend-independent compilation and optimization, ushering new MPC optimizations
and combinations of optimizations.

The rest of the paper is organized as follows. §2 presents an overview of our techniques. §3 describes
cost estimation model and proves NP-hardness of optimal scheduling. §4 details the front-end phases of the
compiler, §5 focuses on backend-independent vectorization, and §6 has brief description of translation into
MOTION. §7 presents the experimental evaluation. §8 concludes the paper with with a discussion of related
work.

2 Overview of our Methodology

To demonstrate our main technical contributions, we first provide a high-level overview of our methodology,
using the standard MPC benchmark of Biometric matching as our running example.
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1 def biometric(C: shared[list[int]], D: int,
2 S: shared[list[int]], N: int) −>
3 shared[tuple[int,int]]:
4 min sum : int = MAX INT
5 min idx : int = 0
6 for i in range(N):
7 sum : int = 0
8 for j in range(D):
9 # d = S[i,j] − C[j]

10 d : int = S[i ∗ D + j] − C[j]
11 p : int = d ∗ d
12 sum = sum + p
13 if sum < min sum:
14 min sum : int = sum
15 min idx : int = i
16 return (min sum, min idx)

1 min sum!1 = MAX INT
2 min idx!1 = 0
3 for i in range(0, N):
4 min sum!2 = PHI(min sum!1, min sum!4)
5 min idx!2 = PHI(min idx!1, min idx!4)
6 sum!2 = 0
7 for j in range(0, D):
8 sum!3 = PHI(sum!2, sum!4)
9 d = SUB(S[((i ∗ D) + j)],C[j])

10 p = MUL(d,d)
11 sum!4 = ADD(sum!3,p)
12 t = CMP(sum!3,min sum!2)
13 min sum!3 = sum!3
14 min idx!3 = i
15 min sum!4 = MUX(t, min sum!3, min sum!2)
16 min idx!4 = MUX(t, min idx!3, min idx!2)
17 return (min sum!2, min idx!2)

1 min sum!1 = MAX INT
2 min idx!1 = 0
3 # Sˆ is same as S. Cˆ replicates C N times:
4 Sˆ = raise dim(S, ((i ∗ D) + j), (i:N,j:D)) #Sˆ[i,j] = S[i,j]
5 Cˆ = raise dim(C, j, (i:N,j:D)) #Cˆ[i,j] = C[j]
6

7 sum!2[I] = [0,..,0]
8 # computes all ”at once”
9 d[I,J] = SUB SIMD(Sˆ[I,J],Cˆ[I,J])

10 p[I,J] = MUL SIMD(d[I,J],d[I,J])
11

12 for j in range(0, D):
13 # sum!2[I], sum!3[I], sum!4[I] are size−N vectors
14 # computes N intermediate sums ”at once”
15 sum!3[I] = PHI(sum!2[I], sum!4[I])
16 sum!4[I] = ADD SIMD(sum!3[I],p[I,j])
17

18 min idx!3[I] = [0,1,...N−1]
19 for i in range(0, N):
20 min sum!2 = PHI(min sum!1, min sum!4)
21 t[i] = CMP(sum!3[i],min sum!2)
22 min sum!4 = MUX(t[i], sum!3[i], min sum!2)
23 for i in range(0, N):
24 min idx!2 = PHI(min idx!1, min idx!4)
25 min idx!4 = MUX(t[i], min idx!3[i], min idx!2)
26 return (min sum!2, min idx!2)

(a) IMP Source (b) MPC-IR (c) Optimized MPC-IR

Table 1: Biometric Matching from IMP Source to Optimized MPC-IR. – MPC-IR is an SSA form without
conditionals, therefore conditional on lines 13-15 in (a) turns into linear code on lines 12-16 (b). – In (c),
our compiler fully vectorizes the SUB and MUL operations on lines 9 and 10 of (b). The computation of
sum (line 11 in (b)) is sequential across the j-dimension, but it is parallel across the i-dimension as the loop
on lines 12-16 in (c) illustrates; here p[I,j] refers to the j-th column in p.

IMP-Source as MPC Source Code. An intuitive (and naive) implementation of Biometric matching
is as shown in Listing 1(a). Array C is the feature vector that we wish to match and S is the database of N
size-D vectors that we match against.

Our compiler takes essentially standard IMP [NK14] syntax and imposes certain semantic restrictions
(details will follow). The programmer writes an iterative program and annotates certain inputs and outputs
as shared. In the example, arrays C and S are shared, meaning that they store shares (secrets), however,
the array sizes D and N respectively are plaintext. The code iterates over the S and computes the Euclidean
distance of the current entry S[i] and C (its square actually). The program returns the index of the vector
that gives the best match and the corresponding sum of squares.

MPC-IR and Schedule Cost. Our compiler generates MPC-IR, a linear Static Single Assignment (SSA)
form. Listing 1(b) shows the MPC-IR translation of the code in 1(a).

We turn to our analytical model to compute the cost of the iterative program. Assume cost β for a local
MPC operation (e.g., XOR in Boolean sharing or ADD in Arithmetic sharing) and cost α for a remote MPC
operation (e.g., MUX, CMP, etc.). Assuming that ADD is β and SUB, CMP and MUX are α, the MPC-IR
in Listing 1(b) gives rise to an iterative schedule with cost ND(2α+ β) +N(3α).

Vectorized MPC-IR and Schedule Cost. We can compute all N ∗D subtraction operations at line 9
in 1(b) in a single SIMD instruction; similarly we can compute all multiplication operations at line 10 in a
single SIMD instruction. Our compiler runs Listing 1(b) through the vectorization optimization to produce
1(c). Note that this is still our IR, Optimized MPC-IR. The compiler turns this code into variables, loops
and SIMD primitives (if supported), suitable for the backend to generate the circuit.

In MPC backends, executing n operations “at once” in a single SIMD operation costs less than executing
those n operations one by one. This is particularly important for interactive gates, since it allows many
1-bit values to be sent at once. We consider that each operation has a fixed portion that benefits from
amortization and a variable portion that does not benefit from amortization: α = αfix + αvar . This gives
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rise to the following formula for amortized cost: f(n) = αfix + nαvar , as opposed to unamortized cost
g(n) = nαfix + nαvar . (We extend the same reasoning to β-instructions.)

Thus, the fixed cost of the vectorized program amounts to 2αfix + Dβfix +N(3αfix ). The variable cost
is the same in both the vectorized and non-vectorized programs. The first term in the sum corresponds to
the vectorized subtraction and multiplication (lines 9-10 in (c)), the second term corresponds to the for-loop
on j (lines 12-16) and the third one corresponds to the remaining for-loops on i (lines 19-25). Clearly,
2αfix + Dβfix + N(3αfix ) << ND(2αfix + βfix ) + N3αfix . Empirically, we observe orders of magnitude
improvement e.g., for Biometric Matching evaluation time, 10x and 23x in GMW and BMR respectively in
2PC, and 12x and 28x in 3PC. Additionally, the un-vectorized version runs out of memory for N = 256,
while the vectorized one runs with the standard maximal input size N = 4, 096.

3 Analytical (Parallel) Cost Model

Next, we introduce our model for cost estimation of the MPC schedules and prove that optimal schedule (of
MPC) is NP-Hard.

3.1 Scheduling in MPC

We work in a single protocol setting i.e., all MPC tasks are evaluated in a single protocol from start to finish.
In addition, we abstract common features of MPC execution, in the following assumptions:

(1) There are two types of MPC instructions, local and remote. A local instruction (i.e., ADD or XOR)
has cost β and a remote instruction (i.e. MUL) has cost α, where α >> β. We assume that all remote
instructions have the same cost α and all local ones have the same cost β.

(2) In MPC frameworks, executing n operations “at once” in a single SIMD operation costs a lot less than
executing those n operations one by one. Following Amdahl’s law, we write α = 1

spα+(1− p)α, where
p is the fraction of execution time that benefits from amortization and (1− p) is the fraction that does
not, and s is the available resource. Thus, nα = n

s pα + n(1 − p)α. For the purpose of the model we
assume that s is large enough and the term n

s pα amounts to a fixed cost incurred regardless of whether
n is 10, 000 or just 1. (This models the cost of preparing and sending a packet from party A to party
B for example.) Therefore, amortized execution of n operations is f(n) = αfix + nαvar in contrast to
unamortized execution g(n) = nαfix + nαvar. We have αfix << nαfix and since fixed cost dominates
variable cost (particularly for remote operations), we have f(n) << g(n).

(3) MPC instructions scheduled in parallel benefit from amortization only if they are the same instruction.
Given our previous assumption, 2 MUL instructions can be amortized in a single SIMD instruction that
costs αfix +2αvar , however a MUL and a MUX instruction still cost 2αfix +2αvar even when scheduled
“in parallel”.2

3.2 (Intractability of) Optimal MPC Scheduling

Given a serial schedule (a linear graph) of an MPC program i.e. a sequence of instructions S := (S1; . . . ;Sn),
where Si is an instruction, and a def-use dependency graph G(V,E) corresponding to S, our task is to
construct a parallel schedule (another linear graph) P := (P1; . . . ;Pm) observing the following conditions:

(1) All Pi’s consist of instructions of the same kind.

(2) Def-use dependencies of the graph G(V,E) are preserved i.e. if instructions Si, Sj , i < j form a def-use
i.e. an edge exists from Si to Sj in G, then they can only be mapped to Pi′ , Pj′ such that i′ < j′.

Correctness of P follows due to the preservation of def-use dependencies. One can easily argue by
induction on the length of schedule S that the computed function is the same in both S and P .

2This is not strictly true, but assuming it, e.g. as in [IMZ19; DSZ15; MR18], helps simplify the problem.
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Figure 2: Compiler Framework.

The cost of schedule S is

cost(S) =

n∑
i=1

cost(Si) = Lααfix + Lββfix + Lααvar + Lββvar (1)

where Lα is the number of α-instructions and Lβ is the number of β ones. (We used this formula to
compute the cost of the unrolled MPC Source program in §2.) The cost of schedule P is more interesting:

cost(P ) =

m∑
i=1

cost(Pi) (2)

Each Pi may contain multiple instructions, and cost(Pi) is amortized. Thus, according to our model
cost(Pi) = αfix+|Pi|αvar if Pi stores |Pi| α-instructions, or cost(Pi) = βfix+|Pi|βvar if it stores β-instructions.
(Similarly, we used this formula to compute the cost of the Optimized MPC Source program in §2.)

Our goal is to construct a parallel schedule P that reduces the program cost (when compared to cost of S).
One would hope that simpler MPC program structure would make optimal schedule tractable. Intuitively, the
problem is to combine multiple independent schedules (or sequences of instructions) into a single schedule
where same instructions are scheduled into a SIMD-instruction Pi. This amounts to finding a Shortest
Common Supersequence for the independent schedules. We formalize the argument in §9.1 and show that
the scheduling problem is NP-hard via a reduction to the Shortest Common Supersequence problem [Vaz10].

4 Compiler Frontend

This section presents an overview of our compiler, followed by our source syntax and semantic restrictions.

4.1 Overview

Fig. 2 shows the phases of our compiler. A key novelty of our work is the systematic translation of high-
level source, which includes if-then-else statements, into a linear sequence of primitive MPC instructions.
We start with an Abstract Syntax Tree (AST) source syntax, then convert it into a Control-flow graph
(CFG), as Cytron’s classical SSA algorithm [Cyt+91] is defined over a CFG. SSA is the natural means for
converting if-then-else statements into MUX primitives, as there is correspondence between ϕ-nodes and
MUX primitives (cf. §10.1). Yet, to our knowledge, we are the first to present an algorithm that uses
Cytron’s SSA conversion and therefore takes advantage of the properties of Cytron’s SSA, particularly a
minimal number of phi-nodes that results in a minimal number of MUX primitives. We then translate into
MPC-IR, which is most conveniently described with an AST syntax (cf. §5.4 and §10.2).

We also note that we settled on this process after the straightforward approach failed. Initially, we
attempted to reuse existing implementations of SSA intermediate representations such as Soot Shimple
(http://soot-oss.github.io/soot/) or LLVM IR (https://llvm.org/). The problem was that these
were CFG representations and they had lost connection between the ϕ-node and the conditional that triggered
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the ϕ-node. Specifically, given x = ϕ(y, z), there is no information what conditional triggered the ϕ-node
and whether y corresponds to the true or false branch of the conditional. Moreover, ϕ-nodes with 3 or
more arguments are common in standard SSA. Furthermore, existing SSA IRs do not handle arrays, while
handling of arrays is important for vectorization. As a remark, while it is possible to reconstruct the missing
information via a form of control dependence analysis, and it is possible to add arrays, this proves very
difficult due to the complexity of the IRs (these IRs are designed to handle richer and more complex syntax
than MPC). A clean state solution, where we start from the AST and retain all necessary information in the
CFG i.e. enhanced-CFG (or E-CFG in Fig. 2) and construct enhanced-SSA (or E-SSA) that handles arrays,
proves the correct choice and drives our progress on the compiler. The E-SSA form naturally gives rise to
MPC-IR, where conditional ϕ-nodes translate to MUX nodes, and loop ϕ-nodes translate into what we call
pseudo PHI-nodes (shown in lines 4 and 12 in Listing 1(b)).

4.2 Syntax and Semantic Restrictions

Source syntax is standard IMP syntax but with for-loops:

e ::= e op e | x | const | A[e] expression
s ::= s; s | sequence
x = e | A[e] = e | assignment stmt
for i in range(I) : s | for stmt
if e: s else: s if stmt

The syntax allows for array accesses, arbitrarily nested loops, and if-then-else control flow.
The prototype version of the compiler assumes the following semantic restrictions on source programs.

Currently, the compiler does not enforce the restrictions, however, they can be easily encoded as rules in a
syntax-directed translation [ASU86; Sco09] over the syntax above. The reason why we do not implement
the rules is because the majority of these restrictions are implementation restrictions that can be lifted in
future versions of our compiler.

Loops are of the form 0 <= i < I and bounds are fixed at compile time. It is a standard restriction in
MPC that the bounds must be known at circuit-generation time.

Arrays are one-dimensional. N -dimensional arrays are linearized and accessed in row-major order.

Array subscripts are plaintext. We will lift this restriction in future work by applying the standard linear
scan [Liu+15; Ara+18] when the subscript is a secret-shared value.

The subscript e is a function of the indices of the enclosing loops. For read access, the compiler allows an
arbitrary such function. However, it restricts write access to canonical writes, i.e., A[i, j, k] = ... where
i, j and k are the indices of the outermost loops enclosing the array write statement. These indices
loop over the three dimensions of A and all write accesses to A follow this restriction. We note that this
is a restriction on the vectorization optimization; there is no reason to restrict arbitrary writes in the
code, they just are not optimized. We state this restriction upfront as it simplifies vectorization and its
exposition.

The final restriction disallows array writes from within if-then-else statements. This is to ensure that
arguments of MUX in the MPC-IR translation are base types, i.e., just int or bool. In our experience,
this causes a minor inconvenience to the programmer as they may not write

1 if e: A[i] = val

Instead they write

1 if not(e): val = A[i]
2 A[i] = val

In addition, our compiler defines and implements a taint type system at the level of MPC-IR. We define the
base MPC-IR syntax and the type system in §10.3. We note that while the programmer writes annotations
at the level of IMP Source (as in Listing 1(a)), the annotations propagate through the transformations;
annotations are inferred and checked with a standard taint analysis (based on the type system) at the level
of MPC-IR. The only required annotations are on the input arguments.
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For the rest of this paper we write i, j, k to denote the loop nesting: i is the outermost loop, j, is
immediately nested in i, and so on until k and we use I, J,K to denote the corresponding upper bounds.
We write A[i, j, k] to denote canonical access to an element, either array element or a scalar expanded to its
loop nest i, j, k. To simplify the presentation we describe our algorithms in terms of three-element tuples
i, j, k, however, discussion generalizes to arbitrarily large loop nests.

5 Backend-Independent Vectorization

This section describes our vectorization algorithm. While vectorization is a longstanding problem, and
we build upon existing work on scalar expansion and classical loop vectorization [AK87], our algorithm is
unique as it works on the MPC-IR SSA-form representation. We posit that vectorization over MPC-IR is a
problem that warrants a fresh look, in part because of MPC’s unique linear structure and in part because
vectorization interacts with other MPC-specific optimizations in non-trivial ways (other works have explored
manual vectorization and protocol mixing in an ad-hoc way, e.g., [DSZ15; Büs+18; IMZ19]).

5.1 Dependence Analysis

We build a dependence graph where the nodes are the MPC-IR statements and the edges represent the
def-use relations. Since MPC-IR is an SSA form, def-use edges X → Y are explicit. We distinguish between
forward edges where X appears before Y in the linear MPC-IR and backward edges where Y appears before
X.

Def-use edges We classify def-use edges as follows:

same-level edge X → Y where X and Y are in the same loop nest, say i, j, k. E.g., the def-use edge 9 to
10 in the Biometric MPC-IR in Listing 1 is a same-level edge. A same-level edge can be a backward edge
in which case a PHI-node is the target of the edge. E.g., 15 to 4 in Biometric is a same-level backward
edge.

outer-to-inner X → Y where X is in an outer loop nest, say i, and Y is in an inner one, say j, k. E.g.,
1 to 4 in Biometric forms is an outer-to-inner edge.

inner-to-outer X → Y where X is a PHI-node in an inner loop nest, k, and Y is in the enclosing loop
nest i, j. E.g., the def-use from 8 to 12 gives rise to an inner-to-outer edge. An inner-to-outer edge can
be a backward edge as well, in which case both X and Y are ϕ-nodes with the source X in a loop nested
into Y ’s loop (not necessarily immediately).

mixed forward edge X → Y . X is in some loop i, j, k and Y is in a loop nested into i, j, k′. We transform
mixed forward edges as follows. Let x be the variable defined at X. We add a variable and assignment
x′ = x immediately after the i, j, k loop. Then we replace the use of x at Y with x′. This transforms a
mixed forward edge into an ”inner-to-outer” forward edge followed by an outer-to-inner forward edge.
Thus, Basic Vectorization handles one of ”same-level”, ”inner-to-outer”, or ”outer-to-inner” def-use
edges.

Closures We define closure(n) where n is a PHI-node. Intuitively, it computes the set of nodes (i.e.,
statements) that form a dependence cycle with n. The closure of n is defined as follows:

n is in closure(n)

X is in closure(n) if there is a same-level path from n to X, and X → n is a same-level back-edge.

Y is in closure(n) if there is a same-level path from n to Y and there is a same-level path from Y to
some X in closure(n).
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5.2 Scalar and Array Expansion

An important component of our algorithm is the scalar expansion to the corresponding loop dimensionality,
which is necessary to expose opportunities for vectorization. In the Biometric example, d = S[i*D+j]-C[j]

equiv. to d = S[i,j]-C[j], which gave rise to N ∗D subtraction operations in the sequential schedule, is
lifted. The argument arrays S and C are lifted and the scalar d is lifted: d[i,j] =S[i,j]-C[i,j]. The
algorithm then detects that the statement can be vectorized.

Raise dimension The raise dim function expands a scalar (or array). There are two versions of raise dim.
One reshapes an arbitrary access into a canonical read access in the corresponding loop. It takes the original
array, the original access pattern function f(i, j, k) in loop nest i, j, k and the loop bounds ((i :I), (j :J), (k :
K)) (cf. 4.2):

raise dim(A, f(i, j, k), ((i :I), (j :J), (k :K)))

It produces a new 3-dimensional array A′ by iterating over i, j, k and setting each element of A′ as follows:

A′[i, j, k] = A[f(i, j, k)]

The end result is that uses of A[f(i, j, k)] in loop nest i, j, k are replaced with canonical read-accesses to
A′[i, j, k] that can be vectorized. In the running Biometric example, C′ = raise dim(C, j, (i :N, j :D)) lifts
the 1-dimensional array C into a 2-dimensional array. The i, j loop now accesses C′ in the canonical way,
C′[i, j].

The other version of raise dim lifts a lower-dimension array into a higher-dimension for access in a nested
loop. It is necessary when processing outer-to-inner dependences. Here A is an i-array and raise dimension
adds two additional dimensions; this version reduces to the above version by adding the access pattern
function, which is just i:

raise dim(A, i, (i :I, j :J, k :K))

Drop dimension drop dim is carried out when an expanded scalar (or array) written in an inner loop is
used in an enclosing loop. It takes a higher dimensional array, say i, j, k and removes trailing dimensions,
say j, k:

drop dim(A, (j :J, k :K))

It iterates over i and takes the result at the maximal index of j and k, i.e., the result at the last iterations
of j and k:

A′[i] = A[i, J−1,K−1]

Arrays Conceptually, we treat all variables as arrays. There are three kinds of arrays.

Scalars: We expand scalars into arrays for the purposes of vectorization. For those, all writes are
canonical writes and all reads are canonical reads. We will raise dimension when a scalar gives rise
to an outer-to-inner dependence edge (e.g., sum!2 in line 6 of the MPC-IR code will be raised to a
1-dimensional array since sum!2 is used in the inner j-loop). We will drop dimension when a scalar gives
rise to an inner-to-outer dependence edge (e.g., sum!2 for which the lifted inner loop computes D values,
but the outer loop only needs the last one.)

Read-only input arrays: There are no writes, while we may have non-canonical reads, f(i, j, k). Vec-
torization adds raise dimension operations at the beginning of the function to lift these arrays to the
dimensionality of the loop where they are used, possibly reshaping the arrays.

Read-write arrays: Writes are canonical (by restriction) but reads can be non-canonical. We may apply
both raise and drop dimension, however, they respect the fixed dimensionality of the output array. The
array cannot be raised to a dimension lower than its canonical (fixed) dimensionality and it cannot be
dropped to lower dimension. The restriction to canonical writes essentially reduces the case of arrays to
the case of scalars, simplifying vectorization and correctnss reasoning.
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5.3 Basic Vectorization Algorithm

There are two key phases of the algorithm. Phase 1 inserts raise dimension and drop dimension operations
according to def-uses. E.g., if there is an inner-to-outer dependence, it inserts raise dim, and similarly, if
there is an outer-to-inner dependence, it inserts drop dim. After this phase operations work on arrays of the
corresponding loop dimensionality and we optimistically vectorize all arrays.

Phase 2 proceeds from the inner-most towards the outer-most loop. For each loop it anchors dependence
cycles (closures) around pseudo PHI nodes then removes vectorization from the dimension of that loop.
There are two important points in this phase. First, it may break a loop into smaller loops which could
allow vectorization in intermediate statements in the loop. Second, it creates opportunities for vectorization
in the presence of write arrays, even though Cytron’s SSA adds a backward edge to the array PHI-node,
thus killing vectorization of statements that access the array.

The code in blue color in the algorithm below highlight the extension with array writes. We advise the
reader to omit the extension for now and consider just read-only arrays. We explain the extension in §5.5.
(As many of our benchmarks include write arrays, it plays an important role.)

Phases 3 cleans up local arrays of references. This is an optional phase and our current implementation
does not include it; thus, we elide it from this presentation.

{ Phase 1: Raise/drop dimension of scalars to corresponding loop nest. We traverse stmts linearly in
MPC-IR. }
for each MPC stmt : x = Op(y1, y2) in loop i, j, k do
for each argument yn do
case stmt ′(def of yn)→stmt(def of x) of

same-level: y′n is yn
outer-to-inner: add y′n[i, j, k] = raise dim(yn) at stmt ′ (more precisely, right after stmt ′)
inner-to-outer: add y′n[i, j, k] = drop dim(yn) at stmt (more precisely, in loop of stmt right after

loop of stmt ′)
end for
{ Optimistically vectorize all. I means vectorized dimension. }
change to x[I, J,K] = Op(y′1[I, J,K], y′2[I, J,K])

end for
{ Phase 2: Recreating for-loops for cycles; vectorizable stmts hoisted up. }
for each dimension d from highest to 0 do
for each PHI-node n in loop i1, ..., id do
compute closure(n)

end for
{ cl1 and cl2 intersect if they have common statement or update same array; ”intersect” definition can
be expanded }
while there are closure cl1 and cl2 that intersect do
merge cl1 and cl2

end while
for each closure cl (after merge) do
create for id in ... loop
add PHI-nodes in cl to header block
add target-less PHI-node for A if cl updates array A
add statements in cl to loop in order of dependences
{ Dimension is not vectorizable: }
change Id to id in all statements in loop
treat for-loop as monolith node for def-uses: e.g., some def-use edges become same-level.

end for
for each target-less PHI-node A1 = PHI(A0,Ak) do

in vectorizable stmts, replace use of A1 with A0

discard PHI-node if not used in any cl, replacing A1 with A0 or Ak as necessary
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s ::= s1; s2 γ(s) = γ(s1) ; γ(s2) sequence
| x[i, J, k] = op SIMD(y1[i, J, k], y2[i, J, k]) γ(x[i, J, k] = op SIMD(y1[i, J, k], y2[i, J, k])) = operation

x[i, 0, k] = y1[i, 0, k] op y2[i, 0, k] ||
x[i, 1, k] = y1[i, 1, k] op y2[i, 1, k] || ... ||
x[i, J−1, k] = y1[i, J−1, k] op y2[i, J−1, k]

| x[i, J, k] = const analogous constant
| x[i, J, k] = PHI(x1[i, J, k], x2[i, J, k−1]) pseudo PHI
| x[i, J, k] = raise dim(x′[i], (j :J, k :K)) raise dimension(s)
| x[i, J ] = drop dim(x′[i, J, k], k) drop dimension(s)
| for i in range(I) : s γ(for i in range(I) : s) = loop

γ(s)[0/i] ; γ(s)[1/i] ; ... ; γ(s)[I−1/i]

Figure 3: MPC-IR Syntax and Semantics. γ defines the semantics of MPC-IR which is a linearization of input
MPC-IR. A SIMD operation parallelizes operations across the vectorized J dimension. || denotes parallel
execution, which is standard. γ of a for loop unrolls the loop. ; denotes sequential execution. Iterative
MPC-IR trivially extends to non-vectorized dimensions over the enclosing loops.

end for
end for
{ Phase 3: Remove unnecessary dimensionality.}
Consider our running example in Listing 1(B). Phase 1 will raise dimensions of min_sum!1 to a 1-

dimensional array as it is defined outside of the loop but is used inside the i-loop. It will expand C into a
2-dimensional (i, j)-array. Phase 1 will also add drop dim to drop the dimension of sum!3, which is defined
in the inner loop and is of dimension (i, j), but is used in the outer i-loop and needs to align to that loop
dimensionality.

Phase 2 starts with the inner j-loop. There are no dependences for the SUB and MUL statements (lines
9-10 in Listing 1(B)) and they are moved outside of the loop. The ADD is part of a cycle and it remains
enclosed in a j-loop. Moving up to the outer i-loop, the addition j-loop is not part of a cycle in i and Phase
2 moves that loop outside vectorizing the i dimension of the summation (this results in the loop in lines
12-16 in Listing 1(C)). The MUX computations are part of cycles and they remain in i-loops.

5.4 Correctness Argument

We build a correctness argument as follows. First, we define the MPC-IR syntax. We then define the
linearization of an MPC-IR program as an interpretation over the syntax. The linearization is a schedule as
defined in §3. We prove a theorem that states that the Basic vectorization algorithm preserves the def-use
relations, or in other words, linearization of the vectorized MPC-IR program gives rise to the exact same set
of def-use pairs as linearization of the original program does. It follows easily that the schedule corresponding
to the vectorized program computes the same result as the schedule corresponding to the original program.

MPC-IR Syntax Fig. 3 states the syntax and linearization semantics of MPC-IR. Although notation is
heavy, the linearization simply produces schedules as discussed in §2 and §3. The iterative MPC-IR gives
rise to what we called sequential schedule where loops are unrolled and MPC-IR with vectorized dimensions
gives rise to what we called parallel schedule. For simplicity, we consider only scalars and read-only arrays,
however, the treatment extends to write arrays as well (with our restriction on array writes to canonical
writes). x[i, J, k] denotes the value of scalar variable x at loop nest i, j, k. Upper case J denotes a vectorized
dimension and lower case i, k denote iterative dimensions. There are semantic restrictions over the syntax:
(1) x is a 3-dimensional array and (2) x[i, J, k] is enclosed in for-loops on non-vectorized dimensions i and k:

1 for i in range(I):
2 ...
3 for k in range(K):
4 ... x[i,J,k] ...
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Linearization Linearization is the concretization operation, which, as we mentioned earlier computes a
schedule. The concretization function γ is defined as an interpretation of MPC-IR syntax, as is standard. It is
shown in the middle column of Fig. 3. The concretization of an op SIMD statement expands the vectorized
dimension(s) into parallel statements; || introduces SIMD (parallel) execution. The concretization of the
for i in range(I) : s statement simply unrolls the loop substituting i with 0, 1, etc.; here ; denotes sequential
execution.

As an example, consider the vectorized MPC-IR from our running example. All variables are two dimen-
sional arrays and the loop is vectorized in I but iterative in j:

1 for j in range(0, D):
2 sum!3[I,j] = PHI(sum!2[I,j], sum!4[I,j−1])
3 sum!4[I,j] = ADD(sum!3[I,j], p[I,j])

Assuming D = 2 and I = 2 for simplicity, linearization produces the following schedule:

1 sum!3[0,0] = PHI(sum!2[0,0], sum!4[0,−1]) ||
2 sum!3[1,0] = PHI(sum!2[1,0], sum!4[1,−1])
3 ;
4 sum!4[0,0] = ADD(sum!3[0,0], p[0,0]) ||
5 sum!4[1,0] = ADD(sum!3[1,0], p[1,0])
6 ;
7 sum!3[0,1] = PHI(sum!2[0,1], sum!4[0,0]) ||
8 sum!3[1,1] = PHI(sum!2[1,1], sum!4[1,0])
9 ;

10 sum!4[0,1] = ADD(sum!3[0,1], p[0,1]) ||
11 sum!4[1,1] = ADD(sum!3[1,1], p[1,1])

Note that by definition of the pseudo PHI function, PHI(sum!2[0,0], sum!4[0,-1]) evaluates to
sum!2[0,0] and therefore, the -1 index in the second argument does not matter.

Statements and def-uses over MPC-IR Let a be an MPC-IR program. Since MPC-IR is an SSA
form, def-use edges in a are explicit (as in §5.1): if s0 ∈ a defines variable x, e.g., x = ..., s1 ∈ a uses x, e.g.,
... = ...x, then there is a def-use edge from s0 to s2. We write s0[i, j, k] for statement s0 enclosed in loop nest
i, j, k.

Let a0, a1 be two MPC-IR programs. Two statements, s0 ∈ a0 and s1 ∈ a1 are same, written s0 ≡ s1
if they are of the same operation and they operate on the same variables: same variable name and same
dimensionality. Recall that dimensions in MPC-IR are either iterative, lower case, or vectorized, upper case.
Two statements are same even if one operates on an iterative dimension and the other one operates on a
vectorized one, e.g., s0[i, j, k] ≡ s1[I, j,K].

Statements and def-uses over linearized schedule An atomic statement is a statement produced by
linearization. We write s0 to denote statements in the concrete schedule as well as s0[i, j, k] to denote fully
instantiated values of i, j, and k, such as for example s0[0, 1, 0]. Clearly, the linearization of same statements
produces the same set of atomic statements in the linearized schedule.

A def-use pair of atomic statements, denoted s0 → s1 (indexing implicit), is defined in the standard way
as well: s0 writes a location, say x[i, j, k], and s1 reads the same location.

Formal treatment Property P defined below relates the linearized schedule of iterative MPC-IR program
a0 to the linearized schedule of the vectorized program a1. More precisely, a0 is the MPC-IR program
augmented with raise and drop dimension statements, i.e., Phase 1 without optimistic vectorization of all
dimensions. a1 is produced from a0 by Phase 2 of the Basic Vectorization algorithm.

Definition 1. We say that γ(a0) ≡ γ(a1) iff (1) atomic statement s[i, j, k] ∈ γ(a0) iff s[i, j, k] ∈ γ(a1) and
(2) s0 → s1 ∈ γ(a0) iff s0 → s1 ∈ γ(a1) (indexing implicit).

The main theorem below states that Basic Vectorization preserves def-use edges. We extend a more
detailed argument, albeit standard, in Section 9.2:

Theorem 1. γ(a0) ≡ γ(a1).
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The key argument is that the Basic Vectorization algorithm preserves def-uses when it transforms a0 into
a1. This leads to preservation of concrete edges in γ(a0) into γ(a1). A corollary of the main theorem follows
(we prove it in Section 9.3):

Corollary 1.1. γ(a0) and γ(a1) produce same result, or more precisely, for every location x[i, j, k], γ(a0)
and γ(a1) compute the same result.

5.5 Extension with Array Writes

Array writes may introduce infeasible loop-carried dependencies. Consider an example from [AN88]:

1 for i in range(N):
2 A[i] = B[i] + 10;
3 B[i] = A[i] ∗ D[i−1];
4 C[i] = A[i] ∗ D[i−1];
5 D[i] = B[i] ∗ C[i];

In Cytron’s SSA this code (roughly) translates into

1 for i in range(N):
2 A 1 = PHI(A 0,A 2)
3 B 1 = PHI(B 0,B 2)
4 C 1 = PHI(C 0,C 2)
5 D 1 = PHI(D 0,D 2)
6 A 2 = update(A 1, i, B 1[i] + 10);
7 B 2 = update(B 1, i, A 2[i] ∗ D 1[i−1]);
8 C 2 = update(C 1, i, A 2[i] ∗ D 1[i−1]);
9 D 2 = update(D 1, i, B 2[i] ∗ C 2[i]);

B_1 = PHI(B_0,B_2) anchors a cycle that includes statement A_2 = update(A_1, i, B_1[i] + 10); a
naive approach will not vectorize the latter statement even though there is no loop-carried dependency from
the write of B_1[i] at 7 to the read of ... = B_1[i] at 6.

The following algorithm removes certain infeasible loop-carried dependencies that are due to array writes.
Consider a loop with index 0 ≤ j < J nested at i, j, k. Here i is the outermost loop and k is the innermost
loop.

for each array A written in loop j do
{ including enclosed loops in j }
dep = False
for each def-of-A: Am[f(i, j, k)]= ... and use-of-A: ...=An[f

′(i, j, k)] in loop j do
if ∃i, j, j′, k, k′, s.t. 0≤ i<I, 0≤j, j′<J, 0≤k, k′<K, j < j′, and f(i, j, k) = f ′(i, j′, k′) then

dep = True
end if

end for
if dep == False then
remove back edge into A’s ϕ-node in loop j.

end if
end for

Consider a loop j enclosed in some fixed i. Only if an update (definition) Am[f(i, j, k)] = ... at some
iteration j references the same array element as a use ... = An[f

′(i, j, k)] at some later iteration j′, we
may have a loop-carried dependence for A due to this def-use pair. (In contrast, Cytron’s algorithm inserts
a loop-carried dependency every time there is an array update.) The algorithm above examines all def-
use pairs in loop j, including defs and uses in nested loops, searching for values i, j, j′, k, k′ that satisfy

f(i, j, k) = f ′(i, j′, k′). If such values exist for some def-use pair, then there is a potential loop-carried
dependence on A; otherwise there is not and we can remove the spurious backward edge thus “freeing up”
statements for vectorization.

13



We use Z3 [MB08] to check satisfiability of the formula

(0≤ i<I) ∧ (0≤j, j′<J) ∧ (0≤k, k′<K) ∧ (j < j′)∧
f(i, j, k) = f ′(i, j′, k′)

Formulas f and f ′ are simple as loop nests are typically of depth 2-3. Therefore, Z3 completes the process
instantly.

Consider the earlier example. There is a single loop, i. Clearly, there is no pair i and i′, where i < i′

that make i = i′ due to the def-use pairs of A 6-7 and 6-8. Therefore, we remove the backward edge from 6
to the phi-node 2. Analogously, we remove the backward edges from 7 to 3 and from 8 to 4. However, there
are many values i < i′ that make i = i′ − 1 and the backward edge from 9 to 5 remains (def-use pairs for
D). As a result of removing these spurious edges, Vectorization will find that statement 6 is vectorizable.
Statements 7, 8 and 9 will correctly appear in the FOR loop.

This step renders some array phi-nodes target-less, or in other words, these nodes are not targets of
any def-use edge. We handle target-less phi-nodes with a minor extension of Basic Vectorization (Phase 2,
extension shown in blue). First, we merge closures that update the same array. This simplifies handling of
array PHI-nodes: if each closure is turned into a separate loop, each loop will need to have its own array
phi-node to account for the update and this would complicate the analysis. Second, we add the target-less
node of array A back to the closure that updates A — the intuition is, even if there is no loop-carried
dependence from writes to reads on A, A is written and the write (i.e., update) cannot be vectorized due
to a different cycle; therefore, the updated array has to carry to the next iteration of the loop. Third, in
cases when the phi-node remains target-less, i.e., cases when the array write can be vectorized, we have to
properly remove the phi-node replacing uses of the left-hand side of the phi-node with its arguments (the
last snippet in blue).

Recall that we restrict array updates to canonical updates, that is, an update A[i, j] = ... is enclosed
in loops on i and j. It may be enclosed into a nested loop i, j, k, however, the indices correspond to the
outermost loops. This restriction ensures that the array shape does not change and raise dimension and
drop dimension can be applied in the same away as in the basic case, thus allowing us to extend correctness
reasoning from the basic case. We will look to relax the restriction in future work.

6 Compiler Backend

To provide an end-to-end compiler, we take the optimized MPC-IR and generate C++ code for MOTION
framework. This requires overcoming a few challenges, e.g., MPC-IR requires shared qualifiers only on
input variables, while MOTION requires all variables to be either shared or plain. To resolve this, we infer
qualifiers for all variables by performing taint analysis (see §12.1) according to the rules of §4.2. Another
challenge is that of the public values e.g., constants. Since our chosen back-end lacks supports for these, one
has to provide such public values as shared input from one of the parties. Input gates are expensive and
a naive implementation could introduce significant performance hit. Instead, we take a smarter approach
by keeping shared copies of plain variables, and updating them in lock-step with updates to plain variable.
Then, whenever the plain variable is needed in a shared context, we use the shared copy. Please see detailed
treatment of the backend translation in §12.

7 Evaluation and Analysis

We performed extensive evaluation of our framework. We present results for 15 benchmarks. This is, to our
knowledge, the largest set of benchmarks in this area. Moreover, we evaluated these benchmarks in 2 party
computation (2PC) and 3 party computation (3PC). We show that our optimization does not depend on a
specific number of parties. Further, we evaluated in both LAN and WAN settings to show further evidence
of versatility of our framework; it is network agnostic. We begin by describing experiment setup in §7.1,
then we enumerate our benchmark-set in §7.2 and finally, analyze the results in §7.3.
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7.1 Experiment Setup

We evaluate our framework in 2 party computation (2PC) and 3 party computation (3PC) setting. Experi-
ment hardware was generously provided by CloudLab [Dup+19]. We consider two network settings, namely
the Local Area Network (LAN) and the Wide Area Network (WAN). In the LAN setting, we use c6525-25g
machines connected via a 10Gbps link with < 1ms latency. These machines are equipped with 16-core AMD
7302P 3.0GHz processors and 128GB of RAM. This setting reflects typical LAN use-case considering that
10Gbps LAN is increasingly common in business networks and even in some home networks. In the WAN
setting we only performed 2PC experiments to save time, as evidenced by LAN experiments in §7.3, 3PC
experiments would only take longer to run. We used a c6525-25g machine (located in Utah, US) for the first
party and a c220g1 machine (located in Wisconsin, US) for the second. The c220g1 machine is equipped
with two Intel E5-2630 8-core 2.40GHz processors and 128GB of RAM. We measured the connection band-
width between these machines to be 560Mbps and average round trip time (RTT) to be 38ms. At the time
of this writing, all major internet providers in the US offer 1Gbps connections to home consumers, therefore
this setting reasonably reflects the typical WAN use case.

We run all experiments 5 times and report average values of various metrics. The standard deviation,
shown as error bar on top of the histogram bars in the graphs, in all observations is at most 4.5% of the
mean. Therefore, more runs will not significantly improve results’ accuracy.

7.2 Benchmarks

In the following discussion, the label both means that the specific experiment configuration is run in both
non-vectorized and vectorized versions, vec means only vectorized version was run. For each problem, we run
benchmark experiment with increasing sizes of input e.g. we ran biometric matching with database size N
of{2, 4, 8, . . . , 4096}; At some input size 2k (e.g. N = 28 in biometric matching), the non-vectorized version
runs out of memory. From this point on, we run only vec experiment up to input size of 22(k−1) e.g. in case of
biometric matching, we run the vec experiment up to database size N = 212. The vec experiment completes
without issues (e.g. running out of memory) for input size of 22(k−1) for all benchmarks that are amenable
to vectorization (see e.g., Fig. 5). While the numbers for all runs are not shown for space reasons, the run
times are largely consistent, e.g. if non-vectorized experiment fails at some input size 2k, and vec experiment
takes X seconds to complete for the input size 2k−1, then for an input size 2k+ℓ−1, it takes roughly ℓ · X
seconds to complete.

We use the following benchmarks in our evaluation:

(1) Biometric Matching: Server has a database S of N records, each record’s dimension is D. Client
submits a query C, client and server compute the closest record to C in an MPC. We use N=128 for
both and N=4096 for vec. D is fixed at 4.

(2) Convex Hull: Given a polygon of N vertices (split between Alice and Bob), convex hull is computed in
an MPC. It is adapted from [FN21]. We use N=32 for both experiment and N=256 for vec experiment.

(3) Count 102: Alice has a string of N symbols, Bob has a regular expression of the form 1(0*)2, together
they compute number of substrings that match the regular expression. It is adapted from [FN21]. We
use N=1024 for both and N=4096 for vec.

(4) Count 10: Same as Count 102 except now the regular expression is of the form 1(0+).

(5) Cryptonets Max Pooling: Given an R × C-matrix with elements split between Alice and Bob, they
compute the max pooling subroutine of the cryptonet benchmark[Dow+16]. We use R=64, C=64 for
both experiments.

(6) Database Join: given two databases with A and B containing 2-element records, compute cross join. We
use A=B=32 for both and A=B=64 for vec.

(7) Database Variance: compute variance in a database of N records. N=512 for both and N=4096 for
vec.
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(8) Histogram: Given N 5-star ratings, compute their histogram, taken from [IMZ19; FN21]. We use
N=512 for both and N=4096 for vec.

(9) Inner Product: Compute inner product of two N -element vectors. N=512 for both and N=4096 for
vec.

(10) k-means Iteration: iteration of k-means database clustering [JW05; VC03]. Here L is the size of input
data, and N is the number of clusters. We use L=32, N=5 for both and L=256, N=8 for vec.

(11) Longest 102: As Count 102 except that it computes the largest substring matching the regular expres-
sion, from [FN21]. We use same parameters as Count 102.

(12) Max Distance b/w Symbols: Alice has a string of N symbols and Bob has some symbol 0. The MPC
computes the maximum distance between 0s in the string. We adapted it from [FN21]. We use N=1024
for both and N=2048 for vec.

(13) Minimal Points: Given a set of N points (split between Alice and Bob), a set of minimal points is
computed i.e. there is no other point that has both a lower x and y coordinate, adapted from [FN21].
We use N=32 for both and N=64 for vec.

(14) MNIST ReLU given an input of O× I elements, executes the MNIST ReLU subroutine. We use I=512
for both and I=2048 for vec. O is fixed at 16.

(15) Private Set Intersection (PSI) Alice holds a set of size SA, Bob holds a set of size SB , they compute
intersection of their sets. We use SA=SB=128 for both and SA=SB=1024 for vec.

Next, we analyze the results. Note that we fit maximum possible evidence here, going so far as to present
graphs at the lowest readable size. The full result-set still does not fit unfortunately. Specifically, we do
not show any 3PC graphs here, and for 2PC, we only show a subset of graphs to show trends. A few
more, but still not all, graphs appear in appendix 13. In a nutshell, the experiments for 3 parties provide
confirmation that adding more parties to a secure computation increases resource requirements; benefits
from vectorization are even more pronounced. An interested reader may find the complete experimental
results in the full version of this paper.

7.3 Results Analysis

A detailed summary of the effects of vectorization on various benchmarks is presented in Table 2. We show
circuit evaluation times in Fig. 4. In terms of amenability to vectorization, we divide benchmarks into
3 categories: (1) High: these include convex hull, cryptonets max pooling, minimal points and private set
intersection. These benchmarks are highly parallelizable and see 47x to 21x speedup in BMR, and 33x to 23x
in GMW protocol. (2) Medium: these include biometric matching, DB Variance, histogram, inner product,
k-means iteration and MNIST ReLU. These benchmarks have non-parallelizable phases e.g. the summing
phase of inner product and biometric matching. Still, most computation is parallelizable and it results in
speedup from 24x to 5x in BMR, and 24x to 3x in GMW protocol. (3) Low: these include the database
join and the regular expression benchmarks (count 102, count 10, longest 102 and max distance between
symbols). Very few operations in these programs are parallelizable, thus the speedup is lower. We see a
speedup from 2x to 1.1x in BMR. In GMW, database join, count 102 and count 10s see speedup from 1.3x
to 1.1x. However, longest102 and max distance between symbols suffer a slowdown of 0.5x. There is some
opportunity for vectorization in these benchmarks according to our analytical model, particularly, there is a
large EQ operation that is vectorized, although a large portion of the loop cannot be vectorized. We observe
that transformation to vectorized code increases multiplicative depth and, the negative effect of increased
depth is more noticeable in a round-based protocol like GMW. We conjecture that MOTION performs
optimizations over the non-vectorized loop body that decreases depth; also, EQ is relatively inexpensive in
Boolean GMW and BMR compared to ADD and MUL, which also de-emphasizes the benefit of vectorization.
We propose a simple heuristic (although we do leave all the benchmarks in the table): if the transformation
increases circuit depth beyond some threshold (e.g. more than 10% of the original circuit), we reject the
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Table 2: Vectorized vs Non-Vectorized Comparison in 2PC LAN setting, times in seconds, Communication
in MiB, Numbers in 1000s and rounded to nearest integer; vectorized benchmarks have postfix (V) in their
name.

GMW BMR

Benchmark Online Setup # Gates Circ Gen # Msgs Comm. Online Setup # Gates Circ Gen # Msgs Comm.

Biometric Matching 146 16 1,784 119 1,413 140 89 263 1,595 139 2,716 312
Biometric Matching (V) 12 4 34 2 28 14 2 13 30 4 61 130

Convex Hull 48 6 551 40 516 51 28 72 494 39 695 80
Convex Hull (V) 0 1 2 0 1 4 0 2 1 1 2 32

Count 102 79 6 418 35 525 52 15 62 269 33 785 92
Count 102 (V) 71 5 316 24 332 34 11 30 167 16 304 59

Count 10s 79 6 419 35 525 52 14 62 270 33 785 92
Count 10s (V) 71 4 316 24 332 34 11 29 167 16 304 59

Cryptonets (Max Pooling) 50 11 688 46 554 55 36 89 608 51 898 110
Cryptonets (Max Pooling) (V) 1 1 7 1 2 5 2 4 7 2 12 49

Database Join 70 8 433 48 790 80 19 229 458 119 3,518 427
Database Join (V) 54 6 320 35 575 61 16 112 320 57 1,457 285

Database Variance 166 18 2,009 135 1,639 163 95 269 1,708 145 2,795 320
Database Variance (V) 37 6 321 24 334 43 10 30 170 13 178 141

Histogram 94 10 862 68 979 97 27 94 491 51 1,132 135
Histogram (V) 33 5 166 16 164 23 7 17 92 13 154 68

Inner Product 127 15 1,675 108 1,308 130 83 250 1,526 134 2,623 301
Inner Product (V) 16 5 158 12 165 25 6 18 83 7 86 127

k-means 108 12 1,333 88 1,090 108 63 185 1,141 99 1,958 225
k-means (V) 6 3 47 4 43 12 2 11 32 4 54 95

Longest 102 93 7 650 52 713 71 26 93 475 49 1,091 128
Longest 102 (V) 169 6 544 41 519 53 25 60 369 33 605 95

Max. Dist. b/w Symbols 71 8 572 43 576 57 24 69 397 38 748 89
Max. Dist. b/w Symbols (V) 166 7 538 39 512 51 24 57 363 32 589 78

Minimal Points 35 5 458 31 369 37 24 46 401 26 347 40
Minimal Points (V) 0 1 1 0 1 3 0 1 1 0 1 16

MNIST ReLU 132 31 1,843 126 1,483 152 98 247 1,630 135 2,401 298
MNIST ReLU (V) 3 3 25 3 9 17 5 11 25 5 33 136

Private Set Intersection 95 9 558 59 1,049 104 22 186 591 96 2,639 302
Private Set Intersection (V) 1 2 1 2 1 8 1 8 2 4 2 122
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transformation. Note that in some settings it may still be desirable to vectorize e.g. in data constrained
environments.
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Figure 4: 2PC: Circuit Evaluation Time (Setup and Online Phase) in Seconds, LAN Setting. The Error-bars
are Standard Deviation.

As shown in Fig. 9, vectorization reduces communication, up to 12x less in GMW, 3x less in BMR. We
discuss the detailed reasoning for this in §13.1. The summary is that vectorization enables better packing,
it effects interactive protocols like GMW more than a constant round protocol like BMR. Fig. 11 shows that
vectorization reduces gates-count up to 480x in GMW, 450x in BMR. Consequently, in the highly vectorizable
benchmarks, circuit generation time (see Fig. 10) for vectorized circuits is a fraction of non-vectorized circuit
(up to 200x less in GMW, 80x less in BMR). Online time and setup time are presented in Fig. 12, and Fig. 13
respectively.

Let us zoom into the Biometric Matching benchmark in figures 5, 6, and 7. For input size beyond N=256

the memory usage exceeds available memory and prevents circuit generation. Therefore, non-vectorized
bars are missing beyond this threshold in the graphs. Notice that vectorization improves all metrics. In
circuit evaluation (see Fig. 5), BMR sees higher speedup (23x faster) compared to GMW (10x faster), while
GMW sees faster circuit generation time at 45x lower (see Fig. 7) compared to BMR’s which is 35x lower.
Communication size reduction (see Fig. 6) is higher for GMW (10x less) compared to BMR (2.5x less).

Since our vectorization framework is network agnostic, it produces the same circuit for both LAN and
WAN. Hence, the number of gates and communication size remain the same. Moreover, time for circuit
generation, which is a local operation, also does not change. Setup and Online times, however, increase due
to lower bandwidth and higher latency of the WAN. Indeed, this is what we observe in Fig. 8.

8 Related Work

Automatic vectorization is a longstanding problem in high-performance computing (HPC). We presented a
vectorization algorithm for MPC-IR, by adapting and extending classical loop vectorization [AK87]. In HPC
vectorization, conditional control flow presents a challenge — one cannot estimate the cost of a schedule
or vectorize branches in a straightforward manner — in contrast to MPC-IR vectorization. We view Kar-
renberg’s work on Whole function vectorization [Kar15] as most closely related to ours — it linearizes the
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program and vectorizes both branches of a conditional applying masking to avoid execution of the branch-
not-taken code, and selection (similar to MUX). We argue that vectorization over linear MPC-IR is a problem
that warrants a new look, while drawing from results in HPC: Since both branches of the conditional and
the multiplexer always execute, not only can we apply aggressive vectorization on linear code, but (perhaps
more importantly) we can also build analytical models that accurately predict execution time. These models
in turn would drive optimizations such as vectorization, protocol mixing, and others. Vectorization interacts
with those optimizations in non-trivial ways.

Polyhedral parallelization [Ben+10] is another rich area. It considers a higher-level source (typically
AST) representation, while, in contrast, our work takes advantage of linear MPC-IR and SSA form.

The early MPC compilers Fairplay [BNP08], and Sharemind [BLW08] were followed by PICCO [ZSB13],
Obliv-C [ZE15], TinyGarble [Son+15], Wystiria [RHH14a], and others. A new generation of MPC compil-
ers includes SPDZ/SCALE-MAMBA/MP-SPDZ [Kel20] and the ABY/HyCC/MOTION [DSZ15; Büs+18;
Bra+22] frameworks. These two families are the state-of-the art and are actively developed. Another recent
development is Viaduct, a language and compiler that supports a range of secure computation frameworks,
including MPC and ZKP. Hastings et el. present a review of compiler frameworks [Has+19]. In contrast to
these works, we focus on an IR and backend-independent optimizations.

The ABY/ABY3/ABY2.0/MOTION line of compiler frameworks provide excellent libraries of MPC
primitives but leave it to the programmer to annotate the program properly to take advantage of available
features e.g., using SIMD operations or mixing protocols. There is interest in frameworks for automatic
mixing, e.g., [Büs+18; IMZ19; Fan+22].

Obliv-C [ZE15], Wysteria [RHH14b] and Viaduct [Aca+21] focus on higher-level language design.
ObliVM [Liu+15] has similar goals to ours but our works are complementary in the sense that while ObliVM
relies on programmer annotations such as map-reduce constructs, we automatically detect opportunities for
optimization at an intermediate level of representation. Ozdemir et al. [OBW20] develop CirC, an IR with
backends into zero-knowledge proof primitives as well as SMT primitives. Our work focuses on MPC, which
CirC does not support yet. MPC-IR is a higher level of representation than CirC., e.g., it does not unroll
loops.

HyCC [Büs+18] is a compiler from C Source into ABY circuits. It does source-to-source compilation
with the goal to decompose the program into modules and then assign protocols to modules. In contrast, we
focus on MPC-IR-level optimizations, specifically vectorization, although we envision future optimizations
as well. HyCC, similarly to Buscher [Büs18] uses an of-the-shelf source-to-source polyhedral compiler 3 to
perform vectorization at the level of source code. The disadvantage of using an of-the-shelf source-to-source
compiler is that it solves a more general problem than what MPC presents and may forgo opportunities for
optimization — concretely, it is well-known that vectorization and polyhedral compilation do not work well
with conditionals [Ben+10; Kar15].

The MP-SPDZ [Kel20, Sec. 6.1] algorithm is different (and complementary) compared to our Shortest
Common Supersequence (SCS) approach. The MP-SPDZ optimizer works at a lower level than our algorithm
as it works with a basic block constructed by unrolling the loops. It is our understanding that (as the MP-
SPDZ paper (Sect 6.3) references from [Büs+18]), there is a trade off in MP-SPDZ between the amount of
loop unrolling and memory consumption. Thus, it is unclear if (and how) MP-SPDZ (and/or [Büs+18])
could fully vectorize a loop with a large iteration count. In contrast, our algorithm identifies opportunities
for vectorization directly from the loops (it does not unroll), thereby avoiding the afore-mentioned trade-off.
In fact, since we are working with just the loop bodies (without unrolling), the search space for Shortest
Common Supersequence (SCS) may remain tractable even for an optimal vectorization by brute-force search.
Working directly with the loops, however, increases complexity, which is why our algorithm might yield a
slower (but still efficient) compilation. Importantly, because MP-SPDZ and our algorithm work at different
levels, they are not in conflict. Both may be combined and applied. Indeed, applying our algorithm first
will get rid of loops (by replacing them with SIMD instructions) and reduce search space for the MP-SPDZ
algorithm, which may find further opportunities for parallelization.

3We believe HyCC uses Par4All (https://github.com/Par4All/par4all), however, does not appear to be included with the
publicly available distribution of HyCC.
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appendix

9 Proofs

9.1 Scheduling is NP-hard

To prove that optimal scheduling is an NP-Hard problem, we consider the following convenient representation.
An MPC program is represented as a set of sequences {s1, . . . , sn} of operations. In each sequence si
operations depend on previous operations via a def-use i.e. si[j], j > 1 depends on si[j − 1].

As an example, consider the MPC program consisting of the following three sequences, all made up of
two distinct α-instructions M1 and M2, e.g., M1 is MUL and M2 is MUX. The right arrow indicates a def-use
dependence, meaning that the source node must execute before the target node:

1. M1 →M2 →M1

2. M1 →M1 →M1

3. M2 →M1 →M2

The problem is to find a schedule P with minimal cost. For example, a schedule with minimal cost for
the sequences above is

M1(1)||M1(2) ; M1(2) ; M2(1)||M2(3) ; M1(1)||M1(2)||M1(3) ; M2(3)

The parentheses above indicate the sequence where the instruction comes from: (1), (2), or (3). Cost of
schedule P is computed using Eq. (2) and it amounts to 5αfix + 9αvar .
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The problem of finding a schedule P with a minimal cost(P ) is shown to be NP-Hard problem, as it can
be reduced to the problem of finding a shortest common supersequence, a known NP-Hard problem [Vaz10].
The shortest common supersequence problem is as follows: given two or more sequences find the the shortest
sequence that contains all of the original sequences. This can be solved in O(nk) time, where n is the
cardinality of the longest sequence and k is the number of sequences. We can see that the optimal schedule
is the shortest schedule, since the shortest schedule minimizes the fixed cost while the variable cost remains
the same.

To formalize the reduction, suppose P is a schedule with minimal cost (computed by a black-box algo-
rithm). Clearly P is a supersequence of each sequence si, i.e., P is a common supersequence of s1 . . . sn. It
is also a shortest common supersequence. The cost of cost(P ) = Lαfix +Nαvar where L is the length of P
and N is the total number of instructions across all sequences. Now suppose, there exist a shorter common
supersequence P ′ of length L′. cost(P ′) < cost(P ) since L′αvar + Nαvar < Lαvar + Nαvar , contradicting
the assumption that P has the lowest cost.

9.2 Proof of Theorem 1

Before proving the theorem, it helps to prove the following lemma, which states that Basic Vectorization
preserves statements and def-use edges in the original MPC-IR.

Lemma 1. For each statement s in a0, there is same statement s′ in a1, and vice versa. For each def-use
edge e in a0, there is a same edge e′ in a1, and vice versa.

Proof. Proof sketch of Lemma 1. Phase 2 of Basic Vectorization does not introduce any new statements
in the code, it just vectorizes dimensions. Similarly, reordering of statements preserves exactly the def-use
edges in the original MPC-IR.

Proof of the theorem follows:

Proof. The first condition of property P follows directly from Lemma 1. The proof of the second condition
is by analysis of the def-use edges in γ(a0) and the corresponding edges in γ(a1); as mentioned earlier, the
key is that Basic Vectorization preserves the def-uses in a0.

A forward edge s0 → s1 ∈ a0 remains a forward edge in a1. Without loss of generality, let us assume an
outer loop i and a nested loop j. The forward edge entails the following ordering in linearization γ(a0):

s0[i] ; s1[i, j] outer-to-inner edge
s0[i, j] ; s1[i, j] same-level edge
s0[i, j] ; s1[i] inner-to-outer edge

meaning that for a fixed i, def s0[i] is scheduled before use s1[i]. Due to the preservation of the edge in a1,
the above ordering holds in γ(a1) as well.

Consider a backward edge s0 → s1 ∈ a0. We have that s1 is a PHI-node in some loop, say i. There are
two cases: (1) there is a path of forward edges from s1 to s0, and (2) there is no such path. In case (1), Basic
Vectorization detects a cycle (closure) around s1, and therefore, s0 → s1 remains a backward edge in a1. The
linearization of the backward edge imposes ordering s0[i− 1] ; s1[i] and due to preservation of the backward
edge in a1, the ordering holds in γ(a1) as well. In case (2), Basic Vectorization my turn the backward edge
into a forward one, however, it preserves the s0[i− 1] ; s1[i] ordering constraint by construction.

9.3 Proof of Corollary 1.1

Proof. Proof sketch of Corollary 1.1. This can be established by induction over the length of def-use chains
of computation in γ(a0). Assume that for all chains of length ≤ n all locations l[i, j, k] hold the same
value in γ(a0) and γ(a1). A chain of length n + 1 results from the execution of a statement x[i, j, k] =
y[i, j, k] op z[i, j, k]. By property P , there is the same statement in γ(a1) and it is scheduled after the
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definitions of y[i, j, k] and z[i, j, k]. By the inductive hypothesis y[i, j, k] and z[i, j, k] hold the same values
in γ(a0) as in γ(a1). Therefore, locations x[i, j, k] hold the same value as well. We remark that due to the
SSA form, each location l[i, j, k] is defined at most once. For clarity, we elide PHI nodes and raising and
dropping dimensions; extending def-use reasoning is straight forward.

10 Compiler Frontend

10.1 From IMP Source to E-SSA

Our compiler translates from Source to E-SSA as follows:

Parsing: Use Python’s ast module to parse the input source code to a Python AST.

Syntax checking: Ensure that the AST matches the restricted subset defined in §4.2. This step outputs
an instance of the restricted ast.Function class, which represents our restricted subset of the Python
AST.

3-address E-CFG conversion: Convert the restricted-syntax AST to a three-address enhanced control-
flow graph. To do this, first, add an empty basic block to the CFG and mark it as current. Next, for each
statement in the restricted AST’s function body, process the statement. Statements can either be for-loops,
if-statements, or assignments (as in §4.2). Rules for processing each kind of statement are given below:

For-loops: Create new basic blocks for the loop condition (the condition-block), the loop body (the
body-block), and the code after the loop (the after-block). Insert a jump from the end of the current block
to the condition-block. Then, mark the condition-block as the current block. Insert a for-instruction
at the end of the current block with the loop counter variable and bounds from the AST. Next, add
an edge from the current block to the after-block labeled “FALSE” and an edge from the current block
to the body-block labeled “TRUE”. Then, set the body-block to be the current block and process all
statements in the AST’s loop body. Finally, insert a jump to the condition-block and set the after-block
as current.

If-statements: Create new basic blocks for the “then” statements of the if-statement (the then-block),
the “else” statements of the if-statement (the else-block), and the code after the if-statement (the after-
block). At the end of the current block, insert a conditional jump to the then-block or else-block
depending on the if-statement condition in the AST. Next, mark the then-block as current, process all
then-statements, and add a jump to the after-block. Similarly, mark the else-block as current, process
all else-statements, and add a jump to the after-block. Finally, set the after-block to be the current
block, and give it a merge condition property equal to the condition of the if-statement.

Assignments: In the restricted-syntax AST, the left-hand side of assignments can be a variable or an
array subscript. If it is an array subscript, e.g., A[i] = x, change the statement to A = Update(A, i, x).
If the statement is not already three-address code, for each sub-expression in the right-hand side of the
assignment, insert an assignment to a temporary variable.

SSA conversion: Convert the 3-address CFG to SSA with Cytron’s algorithm.

10.2 From SSA to MPC-IR

Once the compiler converts the code to SSA, it transforms ϕ-nodes that correspond to if-statements into
MUX nodes. From the 3-address CFG conversion step, ϕ-nodes corresponding to if-statements will be in a
basic block with the merge condition property. For example, if X!3 = ϕ(X!1,X!2) is in a block with merge
condition C, the compiler transforms it into X!3 = MUX(C, X!1, X!2). Next, the compiler runs the dead code
elimination algorithm from Cytron’s SSA paper.
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Next, the control-flow graph is linearized into MPC-IR, which has loops but no if-then-else-statements.
This means that both branches of all if-statements are executed, and the MUX nodes determine whether to
use results from the then-block or from the else-block. The compiler linearizes the control-flow graph with a
variation of depth-first search. Blocks with the “merge condition” property are only considered the second
time they are visited, since that will be after both branches of the if-statement are visited. (The Python
AST naturally gives rise to a translation where each conditional has exactly two targets, and each “merge
condition” block has exactly two incoming edges, a TRUE and a FALSE edge. Thus, each ϕ-node has exactly
two multiplexer arguments, which dovetails into MUX. This is in contrast with Cytron’s algorithm which
operates at the level of the CFG and allows for ϕ-nodes with multiple arguments.) Each time the compiler
visits a block, it adds the block’s statements to the MPC-IR. If the block ends in a for-instruction, the
compiler recursively converts the body and code after the loop to MPC-IR and adds the for-loop and code
after the loop to the main MPC-IR. If the block does not end in a for-instruction, the compiler recursively
converts all successor branches to MPC-IR and appends these to the main MPC-IR.

{ Step 1: Replace ϕ-nodes with MUX nodes }
for each basic block block in the control-flow graph do
if block has the merge condition property then

merge cond ← merge condition variable of block
for each ϕ-node phi = ϕ(v1 , v2 ) in block do
Replace phi with MUX(merge cond , v1 , v2 ) in block

end for
end if

end for
{ Step 2: Linearize E-CFG into MPC-IR }
visited ← empty set
merge visited ← empty set
Define search(block):
if block has the merge condition property and block is not in merge visited then

Add block to merge visited
return empty list

end if
Add block to visited
if block is a for-loop header then
cfg body ← successor of block containing the beginning of the for-loop body
cfg after ← successor of block containing the beginning of the code after the for-loop
mpc body ← list of the ϕ-functions in block concatenated with search(cfg body)
loop ← MPC-IR for-loop statement with the same counter variable and bounds as block and with
mpc body as its body
return loop prepended to search(cfg after)

else
result ← empty list
for each successor successor of block do

if successor is not in visited then
result ← result concatenated with search(successor)

end if
end for
return result

end if
return search(entry block of the control-flow graph)

Now, the remaining ϕ-nodes in MPC-IR are the loop header nodes. These are the pseudo ϕ-nodes and
we write PHI in MPC-IR. A pseudo PHI-node x!1 = PHI(x!0,x!2) in a loop header is evaluated during circuit
generation. If it is the 0-th iteration, then the PHI-node evaluates to x!0, otherwise, it evaluates to x!2.
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10.3 Base MPC-IR Syntax and Taint Types

The syntax of the MPC-IR program produced by the above section is essentially IMP syntax. (In section 5
we extended the base syntax to account for vectorization.) Most notably, there is no if-then-else statement
but there are MUX expressions:

e ::= e op e | x | const | A[e] | MUX(e, e, e) expression
s ::= s; s | sequence
x = PHI(x, x) | x = e | A[e] = e | assignment stmt
for i in range(I) : s for stmt

Expressions are typed ⟨q τ⟩, where q and τ are as follows:

τ ::= int | bool | list[int] | list[bool] base types
q ::= shared | plain qualifiers

The type system is standard, and in our experience, a sweet spot between readability and expressivity.
The shared qualifier denotes shared values, i.e., ones shared among the parties and computed upon under
secure computation protocols; the plain qualifier denotes plaintext values. Subtyping is plain <: shared,
meaning that we can convert a plaintext value into a shared one, but not vice versa. Subtyping on qualified
types is again as expected, it is covariant in the qualifier and invariant in the type: ⟨q1 τ1⟩ <: ⟨q2 τ2⟩ iff
q1 <: q2 and τ1 = τ2.

The typing rules for non-trivial expressions are as follows:

(Binary Op)
Γ ⊢ e1 : ⟨q1 τ⟩ Γ ⊢ e2 : ⟨q2 τ⟩ τ ∈ {int, bool}

Γ ⊢ e1 op e2 : ⟨q1∨q2 τ⟩

(Array Access)
Γ ⊢ e : ⟨plain int⟩ Γ ⊢ A : ⟨q list[τ ]⟩ τ ∈ {int, bool}

Γ ⊢ A[e] : ⟨q τ⟩

(MUX)
Γ ⊢ e1 : ⟨q1 bool⟩ Γ ⊢ e2 : ⟨q2 τ⟩ Γ ⊢ e2 : ⟨q2 τ⟩ τ ∈ {int, bool}

Γ ⊢ MUX(e1,e2,e3) : ⟨q1 ∨ q2 ∨ q3 τ⟩

Similarly, the typing rules for statements are as follows. The constraints are standard: the right-hand
side of an assignment is a subtype of the left-hand side.

(PHI Assign)

Γ ⊢ x1 : ⟨q1 τ⟩ Γ ⊢ x2 : ⟨q2 τ⟩ Γ ⊢ x3 : ⟨q3 τ⟩ q2 ∨ q3 <: q1

Γ ⊢ x1 = PHI(x2, x3) : OK

(Var Assign)

Γ ⊢ x : ⟨q1 τ⟩ Γ ⊢ e : ⟨q2 τ⟩ q2 <: q1 τ ∈ {int, bool}

Γ ⊢ x = e : OK

(For Stmt)

Γ ⊢ i : ⟨plain int⟩ Γ ⊢ I : ⟨plain int⟩ Γ ⊢ s : OK

Γ ⊢ for i in range(I) : s : OK

As mentioned earlier, the only annotations the program need provide is on program inputs. The compiler
infers the rest of the annotations. The type system has two purposes (1) it imposes restrictions, and (2)
it enables code generation, specifically, it informs the backend on weather a statement operates on shared
variables or plaintext ones, and the backend generates appropriate MOTION code.
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11 Backend-Independant Vectorization

This appendix contains the additional content corresponding to §5 that had to be cut from main body of
the paper due to page limit.

The algorithm for basic vectorization is listed and described in §5.3, here we explain it further via its
application to the running example of the paper, Biometric Distance.

11.1 Example: Biometric

We now demonstrate the workings of the basic algorithm on our running example. Recall the MPC Source
for Biometric:

1 min sum!1 = MAX INT
2 min idx!1 = 0
3 for i in range(0, N):
4 min sum!2 = PHI(min sum!1, min sum!4)
5 min idx!2 = PHI(min idx!1, min idx!4)
6 sum!2 = 0
7 for j in range(0, D):
8 sum!3 = PHI(sum!2, sum!4)
9 d = SUB(S[((i ∗ D) + j)],C[j])

10 p = MUL(d,d)
11 sum!4 = ADD(sum!3,p)
12 t = CMP(sum!3,min sum!2)
13 min sum!3 = sum!3
14 min idx!3 = i
15 min sum!4 = MUX(t, min sum!3, min sum!2)
16 min idx!4 = MUX(t, min idx!3, min idx!2)
17 return (min sum!2, min idx!2)

Phase 1 of Vectorization Algorithm The transformation preserves the dependence edges. It raises
the dimensions of scalars and optimistically vectorizes all operations. The next phase discovers loop-carried
dependences and removes affected vectorization.

In the code below statements (e.g., min sum!3 = sum!3) are implicitly vectorized. The example illustrates
the two different versions of raise dim. E.g., raise dim(C, j, (i:N,j:D)) reshapes the read-only input array.
drop dim(sum!3) removes the j dimension of sum!3.

1 min sum!1 = MAX INT
2 min sum!1ˆ = raise dim(min sum!1, (i:N))
3 min idx!1 = 0
4 min idx!1ˆ = raise dim(min idx!1, (i:N))
5 Sˆ = raise dim(S, ((i ∗ D) + j), (i:N,j:D))
6 Cˆ = raise dim(C, j, (i:N,j:D))
7 for i in range(0, N):
8 min sum!2 = PHI(min sum!1ˆ, min sum!4)
9 min idx!2 = PHI(min idx!1ˆ, min idx!4)

10 sum!2 = 0 // Will lift, when hoisted
11 sum!2ˆ = raise dim(sum!2, (j:D))
12 for j in range(0, D):
13 sum!3 = PHI(sum!2ˆ, sum!4)
14 d = SUB(Sˆ,Cˆ)
15 p = MUL(d,d)
16 sum!4 = ADD(sum!3,p)
17 sum!3ˆ = drop dim(sum!3)
18 t = CMP(sum!3ˆ,min sum!2)
19 min sum!3 = sum!3ˆ
20 min idx!3 = i // Same−level, will lift when hoisted
21 min sum!4 = MUX(t, min sum!3, min sum!2)
22 min idx!4 = MUX(t, min idx!3, min idx!2)
23 min sum!2ˆ = drop dim(min sum!2)
24 min idx!2ˆ = drop dim(min idx!2)
25 return (min sum!2ˆ, min idx!2ˆ)

Phase 2 of Vectorization Algorithm This phase analyzes statements from the innermost loop to the
outermost. The key point is to discover loop-carried dependencies and re-introduce loops whenever depen-
dencies make this necessary.
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Starting at the inner phi-node sum!3 = PHI(...), the algorithm first computes its closure. The closure
amounts to the phi-node itself and the addition node sum!4 = ADD(sum!3,p!3), accounting for the loop-
carried dependency of the computation of sum. The algorithm replaces this closure with a for-loop on j
removing vectorization on j. Note that the SUB and MUL computations remain outside of the loop as they
do not depend on PHI-nodes that are part of cycles. The dependences are from p[I,J] = MUL(d[I,J],d[I,J]) to
the monolithic for-loop and from the for-loop to sum!3=̂ drop dim(sum!3). Lower case index, e.g., i, indicates
non-vectorized dimension, while uppercase index, e.g., I indicates vectorized dimension.

After processing the inner loop code becomes:

1 min sum!1 = MAX INT
2 min sum!1ˆ = raise dim(min sum!1, (i:N!0))
3 min idx!1 = 0
4 min idx!1ˆ = raise dim(min idx!1, (i:N))
5 Sˆ = raise dim(S, ((i ∗ D) + j), (i:N,j:D))
6 Cˆ = raise dim(C, j, (i:N,j:D))
7 for i in range(0, N):
8 min sum!2[I] = PHI(min sum!1ˆ[I], min sum!4[I])
9 min idx!2[I] = PHI(min idx!1ˆ[I], min idx!4[I])

10 sum!2 = [0,..,0]
11 sum!2ˆ = raise dim(sum!2, (j:D))
12 d[I,J] = SUB(Sˆ[I,J],Cˆ[I,J])
13 p[I,J] = MUL(d[I,J],d[I,J])
14 for j in range(0, D):
15 sum!3[I,j] = PHI(sum!2ˆ[I,j], sum!4[I,j−1])
16 sum!4[I,j] = ADD(sum!3[I,j],p[I,j])
17 sum!3ˆ = drop dim(sum!3)
18 t[I] = CMP(sum!3ˆ[I],min sum!2[I])
19 min sum!3 = sum!3ˆ
20 min idx!3 = i
21 min sum!4[I] = MUX(t[I], min sum!3[I], min sum!2[I])
22 min idx!4[I] = MUX(t[I], min idx!3[I], min idx!2[I])
23 min sum!2ˆ = drop dim(min sum!2)
24 min idx!2ˆ = drop dim(min idx!2)
25 return (min sum!2ˆ, min idx!2ˆ)

When processing the outer loop two closures arise, one for min sum!2[I] = PHI(...) and one for min idx!2[I]
= PHI(...). Since the two closures do not intersect, we have two distinct for-loops on i:

1 min sum!1 = MAX INT
2 min sum!1ˆ = raise dim(min sum!1, (i:N))
3 min idx!1 = 0
4 min idx!1ˆ = raise dim(min idx!1, (i:N))
5 Sˆ = raise dim(S, ((i ∗ D) + j), (i:N,j:D))
6 Cˆ = raise dim(C, j, (i:N,j:D))
7

8 sum!2 = [0,..,0]
9 sum!2ˆ = raise dim(sum!2, (j:D))

10 d[I,J] = SUB(Sˆ[I,J], Cˆ[I,J])
11 p[I,J] = MUL(d[I,J], d[I,J])
12

13 for j in range(0, D):
14 sum!3[I,j] = PHI(sum!2ˆ[I,j], sum!4[I,j−1])
15 sum!4[I,j] = ADD(sum!3[I,j],p[I,j])
16

17 sum!3ˆ = drop dim(sum!3)
18 min idx!3 = [0,1,2,...N−1] // i.e., min idx!3 = [i, (i:N)]
19 min sum!3 = sum!3ˆ
20

21 for i in range(0, N):
22 min sum!2[i] = PHI(min sum!1ˆ[i], min sum!4[i−1])
23 t[i] = CMP(sum!3ˆ[i], min sum!2[i])
24 min sum!4[i] = MUX(t[i], min sum!3[i], min sum!2[i])
25

26 for i in range(0, N):
27 min idx!2[i] = PHI(min idx!1ˆ[i], min idx!4[i−1])
28 min idx!4[i] = MUX(t[i], min idx!3[i], min idx!2[i])
29

30 min sum!2ˆ = drop dim(min sum!2)
31 min idx!2ˆ = drop dim(min idx!2)
32 return (min sum!2ˆ, min idx!2ˆ)
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Phase 3 of Vectorization Algorithm This phase removes redundant dimensionality. It starts by remov-
ing redundant dimensions in MOTION loops followed by removal of redundant drop dimension statements.
It then does (extended) constant propagation to ”bypass” raise statements, followed by copy propagation
and dead code elimination.

The code becomes closer to what we started with:

1 min sum!1 = MAX INT
2 min idx!1 = 0
3 Sˆ = raise dim(S, ((i ∗ D) + j), (i:N,j:D))
4 Cˆ = raise dim(C, j, (i:N,j:D))
5

6 sum!2 = [0,..,0]
7 d[I,J] = SUB(Sˆ[I,J],Cˆ[I,J])
8 p[I,J] = MUL(d[I,J],d[I,J])
9

10 // j is redundant for sum!3 and sum!4
11 for j in range(0, D):
12 sum!3[I] = PHI(sum!2[I], sum!4[I])
13 sum!4[I] = ADD(sum!3[I], p[I,j])
14

15 // drop dim is redundant, removing
16 // then copy propagation and dead code elimination
17 min idx!3 = [0,1,2,...N−1] // i.e., min idx!3 = [i, (i:N)]
18

19 // i is redundant for min sum!2, min sum!4 but not for t[i]
20 for i in range(0, N):
21 min sum!2 = PHI(min sum!1, min sum!4)
22 t[i] = CMP(sum!3[i],min sum!2)
23 min sum!4 = MUX(t[i], sum!3[i], min sum!2)
24

25 // same, i is redundant for min idx!2, min idx!4
26 for i in range(0, N):
27 min idx!2 = PHI(min idx!1, min idx!4)
28 min idx!4 = MUX(t[i], min idx!3[i], min idx!2)
29

30 // drop dim becomes redundant
31 return (min sum!2, min idx!2)

Phase 4 of Basic Vectorization This phase adds SIMD operations:

1 min sum!1 = MAX INT
2 min idx!1 = 0
3 Sˆ = raise dim(S, ((i ∗ D) + j), (i:N,j:D))
4 Cˆ = raise dim(C, j, (i:N,j:D))
5

6 sum!2 = [0,..,0]
7 d[I,J] = SUB SIMD(Sˆ[I,J],Cˆ[I,J])
8 p[I,J] = MUL SIMD(d[I,J], d[I,J])
9

10 for j in range(0, D):
11 // I dim is a noop. sum is already a one−dimensional vector
12 sum!3[I] = PHI(sum!2[I], sum!4[I])
13 sum!4[I] = ADD SIMD(sum!3[I],p[I,j])
14

15 min idx!3 = [0,1,...N−1]
16

17 for i in range(0, N):
18 min sum!2 = PHI(min sum!1, min sum!4)
19 t[i] = CMP(sum!3[i],min sum!2)
20 min sum!4 = MUX(t[i], sum!3[i], min sum!2)
21

22 for i in range(0, N):
23 min idx!2 = PHI(min idx!1, min idx!4)
24 min idx!4 = MUX(t[i], min idx!3[i], min idx!2)
25

26 return (min sum!2, min idx!2)

11.2 Examples with Array Writes

In this section, we present several examples to demonstrate the vectorization algorithm on array writes.
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Example 1 First, the canonical dimensionality of all A,B,C and D is 1. After Phase 1 of Vectorization the
Aiken’s array write example will be (roughly) as follows:

1 for i in range(N):
2 A 1 = PHI(A 0,A 2)
3 B 1 = PHI(B 0,B 2)
4 C 1 = PHI(C 0,C 2)
5 D 1 = PHI(D 0,D 2)
6 A 2 = update(A 1, I, B 1[I] + 10);
7 B 2 = update(B 1, I, A 2[I] ∗ D 1[I−1]);
8 C 2 = update(C 1, I, A 2[I] ∗ D 1[I−1]);
9 D 2 = update(D 1, I, B 2[I] ∗ C 2[I]);

Note that since all def-uses are same-level (i.e., reads and writes of the array elements) no raise dimension
or drop dimension happens.

Phase 2 computes the closure of 5; cl = {5, 7, 8, 9} while 6 is vectorizable. Recall that 2,3, and 4 are
target-less phi-nodes. Since the closure cl includes updates to B and C, the corresponding phi-nodes are
added back to the closure and the def-use edges are added back to the target-less nodes. The uses of A 1
and B 1 in the vectorized statement turn into uses of A 0 and B 0 respectively; this is done for all original
target-less phi-node. (But note that A 0 is irrelevant; the update writes into array A 2 in parallel.) Finally,
the target-less phi-node for A is discarded.

1 A 2 = update(A 0, I, ADD SIMD(B 0[I],10));
2 equiv. to A 2[I] = ADD SIMD(B 0[I],10)
3 for i in range(N): // MOTION loop
4 B 1 = PHI(B 0,B 2)
5 C 1 = PHI(C 0,C 2)
6 D 1 = PHI(D 0,D 2)
7 B 2 = update(B 1, i, A 2[i] ∗ D 1[i−1]);
8 equiv. to B 2 = B 1; B 2[i] = A 2[i] ∗ D 1[i−1];
9 C 2 = update(C 1, i, A 2[i] ∗ D 1[i−1]);

10 D 2 = update(D 1, i, B 2[i] ∗ C 2[i]);

Example 2 Now consider the MPC-IR of Histogram:

1 for i in range(0, num bins):
2 res1 = PHI(res, res2)
3 for j in range(0, N):
4 res2 = PHI(res1, res3)
5 tmp1 = (A[j] == i)
6 tmp2 = (res2[i] + B[j])
7 tmp3 = MUX(tmp1, res2[i], tmp2)
8 res3 = Update(res2, i, tmp3)
9 return res1

The canonical dimensionality of res is 1. Also, the phi-node res1 = PHI(res, res2) is a target-less phi-node
(the implication being that the inner for loop can be vectorized across i). After Phase 1, Vectorization
produces the following code (statements are implicitly vectorized along i and j). In a vectorized update
statement, we can ignore the incoming array, res2 in this case. The update writes (in parallel) all locations
of the 2-dimensional array, in this case it sets up each res3[i,j] = tmp3[i,j].

1 A1 = raise dim(A, j, ((i:num bins),(j:N)))
2 B1 = raise dim(B, j, ((i:num bins),(j:N)))
3 I = raise dim(i, ((i:num bins),(j:N)))
4 for i in range(0, num bins):
5 res1 = PHI(res, res2ˆ) # target−less phi−node
6 res1ˆ = raise dim(res1, (j:N))
7 for j in range(0, N):
8 res2 = PHI(res1ˆ, res3)
9 tmp1 = (A1 == I)

10 tmp2 = (res2 + B1)
11 tmp3 = MUX(tmp1, res2, tmp2)
12 res3 = Update(res2, (I,J), tmp3)
13 res2ˆ = drop dim(res2)
14 res1’’ = drop dim(res1)
15 return res1’’

Processing the inner loop in Phase 2 vectorizes tmp1 = (A1 == I) along the j dimension but leaves the
rest of the statements in a MOTION loop. Processing the outer loop is interesting. This is because the PHI
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node is a target-less node, and therefore, there are no closures! Several things happen. (1) Everything can
be vectorized along the i dimension. (2) We remove the target-less PHI node, however, we must update uses
of res1 appropriately: the use at raise dim goes to the first argument of the PHI function and the use at
drop dim goes to the second argument.

1 A1 = raise dim(A, j, ((i:num bins),(j:N)))
2 B1 = raise dim(B, j, ((i:num bins),(j:N)))
3 I1 = raise dim(i, ((i:num bins),(j:N)))
4

5 tmp1[I,J] = (A1[I,J] == I1[I,J])
6

7 res1ˆ = raise dim(res, (j:N)) // replacing res1 with res, 1st arg
8 for j in range(0, N):
9 res2 = PHI(res1ˆ, res3)

10 tmp2[I,j] = (res2[I,j] + B1[I,j])
11 tmp3[I,j] = MUX(tmp1[I,j], res2[I,j], tmp2[I,j])
12 res3 = Update(res2, (I,j), tmp3)
13 equiv. to res3 = res2; res3[I,j] = tmp3[I,j]
14 res2ˆ = drop dim(res2)
15 res1 = drop dim(res2ˆ) // replacing with res2ˆ, 2nd arg. NOOP
16 return res1

12 Compiler Back End

MOTION framework requires that all variables are marked as plain or shared following the type system
in §4.2. We require that only inputs are marked as either shared or plaintext, and infer qualifiers for other
variables through taint analysis of §12.1. We provide details of code generation for MOTION backend in
§12.2.

12.1 Taint Analysis

The taint analysis works on MPC-IR, which lacks if-then-else control flow. This significantly simplifies
treatment as there is no need to handle conditionals and implicit flow. Specifically, the compiler uses the
following rules, which are standard in positive-negative qualifier systems (here shared is the positive qualifier
and plain is the negative one):

1. Loop counters are always plain.

2. If any variable on the right-hand side rhs of an assignment is shared, then the assigned variable lhs is
shared following subtyping rule rhs <: lhs.

3. Any variables that cannot be determined as shared via the above rules are plain.

In the below snippet sum!2 and sum!3 form a dependency cycle and there is no shared value that flows
to either one. They are inferred as plaintext.

1 plaintext array = [0, 1, 2, ...]
2 sum!1 = 0
3 for i in range(0, N):
4 sum!2 = PHI(sum!1, sum!3)
5 sum!3 = sum!2 + plaintext array[i]

When converting to MOTION code, any plaintext value used in the right-hand side of a shared assignment
is converted to a shared value for that expression.

12.2 From (Optimized) MPC-IR to MOTION

MOTION supports FOR loops and SIMD operations, so translation from MPC-IR to MOTION C++ code
is relatively straightforward.
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1 A[i] = val 1 A!2 = update(A!1, i, val)
1 A 1[i] = val;
2 A 2 = A 1;

IMP Source MPC-IR MOTION Code

Table 3: MOTION Translation: Array Updates

1 for i in range(N):
2 tmp = PHI(arr[i], val!0)
3 ...

1 MPC PLAINTEXT i = 0;
2 tmp = arr[ MPC PLAINTEXT i];
3 for (; MPC PLAINTEXT i < MPC PLAINTEXT N; MPC PLAINTEXT i++) {
4 if ( MPC PLAINTEXT i != 0) {
5 tmp = val 0;
6 }
7 ...
8 }

MPC-IR MOTION Code

Table 4: MOTION Translation: FOR loop with Phi nodes

Variable declarations: Our generated C++ uses the following variable-naming scheme: shared variables
are named the same as in the MPC-IR with the ! replaced with an underscore (e.g. sum!2 would be translated
to sum 2). Plaintext variables follow the same naming convention as shared variables but are prefixed with
MPC PLAINTEXT . The shared representation of constants are named MPC CONSTANT followed by the
literal constant (e.g. the shared constant 0 would be named MPC CONSTANT 0).

The generated MOTION code begins with the declaration of all variables used in the function, including
loop counters. If a variable is a vectorized array, it is initialized to a correctly-sized array of empty MOTION
shares. Additionally, each plaintext variable and parameter has a shared counterpart declared. Next, all
constant values which are used as part of shared expressions are initialized as a shared input from party
0. Finally, plaintext parameters are converted used as shared inputs from party 0 to initialize their shared
counterparts.

Code generation: Once the function preamble is complete, the MPC-IR is translated into C++ one
statement at a time. The linear structure of MPC-IR enables this approach to translation. If there is no
vectorization present in a statement, translation to C++ is straightforward: outside of MUX statements
and array updates, non-vectorized assignments, expressions, and returns directly translate into their C++
equivalents. Non-vectorized MUX statements are converted to MOTION’s MUX member function on the
condition variable. Array updates are translated into two C++ assignments: one to update the value in the
original array and one to assign the new array as shown in Listing 3.

MPC FOR loops are converted to C++ FOR loops which iterate the loop counter over the specified
range. Pseudo PHI nodes are broken into two components: the “FALSE” branch which assigns the initial
value of the PHI node and the “TRUE” branch which assigns the PHI node’s back-edge. The assignment of
the “FALSE” branch occurs right before the PHI node’s enclosing loop. As these assignments may rely on
the loop counter, the loop counter is initialized before these statements. Inside of the PHI node’s enclosing
loop, a C++ if statement is inserted to only assign the true branch of the PHI node after the first iteration.
Listing 4 illustrates this translation.

Vectorization and SIMD operations: Vectorization is handled with utility functions to manage ac-
cessing and updating slices of arrays. All SIMD values are stored in non-vectorized form as 1-dimensional
std::vectors in row-major order. Whenever a SIMD value is used in an expression, the utility function vec-
torized access() takes the multi-dimentional representation of a SIMD value, along with the size of each
dimension and the requested slice’s indices, and converts that slice to a MOTION SIMD value. Because
MOTION supports SIMD operations using the same C++ operators as non-SIMD operations, we do not
need to perform any other transformations to the expression. Therefore, once vectorized accesses are inserted
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1 sum!4[I] = ADD SIMD(sum!3[I], p[I, j])

1 vectorized assign(sum 4, { MPC PLAINTEXT N}, {true}, {},
2 vectorized access(sum 3, { MPC PLAINTEXT N}, {true}, {}) +
3 vectorized access(p, { MPC PLAINTEXT N, MPC PLAINTEXT D}, {true, false},
4 { MPC PLAINTEXT j}));

MPC-IR MOTION Code

Table 5: MOTION Translation: Assignment to SIMD value

1 raise dim(i + j, (i:N, j:M))
1 lift(std::function([&](const std::vector<std::uint32 t > &idxs) {return idxs[0] + idxs[1];}),
2 { MPC PLAINTEXT N, MPX PLAINTEXT M})

MPC-IR MOTION Code

Table 6: MOTION Translation: Raising dimensions

the translation of an expression containing SIMD values is identical to that of expressions without SIMD
values.

Similarly, the vectorized assign() function assigns a (potentially SIMD) value to a slice of a vectorized
array. This operation cannot be done with a simple subscript as SIMD assignments will update a range of
values in the underlying array representation.

Updating SIMD arrays is also implemented differently from updating non-vectorized arrays. Instead
of separating the array update from the assignment of the new array, these steps are combined with the
vectorized update() utility function. This function operates identically to vectorized assign(), however it
additionally returns the array after the assignment occurs. This value is then used for the assignment to the
new variable. Listing 5 illustrates vectorized assign() and vectorized update() on the Biometric example.

Reshaping and raising dimensions: Raising the dimensions of a scalar or array uses the lift() utility
function which takes a lambda for the raised expression and the dimensions of the output. This function is
also used for the scalar expansion of values which have been lifted out of FOR loops as described in §5.2.
This function evaluates the expression for each permutation of indices along the dimensions and returns the
resulting array in row-major order. The lambda accepts an array of integers representing the index along
each of the dimensions being raised, and the translation of the expression which is being raised replaces each
of the dimension index variables with the relevant subscript of this array. There is also a special case of the
lift() function which occurs when we are raising an array. In this case, instead of concatenating the array for
each index, we extend the array along all dimensions being raised which are not present in the array already.
For example, when raising an array with dimensions N ×M to an array with dimensions N ×M ×D, the
input array will simply be extended along the D dimension: A′[n,m, d] = A[n,m] for every d. If the input
array is already correctly sized it will be returned as-is.

Dropping dimensions use the drop dim() and drop dim monoreturn() utility functions. They function
identically but the latter returns a scalar for the case when the final dimension of an array is dropped. These
functions take the non-vectorized representation of an array, along with the dimensions of that array, and
return the array with the final dimension dropped.

Upcasting from plaintext to shared: Currently, our compiler only supports the Bmr and BooleanGMW

protocols as MOTION does not implement all operations for other protocols. MOTION does not support
publicly-known constants for these protocols, so all conversions from plaintext values to shares are performed
by providing the plaintext value as a shared input from party 0. Due to this limitation, our translation to
MOTION code attempts to minimize the number of conversions from a plaintext value. This is accomplished
by creating a shared copy of each plaintext variable and updating that copy in lock-step with the plaintext
variable. Since variables are often initialized to a common constant value (e.g. 0), this approach decreases
the number of input gates by only creating a shared input for each initialization constant. Loop counters
must still be converted to a shared value on each iteration that they are used, however we only generate
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this conversion when necessary, i.e., when the counter flows to a shared computation. This is to prevent
unnecessary increase in the number of input gates when loop counters are only used as plaintext.

Due to the SSA translation phase as well as the conversions to and from SIMD values which our utility
functions perform, our generated vectorized MOTION code often includes multiple copies of arrays and
scalar values. These copies do not incur a runtime cost as the arrays simply hold pointers to the underlying
shares, so no new shares or gates are created as a result of this copying. Cost in MPC programs is dominated
by shares and computation on shares.

13 Evaluation

For the 3PC, we observe that, as expected, evaluation time (Fig. 14) is higher than the 2PC. This is a direct
consequence of higher online time (Fig. 15) for the GMW protocol. Online time for BMR remains roughly
the same, which is expected because online phase is essentially local in BMR. BMR suffers a slow down
in the setup phase (Fig. 16) however. This is due to the circuit for 3 parties requiring more computation.
Due to space restriction, we do not include graphs for (1) circuit generation time, (2) gates count, and (3)
communication size for 3PC. Circuit generation sees a slow down in BMR for the reason mentioned above,
communication size per channel and gates count remain the same. The experiments for 3PC essentially
provide confirmation that adding more parties to an MPC increases resource requirement.

We also leave out detailed graphs (similar to the ones we include for Biometric Matching in the main
body of this paper) for Inner Product.
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Figure 9: 2PC: Communication Size of Benchmarks

13.1 Analysis: Communication Size Reduction

As shown in communication size graph (Fig. 9), vectorization results in reduced communication (fewer bits
are transferred). This reduction is a result of more efficient data-packing at both (1) the application level
(i.e. the MPC backend level), and (2) at the network level. The MPC backend needs to store/send metadata
with each primitive/message so that it can correctly decoded/consumed later. For example, a gate needs
an identifier gid, a gate type gtype, incoming wire identifiers, etc. Say size(gmeta), bits are needed to
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Figure 10: 2PC: Circuit Generation Time of Benchmarks

0

500000

1× 106

1.5× 106

2× 106

2.5× 106

3× 106

3.5× 106

4× 106

B
iom

etric
M
atching

C
onvex

H
ull

C
ount

102

C
ount

10s

C
ryptonets

(M
ax
Pooling)

D
atabase

Join

D
atabase

Variance

H
istogram

Inner
Product

k-m
eans

Longest
O
dd

10

M
ax.

D
ist.

b/w
Sym

bols

M
inim

al Points

M
N
IST

R
eLU

Private
Set

Intersection

0

50

100

150

200

250

300

350

400

450

500

T
ot
al

G
at
es

Im
p
ro
ve
m
en
t
(n
u
m
b
er

o
f
ti
m
es
)

GMW
GMW (Vectorized)

BMR
BMR (Vectorized)

GMW Improvement
BMR Improvement

Figure 11: 2PC: Number of Gates of Benchmarks
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Figure 12: 2PC: Online Time of Benchmarks
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Figure 13: 2PC: Setup Time of Benchmarks
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Figure 14: 3PC: Circuit Evaluation Time (Setup and Online Phase) in Seconds, LAN Setting. The Error-
bars are Standard Deviation.
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Figure 15: 3PC: Online Time (in Seconds) of Benchmarks, LAN Setting. The Error-bars are Standard
Deviation.
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Figure 16: 3PC: Setup Time (in Seconds) of Benchmarks, LAN Setting. The Error-bars are Standard
Deviation.

store/send metadata for a single gate. Using one vectorized/SIMD gate instead of (N + 1) non-vectorized
gates saves N · size(gmeta) bits in memory/communication. Similarly, at the network level, each message
needs a header h that contains routing and decoding information while the packet is in transit. Say, one
(non-vectorized) interactive gate induces a payload p. This means, size(h)+ size(p) bits are sent to network
for each (non-vectorized) interactive gate. Evaluation of N such gates translates to N · (size(h) + size(p))
bits of communication. On the other hand, a vectorized gate that replaces these N gates is much cheaper,
and requires only size(h) +N · size(p) bits of communication.

Concretely, let us consider an MPC backend implemented on Transport Control Protocol (TCP) over
Internet Protocol (IP) i.e., most common communication stack. Note that, for the sake of communication
size comparison, the only difference between UDP and TCP is the smaller header size of 8 bytes4 in UDP
compared to the at least 20 bytes5 in TCP. Both protocols are typtically implemented over Internet Protocol
and the header size of an IPv4 packet is 20 bytes6. In the Arithmetic GMW protocol, multiplication operation
(MUL) is typically implemented using Beaver’s triples [Bea92]. This means that, in the online phase, all
parties need to send 2ℓ bits to each other. If ℓ = 32 bits, then, TCP payload is 2ℓ = 64 bits or 8 bytes.
Considering that the Maximum Transmission Unit (MTU) is typically 1500 bytes, a TCP message may have
payload of up to (1500 − 20 − 20) = 1460 bytes (the exact value is decided via the Maximum Segment
Size (MSS) during TCP stack initialization, specification maximum is 65,496 bytes). Meaning, a vectorized
gate replacing 1460/8 ≈ 180 non-vectorized gates could be sent in a single 1500 byte message rather than
182 · (20+20+8) = 8, 640 bytes otherwise required. Similar reasoning applies to interactive gates in boolean
GMW and, while exact improvement depends on the implementation details, packing data reduces both the
memory and communication footprint regardless of the underlying MPC backend (as long as it supports
vectorized gates).

In the case of BMR, the entire circuit can be packed as one payload and sent using a few TCP packets.
Therefore under-utilization of network’s payload-capacity is not an issue. At the application (MPC backend)

4https://en.wikipedia.org/wiki/User_Datagram_Protocol#UDP_datagram_structure
5https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
6https://en.wikipedia.org/wiki/IPv4#Header
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level however, inefficient packing is still a problem. For example, MOTION uses 64 bits (8 bytes) for gate
identifiers. A vectorized gate that replaces 128 non-vectorized gates, requires only one gate identifier i.e.
8 bytes instead 1,024 bytes required for 128 identifiers. Thus, vectorization reduces the size of the circuit.
This, in turn, reduces payload for the network and means that fewer TCP packets need to be sent, thereby
saving on TCP/IP metadata that would have been needed for additional packets.

13.2 Comparison with MOTION-native Inner Product

When comparing our results with the manually SIMD-ified ones distributed with MOTION source, we
noticed a peculiarity in the case of Inner Product. We were surprised that we were an order of magnitude
slower in Boolean GMW as our circuit ran a significantly larger number of communication rounds. Upon
investigation, it turns out that the vectorized multiplication are the same, however, our addition loop incurs
significant cost (ADD is non-local and expensive in Boolean GMW). The MOTION-native loop runs

1 result += mult unsimdified[i];

while our loop generates and runs

1 result[i] = result[i−1] + mult unsimdified[i];

Recall that the scalar expansion is an artifact of our vectorization. We rewrote the accumulation (manually,
for testing purposes) and that lead to the same running time.

MOTION’s compiler performs analysis that informs circuit generation and the example illustrates the
power of the analysis. In the above example, MOTION overloads the += operator to perform divide-and-
conquer accumulation in O(log(N)) rounds. Recall that the next phase of Vectorization, in §5, which we
have not implemented yet, gets rid of redundant dimensions and generates

1 if (i != 0) {
2 result prev = result;
3 }
4 result = result prev + mult unsimdified[i];

And while it is unrealistic to expect that MOTION’s static analysis will detect the associative accumulation
in the scalar expansion code, it is realistic to expect that it will in the above code. It still might lead to
confusion in the static analysis as analysis on the AST is difficult. Our investigation showed that not only
MOTION does not optimize

1 if (i!=0) {
2 result prev = result;
3 }
4 result = result prev + mult unsimdified[i];

it does not optimize the simpler accumulation:

1 result = result + mult unsimdified[i];

We conjecture that MPC-IR, a straight-forward representation, will not only enable detection of general
associative loops, but also allow for program synthesis to increase opportunities for divide-and-conquer
parallelization [FN21]; as the problem is non-trivial, particularly the interaction of divide-and-conquer with
vectorization and mixing, we leave it for future work.
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