
Automated Side-Channel Attacks using Black-Box
Neural Architecture Search

Pritha Gupta1, Jan Peter Drees2 and Eyke Hüllermeier3

1 Paderborn University, Paderborn, Germany, prithag@mail.uni-paderborn.de
2 University of Wuppertal, Wuppertal, Germany, jan.drees@uni-wuppertal.de

3 Ludwig Maximilian University of Munich, Munich, Germany, eyke@lmu.de

Abstract. The usage of convolutional neural networks (CNNs) to break cryptographic
systems through hardware side-channels has enabled fast and adaptable attacks
on devices like smart cards and TPMs. Current literature proposes fixed CNN
architectures designed by domain experts to break such systems, which is time-
consuming and unsuitable for attacking a new system. Recently, an approach using
neural architecture search (NAS), which is able to acquire a suitable architecture
automatically, has been explored. These works use the secret key information in
the attack dataset for optimization and only explore two different search strategies
using one-dimensional CNNs. We propose a NAS approach that relies only on using
the profiling dataset for optimization, making it fully black-box. Using a large-scale
experimental parameter study, we explore which choices for NAS, such as 1-D or 2-D
CNNs and search strategy, produce the best results on 10 state-of-the-art datasets for
Hamming weight and identity leakage models. We show that applying the random
search strategy on 1-D inputs results in a high success rate and retrieves the correct
secret key using a single attack trace on two of the datasets. This combination
matches the attack efficiency of fixed CNN architectures, outperforming them in 4
out of 10 datasets. Our experiments also point toward the need for repeated attack
evaluations of machine learning-based solutions in order to avoid biased performance
estimates.
Keywords: Neural Architecture Search · Parameter Study · Convolutional Neural
Network · Side-Channel Attack · AES

1 Introduction
When it comes to hardware side-channels, machine learning techniques have long been the
tool of choice for attackers. One of the most powerful tools, deep learning, is particularly
promising, as it is capable of learning very complex mappings between the secret key
used in the encryption and the observed power consumption or electromagnetic emissions.
One issue with using Convolutional neural networks (CNNs) is designing an appropriate
architecture for the network. A good architecture that matches the requirements of the
dataset at hand can perform incredibly well, sometimes even predicting the correct key
after observing a single attack trace. On the other side, a bad architecture may fail to
give any useful predictions, no matter how much training data it is given. The hardware
side-channel community has been struggling with this, failing to come up with good and
general rules for architecture designs that are suitable for arbitrary attack datasets. There
is one way around this issue, though: Instead of trying to come up with architecture design
guidelines by manual architecture tweaking, why not treat the choice of architecture as
just another machine learning (ML) hyperparameter that can be optimized automatically?
This can be achieved with neural architecture search (NAS), which explores a pre-defined

mailto:prithag@mail.uni-paderborn.de
mailto:jan.drees@uni-wuppertal.de
mailto:eyke@lmu.de

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 1

hyperparameter space of CNN architectures by repeatedly training models and determining
their performance. If done correctly, this approach should be able to easily identify which
architecture works well for any given dataset, performing at least as well as carefully
constructed manual models.

The NAS approach was first applied to hardware side-channels recently by Wu, Perin,
and Picek [WPP20] and Rijsdijk et al. [Rij+21], paving the road for automatic architecture
design. These approaches use the secret key of the traces in the attack dataset to perform
the search for an optimal architecture [WPP20; Rij+21]. This is only acceptable in a white-
box setting, as the attack dataset can no longer be used as a test dataset to get an unbiased
performance estimation. The strategy for performing the actual NAS has a large impact on
the quality of the final architecture, but [WPP20] only explored Random and Bayesian
search strategies while [Rij+21] proposed a search strategy based on reinforcement learning.
The experimental analysis of these works was also limited in scope, as only a small number
of datasets were considered. Even though the state-of-the-art CNN architectures were
inspired by 2-D image classification models, ML-based side-channel attacks (SCAs) have
only been applied them using 1-D inputs.

1.1 Our contributions
• We propose a NAS approach that relies only on using the profiling dataset for

optimization, which makes it suitable for a black-box setting. In addition, it is set up
to perform several independent attacks, which produces more reliable performance
estimates.

• We expand the previous NAS experiments into a large-scale parameter study, inves-
tigating the impact of search strategy by considering four different search strategies,
including Greedy and Hyperband, as well as 2-D CNNs. Our evaluation is per-
formed on 10 publicly available reference datasets in both the Identity (ID) and
Hamming weight (HW) leakage model.

• We also conduct a performance comparison between the CNN architectures obtained
from our NAS approach and the state-of-the-art fixed architectures proposed by
Benadjila et al. [Ben+20] and Zaid et al. [Zai+19].

1.2 Related Work
Breaking cryptographic implementations using their side-channel emissions has a long
history, particularly in the intelligence community, who has been aware of such issues
since the 1950s. In the scientific world, a breakthrough was achieved in 1999 with the
introduction of Differential Power Analysis (DPA) by Kocher, Jaffe, and Jun [KJJ99]. This
attack needs to observe a large number of cryptographic operations, e.g. en- or decryptions,
while measuring the power consumption or electromagnetics (EMs) of the target device.
These traces consisting of thousands of measurements over time are then matched to
possible computations of the executed function using statistical methods, revealing the
encryption keys.

This approach of attacking the target device directly requires thousands of observations
during the attack, making it difficult to execute in real-world scenarios where only a
handful of traces can be obtained. If a device sufficiently similar to the target device can
be obtained, for example by buying a second copy of the device, its profile (a model of
its leakage) can be created by observing a large number of cryptographic operations with
known keys and plaintexts. In the attack phase, fewer measurements need to be obtained
from the actual target device, which are subsequently matched up with this leakage model.
This scenario lead Chari, Rao, and Rohatgi [CRR03] to the develop template attacks,

2 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

where several parts of an attack trace are matched to the distributions of the template
traces.

Creating such a function linking secret key inputs to output traces was soon recognized
to be a possible application for ML algorithms. These models are trained on the profiling
traces and predict the secret key used on the attack traces. Early ML-based SCAs were
already capable of dealing with measurement noise and misalignment in the traces [Hos+11].
Soon, the ML models grew more sophisticated and the attacks became more successful,
capable of breaking devices that have been explicitly hardened against side-channel attacks
after observing only a handful of attack traces [Hos+11; Ler+15; PHG17; LBM15; Heu+20;
GHO15; CDP17; Pic+21]

Tuning a ML model properly by choosing appropriate hyperparameters is paramount
for its success, with well-tuned models outperforming template attacks [Pic+17; LBM15].
Deep learning is especially promising, as it is capable of approximating any continuous
function in idealized settings where the universal approximation assumption holds [Cyb89].
The deep learning networks multilayer perceptrons (MLPs) and CNNs have proven to
be very powerful for performing SCAs [Zai+19; SAS21]. However, these models have
to be provided with an architecture, e.g. different types of neural layers arranged after
each other, each with their own parameters [Zai+19; Wou+20]. Designing an appropriate
architecture can be more of an art than a science, prompting a wave of experimentation
with different architectures, both created from scratch as well as existing ones taken from
image classification tasks [Ben+20]. In order to alleviate this issue, Perin, Chmielewski,
and Picek [PCP20] proposed using ensembles of multiple networks and aggregating their
predictions. While this approach improves the generalization properties of existing CNNs
architectures for hardware side-channels, it also increases the computational cost and the
number of trainable parameters of the model without addressing the underlying issue of
architecture design.

This challenge to design optimal neural architectures is not unique to the hardware side-
channel community. It has led to active exploration in the new area of NAS, which treats
the design of neural architectures as another optimization problem for which approximate
solutions can be determined automatically [Ren+21]. This idea has been picked up
recently by Wu, Perin, and Picek [WPP20] and Rijsdijk et al. [Rij+21] and applied to
hardware side-channels for the first time. These works apply a white-box scenarios and
use the attack traces for optimizing the architecture with Random and Bayesian search
strategies [WPP20] or using reinforcement learning [Rij+21]. These initial investigations
show very promising results, being able to produce very capable CNN and MLP models on
the ASCAD benchmark dataset created by Benadjila et al. [Ben+20] and the CHES_CTF
dataset.

Another novel technique for hyperparameter optimization and neural architecture
design proposed by Acharya, Ganji, and Forte [AGF22] is InfoNEAT, an algorithm that
evolves several neural network architectures and their hyperparameters simultaneously.
Instead of the usual approach where a single neural network needs to predict the whole
key byte, it trains a separate neural network for each possible key byte value, using a
one-versus-all multi-class classification approach. In combination with an architecture
selection based on information-theoretic metrics this makes it uniquely suited for hardware
attacks, but also means that results cannot be directly compared with more traditional
approaches striving for a single architecture.

2 Background
This section formally describes the supervised learning problem and how it is used to per-
form the profiling for SCA. In addition, we describe different leakage models (assumptions)
that an attacker exploits to perform the SCA. We briefly describe the basic structure of

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 3

CNNs, which is used for solving the supervised learning problem, and how NAS approaches
can be used to perform the SCA automatically.

2.1 Supervised Learning for Profiled SCA
In an SCA, an attacker wants to determine the secret key used in a cryptographic operation,
e.g. an encryption operation, running on a target device he can observe. For non-profiled
attacks, the attacker is limited to observing the device without access to the private key
being used, relying entirely on his observations of EM radiation or power consumption,
for example [Pic+21]. In many cases, it is reasonable to assume that an attacker can
also gain access to a second device matching the target device, called a “profiling” device,
e.g. by obtaining an identical model [Pic+21]. This enables a profiled SCA, where the
attacker can build a behavioral profile of the target device by running a large number of
cryptographic operations with known secret keys on the profiling device. He thus obtains
a set of N observation traces x1, . . . , xN in the first profiling phase. Each profiling trace
is represented by a d-dimensional real-valued vector, i.e. xi ∈ Rd, ∀i ∈ {1, . . . , N}. In the
attack phase, this profile is used to recover the secret key from the observed behavior of
the target device.

Application to AES-128 In Advanced Encryption Standard (AES), the non-linear
SubBytes method is being applied byte-wise to the inputs containing round keys de-
rived from the full secret key. Because SubBytes uses an input-dependent S-box array
lookup, this method is usually the target for SCAs. Another advantage of targeting this
method is the independent operation on each input byte, allowing independently attacking
specific round key bytes. Without loss of generality, we only consider attacking a single,
specific key byte in a specific round of AES-128, as the same attack can be applied to
multiple key bytes across multiple AES rounds to retrieve the full key [GJS19].

Profiling Dataset Structure The attacker records the traces x1, . . . , xN from the profiling
device. Each of these N profiling traces corresponds to a single known secret key byte ki ∈ K
(with K = {0, ..., 255}) and a known plaintext byte pi. In case the attacker used different
keys for each profiling trace, the key bytes k1, . . . , kN are also different in each trace, while
k1 = k2 = . . . = kN = k if the attacker used the same key for each profiling trace. The
profiling trace is then labeled with yi = ϕ(pi, ki) using a function ϕ. The function ϕ maps
the plaintext pi and the key ki to a value that is assumed to relate to the deterministic part
of the measured leakage xi [Pic+18]. This mapping depends on the assumed leakage model
and is usually defined using the AES S-box function sbox() itself: ϕ(pi, ki) = sbox(pi ⊕ ki).
This labeling results in the profiling dataset Dprofiling = {(x1, y1), . . . , (xN , yN)}, which is
then used by the profiling supervised learning algorithm to build a profiling model.

Supervised Learning The task of the profile is to predict the secret key value ki that
was used in the cryptographic operation observed in attack trace xi, for which the true
secret key value is unknown. This can be formalized as a supervised learning task, where
the learner is provided with a set of training data Dprofiling = {(xi, yi)}N

i=1 ⊂ X × Y
of size N ∈ N, with X = Rd the input space (in our case the measured traces) and
Y = {0, . . . , C − 1} the output space (the 256 possible labels or “classes” produced by
ϕ(pi, ki) as defined above). The task of the learning algorithm is to find a target function
f : X → Y which, given any query x ∈ X as input, predicts the corresponding output y in
an accurate manner. Instead of simply predicting a single label, the most commonly used
approach is to give a probability score for each candidate label. This allows the attacker
to use the model on more than a single attack trace, aggregating the probabilities over
multiple observations.

4 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

The function f can often be parameterized by parameters w ∈ Rn, where n is the
number of trainable parameters. Typically, the target function is represented using a
probabilistic scoring function S : X → [0, 1]C , which is also parameterized by w. For a
given instance (xi, yi), this function assigns a probability score for each label, such that
si := Sw(xi) = (si,0, . . . , si,C−1), where si,j := Sw(xi)[j] corresponds to the probability
score for label j ∈ Y for the given instance xi. Typically, neural networks are used
to estimate the parameters w of the target function f . These networks implement a
scoring-function U : X → RC , which assigns a real-valued score for each label, such that
Uŵ(x) = u = (u0, . . . , uC−1), where uj := u[j]. These scores are then transformed into
(pseudo-)probabilities by means of the softmax function:

Sŵ(x)[j] = exp(u[j])∑C−1
k=0 exp(u[k])

. (1)

The aim of supervised learning is to learn a w∗ with minimal expected loss:

w∗ ∈ arg min
w

∫
L(Sw(x), y) dP (x, y) , (2)

where L is a loss function [0, 1]C × Y → R and P the (unknown) data-generating process.
One way to approximate w∗ is to minimize the empirical risk on the profiling dataset
Dprofiling:

ŵ = arg min
w∈Rn

Remp(w) (3)

with

Remp(w) = 1
N

N∑
i=1

L(Sw(xi), yi) = 1
N

N∑
i=1

L(si, yi) . (4)

Categorical Cross-Entropy (CCE) is often used as the loss function in SCA [Pic+21]:

L(si, yi) = LCCE(si, yi) = −
C−1∑
j=0

Jyi = jK log(si,j) , (5)

where JzK is the indicator function returning 1 if condition z is true and 0 otherwise.
Finally, the target function f is defined as fŵ(x) = arg maxj∈YSŵ(x)[j].

Attack Methodology The attacker records the attack traces x1, . . . xNa
from the device

under attack, by sending Na plaintexts (or ciphertexts) p1, . . . pNa
. Each of these Na attack

traces xi corresponds to the unknown key byte k∗ ∈ K (with K = {0, . . . , K}, K = 255 of
the device and a known plaintext pi. In order to perform the attack, the attacker needs
to consider every possible key byte candidate k ∈ K. For each instance (xi, pi), a label is
generated for every key byte candidate k ∈ K using the same ϕ(pi, k) function used during
the profiling phase. The resulting labels are denoted by the vector yi = (yi,0, . . . yi,K−1),
such that yi,k = ϕ(pi, k), ∀k ∈ K. The labeling results in the attack dataset Dattack =
{(xi, yi), . . . , (xN , yNa

)}, which is then used by the learned profiling model to acquire
the secret key byte k∗ of the device. To perform the attack, the learned probabilistic
scoring function Sŵ is used to acquire the scores for every possible key byte candidate
k ∈ K. For a given attack instance (xi, yi), the scores of every key byte candidate are
denoted by the vector ŝi := (Sŵ(xi)[yi,0], . . . Sŵ(xi)[yi,K−1]) = (ŝi,0, . . . , ŝi,K−1), such
that ŝi,k := Sŵ(xi)[yi,k] represents the score of the key byte candidate k ∈ K [Ben+20].
Using these predicted scores, the cumulative score for each key byte candidate k ∈ K is
calculated over several attack traces using the maximum log-likelihood [Ben+20; Pic+21]:

dNa
[k] = log

(
Na∏
i=1

ŝi,k

)
=

Na∑
i=1

log(ŝi,k) (6)

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 5

Using the likelihood to acquire the cumulative scores is an outlier sensitive operation, as
a single low score value can completely disqualify the true key [Lom+14]. To increase
robustness and reduce sensitivity toward low scores, the attack is run multiple times on
shuffled traces of the attack dataset to obtain the corresponding cumulative scores dNa [k].

Guessing Entropy The guessing entropy (GE) is the number of guesses that are required
by a model to predict the correct key k∗ [Mas94]. It is acquired using the ranking vector,
which contains the position of each key: rNa

[k̃] = 1+
(∑

k∈K\k̃JdNa
[k] > dNa

[k̃]K
)

, ∀k̃ ∈ K,
and the guessing entropy of k∗ is rNa

[k∗], or rk∗ . Because of the repeated attacks, we
acquire multiple GE values, which we average to determine the final estimated GE. The
QtGE

value is the minimum number of attack traces that are required for the very first
guess of the model to be correct, i.e. rQtGE

[k∗] = 1, and it can be used to describe
the efficiency of the attack model [Rij+21]. In case the available attack traces Na are
not sufficient, this value is not well-defined, but for the sake of being able to perform
aggregation in the experiments, we choose to set it to Na.

2.2 Leakage Models
The leakage model defines which information is expected to be leaking from the device in
the measurements. Since we focus on AES-128 in our experiments, we assume the output
to the S-box function is leaked. Additionally, we only target a single S-box corresponding
to a single key byte in the very first execution step of SubBytes in the first AES round. We
believe our results to apply to other key bytes and later rounds, as determined by [GJS19].
We investigate two types of leakage models for this output byte, the Hamming weight (HW)
leakage model and the Identity (ID) leakage model.

Identity Leakage Model In this model, the attacker assumes that the leakage l or power
consumption is directly linked to the entire S-box output. For the 8-bit S-box used in
AES, this leakage model results in 256 classes representing every possible value of the
input byte. The dataset is then labeled with ϕ(pi, ki) = sbox(pi ⊕ ki).

Hamming Weight Leakage Model In this model, the attacker assumes that the leakage
l or power consumption is directly linked to the number of bits set to 1 in the S-box
output, which is equivalent to its hamming weight (HW). For the 8-bit S-box used in
AES, this leakage categorizes 256 possible inputs into 9 classes, from 0 bits set to 8 bits
set. This is done with the labeling function ϕ(pi, ki) = HW (sbox (pi ⊕ ki)). This causes
several outputs to map to the same class, since e.g. the output values 1 and 4 both
belong to HW class 1, and the full output value cannot be recovered. Using the redundant
information over several S-boxes and SubBytes rounds, as well as the relationship between
them, this still allows full key recovery, as for example demonstrated in the CHES 2018
CTF challenge by the AGSJWS team [GJS19]. Choosing this leakage model produces a
large class imbalance because while only a single output maps to class 0 and 8 each, 70
outputs map to class 4. This can have a large effect on a machine learning process and
may require custom metrics to account for the imbalance [Pic+18].

2.3 Convolutional Neural Networks
A Neural Network consists of a series of interconnected layers containing Neurons that
connect an input layer that is activated according to observation with an output layer
corresponding to the prediction of the model for this observation. The structure of
these interconnections as well as the method of layer operation can vary significantly
and defines the overall Neural Architecture. The MLPs is a very simple Neural Network,

6 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

8 4 3 60

2 1

20 8 6 9 24

Input

Output

Without Pading

9

+

x x

2 1

x x

Kernel

8 4 3 60

2 1

20 11 6 9 24

Input

Output

With Pading

9

+

x x

2 1

x x

Kernel

0

12

+

+

Pad 0

(a) Convolutional Operation

8 4 3 60

MAX

8 3 9

Input

Output

Max Pooling

9

MAX MAX

8 4 3 60

AVG

6 1.5 7.5

Input

Output

Average Pooling

9

AVG AVG

(b) Pooling Operations

8 3 6

Input

9.8 -4.7

1 .2
.2

.3.5
-1

ELU Activation
Function

 5.9-2.2

9.8 -.99 5.9

Softmax Dense
Layer

-.89

.97 1e-328e-31e-3

Output

Units

(c) Dense Layers

Figure 1: Convolutional Operation, Pooling Operation and Dense layers of CNN

only employing fully connected, or “dense”, layers. These were shown to perform SCA
efficiently in case there are no countermeasures applied by the system, but often fail for
more challenging tasks [Ben+20; MPP16].

In recent work, the CNNs have proven to be very effective in learning a multiclass
classification model and breaking a system via hardware side-channels, even if such a
system implements countermeasures [Zai+19]. CNNs have shown to be very robust
towards the most common countermeasures, namely masking [MPP16; MDP19] and
desynchronization [CDP17]. A CNN contains convolutional and pooling layers in addition
to dense layers as shown in Figure 2. A CNN can be viewed as an MLP where only each
neuron of the layer l is connected to a set of neurons of the layer l − 1, therefore can
perform all the operations that can be performed by an MLP [Kle17; Zai+19]. In addition
to that, the CNN architecture imposes inductive biases that are useful for many important
applications and that the MLP networks would have to learn [Kle17; Zai+19]. A recent
study has shown that overall, CNNs are more efficient and better suited to perform SCA
on hardware datasets than MLPs [Cha+22], which is why we chose to focus on different
CNN architectures.

The convolutional block consists of the convolutional layer and a pooling layer and
the dense block consists of the dense (fully-connected layer). The batch normalization
operation is typically applied after the convolutional layer and dense layer. Each layer
has some trainable parameters ŵ which are used to get the final target function f (c.f.
Section 2.1) and some hyperparameters. The hyperparameters are configuration variables
of the layer external to the learning model (f) and hugely influence finding an optimal
target function f . Now, we will briefly describe the operations performed by these layers.

Convolutional Operation This operation basically re-estimates the value of the input
value, by taking a weighted average of the neighboring values as shown in Figure 1a. The

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 7

weights are defined using a kernel of some size wk (wk for 1-D data or wk ×wk for 2-D data)
and these weights are learned using back propagation algorithm [Zai+19]. This kernel is
shifted over the input data (1-D vector or 2-D maps) with a stride until the entire data is
covered. The convolutional operation is performed for every shift and produces a weighted
average value. Typically this operation is applied multiple times using different kernels and
this number is called the filter size fi of the convolutional layer. If this operation is applied
without padding, then the dimensionality of output decreases, and this operation is called
the valid padding operation. In order to preserve the dimension, the data is padded with
0, and this operation is called same padding [Zai+19].

The number of trainable parameters for convolutional layers are [in×fi ×wk ×out]+out
for 1-D data and [in × fi × wk × wk × out] + out for 2-D data, where in denotes the number
of inputs and out denotes number of outputs [Rij+21]. The two hyperparameters which
need to be searched for an optimal CNN architecture are the kernel size and number of
filters for each convolutional layer as listed in Table 1.

Pooling Operation This operation applies down-sampling on the input acquired from
the previous layer and produces a condensed representation. This operation reduces the
number of trainable parameters of the CNN and avoids over-fitting [Zai+19]. The pooling
operation of some size wp (wp for 1-D data or wp × wp for 2-D data) and stride, is shifted
across the input and reduces it by applying a max operation or an average operation as
shown in Figure 1b. Similar to convolutional operation, pooling operation could also be
applied with (preserves dimensionality) or without padding (dimensionality decreases) and
the operations are called same or valid padding respectively. This layer does not have any
trainable parameters and the hyperparameters which need to be searched for an optimal
CNN architecture are the poolsize wp, number of strides, and pooling operation type as
listed in Table 1.

Dense Layers This layer consists of weights W ∈ Rd×nh and biases b ∈ Rnh , where
d is the dimensionality of the input x ∈ Rd and nh is the number of hidden units of
the layer [Ben+20]. The output of this layer evaluated using the formulae W x + b as
shown in Figure 1c. Typically, an activation (e.g. ReLU, Elu) is also applied to each
element of the output and the weights and biases are learned using the back-propagation
algorithm [Ben+20]. The last dense layer is applied using softmax function (c.f. Section 2.1)
which converts real-valued scores to softmax-scores as shown in Figure 1c. The number
of trainable parameters for dense layers is the sum of nh for each input plus the bias b:
n = (in × nh + nh × out) + (nh + out) where in denotes the number of inputs and out
denotes number of outputs [Rij+21]. The hyperparameter which needs to be searched is
the number of hidden units for each dense layer as listed in Table 1.

Batch-Normalization Layer This layer was introduced to lower internal covariance shift
in neural network and thus making the convergence faster [IS15]. It was possible to use
larger learning rates for the training process. This layer normalizes every data point xi

in a training batch by estimating the expected mean and the variance of the training
batch. The number of trainable parameters for batch-normalization is 4 × d, where d is
the dimensionality of the input. For NAS, we can choose to either apply it or not in each
convolutional block and in each dense block.

2.4 Neural Architecture Search
The first handcrafted CNN architecture is shown in Figure 2a, which was proposed to
attack the ASCAD dataset. This architecture was later optimized manually to produce
dataset-specific smaller architectures (for example c.f. Figure 2b produced for attacking

8 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

Convolution

Pooling

Dense Layer

Softmax Dense Layer

Input

256 Softmax Scores

Dense Layer

Convolution

Pooling

Convolution

Pooling

Convolution

Pooling

Convolution

Pooling

(a) ASCAD baseline [Ben+20]

Convolution

Pooling

Dense Layer

Input

Dense Layer

Convolution

Pooling

Convolution

Pooling

Dense Layer

Softmax Dense Layer

256 Softmax Scores

(b) Zaid baseline [Zai+19]

Convolution

Batch Normalization

Dense Layer

Softmax Dense Layer

Input

256 Softmax Scores

Convolution Block

Dense Block

Batch Normalization

Pooling

(c) Our NAS base architecture

Figure 2: Architecture comparison of handcrafted reference CNNs with our NAS structure
of generic building blocks

ASCAD_f 50ms and ASCAD_f 100ms). This shows that an optimal CNN architecture
is dependent on the dataset and designing it manually requires expert knowledge. This
challenge is not unique to side-channel attacks, and consequently, there have been recent
developments in automating this process by employing “Neural Architecture Search”.
NAS treats the task of finding a suitable architecture for a given dataset as a simple
optimization problem (using objective) that can be solved automatically. NAS takes a
search space A containing possible architectures and the dataset as input and, using a
specified search strategy, automatically searches for the optimal architecture as shown
in Figure 3. Typically, NAS uses an evaluation metric, e.g. accuracy or a loss function as
its objective, which is used as a criterion to evaluate or measure the performance of an
architecture. The dataset is split into training data Dtrain, which is is used for training a
new architecture A ∈ A and validation data Dval which is used to evaluate the performance
A. In the end, the NAS produces the best-performing architecture according to the defined
objective [EMH19]. This motivated the usage of NAS approach, which takes the profiling
dataset as input and automatically produces an optimal CNN architecture to perform the
SCA for a given dataset [EMH19].

Previous Proposals Recent works propose using NAS for SCA [WPP20; Rij+21]. They
first proposed different white-box metrics for defining the objective for performing the
NAS using Random and Bayesian search strategy [WPP20]. These white-box metrics
determine the cumulative score of the secret key byte on the labeled attack dataset in order
to evaluate the performance of an architecture. They extended their work by proposing
a novel reinforcement learning based NAS approach which uses the white-box objective
as the reward function for learning the Q-function [Rij+21]. The Q-function is used to
guide the search and choose the hyperparameters of the next architecture to be evaluated.

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 9

Search

Strategy

Evaluate

Accuracy of

Architecture

Profiling Dataset

Train

Attack Dataset

Decile 1

Decile 10

Final Model

} Evaluate

10 Guessing

Entropy Values

10 Values

Neural

Architecture

Search

Validation
Data

Best

Architecture

Training

Data

Search

Space

Train

Figure 3: Schematic of our NAS approach for black-box attacks

This approach uses guessing entropy and QtGE
value of the secret key byte k∗ of the

system, to evaluate its white-box objective or the reward function. The drawback of these
approaches is that it uses the attack dataset to evaluate the objective function to find
the architecture, which poses two major issues. First, it no longer allows the detection of
overfitting, e.g. where a model is specifically matching only the data it has been exposed to
before, performing exceptionally well on training data, but the model does not generalize,
meaning that its performance with any other data is poor. Since the attack dataset is
also used for hyperparameter-optimization, the architecture is specifically fitted to the
attack dataset. To detect overfitting, a hold-out dataset, which is deliberately withheld
during the entire model selection, parameter tuning and training process, has to be used,
since only the performance on this hold-out can predict the generalization capabilities
of the model. If this hold-out dataset is used in any part of the process, even if it was
just manually inspected to select which specific classifier to train on it, data-snooping
occurs and it is no longer useful for assessing generalization [Jen00]. This is the case for
[Rij+21] and [WPP20], and therefore we cannot be sure if overfitting occurred in these
experiments. Second, testing a model on the same attack dataset for which its architecture
has been optimized will necessarily result in an over-estimation of its real-world attack
performance where the architecture cannot be optimized for the unknown key in the attack
dataset. This is acceptable in a white-box or gray-box setting where some parts of the
attacked device are assumed to be known, but is not compatible with the black-box setting
we assume, where the attack dataset would be considered unlabeled for the purposes
of training. The performance results reported in [Rij+21] and [WPP20] are thus not
necessarily representative of real-world performance on an unlabeled attack dataset and
cannot be meaningfully compared to our work.

3 Our Approach
We aim to produce an unbiased, optimal CNN architecture in a black-box setting with
the help of NAS. Since NAS was designed primarily to use only the training dataset for
finding an optimal architecture, we devised an approach, illustrated in Figure 3, which can

10 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

8 4 3 60 9

Square with length

8 4 3

60 9

5 5 5
Mean-value

Imputation

(a) Square Input Conversion

8 4 3 60 9

Rectangle Dimension

8 4 3

60 9

(b) Rectangle Input Conversion

Figure 4: Conversion technique of 1-D input to 2-D Square input and 2-D Rectangle input

satisfy these black-box requirements. This follows the standard training-test-validation
split used in many ML methods. For this the profiling dataset is split into validation and
training dataset, such that the training dataset Dtrain is used to train the architecture
under consideration and validation data Dval is used to estimate the performance of said
architecture. In our approach, the search strategy uses a predefined search space A (c.f.
Table 1) containing CNN architectures (1-D or 2-D depending on the input shape) to
perform NAS. Typically, the search strategy initially suggests some architectures A ∈ A
randomly (exploration) and uses their evaluated accuracy to make future suggestions
(exploitation). The training data (Dtrain) is used for training the architectures A and the
validation data (Dval) is used for evaluating the accuracy of A. Since we are only using the
profiling dataset for searching and evaluating the architecture A ∈ A under consideration,
this makes our NAS optimization a black-box approach [Rij+21]. This is in contrast to Wu,
Perin, and Picek [WPP20] and Rijsdijk et al. [Rij+21], which use the test dataset instead
of a validation dataset for guiding the search, making their approach white-box since the
test dataset can then not be used to give an unbiased performance evaluation. In the
end, NAS suggests the architecture which has the highest accuracy. The best-performing
architecture is then trained on the complete profiling dataset (Dprofiling), which improves
the performance while only incurring a marginal computational overhead compared to the
actual search. Similar to the folds used in cross-validation, the attack dataset (Dattack) is
split into 10 equal parts (deciles) and each part is used to evaluate the attack efficiency of
this model using the guessing entropy and QtGE

measures defined in Section 2.1.

3.1 Two-Dimensional Input Reshaping
The measurement traces of the datasets have to be transformed into the proper shape for
the neural network to process. The most straightforward transformation is to produce a
One-Dimensional input from the time series input and define a search space containing
1-D CNN architectures (c.f. Table 1) and to apply NAS to find an optimal architecture.
While most of the 1-D CNN architectures that are explored for performing SCA to
break AES-128 encryption were originally inspired by popular 2-D CNN architectures
proposed for image classification, like VGGNet, Inceptionv3 [Ben+20], they are only
applied on one-dimensional inputs. Recent work has shown that using 2-D CNNs could
increase the accuracy and efficiency for breaking post-quantum key-exchange (PQKE)
protocols [Kas+21; Het+20]. This motivates us to also explore using two-dimensional inputs
for AES-128 attacks, applying NAS on a search space containing 2-D CNN architectures
(c.f. Table 1). In order to convert the one-dimensional input to two-dimensional input, we
propose to use two techniques Square and Rectangle. In the Square approach, we
create a square of dimension ⌊

√
d⌋ + 1 and fill the remaining places with the mean value of

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 11

the instance as shown in Figure 4a. For forming a Rectangle input, we try to create the
rectangle that is closest to a square but does not require filling with imputed values. As
shown in Figure 4b, these dimensions can be determined using the two factors of d which
are closest to

√
d .

3.2 Search Strategies
The previous work on applying NAS for performing SCA only considered Bayesian and
Random search strategies [WPP20], which are not necessarily time-efficient [EMH19;
Li+17]. We explore the four search strategies Random, Greedy, Hyperband, and
Bayesian with 1000 fixed trials and use their respective implementations provided by
AutoKeras [JSH19].

Typically, search strategies first explore the search stage by trying many substantially
different architectures. This is followed by exploitation, in which well-performing archi-
tectures are further improved via small changes. Because each search algorithm is only
allowed to consider a limited number of architectures (in our case 1000), it should have a
balanced trade-off between exploration and exploitation in order to perform efficiently and
accurately.

Random The Random search technique chooses a unique architecture configuration
uniformly at random (with replacement) from the complete search space and evaluates its
performance. This process is repeated for a specified number of trials but is preempted if
it has exhausted the search space or the same configuration is chosen multiple times. This
means it focuses only on exploration without any exploitation.

Greedy The Greedy search algorithm proposed by Jin [Jin21] works in two distinct
stages, exploration and exploitation. In the exploration stage, it evaluates uniformly
randomly chosen models for a limited number of trials [JSH19]. In the exploitation stage,
it generates models which are neighboring the best-performing model from the first stage
and exclusively try to improve this model. This is done by traversing a hierarchical
hyperparameter tree representing the hyperparameters of the best-performing model, as
well as possible changes such that the new hyperparameter values remain close to that of
the best-performing model with high probability [Jin21]. This tree is rebuilt if a better
architecture is found, at which point this architecture becomes the starting point for
subsequent exploitation. The algorithm continues the exploitation process until either the
trial limit is reached or until it has exhausted the entire search space. The Greedy search
algorithm is time-efficient, but it might get stuck in local optima since it performs limited
exploration, e.g. for only 1 % of the maximum number of trials in AutoKeras [Jin21;
JSH19].

Hyperband The Hyperband search algorithm is based on the successive halving algo-
rithm [Li+17]. The Successive Halving algorithm divides the resources (time, epochs)
equally into a specific number of hyperparameter configurations. In each time step (2-3
epochs) it checks their performance and at the end keeps the top-half best-performing
configurations. This process is repeated until only the best-performing configurations
are left. The Hyperband algorithm is time-efficient and balances the trade-off between
exploration (check many models with a low budget) and exploitation (provide a high
budget to the best-performing architectures) very well [Li+17].

Bayesian The Bayesian search algorithm is based on Bayesian optimization, which
assumes a (black-box) function f ′ : Θ → R over the hyperparameter space θ ∈ Θ =
(Θ1, . . . , Θn), such that θ = (θ1, . . . , θn) represents one hyperparameter configuration [FSH15].

12 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

Each hyperparameter space can be an integer, real or categorical, i.e., Θi ∈ R or Θi ∈ Z
or Θi ∈ {0, . . . , c}, for some c ∈ N, where c is the number of categories. For finding the
best configuration function f ′, which maps a configuration θ to the estimated real-valued
validation accuracy, a probabilistic model using Gaussian Process, is used. This probabilis-
tic model provides the properly balanced trade-off between exploitation and exploration
of the search space [Li+17]. At the end of the 1000 fixed trials the best configuration is
obtained as θ∗ = arg maxθ∈Θ f ′(θ).

4 Setup of Our Parameter Study
The performance of the final model returned by performing NAS as described in Section 3
heavily depends on two factors or parameters: First, the search strategy employed for
NAS, which has a huge influence both on search performance and runtime, and second,
the shape of the input features. In order to determine the best-performing options for both
of these factors, we need to perform a parameter study. The methodology for this study
will be outlined in Section 4.1, while Section 4.2 presents the datasets we used for the
experiments and Section 4.4 covers the hardware necessary for it. Because we investigate
how our automated NAS setup compares to manually crafted baseline architectures, we
additionally trained the fixed CNN architectures we describe in Section 4.3.

4.1 Methodology
We proposed a black-box NAS approach to automatically perform a SCA as described
in Section 3. The two main phases of our empirical study are first analyzing the expected
success rate of our approach for a given parameter combination of the search strategy and
input shape. Using this, we will achieve the best parameter combination of the search
strategy and input shape, which should be used by NAS to perform SCA. In addition, we
would also like to compare the attack performance of the CNN architectures produced by
the NAS configured with the best parameter combination of the search strategy and input
shape with the state-of-the-art handcrafted CNN architectures.

Parameter Study The attack performance of the final architecture produced by the NAS
is heavily dependent on the search strategy used and the input shape of the data. For the
parameter study, we consider 4 search strategies, namely Random, Greedy, Hyperband
and Bayesian (c.f. Section 3.2). Our input data could be One-Dimensional (1-D CNN),
rectangular (2-D CNN) or square (2-D CNN) shaped (c.f. Section 3.1). This gives us a
total of 12 parameter settings for using the NAS to perform SCA, e.g. using Hyperband
search strategy on rectangular input data. In order to perform a study, for each parameter
setting we apply NAS on 10 dataset (c.f. Section 4.2) on 2 leakage models (HW and ID,
c.f. Section 2.2). For each parameter combination (input shape and search strategy),
dataset, and leakage model, we apply the NAS to acquire the best-performing model. This
model is then trained on a complete profiling dataset Dprofiling and evaluated on 10 equal
parts (deciles) of the attack dataset Dattack. In the end, we acquire 10 guessing entropy
values and 10 QtGE

values, which are aggregated to achieve the final performance of the
parameter combination on the dataset.

Loss Function Investigation We initially intended to also investigate the influence of the
loss function in our parameter study, considering the most commonly used loss function CCE
and comparing it to 6 other specialized loss functions, among them Ranking Loss (RKL)
and Focal-Loss Categorical Cross-Entropy (FLCCE) [Ker+22]. The parameter study was
set up to combine all possible combinations of 3 input shapes, 4 search strategies, and 7
loss functions, and then run on the supercomputer (c.f. Section 4.4). When analyzing the

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 13

results, we discovered that a small bug in the ML library we used, AutoKeras, prevented
the loss function parameter to be passed onto the actual CNN training module, forcing all
of the experiments to use the default value CCE instead. We therefore effectively evaluated
our NAS approach for the same choice of input shape and search strategy 7 times, using
CCE as the loss function each time. Each of the 7 runs produced a different split of
profiling dataset Dprofiling into training Dtrain and validation Dval dataset, resulting in a
different best architecture returned by NAS and a different final model. These experiments
had already been executed and consumed significant resources, so we had to consider if
the results should be outright discarded or not. Because of the randomization involved,
it is necessary to run such an experiment several times and average the results to get a
statistically significant and “realistic” estimation of performance1 [LT20]. Consequently,
we decided to keep all of the original experiments and aggregate the results of the 7 models
as independent repetitions of the same NAS experiment. Unfortunately, we will therefore
not be able to determine the impact of the loss function.

Evaluation of Single Experiment Run A single experiment run for our study consists
of applying NAS configured with a unique combination of input shape, search strategy,
dataset, and leakage model. For each experiment, there are a total of 70 attacks being
executed: 7 different models are trained based on unique random seeds, then the attack is
executed for each of the 10 attack deciles for each model. The results of the 70 attacks are
then aggregated to determine the performance with the following metrics.

Success Rate A single attack is considered to be successful if the final guessing entropy
is 1, e.g. the correct key is at the top of the predictions with rk∗ = 1 [TPR13]. The success
rate is defined as the empirically determined probability of an attack being successful. For
our 70 attacks, we can therefore count the number of successful attacks and divide by the
total number of attacks [TPR13], returning a percentage value.

Attack Efficiency QtGE Even though several approaches might achieve a high success
rate, it is still preferable for them to use fewer attack traces, making them more efficient.
This can be measured by the QtGE

value, which counts the number of attack traces that
are required to achieve a successful attack. To calculate the QtGE

for an experiment run,
we can average the QtGE

values of the 70 individual attacks. This value can be sensitive
to outliers, e.g. unsuccessful attacks where QtGE

is set to Na.

Evolution of Guessing Entropy Another analysis method of the model performance
involves plotting the development of the GE value “over time”, after observing a certain
number of attack traces. As detailed in Section 2.1, this GE is already the result of running
the attack 100 times on shuffled attack traces. For our analysis, we aggregate the 10 attack
runs by averaging and reporting the 7 NAS models individually.

Implementation Details To implement NAS for different search strategies and search
spaces as well as input shapes, we extend the AutoModel, DenseBlock, ConvBlock and
ClassificationHead class from the AutoKeras python library [JSH19], a popular tool for
NAS. The code for the experiments and the generation of plots with detailed documentation
is publicly available on GitHub2.

Architecture Search Space To perform NAS, we need to define the search space de-
pending on the input shape of NAS. In Table 1, we define a search space containing

1As recommended in https://github.com/keras-team/autokeras/issues/359
2https://github.com/prithagupta/deep-learning-sca

https://github.com/keras-team/autokeras/issues/359
https://github.com/prithagupta/deep-learning-sca

14 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

Table 1: Overview of the Search Space for our NAS approach
Hyperparameter Type Hyperparameter Possible Options

Whole Network Optimizer {’adam’ , ’adam_with_weight_decay’}
Learning rate {1e91, 5e92, 1e92, 5e93, 1e93, 5e94, 1e94, 5e95, 1e95}

Every Layer
Dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
Use Batch Normalization {True, False}
Activation Function {’relu’, ’selu’, ’elu’, ’tanh’}

Convolutional
Block

Blocks {1, 2, 3, 4, 5}
Convolutional Kernel Size {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
Convolutional Filters {2, 8, 16, 32, 64, 128, 256}
Pooling Type {’max’ , ’average’}
Pooling Strides 1-D CNN {2, 3, 4, 5, 6, 7, 8, 9, 10}
Pooling Poolsize 1-D CNN {2, 3, 4, 5}
Pooling Strides 2-D CNN {2, 4}
Pooling Poolsize 2-D CNN Convolutional Kernel Size-1

Dense Block
Blocks {1, 2, 3}
Hidden Units {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024}

different configurations for 2-D CNN architectures for Rectangle and Square inputs
and a search space containing different configurations for 1-D CNN architectures for
One-Dimensional input. As described in Section 2.3, the hyperparameters for the
convolutional layer are the kernel size and the number of filters, the pooling layer is the
poolsize wp, the number of strides and pooling operation type and for a dense layer is the
number of hidden units. We selected the range for each hyperparameter by analyzing the
related work [Rij+21; WPP20]. The search space includes all possible 1-D baseline CNN
architectures [Zai+19; Ben+20], and as such the search strategies could in theory find
these fixed architectures and match their performance. In particular, Random is certain
to find these architectures eventually. We also included the range of each hyperparameter
from the search space designed for 1-D CNN architectures proposed by the current work
done on NAS for performing SCA [Rij+21; WPP20]. If the characteristics of the dataset
are known in advance, it is possible to reduce this search space to make the search more
efficient. We chose not to tailor the search space to the dataset like this, as this way the
architecture design remains fully automated, requiring no manual analysis of the dataset.

The network, layer, and dense block hyperparameters are the same for both 1-D CNN
search space and 2-D CNN search space. Additionally, the range of convolutional kernel
size, convolutional filters, and pooling types for each convolutional block is also the same
for both search spaces. To avoid the formation of invalid 2-D CNN architectures, the range
of pooling strides is smaller and the poolsize value is set using the kernel size, which is the
suggested default of AutoKeras [JSH19]. This makes the search space relatively smaller
for 2-D CNNs. The padding type is set to the “same” padding type for convolutional
layer and “valid” padding type for pooling layer for 1-D CNNs search space. To avoid
the formation of invalid 2-D CNN, the padding type for the convolutional and pooling
layer is set using the kernel size of the convolutional layer, using the formulae proposed by
AutoKeras [JSH19]. The total number of possible hyperparameter configurations for 1-D
CNNs is 40 758 681 600 and for 2-D CNNs is 2 264 371 200. For our experiments, we set the
maximum number of trials to 1000 , which implies that only 1000 possible architectures
are explored by NAS out of such a large search space. Each search strategy is provided
with the same budget limit, which means that only around 5 × 10−5 % of 2-D search space
and 2.5 × 10−6 % of 1-D search space is explored in order to produce an optimal CNN
architecture.

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 15

4.2 Datasets
We want to investigate the behavior of NAS in a wide range of settings using well-known
datasets to enable direct comparisons to other works in hardware side-channel attacks.
We, therefore, chose to focus on five datasets that have already been investigated before:
ASCAD v1, DPA contest v4.1, AES_RD, AES_HD, and CHES CTF 2018 AES-128. All of
these datasets record implementations of AES-128, which means the same overall approach
should work automatically for each of them, without any need for dataset-specific tuning.
However, the systems incorporate different types of leakage countermeasures, e.g. masking
or random delays. The configurations for all these datasets are listed in Table 2.

ASCAD The ASCAD dataset was proposed as a benchmark dataset, containing EM
radiation measurements obtained from an ATMega8515 (8-bit microcontroller with AVR
architecture) device running a masked implementation of AES-128 [Ben+20]. This dataset
is available in different versions and we utilize the original v1 dataset in both fixed key
(ASCAD_f3) and variable key (ASCAD_r4) variants. The traces in these datasets have
been aligned such that the AES computation always starts at the same sample within each
trace. The points of interest in the raw data have been analyzed using the signal-to-noise
ratio and only a small subset of samples from the full traces is used [Ben+20]. Additionally,
we consider versions that add random amounts of desynchronization to each trace. These
versions were created by Benadjila et al. to simulate imprecise temporal alignment of the
traces by adding artificial jitter to each trace. The traces have been desynchronized by a
maximum of 50 as well as 100 samples, resulting in the 6 different varieties of the ASCAD
dataset listed in Table 2.

CHES CTF The CHES CTF dataset consists of traces originally produced for the CHES
2018 AES-128 CTF challenge. Note that the dataset we consider5 is a single reduced
version (45 000 traces) derived from the original measurements (500 000 traces) and not
identical to the datasets published as part of the actual contest6, which consists of 6
different sets (42 000 traces). This reduced version is used in the AISY framework and has
already been pre-processed [PWP21].

AES_RD AES_RD7 was originally used to investigate random delay countermea-
sures [CK09]. The traces for this dataset are collected from an 8-bit ATMEL AVR

3https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key/
4https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key/
5http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
6https://chesctf.riscure.com/2018/content?show=training
7https://github.com/ikizhvatov/randomdelays-traces/

Table 2: Details of the datasets considered
Dataset name # Features # Profiling traces # Attack traces Attack byte
ASCAD_f 700 50000 10000 2
ASCAD_f desync50 700 50000 10000 2
ASCAD_f desync100 700 50000 10000 2
ASCAD_r 1400 50000 100000 2
ASCAD_r desync50 1400 50000 100000 2
ASCAD_r desync100 1400 50000 100000 2
CHES CTF 2200 45000 5000 2
AES_HD 1250 50000 25000 0
AES_RD 3500 25000 25000 0
DP4CONTEST 4000 4500 5000 0

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_fixed_key/
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_variable_key/
http://aisylabdatasets.ewi.tudelft.nl/ches_ctf.h5
https://chesctf.riscure.com/2018/content?show=training
https://github.com/ikizhvatov/randomdelays-traces/

16 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

microcontroller running an AES-128 implementation incorporating random delays. We
use the converted dataset8 as analyzed in [Zai+19].

AES_HD AES_HD9 dataset contains EM measurements obtained from Xilinx Virtex-5
FPGA (coded in VHDL) implementing an unprotected AES-128 implementation [Pic+18].
A big difference in this dataset is the fact that it records the AES decryption operation
instead of the encryption operation. The labels are generated for a difference leakage
model based on the ciphertext bytes cj

i used in the decryption, specifically the 12th (c11
i)

and 8th (c7
i) ciphertext bytes. The resulting label is then calculated with ϕ(ci, ki) =

sbox−1(c11
i ⊕ ki) ⊕ c7

i (c.f. section 2.1). In our Hamming weight experiments, taking the
Hamming weight of this label results in the Hamming Distance (HD) leakage model used
in [Pic+18]. We again use the converted dataset10 as analyzed in [Zai+19].

DPAv4 The DPAv4 dataset11 contains traces obtained from ATMEL AVR-163 microcon-
troller running an AES-128 implementation protected with Rotating Sbox Masking (RSM)
[Bha+14]. It was used in the fourth edition of the DPA contest, from which we only
consider the “improved” masked AES-128 target contained in dataset version 4.2. We again
used the extracted dataset12 from [Zai+19]. In order to be consistent while comparing our
approach with the performance of the baselines proposed by [Zai+19], we assume that the
mask value is known, essentially nullifying the masking.

4.3 Baseline Architectures
We also need to train fixed baseline architectures for comparison with our NAS approach.
We chose to use the ASCAD architecture as proposed in [Ben+20] and ZAID architectures
as proposed in [Zai+19]. The ASCAD baseline is the CNN model inspired from the image
recognition baseline VGG-16 CNN model [SZ15] and shown in Figure 2a. Zaid et al.
proposed several specific architectures for ASCAD_f, ASCAD_f 50ms, ASCAD_f 100ms,
AES_HD, AES_RD and DPAv4 datasets [Zai+19]. For ASCAD_r, ASCAD_r 50ms,
ASCAD_r 100ms there is no specific proposal, so we use the corresponding baselines
proposed for the fixed-key versions (ASCAD_f, ASCAD_f 50ms, ASCAD_f 100ms). Since
CHES CTF is known to be a very hard dataset, we use the deepest CNN proposed by
ZAID [Zai+19], which is the architecture for the ASCAD_f 100ms dataset shown in
Figure 2b.

4.4 Computing Hardware
Our experiments necessitate training millions of CNN models in total, which requires
thousands of hours of GPU time. We consequently ran them in parallel on a supercomputer
equipped with GPU nodes, which allowed us to finish the entire parameter study in a few
weeks. These GPU nodes consist of two AMD Milan 7763 CPUs running at 2.45 GHz,
512 GB of main memory, and four Nvidia A100 GPUs equipped with NVLink and 40 GB
HBM2 GPU memory. A single NAS experiment, which consists of determining the best
architecture through repeated intermediate model training and subsequent final model
training, takes less than 2 days on these shared GPU nodes. The training times are mostly

8https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/
master/AES_RD/AES_RD_dataset

9https://github.com/AESHD/AES_HD_Dataset/
10https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/

master/AES_HD/AES_HD_dataset.zip
11http://www.dpacontest.org/v4/42_traces.php/
12https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/

master/DPA-contest%20v4/DPAv4_dataset.zip

https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_RD/AES_RD_dataset
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/tree/master/AES_RD/AES_RD_dataset
https://github.com/AESHD/AES_HD_Dataset/
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/AES_HD/AES_HD_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/AES_HD/AES_HD_dataset.zip
http://www.dpacontest.org/v4/42_traces.php/
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip
https://github.com/gabzai/Methodology-for-efficient-CNN-architectures-in-SCA/blob/master/DPA-contest%20v4/DPAv4_dataset.zip

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 17

dependent on the search strategy, and to a lesser degree on the dataset. Even though all
search strategies were provided with a budget for 1000 trials, only Random and Bayesian
search strategies used up the entire budget every time, with one experiment running for at
most 2 days. The Greedy strategy used only a portion of the provided budget, which
resulted in a maximum running times of 5 hours. In the case of Hyperband strategy,
even though it trains 1000 models, it preempts and rejects some of them early due to
the successive halving technique, resulting in a reduced maximum running time of 12
hours. However, these experiments were run in a shared environment concurrently with
other computations. To determine how long one would have to run a NAS experiment on
consumer hardware, we also re-ran an example experiment for the AES_HD dataset on
an otherwise idle gaming PC. This $2500 gaming PC is equipped with an AMD Ryzen 9
3950X CPU running at 3.5 GHz, 64 GB of main memory and a single GeForce RTX 2080
Super GPU with 8 GB GDDR6 GPU memory. Our example experiment took 22 hours for
Random, 3 hours and 45 minutes for Hyperband, 2 hours and 55 minutes for Greedy,
and 10 hours and 12 minutes for Bayesian. We consider 22 hours of runtime on consumer
hardware to be a reasonable assumption for the lower limit of computational resources that
an attacker might be willing to commit to a single attack, with well-equipped attackers
likely far exceeding these constraints.

5 Parameter Study Results
We ran the full parameter study outlined in Section 4, combining the possible options
for search strategy and input shape. These were applied to the 10 datasets detailed in
Section 4.2, both for an ID leakage model as well as an HW leakage model. Additionally,
we trained the baseline architectures described in Section 4.3 for each of the datasets.

5.1 Overall Reliability
First, we want to determine the overall reliability of our NAS approach, so we determined
the success rate in all the experiments executed for each dataset. In our context, an
attack is considered successful if the final guessing entropy is 1 after processing all the
traces in the respective attack dataset decile. We show this per-dataset attack success rate
separately for ID (Figure 5a) and HW (Figure 5b) leakage, giving a rough indication of how
difficult attacking each dataset is. The first observation is the relative ease with which the
DPAv4 dataset can be attacked: Even when taking all the suboptimal combinations of the
search strategy and input shape into account, over 75 % of the attacks on it are successful,
regardless of leakage model. This is hardly surprising, as the dataset variant we consider
effectively contains no countermeasures (see Section 4.2 for details). Another unsurprising
result is the increased difficulty incurred by desynchronization: When comparing the non-
desynchronized version of ASCAD_f and ASCAD_r to their desynchronized counterparts,
the degradation in reliability is clear, although some of the attacks are still able to succeed.
We also need to point out the disastrous performance of NAS when applied to the CHES
CTF dataset in the ID leakage model, where only a handful of attacks were able to recover
the full identity value. When comparing ID and HW leakage, we would expect HW leakage
to be more successful, as the models do not need to recover the full 256 identities but only
the 9 different Hamming weight classes. This is not the case, evidently since the NAS
performance noticeably degrades for datasets like AES_HD and ASCAD_f. This points
to a possible issue with using accuracy as the optimizing goal for NAS: Upon manual
investigation of the models produced by NAS, a large portion of them would simply predict
a HW of 4 regardless of input. Because of the imbalance explained in Section 2.2, this
“blind” strategy produces a decent accuracy of over 27 % on random inputs. A NAS search
algorithm can get stuck on this local optimum, degrading the overall success rate of an

18 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e
Dataset

AES_RD
AES_HD
CHES CTF
DPAv4

ASCAD_f
ASCAD_r
ASCAD_f desync50

ASCAD_r desync50
ASCAD_f desync100
ASCAD_r desync100

(a) ID leakage (b) HW leakage

Figure 5: Success rate of overall experiment runs for each dataset in the ID and HW
leakage models.

attack.

5.2 Optimal NAS Parameters
In order to answer the second question, we plotted the success rate for every possible
NAS parameter combination of input shape and search strategy. We chose to plot them
separately for ID and HW leakage models, as well as synchronized and desynchronized
datasets because of the large difference in performance.

Identity Leakage Figure 6 shows the influence of the choice of each possible NAS
parameter combination (input shape and the search strategy) on the overall performance of
synchronized and desynchronized datasets for ID leakage. This clearly shows that the choice
of search strategy has a significant impact on the success rate, which rises from around
20 % to around 70 % when going from Bayesian search via Greedy and Hyperband
to Random search. Random search strategy clearly outperforms the other strategies,
but it comes at the price of being slower, taking about 5 times longer than Greedy and
Hyperband (c.f. Section 4.4), mostly because it keeps exploring the search space until the
limit of 1000 trials is reached. For synchronized datasets, using the Hyperband strategy
might be a viable alternative, as it still produces a CNN with a success rate of around
50 % as shown in Figure 6a, while being substantially faster than Random search. For
desynchronized datasets, the difference between Random and its competitors grows even
larger, to the point that choosing Hyperband for its speed is no longer a viable option.
When comparing input shapes, there does not appear to be a consistent difference between
1-D and 2-D for synchronized datasets, demonstrating the ability of NAS to adjust to vastly
different situations. This also shows that while using 2-D CNNs can be a viable option,
they fail to provide any improvements compared to the 1-D input shape. This changes

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 19

Bayesian
Greedy

Hyperband
Random

Search Strategy

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e
Input Shape

One-Dimensional Rectangular Square

Bayesian
Greedy

Hyperband
Random

(a) Synchronized datasets (b) Desynchronized datasets

Figure 6: Influence of NAS parameters on the success rate in the ID leakage model.

drastically when desynchronization gets introduced, which the 2-D CNN architectures
are clearly not able to compensate for. Wouters et al. [Wou+20] observed that the first
convolutional block removes the desynchronization in the dataset by using the convolutional
and pooling operation on neighboring values in the trace. Converting one-dimensional to
two-dimensional inputs changes this local relationship between neighboring values, which
makes re-synchronizing the traces more difficult.

Hamming Weight Leakage Figure 7 shows the impact of each possible NAS parameter
combination on the success rate of the SCA on synchronized and desynchronized datasets
for HW leakage. As discussed in Section 5.1, the overall performance of our NAS models
is slightly lower compared to ID leakage. When attacking synchronized datasets (as
shown in Figure 7a), the trend of increasing success rate from Bayesian via Greedy
and Hyperband to Random search can no longer be observed. Only Random performs
significantly better than the alternative search strategies, and Hyperband is no longer
a viable alternative. Again, the input shape does not appear to play a major role in the
success rate on synchronized datasets. When considering only desynchronized datasets,
the difference becomes even more pronounced, where only the combination of One-
Dimensional inputs with Random search strategy is able to reach any level of success,
greatly outperforming all alternative combinations.

Overall Reliability of Optimal NAS Parameters As discussed above, it is clear that
using Random search strategy with One-Dimensional inputs gives the highest chances
of producing a CNN model which can break the system successfully, especially when
desynchronization is involved. We wanted to determine what success rate can be achieved
for this specific combination, plotting it per-dataset separately for ID (Figure 8a) and HW
(Figure 8b) leakage. The results show that for all other datasets apart from AES_HD and
CHES CTF, over 60 % of the attacks are successful, sometimes even with a phenomenal
success rate of 100 %. The anomaly of AES_HD and CHES CTF that becomes apparent in
this plot will be investigated in detail in Section 5.3. We can conclude that the combination

20 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

Bayesian
Greedy

Hyperband
Random

Search Strategy

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e
Input Shape

One-Dimensional Rectangular Square

Bayesian
Greedy

Hyperband
Random

(a) Synchronized datasets (b) Desynchronized datasets

Figure 7: Influence of NAS parameters on the success rate in the HW leakage model.

of One-Dimensional input shape and Random search strategy appears to be by far the
best choice when it comes to reliably creating successful attack models.

5.3 Comparison with Fixed Architectures
As determined in Section 5.2, using the Random search strategy and One-Dimensional
input shape yields CNN architectures which can perform SCA with a high success rate. We
are also interested in the efficiency of the architectures produced by One-Dimensional
and Random, as well as how they compare to traditional fixed architectures.

Comparison of QtGE For the purpose of fairly comparing the efficiency of our approach
with the baseline architectures presented in Section 4.3, we are restricting our investigation
to ID leakage, since these baselines were only proposed for the ID leakage model. We

Table 3: Comparison of the QtGE
metric for the different datasets on ID leakage

Dataset ASCAD Baseline ZAID Baseline NAS Model
AES_RD 270.3 3.0 1.39
AES_HD 2500.0 443.5 1463.74
CHES CTF 498.5 500.0 499.07
DPAv4 49.3 5.2 1.11
ASCAD_f 703.5 1000.0 127.53
ASCAD_r 322.0 10000.0 2929.77
ASCAD_f desync50 920.9 1000.0 509.56
ASCAD_r desync50 4449.0 40.6 1553.64
ASCAD_f desync100 974.6 81.8 482.57
ASCAD_r desync100 6664.2 28.3 2914.01

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 21

determined the efficiency of the models with their QtGE
value, which counts the number

of attack traces necessary for the model prediction to reach a GE of 1, with lower QtGE

indicating a more efficient attack. We report the average QtGE
for the 7 models NAS

produced with Random search strategy on One-Dimensional inputs as well as the model
produced ASCAD and ZAID baseline architectures in Table 3. On the “easy” datasets
AES_RD and DPAv4 our NAS is able to perform instantaneous attacks, requiring less than
2 attack traces on average. We observe that our NAS models outperform the baselines for
4 out of 10 datasets, but especially the ZAID baselines specializing for desynchronization
are much better suited for datasets with desynchronization, where NAS is only able to
achieve better efficiency than the ASCAD baseline. However, these specialized models
were not able to achieve successful attacks at all for the CHES CTF, synchronized ASCAD,
and ASCAD_f desync50 datasets, indicated by the QtGE

matching the total number of
attack traces. This indicates some issues when relying solely on the QtGE

for efficiency:
The averaged QtGE

is sensitive to outliers and also influenced by the success rate, as
unsuccessful attacks will be considered with the total number of attack traces.

Comparison of GE Convergence For the datasets with ID leakage, we therefore also
plotted the GE to get a more detailed comparison. Again we compare the evolution of the
models produced by NAS using Random search on One-Dimensional inputs against
the two baselines and plot their GE convergence in Figure 9. Instead of averaging the 7
NAS models, we plot each model individually and only take the average GE over the 10
attack deciles of each model. This plot reveals that for most of the datasets, the NAS
models match the baseline architectures, with the very best NAS model outperforming
the baseline in the majority of the datasets (6 of 10). But just considering the best model
is not representative of the general performance: On AES_HD, for example, it becomes
apparent that while most NAS architectures perform similarly to the ZAID baseline, 3 out

0%

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

Dataset
AES_RD
AES_HD
CHES CTF
DPAv4

ASCAD_f
ASCAD_r
ASCAD_f desync50

ASCAD_r desync50
ASCAD_f desync100
ASCAD_r desync100

(a) ID leakage (b) HW leakage

Figure 8: Success rate when selecting One-Dimensional input shape and Random search
strategy. Performance for each dataset in the ID and HW leakage models shown.

22 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

100 101 102 103
0

50

100

150
AES_RD

100 101 102 103

AES_HD

100 101 102
0

50

100

150
CHES_CTF

100 101

DPAv4

100 101 102 103
0

50

100

150

M
ea

n
G

ue
ss

En
tr

op
y ASCAD_f

Architecture
Our NAS Models ASCAD Baseline ZAID Baseline

100 101 102 103 104

ASCAD_r

100 101 102 103
0

50

100

150
ASCAD_f desync50

100 101 102 103 104

ASCAD_r desync50

100 101 102 103

Number of Attack Traces

0

50

100

150
ASCAD_f desync100

100 101 102 103 104

ASCAD_r desync100

Figure 9: Guess entropy convergence of the 7 NAS models compared to the fixed architec-
ture baseline models for each dataset.

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 23

of the 7 models become outliers with significantly slower convergence. One of the models
even started with a diverging prediction, only achieving a decent guess entropy towards
the very end of the dataset. Similar behavior can be observed with ASCAD_r, where
5 out of 7 models outperform the ASCAD baseline and two outlier models suffer much
slower convergence. For the desynchronized datasets, a similar issue occurs, and in total
NAS outliers appear to be present in 6 of the 10 datasets we considered. When taking a
closer look at the ZAID baseline for ASCAD_f desync50, the baseline itself appears to be
affected by a random outlier model, even though it is a fixed architecture.

Generalization We observed the best NAS architecture going from outperforming the
state-of-the-art on ASCAD_r and AES_HD to being vastly inferior simply because of a
different train-validation dataset split. This indicates that the performance of NAS, like
most ML processes, can sometimes vary heavily with small changes and randomization.
Considering that the default approach for evaluating ML-based SCAs usually does not
repeat the experiment with different train-validation-test splits or other cross-validation
techniques, their generalizability is unclear. When looking at CHES_CTF, it also becomes
obvious why splitting attack datasets into independent deciles as we did is not done more
frequently: The attack dataset appears to be simply too small to be split into 10 parts, as
all of the models, although appearing to be converging, simply did not reach a GE of 1 at
the end.

When taking all of this into account, we can nonetheless conclude that NAS comes very
close to state-of-the-art fixed architectures in terms of attack efficiency, but it is not able
to do so consistently. This is promising, as it means that manual per-dataset architecture
design can potentially be avoided altogether with NAS.

6 Conclusions and Future Work
In this paper, we proposed to perform a black-box objective (using only profiling dataset)
NAS to perform the SCA on hardware systems containing ID and HW leakages. In order
to understand the impact of different NAS parameters like the search strategy and input
shape of the data (1-D or 2-D) on the performance of the best model, we performed a
detailed parameter study. We considered the 4 search strategies implemented by AutoKeras,
Random, Greedy, Hyperband, and Bayesian. We also considered converting the
original one-dimensional inputs to two-dimensional rectangular and square inputs, enabling
us to use 2-D CNNs architectures. These choices were combined to create a large-scale
parameter study, investigating the influence of search strategy and input shape on 10
different datasets and in the ID and HW leakage models. In order to get a better estimate
of the success rate of each combination, we repeat the attack 10 times over different attack
dataset parts, for 7 independent NAS models. Upon detailed analysis of the results of the
study, we concluded that using the Random search strategy on one-dimensional inputs
yields the best-performing CNN architectures for the medium-sized computational budgets
we used. The attack performance is overall worse in the HW leakage model, presumably
due to the presence of a large imbalance in the dataset [Pic+18]. We also compared the
efficiency of these NAS models with previously proposed state-of-the-art CNN baselines.
We showed that for most of the synchronized datasets, the 7 models produced by applying
NAS were more efficient and required less attack traces than the baseline.

Considering that our approach was able to match the performance of hand-crafted
architectures, NAS allows for fully automated attacks on devices or datasets with unknown
characteristics. Our experiments highlight the importance of exploration, which needs
to be considered when choosing search strategies for hardware attacks in the future.
Given that a real-world attacker is likely to commit even bigger budgets to an attack,
which enables Random search to find even better architectures, our results should be

24 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

considered only a lower limit to the capabilities of actual attackers. The apparent ability
of NAS to generate useful architectures in various circumstances also allows for non-biased
comparison of side-channel attack methods where current comparisons are skewed by the
fixed architecture that is considered, e.g. loss functions. A big issue we observed was the
susceptibility of the ML models to small variations in the training datasets, which current
works applying ML to SCA are not accounting for. We were able to spot this issue because
of the repeated training with different training-validation splits, but a broader discussion
on how to achieve more consistent performance evaluations when applying ML to SCA
needs to take place.

Possible future improvements could mitigate the imbalance in the HW leakage model,
which negatively affected our results. This could be addressed by moving away from
optimizing for accuracy alone towards more elaborate metrics such as balanced accuracy,
Matthew’s correlation coefficient, or AUC-score [GBV20]. Additionally, there are different
class weighting techniques proposed in the literature which penalize the misclassification of
a minority class more than that of a majority class, which could improve the convergence
and learning of a CNN [HK18]. Given the good performance observed in our study, it
would also be interesting to explore more difficult datasets like ASCADv2, or to use
full input traces instead of truncated ones. We constrained our study to four search
strategies, but there are more sophisticated alternatives that have been observed to be
more time-efficient and more effective than e.g. Random search in finding an optimal
architecture [Ren+21]. Another possible efficiency improvement would be early stopping,
where some hyperparameter optimization runs are aborted early if the performance is
particularly underwhelming or if no further improvement occurs.

7 Acknowledgments
We would like to thank Karlson Pfanschmidt, Alexander Tornede, Tibor Jager, Arunselvan
Ramaswamy, Gabriel Zaid, Łukasz Chmielewski, Maikel Kerkhof, Guilherme Perin and
Stjepan Picek for their valuable and helpful suggestions. A special thanks goes to Varun
Nandkumar Golani, who helped with the experimental setup and ran some of the prelimi-
nary experiments for this study as a part of his master thesis. This work is supported by
the Bundesministerium für Bildung und Forschung (BMBF) under the project 16KIS1190
(AutoSCA) and funded by European Research Council (ERC)-802823. Experiments were
performed on resources provided by the Paderborn Center for Parallel Computing (PC2).

References
[AGF22] Rabin Y. Acharya, Fatemeh Ganji, and Domenic Forte. “Information Theory-

based Evolution of Neural Networks for Side-channel Analysis”. In: IACR
Transactions on Cryptographic Hardware and Embedded Systems 2023.1 (2022),
401–437. doi: 10.46586/tches.v2023.i1.401-437. url: https://tches.
iacr.org/index.php/TCHES/article/view/9957.

[Ben+20] Ryad Benadjila et al. “Deep learning for side-channel analysis and introduction
to ASCAD database”. In: Journal of Cryptographic Engineering 10.2 (June
2020), pp. 163–188. doi: 10.1007/s13389-019-00220-8.

[Bha+14] Shivam Bhasin et al. “Analysis and Improvements of the DPA Contest v4
Implementation”. In: Security, Privacy, and Applied Cryptography Engineering
- 4th International Conference, SPACE 2014, Pune, India, October 18-22,
2014. Proceedings. Ed. by Rajat Subhra Chakraborty, Vashek Matyas, and
Patrick Schaumont. Vol. 8804. Lecture Notes in Computer Science. Springer,
2014, pp. 201–218. doi: 10.1007/978-3-319-12060-7_14.

https://doi.org/10.46586/tches.v2023.i1.401-437
https://tches.iacr.org/index.php/TCHES/article/view/9957
https://tches.iacr.org/index.php/TCHES/article/view/9957
https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/978-3-319-12060-7_14

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 25

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. “Convolutional Neural
Networks with Data Augmentation Against Jitter-Based Countermeasures -
Profiling Attacks Without Pre-processing”. In: CHES 2017. Ed. by Wieland
Fischer and Naofumi Homma. Vol. 10529. LNCS. Springer, Heidelberg, Sept.
2017, pp. 45–68. doi: 10.1007/978-3-319-66787-4_3.

[Cha+22] Lipeng Chang et al. “Research on Side-Channel Analysis Based on Deep
Learning with Different Sample Data”. In: Applied Sciences 12.16 (2022),
p. 8246. doi: 10.3390/app12168246.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. “An Efficient Method for Random
Delay Generation in Embedded Software”. In: CHES 2009. Ed. by Christophe
Clavier and Kris Gaj. Vol. 5747. LNCS. Springer, Heidelberg, Sept. 2009,
pp. 156–170. doi: 10.1007/978-3-642-04138-9_12.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. “Template Attacks”. In:
CHES 2002. Ed. by Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar. Vol. 2523. LNCS. Springer, Heidelberg, Aug. 2003, pp. 13–28. doi:
10.1007/3-540-36400-5_3.

[Cyb89] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals, and Systems 2.4 (Dec. 1989), pp. 303–314.
doi: 10.1007/BF02551274.

[EMH19] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural Architecture
Search: A Survey”. In: J. Mach. Learn. Res. 20 (2019), 55:1–55:21. url:
http://jmlr.org/papers/v20/18-598.html.

[FSH15] Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. “Initializing
Bayesian Hyperparameter Optimization via Meta-Learning”. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence. AAAI’15. Austin,
Texas: AAAI Press, 2015, 1128–1135. doi: 10.5555/2887007.2887164.

[GBV20] Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for Multi-Class
Classification: an Overview. 2020. doi: 10.48550/ARXIV.2008.05756. arXiv:
2008.05756.

[GHO15] Richard Gilmore, Neil Hanley, and Maire O’Neill. “Neural network-based
attack on a masked implementation of AES”. In: 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). 2015, pp. 106–
111. doi: 10.1109/HST.2015.7140247.

[GJS19] Aron Gohr, Sven Jacob, and Werner Schindler. CHES 2018 Side Channel
Contest CTF - Solution of the AES Challenges. Cryptology ePrint Archive,
Report 2019/094. https://eprint.iacr.org/2019/094. 2019.

[Het+20] Benjamin Hettwer et al. “Encoding Power Traces as Images for Efficient
Side-Channel Analysis”. In: 2020 IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST). 2020, pp. 46–56. doi: 10.1109/
HOST45689.2020.9300289.

[Heu+20] Annelie Heuser et al. “Lightweight Ciphers and Their Side-Channel Resilience”.
In: IEEE Transactions on Computers 69.10 (2020), pp. 1434–1448. doi: 10.
1109/TC.2017.2757921.

[HK18] Mahdi Hashemi and Hassan A. Karimi. “Weighted Machine Learning”. In:
Statistics, Optimization & Information Computing 6.4 (Nov. 2018), pp. 497–
525. doi: 10.19139/soic.v6i4.479.

[Hos+11] Gabriel Hospodar et al. “Machine learning in side-channel analysis: a first
study”. In: Journal of Cryptographic Engineering 1.4 (Dec. 2011), pp. 293–302.
doi: 10.1007/s13389-011-0023-x.

https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.3390/app12168246
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/BF02551274
http://jmlr.org/papers/v20/18-598.html
https://doi.org/10.5555/2887007.2887164
https://doi.org/10.48550/ARXIV.2008.05756
https://arxiv.org/abs/2008.05756
https://doi.org/10.1109/HST.2015.7140247
https://eprint.iacr.org/2019/094
https://doi.org/10.1109/HOST45689.2020.9300289
https://doi.org/10.1109/HOST45689.2020.9300289
https://doi.org/10.1109/TC.2017.2757921
https://doi.org/10.1109/TC.2017.2757921
https://doi.org/10.19139/soic.v6i4.479
https://doi.org/10.1007/s13389-011-0023-x

26 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: Proceedings of
the 32nd International Conference on Machine Learning (ICML). Ed. by
Francis R. Bach and David M. Blei. Vol. 37. JMLR Workshop and Conference
Proceedings. JMLR.org, 2015, pp. 448–456. url: http://proceedings.mlr.
press/v37/ioffe15.html.

[Jen00] David Jensen. “Data Snooping, Dredging and Fishing: The Dark Side of Data
Mining a SIGKDD99 Panel Report”. In: SIGKDD Explor. Newsl. 1.2 (Jan.
2000), 52–54. doi: 10.1145/846183.846195.

[Jin21] Haifeng Jin. “Efficient neural architecture search for automated deep learning”.
PhD thesis. Texas A&M University, 2021. url: https://oaktrust.library.
tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.
pdf.

[JSH19] Haifeng Jin, Qingquan Song, and Xia Hu. “Auto-Keras: An Efficient Neural
Architecture Search System”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. Ed. by
Ankur Teredesai et al. ACM, 2019, pp. 1946–1956. doi: 10.1145/3292500.
3330648.

[Kas+21] Priyank Kashyap et al. “2Deep: Enhancing Side-Channel Attacks on Lattice-
Based Key-Exchange via 2-D Deep Learning”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 40.6 (2021), pp. 1217–
1229. doi: 10.1109/TCAD.2020.3038701.

[Ker+22] Maikel Kerkhof et al. “Focus is Key to Success: A Focal Loss Function for
Deep Learning-Based Side-Channel Analysis”. In: Constructive Side-Channel
Analysis and Secure Design. Ed. by Josep Balasch and Colin O’Flynn. Cham:
Springer International Publishing, 2022, pp. 29–48. doi: 10.1007/978-3-030-
99766-3_2.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”.
In: CRYPTO’99. Ed. by Michael J. Wiener. Vol. 1666. LNCS. Springer,
Heidelberg, Aug. 1999, pp. 388–397. doi: 10.1007/3-540-48405-1_25.

[Kle17] Matthew Kleinsmith. CNNs from different viewpoints. Feb. 2017. url: https:
//medium.com/impactai/cnns-from-different-viewpoints-fab7f52d159c.

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. “A machine
learning approach against a masked AES - Reaching the limit of side-channel
attacks with a learning model”. In: Journal of Cryptographic Engineering 5.2
(June 2015), pp. 123–139. doi: 10.1007/s13389-014-0089-3.

[Ler+15] Liran Lerman et al. “Template Attacks vs. Machine Learning Revisited (and
the Curse of Dimensionality in Side-Channel Analysis)”. In: COSADE 2015.
Ed. by Stefan Mangard and Axel Y. Poschmann: vol. 9064. LNCS. Springer,
Heidelberg, Apr. 2015, pp. 20–33. doi: 10.1007/978-3-319-21476-4_2.

[Li+17] Lisha Li et al. “Hyperband: A Novel Bandit-Based Approach to Hyperparame-
ter Optimization”. In: J. Mach. Learn. Res. 18.1 (Jan. 2017), 6765–6816. doi:
10.5555/3122009.3242042.

[Lom+14] Victor Lomné et al. “How to Estimate the Success Rate of Higher-Order
Side-Channel Attacks”. In: CHES 2014. Ed. by Lejla Batina and Matthew
Robshaw. Vol. 8731. LNCS. Springer, Heidelberg, Sept. 2014, pp. 35–54. doi:
10.1007/978-3-662-44709-3_3.

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1145/846183.846195
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/193093/JIN-DISSERTATION-2021.pdf
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1109/TCAD.2020.3038701
https://doi.org/10.1007/978-3-030-99766-3_2
https://doi.org/10.1007/978-3-030-99766-3_2
https://doi.org/10.1007/3-540-48405-1_25
https://medium.com/impactai/cnns-from-different-viewpoints-fab7f52d159c
https://medium.com/impactai/cnns-from-different-viewpoints-fab7f52d159c
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/978-3-319-21476-4_2
https://doi.org/10.5555/3122009.3242042
https://doi.org/10.1007/978-3-662-44709-3_3

Pritha Gupta, Jan Peter Drees and Eyke Hüllermeier 27

[LT20] Liam Li and Ameet Talwalkar. “Random Search and Reproducibility for Neural
Architecture Search”. In: Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference. Ed. by Ryan P. Adams and Vibhav Gogate. Vol. 115.
Proceedings of Machine Learning Research. PMLR, July 2020, pp. 367–377.
url: https://proceedings.mlr.press/v115/li20c.html.

[Mas94] J.L. Massey. “Guessing and entropy”. In: Proceedings of 1994 IEEE Interna-
tional Symposium on Information Theory. 1994, p. 204. doi: 10.1109/ISIT.
1994.394764.

[MDP19] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. “A Comprehensive Study
of Deep Learning for Side-Channel Analysis”. In: IACR TCHES 2020.1 (2019).
https://tches.iacr.org/index.php/TCHES/article/view/8402, pp. 348–
375. issn: 2569-2925. doi: 10.13154/tches.v2020.i1.348-375.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. “Breaking
Cryptographic Implementations Using Deep Learning Techniques”. In: Security,
Privacy, and Applied Cryptography Engineering. Ed. by Claude Carlet, M.
Anwar Hasan, and Vishal Saraswat. Cham: Springer International Publishing,
2016, pp. 3–26. doi: 10.1007/978-3-319-49445-6_1.

[PCP20] Guilherme Perin, Łukasz Chmielewski, and Stjepan Picek. “Strength in Num-
bers: Improving Generalization with Ensembles in Machine Learning-based
Profiled SCA”. In: IACR TCHES 2020.4 (2020). https://tches.iacr.org/
index.php/TCHES/article/view/8686, pp. 337–364. issn: 2569-2925. doi:
10.13154/tches.v2020.i4.337-364.

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. “Template attack versus
Bayes classifier”. In: Journal of Cryptographic Engineering 7.4 (Nov. 2017),
pp. 343–351. doi: 10.1007/s13389-017-0172-7.

[Pic+17] Stjepan Picek et al. “Side-channel analysis and machine learning: A practical
perspective”. In: 2017 International Joint Conference on Neural Networks
(IJCNN). 2017, pp. 4095–4102. doi: 10.1109/IJCNN.2017.7966373.

[Pic+18] Stjepan Picek et al. “The Curse of Class Imbalance in Side-channel Evaluation”.
In: IACR TCHES 2019.1 (2018). https://tches.iacr.org/index.php/
TCHES/article/view/7339, pp. 209–237. issn: 2569-2925. doi: 10.13154/
tches.v2019.i1.209-237.

[Pic+21] Stjepan Picek et al. SoK: Deep Learning-based Physical Side-channel Analysis.
Cryptology ePrint Archive, Report 2021/1092. https://eprint.iacr.org/
2021/1092. 2021.

[PWP21] Guilherme Perin, Lichao Wu, and Stjepan Picek. AISY - Deep Learning-based
Framework for Side-channel Analysis. Cryptology ePrint Archive, Report
2021/357. https://eprint.iacr.org/2021/357. 2021.

[Ren+21] Pengzhen Ren et al. “A Comprehensive Survey of Neural Architecture Search:
Challenges and Solutions”. In: ACM Computing Surveys (CSUR) 54.4 (May
2021). doi: 10.1145/3447582.

[Rij+21] Jorai Rijsdijk et al. “Reinforcement Learning for Hyperparameter Tuning
in Deep Learning-based Side-channel Analysis”. In: IACR TCHES 2021.3
(2021). https://tches.iacr.org/index.php/TCHES/article/view/8989,
pp. 677–707. issn: 2569-2925. doi: 10.46586/tches.v2021.i3.677-707.

[SAS21] Mehwish Shaikh, Qasim Ali Arain, and Salahuddin Saddar. “Paradigm Shift of
Machine Learning to Deep Learning in Side Channel Attacks - A Survey”. In:
2021 6th International Multi-Topic ICT Conference (IMTIC). 2021, pp. 1–6.
doi: 10.1109/IMTIC53841.2021.9719689.

https://proceedings.mlr.press/v115/li20c.html
https://doi.org/10.1109/ISIT.1994.394764
https://doi.org/10.1109/ISIT.1994.394764
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://doi.org/10.13154/tches.v2020.i1.348-375
https://doi.org/10.1007/978-3-319-49445-6_1
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://tches.iacr.org/index.php/TCHES/article/view/8686
https://doi.org/10.13154/tches.v2020.i4.337-364
https://doi.org/10.1007/s13389-017-0172-7
https://doi.org/10.1109/IJCNN.2017.7966373
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://doi.org/10.13154/tches.v2019.i1.209-237
https://doi.org/10.13154/tches.v2019.i1.209-237
https://eprint.iacr.org/2021/1092
https://eprint.iacr.org/2021/1092
https://eprint.iacr.org/2021/357
https://doi.org/10.1145/3447582
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://doi.org/10.46586/tches.v2021.i3.677-707
https://doi.org/10.1109/IMTIC53841.2021.9719689

28 Automated Side-Channel Attacks using Black-Box Neural Architecture Search

[SZ15] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015.
doi: 10.48550/arXiv.1409.1556.

[TPR13] Adrian Thillard, Emmanuel Prouff, and Thomas Roche. “Success through Con-
fidence: Evaluating the Effectiveness of a Side-Channel Attack”. In: CHES 2013.
Ed. by Guido Bertoni and Jean-Sébastien Coron. Vol. 8086. LNCS. Springer,
Heidelberg, Aug. 2013, pp. 21–36. doi: 10.1007/978-3-642-40349-1_2.

[Wou+20] Lennert Wouters et al. “Revisiting a Methodology for Efficient CNN Ar-
chitectures in Profiling Attacks”. In: IACR TCHES 2020.3 (2020). https:
//tches.iacr.org/index.php/TCHES/article/view/8586, pp. 147–168.
issn: 2569-2925. doi: 10.13154/tches.v2020.i3.147-168.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I Choose You: Automated
Hyperparameter Tuning for Deep Learning-based Side-channel Analysis. Cryp-
tology ePrint Archive, Report 2020/1293. https://eprint.iacr.org/2020/
1293. 2020.

[Zai+19] Gabriel Zaid et al. “Methodology for Efficient CNN Architectures in Profiling
Attacks”. In: IACR TCHES 2020.1 (2019). https://tches.iacr.org/
index.php/TCHES/article/view/8391, pp. 1–36. issn: 2569-2925. doi:
10.13154/tches.v2020.i1.1-36.

https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1007/978-3-642-40349-1_2
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://tches.iacr.org/index.php/TCHES/article/view/8586
https://doi.org/10.13154/tches.v2020.i3.147-168
https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1293
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://tches.iacr.org/index.php/TCHES/article/view/8391
https://doi.org/10.13154/tches.v2020.i1.1-36

	Introduction
	Our contributions
	Related Work

	Background
	Supervised Learning for Profiled SCA
	Leakage Models
	Convolutional Neural Networks
	Neural Architecture Search

	Our Approach
	Two-Dimensional Input Reshaping
	Search Strategies

	Setup of Our Parameter Study
	Methodology
	Datasets
	Baseline Architectures
	Computing Hardware

	Parameter Study Results
	Overall Reliability
	Optimal NAS Parameters
	Comparison with Fixed Architectures

	Conclusions and Future Work
	Acknowledgments

