
Circuit-Succinct Universally-Composable NIZKs
with Updatable CRS

Behzad Abdolmaleki1, Noemi Glaeser2,3, Sebastian Ramacher4, and Daniel
Slamanig4

1 University of Sheffield, Sheffield, UK
abdolmaleki.behzad.ir@gmail.com

2 Max Planck Institute for Security and Privacy, Bochum, Germany
3 University of Maryland, College Park, USA

nglaeser@umd.edu
4 AIT Austrian Institute of Technology, Vienna, Austria
{sebastian.ramacher, daniel.slamanig}@ait.ac.at

Abstract. Non-interactive zero-knowledge proofs (NIZKs) and in par-
ticular succinct NIZK arguments of knowledge (zk-SNARKs) increas-
ingly see real-world adoption in large and complex systems. Many zk-
SNARKs require a trusted setup, i.e., a common reference string (CRS),
and for practical use it is desirable to reduce the trust in the CRS gener-
ation. The latter can be achieved via the notions of subversion or updat-
able CRS. Another important property when deployed in large systems is
the ability to securely compose them to obtain more complex protocols,
e.g., via the Universal Composability (UC) framework. Relying on the
UC framework allows arbitrary and secure composition of protocols in a
modular way.
In this work, we investigate whether zk-SNARKs can provide updatabi-
lity and composability simultaneously. This is a challenging task as the
UC framework rules out several natural techniques for such a construc-
tion. As our main result, we show that it is indeed possible to achieve
these properties in a generic and modular way if we relax the succinct-
ness properties of zk-SNARKs slightly to those of a circuit-succinct NIZK
which is not witness-succinct, i.e., by increasing the proof size of the un-
derlying zk-SNARK by the size of the witness w. We argue that for
various practical applications of zk-SNARKs this overhead is acceptable.
Our starting point is the Lamassu framework (ACM CCS’20), which we
extend in several directions. Our new generic compiler adds only minimal
overhead, which we demonstrate by benchmarking its application to the
Sonic proof system (ACM CCS’19).

1 Introduction

Non-Interactive Zero-Knowledge proofs (NIZKs) [GMR85, BFM88] are a pow-
erful primitive which allows parties to prove the validity of an arbitrary NP
statement in a single message (the proof) in a publicly verifiable way, without
revealing anything beyond its validity. Especially NIZKs for certain classes of

algebraic languages [FS87, GS08, JR13] are extensively used in the design of
privacy-preserving systems (such as anonymous credentials and digital curren-
cies) as well as multi-party computation protocols.

Due to their numerous applications in privacy-preserving cryptocurrencies
and blockchains in general, tremendous research has been dedicated to design-
ing short NIZKs with efficient verification (at the cost of tolerating a less efficient
prover) [Gro10, Lip12, GGPR13, PHGR13, Lip13, DFGK14, Gro16, BCR+19,
MBKM19, GWC19, CHM+20, GLS+21]. These so-called zero-knowledge Suc-
cinct Non-interactive ARguments of Knowledge (zk-SNARKs) [BCCT12] have
also enabled proofs of statements that are not efficiently realizable with NIZKs
for algebraic languages. Despite their well-known drawback of requiring non-
falsifiable assumptions [GW11], zk-SNARKs are attractive in practice not only
due to their (relative) practical efficiency, but more importantly due to their
general-purpose nature. While customized NIZK proofs for application-specific
statements can result in protocols highly optimized for the specific task at hand,
the enormous cryptographic expertise and time required to develop new proto-
cols for each application severely limits the adoption of modern cryptographic
building blocks. In contrast, the plethora of zk-SNARK toolchains5 enable non-
cryptography experts to easily express a statement to be proven in a familiar
programming language and the corresponding implementations are generated
automatically.

Secure adoption of zk-SNARKs. Simplifying the use and adoption of zk-
SNARKs in (complex) applications introduces the risk that the security of en-
tire systems could be compromised due to the lack of some property by the
utilized zk-SNARK. To address this issue, recent works have looked at com-
posing zk-SNARKs in a modular way [CFQ19, CFF+21] and designing gener-
alized frameworks for their construction [RZ21]. One important but not readily
available property is non-malleability. Non-malleability [Sah99, Sah01], modeled
via simulation extractability (SE), guarantees that a proof cannot be “mauled”
into another valid proof (either for the same statement or a related statement).
SE has been intensively studied in zk-SNARK constructions [GM17, Lip19,
BPR20, BKSV21, GOP+22, GKK+22]. A stronger property is composability,
which states that a zk-SNARK can be arbitrarily composed with other crypto-
graphic primitives and its security properties will still be guaranteed to hold.
Composability is generally modeled using the universal composability (UC)
framework [Can01], a very popular tool for modeling security in blockchain-
based systems [KMS+16, AME+21, TMM21, TMM22, GMM+22]. Ideally, it
would be possible to generically add UC security to a large class of (if not all)
zk-SNARKs, making minimal assumptions on the underlying SNARK.

Another issue for secure deployment is that a large class of zk-SNARKs
require a trusted setup to generate a common reference string (CRS), whose
trapdoor must be deleted after setup. One technique to reduce trust in the CRS
generation is a distributed setup ceremony [KMSV21], but this is cumbersome in
practice. An alternative approach is the notion of subversion NIZK [BFS16] or
5 https://github.com/ventali/awesome-zk#tools

2

https://github.com/ventali/awesome-zk#tools

subversion (zk-)SNARKs [ABLZ17, Fuc18]. Unfortunately, this approach only
provides guarantees for the prover. A viable middle ground is an updatable
CRS [GKM+18]: anyone can update the CRS, and their update can be verified
by anyone. Even in the presence of a malicious CRS generator, as long as one
operation – the CRS creation or one of its updates – has been performed hon-
estly, zero-knowledge is guaranteed for the prover and soundness for the verifier.
This concept is becoming increasingly popular [MBKM19, GWC19, CHM+20,
RZ21, CFF+21, Lip22, NRBB22]. Ideally, a generic transformation to add com-
posability should be compatible with an updatable CRS.

Hurdles for generic composability. Most zk-SNARKs, both with transparent
setup [BCR+19, Set20] and (updatable) CRS [MBKM19, GWC19, CHM+20],
achieve non-interactivity via the Fiat-Shamir (FS) heuristic [FS87], which re-
quires a rewinding extractor for knowledge soundness and is therefore not com-
patible with the UC framework. It is unclear whether FS protocols meet even the
weaker definition of SE; with the exception of three-round public-coin interactive
arguments [FKMV12], this is an ongoing area of research [GKK+22]. Straight-
line extractable alternatives to the FS transform [Fis05, Unr15] to achieve knowl-
edge soundness unfortunately incur a performance penalty and their application
to multi-round protocols has also not been studied. We will later show that such
a transform is useful for the proof of CRS updates, which does not affect the
efficiency of the overall proof system.

Other zk-SNARKs which avoid the FS transform rely directly on knowl-
edge assumptions [Gro10, Gro16, Lip22]. Unfortunately, the use of knowledge
assumptions is also not fully compatible with the UC framework: although there
is recent progress on knowledge assumptions [KKK21a] and algebraic adver-
saries [ABK+21] in UC, the results are still not generically applicable. When
it comes to SE, the popular zk-SNARK due to Groth [Gro16] only satisfies a
weak notion of SE [BKSV21] or requires specifically crafted designs [GM17] to
achieve SE. In case of updatable CRS, SE is achieved only via custom designs
or non-black-box modifications of existing designs [GKM+18, Lip19]: no general
UC-compatible transformation, apart from a recent concurrent and independent
work [GKO+23] which we discuss soon, is known.

Generic composability and non-malleability. The central problem un-
derlying the above issues is the reliance on non-black-box extractors, i.e., ei-
ther rewinding extractors for FS or the direct use of knowledge assumptions.
When a CRS is available, a well-known technique to avoid these issues and
provide straight-line extraction is to extend the CRS by a public key and in-
clude an encryption of the witness in the proof. This also requires extending
the original statement to show that the correct witness was encrypted (Renc in
Fig. 1) [DP92]. This trick can be combined with the classical OR trick (i.e., an
alternate clause Rsig, to be used only by the simulator, which checks for a valid
signature) to enable unbounded simulation of proofs [DDO+01], i.e., SE with
a straight-line extractor. The C∅C∅ framework [KZM+15] uses these two ideas
to generically obtain UC-secure SE NIZKs. Recent work [ARS20] revisited the

3

C∅C∅ framework and tailored it to updatable zk-SNARKs. In particular, the
new framework Lamassu uses the non-black-box extractor of the underlying zk-
SNARK instead of an encryption of the witness, thus keeping the transformed zk-
SNARK succinct (modulo some small constant overhead). To make unbounded
proof simulation compatible with an updatable CRS, Lamassu applies a variant
of key-homomorphic signatures of [DS19], i.e., updatable signatures. The result
is a generic framework for CRS-updatable SE-SNARKs.

Unfortunately, the non-black-box extractor of Lamassu makes it incompat-
ible with the UC framework. Switching back to a black-box extractor (i.e., an
encryption of the witness) solves this issue at the cost of increasing the proof
size, but reintroduces a problem with CRS updatability. In particular, since the
CRS now additionally contains an encryption of the witness, the public-key en-
cryption (PKE) scheme used needs to be compatible with updatability. Recent
work [BS21] tries to overcome this issue by introducing a PKE with updatable
keys. However, despite claiming to provide a black-box approach, the updatabi-
lity of their PKE is based on an extractor which relies on a concrete knowledge
assumption, making it non-black-box and therefore not UC-compatible.

In summary, although previous works have shown how to generically con-
struct composable NIZKs and non-malleable updatable SNARKs, no generic
transformation simultaneously achieves composability and compatibility with
updatable CRS. We summarize these approaches in Table 1.

Table 1. Comparison with concurrent and previous work.

UC succinctness-preserving

SE BBE in |C| in |w| upd. CRS

C∅C∅ [KZM+15] ✓ ✓ ✓ ✗ ✗

DS [DS19] ✓ ✗ ✓ ✓ ✗

Lamassu [ARS20] ✓ ✗ ✓ ✓ ✓

This work ✓ ✓ ✓ ✗ ✓

Concurr. work [GKO+23] ✓ ✓ ✓ ✓ ✗

Black-box extractability (BBE) and the succinctness of zk-SNARKs.
In CRS-based NIZKs, the proof size is linear in the size of the circuit C com-
puting the NP relation, except for either a multiplicative [GOS12] or addi-
tive [KNYY19] overhead. Further reducing the proof size requires reliance on
heavy machinery, e.g., indistinguishability obfuscation [SW14] or knowledge as-
sumptions [Gro10, Lip12, GGPR13]. The latter is the approach taken by zk-
SNARKs, which are circuit- and witness-succinct. Typically this means that the
proof size is poly(λ, log |C|), where λ is the security parameter (in fact, this is
even independent of the witness size). A weaker notion of succinctness is circuit-
succinctness [KMS+16, KNYY20], where the proof size is poly(λ, log |C|) + |w|.

4

In other words, the size of the proof and verification time are (quasi-)linear in
the witness size |w|, but sublinear in size of the circuit that encodes the language.

As mentioned above, black-box simulation extractability (and thus UC) re-
quires us to additionally include a ciphertext in the proof, so this paradigm can
only give circuit-succinct proofs. Because of the resulting additive |w| overhead,
this approach is not suitable for applications with huge witnesses such as scalabil-
ity solutions in blockchains (e.g., zk-rollups). However, there are many practical
applications which often deal with relatively small witnesses. One prominent ex-
ample is the witness of the Sapling output or Spend circuit in Zcash [HBHW22].
These consist of group elements from the Jubjub elliptic curve, scalars, and
paths in a Merkle tree. For the Spend circuit the size is bound by 1413 bytes.
Moreover, there are many applications with small to moderate-sized witnesses
such as SNARK-based authentication schemes in the context of self-sovereign
identity [LCOK21] or anonymous credentials [RWGM22]. Blockchain applica-
tions include blockchain-based e-voting (e.g., the recently launched Vocdoni6) or
proofs of assets or swaps in cryptocurrencies [EKKV22]. Furthermore, the Merkle
membership proofs used by Filecoin for proofs of replication7 start from small
nodes which serve as witnesses and thus our techniques also appear applicable
in this context.

1.1 Our Contributions

In this work, we give the first fully black-box approach to generically build circuit-
succinct UC-secure NIZKs with updatable CRS from zk-SNARKs, thereby cir-
cumventing the above problems. Our contributions can be summarized as follows:

Framework for (circuit-succinct) UC NIZKs with updatable CRS. We
present BB-Lamassu, a framework for black-box (BB) SE (i.e., universally-
composable) circuit-succinct NIZKs with updatable CRS. Our framework can
be seen as a hybrid of C∅C∅ and Lamassu, combining the BB extractability of
the former with the updatable CRS of the latter (see Figure 1). However, this
requires novel tools and we provide a more detailed intuition in Section 1.2.

Treatment of updatable NIZK in the UC framework. We provide an
explicit treatment of BB-Lamassu in the UC framework. To the best of our
knowledge, there is no treatment of SNARKs/NIZKs with updatable CRS in
the UC framework so far. In an independent work, Kerber et al. [KKK21b] de-
fined a functionality for updatable SRS to perform this secure generation in a
distributed manner, but did not investigate the UC-security of the whole NIZK
construction. Our analysis is carried out in the local ROM, which can be realized

6 https://docs.vocdoni.io/architecture/protocol/anonymous-voting/zk-censu
s-proof.html

7 https://trapdoortech.medium.com/filecoin-how-storage-replication-is-p
roved-using-zk-snark-8a2a06b1c582

5

https://docs.vocdoni.io/architecture/protocol/anonymous-voting/zk-census-proof.html
https://docs.vocdoni.io/architecture/protocol/anonymous-voting/zk-census-proof.html
https://trapdoortech.medium.com/filecoin-how-storage-replication-is-proved-using-zk-snark-8a2a06b1c582
https://trapdoortech.medium.com/filecoin-how-storage-replication-is-proved-using-zk-snark-8a2a06b1c582

in practice by domain separation in the hash function. We note that the use of
an RO arises from a building block (the proof of CRS update) and not from the
construction of our compiler. While we currently consider only the local ROM,
we expect that an analysis in the global ROM is possible when relying on Fis-
chlin for the update proofs via the techniques in [LR22].

Implementation and evaluation. To demonstrate the applicability of BB-
Lamassu, we provide a detailed analysis of the induced overheads. For concrete
instantiations, we estimate overheads of 32 bytes for the CRS, 170 bytes for the
CRS update, and 256 bytes plus the size of the witness for the proof. This is a re-
duction in both storage and runtime overheads compared to Lamassu [ARS20].
For witness sizes observed in practical applications such as Zcash, BB-Lamassu
adds well below 10,000 additional constraints.

As a concrete example, we describe how BB-Lamassu can be applied to
Sonic [MBKM19], a zk-SNARK with updatable CRS. Specifically, we discuss
how Sonic’s CRS update procedure can be modified to make update proofs UC-
compatible. We also experimentally evaluate the overhead introduced by BB-
Lamassu when applied to Sonic. For a SHA-256 preimage, which is interesting
for Merkle-tree membership proofs, the prover and verifier overhead, respectively,
is ≈ 1.2× and 1.07×. Our evaluation shows that as the circuits become larger and
more complex, proving and verifying the original circuit dominates the overall
performance costs and the overhead added by BB-Lamassu converges to the
size of the witness.

Concurrent and independent work. A recent concurrent and independent
work [GKO+23] presents an approach that avoids the linear dependency on the
size of the witness and thus obtains circuit- and witness-succinct UC SNARKs in
the global random oracle model (GROM). The core idea is to replace the public-
key encryption of the witness with a succinct commitment that is straight-line
extractable. While their overall approach is generic, they show that the KZG
polynomial commitment [KZG10, CHM+20] provides all the required properties
and use it to encode the witness as the coefficients of the polynomial. Then they
apply Fischlin’s approach [Fis05] to obtain straight-line extractability.

Unfortunately, the authors only discuss the generic compiler and leave (cus-
tom) instantiations for future work. Consequently, it is hard to estimate the
concrete overhead. But we can analyze lower bounds for the proof of the KZG
evaluation algorithm and the witness encoding. For security parameter λ, their
approach requires at least λ elements from G1 and F for the polynomial commit-
ment evaluation and λ elements from F for the polynomial evaluation. Assuming
a statistical security parameter of 80 bits and a pairing-friendly elliptic curve
group G1 such as BLS-381, the constant overhead is at least 6.2 KB.

In contrast, our approach only needs a single call to a PKE and a symmet-
ric encryption (a hybrid encryption to encrypt the witness), so the constant
overhead is below 0.6 KB (cf. Section 5). For large witnesses, the approach in
[GKO+23] (ignoring computational costs) will clearly be superior in terms of

6

proof size due to being witness-succinct, but for witnesses up to ≈ 6 KB (such
as in cases discussed earlier) our approach is competitive.

Finally, while in principle the CRS of the KZG polynomial commitment is
amenable to updatability, the concurrent work [GKO+23] does not explicitly
consider updatability. Obtaining an updatable UC SNARK from their approach
does not appear to be straightforward as for KZG as well as the underlying
SNARK one would require knowledge assumptions, preventing UC compatibility.
We leave combining our techniques with those in [GKO+23] to obtain alternative
updatable witness-succinct UC SNARKs as an interesting direction for future
work.

1.2 Technical Overview

We now describe the idea of our new framework BB-Lamassu in more detail
(cf. Fig. 1). Our starting point is the Lamassu framework [ARS20], which trans-
forms any updatable SNARK into an SE updatable SNARK (yellow box). La-
massu adapts the simulation technique of DS [DS19] (brown box), which used
the OR trick to combine the underlying SNARK’s non-BB extractor with key-
homomorphic signatures (adding the Rsig clause to the relation). To support an
updatable CRS, Lamassu swaps the signature for an updatable signature (US).
Extractability of the US updates in [ARS20] requires a non-BB extractor based
on a knowledge assumption.

 Fig. 1. Overview of our approach including previous work from Table 1.

In BB-Lamassu, as in C∅C∅ [KZM+15], our proofs include an encryption
of the witness (Renc) for BB-extractability. To be compatible with updatability,
we instantiate this with a novel public-key encryption (PKE) primitive which we
call extractable key-updatable PKE (EKU-PKE), for which we show an efficient

7

construction. (As mentioned earlier, a similar notion introduced independently
in [BS21] is not BB-extractable and thus not useful for us.) We still have to
overcome the hurdle of providing BB extraction for the US and the public key
of the EKU-PKE in the CRS (crsenc). Very briefly, our key idea is to use not
necessarily succinct but efficient NIZK proofs without a CRS that provide BB
extraction for all updates of the CRS elements, i.e., updates of the underlying
SNARK (crsSNARK), of the public key of the US scheme (crssig), and of the
public key of the EKU-PKE scheme (crsenc). We choose to base these proofs on
Σ-protocols converted to NIZK proofs using either the Fiat-Shamir (FS) [FS87],
Fischlin [Fis05] or Unruh [Unr15] approach. While this requires that the updates
of all components are Σ-protocol friendly, this holds true for the relations in all
known constructions. Interestingly, a byproduct of this approach is that the
update proofs for the underlying SNARK CRS become much more efficient to
verify (and typically also much smaller). This improvement also carries over to
the original Lamassu framework [ARS20] and can be used to improve their CRS
update proofs as well.

Since BB-Lamassu is BB SE, it is also UC-secure and should therefore re-
alize the NIZK ideal functionality FNIZK of [Gro06]. However, so far this ig-
nores the updatable CRS aspect. We recall that in our update proofs of the
underlying CRS crsSNARK , of the US, and of the EKU-PKE scheme, we use a
FS/Fischlin/Unruh-transformed NIZK. UC however precludes the use of rewind-
ing extractors (i.e., FS). Since we never need to extract from proofs of update
correctness of crsSNARK (the simulator always uses the other branch of the OR),
that proof can use FS, but the other two parts must rely on the Fischlin or Un-
ruh transforms, which provide straight-line extractors. To formally confirm this
intuition, we introduce a new ideal functionality Fup-CRS for the updatable CRS
generation and then prove that BB-Lamassu realizes the functionality FNIZK in
the Fup-CRS-hybrid model.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security pa-
rameter. All adversaries are stateful. By y ← A(x;ω) we mean that algorithm A,
given an input x and random coins ω, outputs y. We write x←$ D to denote that
x is sampled according to distribution D or uniformly randomly if D is a set. Let
RND(A) denote the random tape of A, and let ω ←$ RND(A) denote the random
choice of the random coins ω from RND(A). A PPT A is able to read only poly-
nomially many (in security parameter λ) symbols of the random tape. We denote
by negl(λ) an arbitrary negligible function and write a ≈λ b if |a− b| ≤ negl(λ).
A bilinear group generator Pgen(1λ) returns BG = (p,G1,G2,GT , ē), where G1,
G2, and GT are cyclic groups of prime order p and ē : G1 × G2 → GT is a
non-degenerate efficiently computable bilinear map (pairing).

We recall the definitions of key-homomorphic signatures, Schnorr signatures,
Σ-protocols, and the Fiat-Shamir, Fischlin, and Unruh transforms in Appen-
dices A.1 to A.5.

8

Black-box constructions. We consider constructions to be black-box if they
do not refer to the code of any cryptographic primitives they use, but rather
depend only on the primitives’ input/output behavior. We therefore call a NIZK
extractor black-box if it does not take the adversary as input.

2.1 Non-Interactive Zero-Knowledge

Let RGen be a relation generator such that RGen(1λ) returns a polynomial-
time decidable binary relation R = {(x, w)}. Here, x is the statement and w

is the witness. We assume that λ is explicitly deducible from the description
of R. Let LR = {x : ∃w, (x, w) ∈ R} be an NP-language. Non-interactive zero-
knowledge (NIZK) proofs and arguments in the CRS model consist of algorithms
(KGencrs,P,V,Sim), and satisfy the following properties: completeness (for all
common reference strings crs generated by KGencrs and (x, w) ∈ R, we have
that V(crs, x,P(crs, x, w)) = 1), zero-knowledge (there exists a simulator Sim
that outputs a simulated proof such that an adversary cannot distinguish it from
proofs computed by P(crs, x, w)), soundness (an adversary cannot output a proof
π and an instance x ̸∈ LR such that V(crs, x, π) = 1). Moreover, knowledge
soundness goes a step further and says that for any prover generating a valid
proof there is an extractor Ext that can extract a valid witness.

We adopt the (SE) updatable NIZK definitions from [Gro16, GKM+18,
ARS20]. We consider the updatable CRS setting, meaning that an adversary
can adaptively generate sequences of CRSs and arbitrarily interleave its own
malicious updates into them. The only constraints on the final CRS are that it
is well-formed and that at least one honest participant has contributed to it by
providing an update (or the initial creation).

In the following we provide a formal definition of an updatable NIZK.
An updatable NIZK Π = (KGen,Ucrs,Vcrs,P,V) for R consists of the follow-

ing PPT algorithms:

KGencrs(R) : On input R ∈ image(RGen(1λ)), outputs CRS crs, a trapdoor tc,
and a proof ζ.

Ucrs(crs, ζ) : On input (crs, ζ) outputs (uptc, crsup, ζup) where uptc and crsup
are the update trapdoor and the updated CRS respectively, and ζup is a
proof for the correctness of the updating procedure.

Vcrs(crs, ζ) : On input (crs, ζ), returns either 0 (the CRS is ill-formed) or 1
(the CRS is well-formed).

P(crs, x, w) : On input (crs, x, w), where (x, w) ∈ R, output a proof π.
V(crs, x, π) : On input (crs, x, π), returns either 0 (reject) or 1 (accept).
Sim(crs, tcup, x) : On input (R, auxR, crs, tc, x), outputs a simulated proof π.

Here, tcup := tc ⊙ uptc, where depending on the construction the operator
⊙ might be different operations (like addition, multiplication).

Definition 1. Let Π = (KGencrs,Ucrs,Vcrs,P,V) be an updatable non-interactive
argument for the relation R. Then the argument Π is updatable secure if it sat-
isfies the following properties:

9

Updatable completeness. Π is complete for RGen if for all λ, (x, w) ∈ R,
and PPT A,

Pr

R ← RGen(1λ), (crs, tc, ζ)← A(R),
1← Vcrs(crs, ζ) :

V(crs, x,P(R, auxR, crs, x, w)) = 1

 = 1.

Where ζ is a proof for the correctness of the generation (or updating) of the
CRS.

Updatable BB simulation extractability. Π is BB simulation extractable
for RGen if for every PPT A and any subverter Z, there exists a PPT ex-
tractor Ext such that

Pr

R ← RGen(1λ),

(crs, tc := (tcsim, tcext), ζ)← KGencrs(R),
ωZ ←$ RND(Z),

(crsup, ζup, auxZ)← Z(crs, (ζi)
n
i=1 , ωZ),

if Vcrs(crsup, ζup) = 0 then return 0,

(x, π)← AO(·)(R, crsup, crs, auxZ),
w← Ext(R, crsup, crs; tcext) :
(x, π) ̸∈ Q ∧ (x, w) ̸∈ R ∧
V(crsup, x, π) = 1

≈λ 0.

Here RND(Z) = RND(A) and (ζi)
n
i=1 for n ∈ N is a series of proofs for the

correctness of the updating procedure. The oracle O(.) represents two oracles
O1(.) and O2(.) which return π := Sim(crs, tcsim, x) and π := Sim(crsup,
tcup,sim, x) respectively. O(.) keeps track of all queried (x, π) via Q. Note
that Z can also first generate crs and then an honest updater updates it and
outputs crsup. In the latter case, O(.) = O2(.).

Remark 1. We note that what we call simulation extractability is often called
strong simulation extractability in the literature. Sometimes one encounters
a relaxed form called weak simulation extractable, which only requires x ̸∈ Q
in the winning condition. We will make it explicit when we talk about this
weak form.

Notice that for the updatable ZK property, one must assume that at least one
of the (possibly malicious) updaters does not communicate with the others.
This guarantees ZK even if all updaters are malicious (i.e., in the split ad-
versarial model where updating is done by two adversaries A1 and A2 who
do not share their secret values (tc1 and tc2) with each other), since none of
them has access to whole CRS trapdoor tc (containing both tc1 and tc2).8

8 Alternatively, with a slightly stronger assumption than the split adversarial model,
one may simply assume that one of the updates is honestly done.

10

Π is statistically unbounded updatable ZK for RGen [GKM+18], if for any
PPT Z there exists a PPT Ext, such that for all R ∈ im(RGen(1λ)), and
computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr

ωZ ←$ RND(Z), (crs, ζ, auxZ)← Z(R, ωZ),

tc← Ext(R, aux, crs) :
Vcrs(crs, ζ) = 1 ∧ AOb(·,·)(R, crs, auxZ) = 1

.

Here RND(Z) = RND(A) and the oracle O0(x, w) returns ⊥ (reject) if (x, w) ̸∈
R, otherwise returning P(crs, x, w). Similarly, O1(x, w) returns ⊥ (reject)
if (x, w) ̸∈ R, and otherwise it returns Sim(crs, tc, x). Π is perfectly un-
bounded updatable ZK for RGen if εunb0 = εunb1 .

In the above, aux is some auxiliary information that depends on the BB-extraction
technique (like rewinding or straight-line extraction).

2.2 Updatable Signatures

We recall the notion of updatable signatures from [ARS20] below and include
their relevant properties (updatable correctness, updatable strong key hiding,
and updatable EUF-CMA) in Appendix A.6. Going forward, let µ be an ef-
ficiently computable map from the private key space (H,+) to the public key
space (E, ·) such that for all csk, csk′ ∈ H, µ(csk + csk′) = µ(csk) · µ(csk′) and
for all (csk, cpk) ← KGen(1λ), cpk = µ(csk) (cf. [ARS20, Def. 3]). A key func-
tionality of such schemes is that now signatures produced under any csk can,
with the knowledge of csk′, be updated to signatures valid under verification key
µ(csk+ csk′).

Updatable zero-knowledge. Definition 2 (Updatable signature schemes).
An updatable signature scheme Σ = (KGen,Upk,Vpk,Sign,Verify) is a key-homo-
morphic [ARS20, Def. 4] signature scheme consisting of the following PPT al-
gorithms:

KGen(1λ) : Given a security parameter λ, output a signing key csk, a verification
key cpk, a proof ζ, and a message space M.

Upk(cpk) : Given a verification key cpk, output an updated verification key cpkup
with associated secret key updating information upcsk and a proof ζ. The
updated signing key is then cskup := csk+ upcsk.

Vpk(cpk, cpkup, ζ) : Given a verification key cpk, a potentially updated verifica-
tion key cpkup, and a proof ζ, check if cpkup has been updated correctly. When
verifying the original cpk, we write Vpk(cpk, ζ).

Sign(cskup,m) : Given a potentially updated secret key cskup and a message m ∈
M, output a signature σ.

Verify(cpkup,m, σ) : Given a potentially updated public key cpkup, a message m ∈
M and a signature σ, output a bit b ∈ {0, 1}.

11

Example of Updatable Signatures. Lamassu [ARS20] uses an updatable
signature construction based on the Schnorr signature scheme. Their scheme
is instantiated in a bilinear group and uses the pairing to check updates, with
a knowledge assumption for extraction. For consistency with our construction
of key-updatable public-key encryption (EKU-PKE) in Section 3, which proves
update validity via NIZKs, we use the same approach here and with an up-
datable Schnorr construction in a prime-order multiplicative group G with gen-
erator g. Let (P,V) be a simulation-extractable NIZK for the relation R =
{((cpk, cpkup, g), x′) : cpkup = cpk · gx′}. We recall Schnorr signatures in Ap-
pendix A.2 and only give the key update algorithms here:

Upk(cpk) : Set upcsk := x′ ←$ Zp, cpkup := cpk·gx′
, ζup ← P((cpk, cpkup, g), upcpk)

and return (upcsk, cpkup, ζup).
Vpk(cpk, cpkup, ζup) : Return V(crs, (cpk, cpkup, g), ζup).

Finally, we present an efficient extractor ExtZ. If Vpk returns 1 on any input
(cpk, cpkup, ζup), by the simulation extractability of the NIZK we have an extrac-
tor that extracts upcsk := x′ from ζup s.t. cskup = csk+upcsk and cpkup = cpk·gupcsk .

2.3 The Lamassu Compiler

The Lamassu [ARS20] compiler lifts any CRS-based NIZK that is knowledge
sound (e.g., a SNARK) to a non-BB simulation-extractable version while main-
taining compatibility with an updatable CRS. Roughly speaking, Lamassu
uses a combination of an updatable EUF-CMA secure signature scheme Σ and
a strongly unforgeable one-time signature (sOTS) scheme ΣOT (e.g., Groth’s
sOTS [Gro06] or Schnorr) together with the folklore OR-trick to obtain simulation-
extractability, i.e., achieve non-malleability.

In more detail, during proof generation, the prover uses a fresh keypair
csko, cpko of Σ to compute a signature which certifies the public key of an sOTS.
Then, it uses the secret key of the sOTS to sign the parts of the proof which must
be non-malleable. Crucially, the former signature is provided in plain and thus
one does not need to encrypt it or prove that it verifies under some verification
key in the CRS (e.g., as in [Gro06]). Consequently, the OR clause of the lifted
language only requires the shift (this is the trapdoor of the CRS) which adapts
signatures valid under the freshly sampled cpko to ones valid under the verifica-
tion key cpk in the CRS (equivalent to the difference csk − csko; the technique
was introduced in [DS19]). As it turns out, this feature lays the foundation to
support updatability.

Now, given any language L with NP relation RL, the language obtained via
the compiler is Llamassu s.t.

{
xlamassu := (x, cpk, cpko), wlamassu := (w, csk−csko)

}
∈

RLlamassu
iff:

((x, w) ∈ RL ∨ cpk = cpko · µ(csk− csko)).

A proof for x ∈ L is easy to compute given w such that (x, w) ∈ L, in which
case the prover does not need to satisfy the second branch of the OR statement

12

but instead computes the signatures under newly generated keys. To simulate
proofs, however, one can set up the CRS so that csk corresponding to cpk is
known, compute the “shift amount” csk− csko, and use it as a satisfying witness
for the second branch of the OR.

The following theorem captures the properties of Lamassu applied to any
knowledge sound NIZK with updatable CRS:

Theorem 1 ([ARS20]). Assume that the underlying updatable NIZK (SNARK)
scheme satisfies perfect completeness, updatable zero-knowledge, and updatable
knowledge soundness. Let Σ be a EUF-CMA secure adaptable key-homomorphic
signature scheme and ΣOT a strongly-unforgeable one-time signature scheme.
The lifted NIZK construction is a zero-knowledge proof system satisfying perfect
completeness, updatable zero-knowledge, and updatable simulation extractability.

3 Extractable Key-Updatable PKE

Now we introduce a new primitive called extractable key-updatable PKE (EKU-
PKE), which is a PKE scheme that allows one to update the keys and provide
extractability key update proofs. We will need this primitive to enable encryption
of the witness in our NIZK construction (for simulation extractability) in a way
that is compatible with an updatable CRS.

There are approaches in the literature for key-updatability [PR18, JMM19]
which do not consider extractability. A recent work by Dodis et al. [DKW21]
additionally considers extractability. While this notion is very close to ours, it
only considers possibly dishonest updates. In our case, however, security should
hold as long as either the initial key generation or at least one of the updates is
performed honestly. We note that as done by Groth et al. [GKM+18] for updat-
able CRS (Lemma 6), we model only a single update, since a single adversarial
update implies EKU-PKEs with arbitrarily many adversarial updates.

3.1 Definition and Security

We call a PKE scheme UP extractable key-updatable (EKU-PKE) if the key
generation is run by an updatable key generation scheme and the correctness
and black-box extraction properties of the scheme hold for all updated keys that
pass verification:

Definition 3 (Updatable key generation). An updatable key generation scheme
UP.KGen = (KGen,Upk,Vpk) consists of the following PPT algorithms:

KGen(1λ) : Given a security parameter λ, output a secret key sk, a public key
pk and a proof ζ.

Upk(pk, (ζi)
n
i=1) : Given a public key pk and update proofs for pk, output an

updated public key pkup with associated secret key updating information upsk
and a proof ζup.

13

Vpk(pkup, (ζi)
n
i=1) : Given a potentially updated public key pkup and a list of

update proofs ζi, output a bit b indicating acceptance (b = 1) or rejection
(b = 0).

We note that in general the updated skup equals sk ⊙ upsk, where depending on
the scheme the operator ⊙ might represent different operations (e.g., addition,
multiplication). For our instantiation later we use multiplication.

Definition 4 ((Perfect) Updatable key correctness). The (perfect) up-
datable key correctness property requires the following three conditions:

(i) for any (sk, pk, ζ)← KGen(1λ): Vpk(pk, ζ) = 1

(ii) for any (sk, pk, ζ)← KGen(1λ) and (pkup, (ζi)
n+1
i=1) such that Vpk(pkup, (ζi)

n+1
i=1) =

1, the distributions of pk and pkup are (perfectly) indistinguishable.
(iii) for any (pk, (ζi)

n
i=1) such that Vpk(pk, (ζi)ni=1) = 1 and (pkup, ζn+1)← Upk(pk,

(ζi)
n
i=1), we have that Vpk(pkup, (ζi)

n+1
i=1) = 1.

Definition 5 (Updatable black-box extraction). An updatable key genera-
tion scheme UP.KGen = (KGen,Upk,Vpk) is black-box extractable if there exists
an efficient extractor Ext such that for any (sk, pk, ζ) ∈ image(KGen(1λ)) and any
(upsk, pkup, ζup) ∈ image(Upk(pk, ζ)) where both Vpk(pk, ζ) = 1 and Vpk(pkup,
ζup) = 1 hold, then for skup ← Ext(ζ, pk, ζup, pkup) we have that (skup, pkup, ·) ∈
image(KGen(1λ)).

Now, with the above properties we can take any PKE scheme that satisfies up-
datable key generation and convert it into an EKU-PKE scheme.
Security properties. Let UP be a EKU-PKE scheme. We now define key-
updatable IND-CPA security for the EKU-PKE scheme UP and note that one
can analogously define key-updatable IND-PCA and key-updatable IND-CCA se-
curity:

Expup-cpaUP,A (λ)

(sk, pk, ζ)← UP.KGen(1λ);
((pkup, ζup),m0,m1)← A(pk, ζ); b←$ {0, 1};
r ←$ RND(UP); c∗ ← UP.Enc(pkup,mb; r); b

′ ← A(c∗);
return (b = b′) ∧ UP.Vpk(pkup, {ζ, ζup});

Note that alternatively, A can generate the initial pk, which is then updated by
an honest updater Upk outputting pkup, upsk, and the proof ζup. In that case, we
require that UP.Vpk(pk, ζ) holds.

Definition 6 (Key-updatable IND-CPA security). UP is key-updatable
IND-CPA secure if for any PPT adversary A,

Advup-cpaUP,A (λ) := |Pr[Expup-cpaUP,A (λ) = 1]− 1/2| ≈λ 0.

14

3.2 Instantiation

We present a construction of an EKU-PKE over a prime-order group (G, g, p)
based on the ElGamal PKE scheme. Thus, our setup outputs only publicly ver-
ifiable parameters and does not need to be run by a trusted party. Let ZK be in
the set {FS,Fischlin,Unruh} for the relation R(xZK, wZK) where xZK := (pk′, pk),
wZK := w such that pk′ = pkw. The full construction is as follows:

KGen(1λ) : Given a security parameter λ, outputs a secret key sk, public key
pk := gsk, and its corresponding proof ζ1 := πZK for (pk, g) and witness sk.

Upk(pk, (ζi)
n
i=1) : Output an updated public key pkup := pkupsk with associated

secret key updating information upsk and a proof ζn+1 that ((pkup, pk), upsk) ∈
R.

Vpk(pk, pkup, (ζi)
n
i=1) : Given a verification key pk, a potentially updated verifi-

cation key pkup, and the proof ζup, check if pkup has been updated correctly
by running VZK((pkup, pk), ζup). When verifying the original pk, we write
Vpk(pk, ζ).

Enc(pkup,M; r) : Given a potentially updated public key pkup, a message M ∈ G,
and randomness r, output the ciphertext c := (gr,M · pkrup).

Dec(skup, c) : Given a potentially updated secret key skup and the ciphertext c,

output the message M := c2/c
skup
1 .

Theorem 2. Let ZK ∈ {FS,Fischlin,Unruh} be a non-interactive proof of knowl-
edge with black-box extraction for the relation R(xZK, wZK) and suppose that the
DDH assumption holds in (G, g, p). Then the above scheme is a extractable key-
updatable PKE.

Proof. Property (i) of updatable key correctness is straightforward by construc-
tion and the completeness of ZK. Similarly, property (ii) follows by construc-
tion and by soundness of ZK. We reduce property (iii) to the soundness of
the ZK argument. Let A be the adversary against (iii). Let B be an adver-
sary against the soundness of ZK with relation R(xZK, wZK) and language LZK

with xZK = (pkup, pk), wZK = upsk such that Vpk(pk, pk′up, ζ
′
up) = 1. B picks

pk ←$ G, runs the adversary A(pk), and obtains pk′up with ζ ′up = πZK such that
Vpk(pk, pk′up, ζ

′
up) = 1 and (pk′up, pk) /∈ LZK. Therefore, the reduction has the

same (non-negligible) advantage in the ZK’s soundness game as A has in the
property (iii) game.

Finally, updatable BB-extractability follows directly from the BB-extractability
of ZK.

We note that in general, the properties of the NIZK extractor directly trans-
late to the UP extractor, i.e., if ZK provides a straight-line extractor, then UP
is also straight-line extractable. Additionally, in Lemma 1, we prove that this
construction is key-updatable IND-CPA secure.

Lemma 1. Let (G, g, p) be a prime-order group and suppose the DDH assump-
tion holds. Let ZK ∈ {FS,Fischlin,Unruh} be a non-interactive proof of knowledge
with black-box extraction. Then the above scheme is key-updatable IND-CPA se-
cure.

15

Proof. We prove IND-CPA security with a sequence of games starting from the
standard IND-CPA game, where the adversary has no control over the key, and
ending with key-updatable IND-CPA, where A is able to update pk. The detailed
games are as follows:

Game1 : This is the original IND-CPA experiment.

Game2 : This game is the same as Game1, with the difference that A receives
the proof ζZK related to the well-formedness of the pk as depicted in Definition 6.

Game1 → Game2 : This is straightforward from the zero-knowledge property
of the NIZK and so the two games are indistinguishable, with Pr[Game1] ≤
Pr[Game2] + negl(λ).

Game3 : This game is the same as Game2, with the difference that A updates
pk and so she receives the challenge ciphertext c∗ under the updated pkup as
depicted in Definition 6.

Game2 → Game3 : This is straightforward from property (ii) of updatable key
correctness, which states that if Vpk outputs 1, we have that the public keys
pk and pkup are indistinguishable from each other. This guarantees that c∗

has the same distribution under both pk and the updated pkup. Thus we have
Pr[Game2] ≤ Pr[Game3] + negl(λ).

EKU-PKE for arbitrary message spaces. For encrypting large witnesses, an
EKU-PKE which supports the encryption of arbitrary bit strings is required. As
the updatability notions do not require any specific properties on the ciphertexts,
a key-updatable PKE for arbitrary message spaces can be obtained by following
the hybrid approach [CS03]. Combining an IND-CPA-secure EKU-PKE with an
IND-CPA-secure symmetric encryption scheme thus yields a IND-CPA-secure
EKU-PKE for arbitrary message spaces.

4 UC-Secure Updatable Circuit-Succinct NIZK

In this section, we present a general framework for UC-secure circuit-succinct
NIZKs with a weaker trusted setup (i.e., updatable CRS) using a black-box EKU-
PKE defined in Section 3. We recall that in the updatable CRS setting [GKM+18]
everyone can update a CRS, removing the trust in the CRS generator at both
the prover and verifier side as long either the generation of the CRS or any of
its updates are performed honestly (e.g., by the verifier).

Recall that the C∅C∅ framework [KZM+15] lifts any NIZK to a UC-secure
NIZK in the CRS model. But UC-secure NIZKs with reduced trust in the CRS
generation, e.g., via updatable CRS, are still an open problem. Indeed, to achieve
UC-secure NIZKs in such a setting, one needs to guarantee SE for the updatable
NIZKs in a black-box way. Recall that SE requires (knowledge) soundness to hold

16

even if an adversary can see an arbitrary number of simulated proofs, which they
can adaptively obtain on statements of their choice (see Section 2.1 for a rigorous
definition).

The Lamassu framework [ARS20] (see Section 2.3) transforms any updat-
able SNARK (or NIZK) to a non-black-box SE updatable SNARK (resp. NIZK)
under some non-falsifiable assumption. More precisely, in the lifted SNARK
(NIZK), both the zero-knowledge and SE proofs are based on non-falsifiable as-
sumptions. It is known that UC-security can not be achieved for a construction
under non-falsifiable assumptions.

In this section, we start from the Lamassu construction and tackle the afore-
mentioned hurdles to UC-security by converting this framework to a black-box
version. Then, for the first time, we show how one can achieve UC-secure up-
datable circuit-succinct NIZKs.

4.1 Black-Box SE Updatable Circuit-Succinct NIZKs

Now, we introduce a framework for black-box SE updatable circuit-succinct
NIZKs that builds upon and extends the Lamassu compiler. Before describ-
ing the intuition of our construction, we recall some notation and primitives
used in the construction.

– An updatable SNARK or NIZK Π in the CRS model (e.g., Groth et al. [GKM+18])
– A BB-extractable EKU-PKE UP (Section 3)
– A BB-extractable updatable signature Σ (Section 2.2)
– A BB-extractable non-interactive proof of knowledge (knowledge sound NIZK)

ZK (either FS [FS87], Fischlin [Fis05] or Unruh [Unr15])

Intuition. We can divide our approach into two parts:
From non-BB to BB extractable updatable NIZK. In order to satisfy black-box
extraction, we start with Lamassu and add the public key UP.pk of an IND-
CPA secure EKU-PKE UP (defined in Section 3) to the CRS. This will be used
to encrypt the witness, giving us a black-box extractable version of Lamassu.
From BB extraction to BB SE updatable NIZK. To achieve a UC-secure version of
Lamassu, we additionally need to enable proof simulation which is compatible
with BB extraction. Thus, we replace the updatable signature of the Lamassu
compiler with a BB-extractable updatable signature Σ (defined in Section 2.2).

Finally, in order to satisfy BB extraction for updates to the lifted CRS (which
now includes the underlying CRS, the public key of UP, and the public key of
Σ), we require a non-interactive proof of knowledge ZK ∈ {FS,Fischlin,Unruh}
that the update is correctly done. This gives us a fully black-box version of the
Lamassu compiler.

Remark 2. To achieve more efficient BB updatable SE NIZKs, we may use
ZK = FS instead of Fischlin or Unruh. This construction might be of independent
interest for applications of BB-updatable SE NIZKs, but it is not UC-friendly
due to the use of rewinding in the extraction phase of FS. We will discuss this
more in Section 4.2.

17

We present the full construction of black-box SE updatable (circuit-succinct)
NIZKs in Fig. 2, where ZK ∈ {FS,Fischlin,Unruh} is a BB-extractable NIZK that
the update is correctly done. This is in contrast to [GKM+18] and [Lip20] as
well as the Lamassu framework, which reveal some intermediate shares in both
groups G1 and G2 to construct a CRS verification that the update is correctly
done under some non-falsifiable assumptions.

Although our framework, like Lamassu, does not itself add updatability to
the underlying NIZK, one can use techniques similar to those in [GKM+18] (for
SNARKs) or [Lip20] (for QA-NIZKs) to transfer any CRS-based NIZK to the
updatable setting. Then, starting from the CRS-updatable NIZK, BB-Lamassu
adds black-box SE. Specifically, given any language L with NP relation RL, the
language obtained via the compiler is L′ s.t. {x′ := (x, c, pkl), w

′ := (w, ω, csk− skl)}
∈ RL′ iff:

c = UP.Enc(pkup, w;ω)∧
((x, w) ∈ RL ∨ cpk = pkl · µ(csk− skl))

where cpk is the public key of Σ included in the CRS.

Theorem 3. Let Π be a NIZK (SNARK) scheme satisfying perfect complete-
ness, computational updatable zero-knowledge, and computational updatable (op-
tionally knowledge) soundness, UP an EKU-PKE scheme with message spaceM
satisfying IND-CPA security and perfect correctness, Σ an EUF-CMA-secure
updatable signature scheme, and ΣOT a one-time signature scheme with strong
unforgeability. Let ZK ∈ {FS,Fischlin,Unruh} be a non-interactive proof of knowl-
edge with BB extraction. Then the construction in Fig. 2 is a NIZK satisfying
perfect completeness, updatable zero-knowledge, and BB updatable simulation ex-
tractability.

Proof. We follow the outline of the proof of (non-black-box) Lamassu [ARS20,
Thm. 4].

(i: Completeness): This is straightforward from the construction of BB SE
updatable NIZKs (SNARKs) in Fig. 2.

If ((crs, (ζi)ni=1), x, w)← A(1λ) and Vcrs(crs, (ζi)
n
i=1) = 1 ∧ (x, w) ∈ R, then

V(crs, x,P(crs, x, w)) = 1.
(ii: Updatable zero-knowledge): Underlying the (rewinding or straight-line)
extraction property of the ζZK suppose that there exists a PPT malicious sub-
verter Z that takes crs = (crsΠ, cpk, pk) and ζ = (ζZK,Π, ζZK,cpk, ζZK,pk) as
input and outputs crsup = (crsΠ,up, cpkup, pkup) as well as ζup = (ζZK,Π,up,i,
ζZK,cpkup,i, ζZK,pkup,i)

n
i=1 such that Vcrs(crsup, ζup) = 1 and more precisely Vpk(cpkup,

(ζZK,cpkup,i)
n
i=1) = 1 holds with non-negligible probability.

Then, by using the ζZK extractor ExtZK, given the statement x′ of the language
L′ (more precisely, given cpkup of the signature) and the proofs (ζZK,cpkup,i)

n
i=1 as

input, we can output cskup.9 For this case A is the adversary from Fig. 3.
9 For example for the Fischlin extractor ExtFischlin, given the statement x′ of the language
L′, the proofs (ζFischlin,cpkup,i)

n
i=1, and the list of queries and answers of QH(Z) (related

to the trapdoor extraction in [Fis05, Theorem 2]) as input, one can recover cskup.

18

KGencrs(R, auxR)

- (crsΠ, tcΠ, ζZK,Π)← Π.KGen(R, auxR);

- (csk, cpk, ζZK,cpk)← Σ.KGen(1λ);

- (sk, pk, ζZK,pk)← UP.KGen(1λ);crs := (crsΠ, cpk, pk);

- tc := (tcΠ, csk, sk); ζ := (ζZK,Π, ζZK,cpk, ζZK,pk)
- return (crs, tc, ζ);

Ucrs(crs, (ζi)
n
i=1)

- (tcΠ,up, crsΠ,up, ζZK,Π,up)← Π.Ucrs(crsΠ, (ζZK,Π,i)
n
i=1);

- (upcsk, cpkup, ζZK,cpkup)← Σ.Upk(cpk, (ζZK,cpk,i)
n
i=1);

- (upsk, pkup, ζZK,pkup)← UP.Upk(pk, (ζZK,pk,i)
n
i=1);

- ζup := (ζZK,Π,up, ζZK,cpkup , ζZK,pkup);

- return (crsup := (crsΠ,up, cpkup, pkup), ζup);

Vcrs(crs, (ζi)
n
i=1)

- if Π.Vcrs(crsΠ, (ζZK,Π,i)
n
i=1) = 1 ∧

Σ.Vcpk(cpk, (ζZK,cpk,i)
n
i=1) = 1 ∧

UP.Vpk(pk, (ζZK,pk,i)
n
i=1) = 1 then return 1; else return 0;

P(crsup, x, w)

- (skl, pkl)← Σ.KGen(1λ); (skOT, pkOT)← ΣOT.KGen(1
λ);

- ω ←$ Zp; c← UP.Enc(pkup, w;ω);

- πΠ ← Π.P(crsup, (x, c,⊥), (w, ω,⊥));σ ← Σ.Sign(skl, pkOT);

- σOT ← ΣOT.Sign(skOT, πΠ||x||c||pkl||σ);
- return π := (c, πΠ, pkl, σ, pkOT, σOT);

V(crsup, x, π = (c, πΠ, pkl, σ, pkOT, σOT))

- if Π.V(crsup, x, c, πΠ) = 1 ∧Σ.Verify(pkl, pkOT, σ) = 1∧
ΣOT.Verify(pkOT, πΠ||x||c||pkl||σ, σOT) = 1 then return 1;
else return 1;

Sim(crsup, x, tc)

- (skl, pkl)← Σ.KGen(1λ); (skOT, pkOT)← ΣOT.KGen(1
λ);

- ω, z ←$ Zp; c← UP.Enc(pkup, z;ω);

- πSim ← Π.Sim(crsup, (x, c, pkl), (z, ω, cskup));
- σ ← Σ.Sign(skl, pkOT);

- σOT ← ΣOT.Sign(skOT, πSim||x||c||pkl||σ);
- return π := (c, πSim, pkl, σ, pkOT, σOT).

Ext(skup, c, crs, crsup, (ζi)
n
i=1)

- if UP.Vpk(pk, (ζZK,pk,i)
n
i=1) = 0 then return 0;

else return w← UP.Dec(skup, c).

Fig. 2. BB-Lamassu: generic black-box SE updatable (succinct) NIZKs. Changes to
Lamassu are indicated with grey boxes.

19

A(crs = (crsΠ, cpk, pk), ζ = (ζZK,Π, ζZK,cpk, ζZK,pk))

(crsup, ζup)← Z(crs, ζ);

ExtZK(cpk, (ζZK,cpkup,i)
n
i=1, aux)

return cskup.

Fig. 3. Extractor and the constructed adversary A from the updatable ZK proof.

To prove updatable zero-knowledge, we use the extractor ExtZK to obtain
the trapdoor cskup as explained above and give a simulator Sim (see Fig. 2).
When provided cskup, Sim produces a proof πSim that has the same distri-
bution as a real proof π generated using the witness w. Recall that due to
the OR trick, Sim just needs to prove that it knows the shift upcsk (which
is the trapdoor of the cpkup) to adapt signatures from cpk to ones valid un-
der verification key cpkup in the CRS. Specifically, Sim first chooses z ←$ M,
ω ←$ RND(Sim) and computes c ← UP.Enc(pkup, z;ω). Finally Sim can lo-
cally generate (skl, pkl) ← Σ.KGen(1λ); (skOT, pkOT) ← ΣOT.KGen(1

λ) and
then compute σOT ← ΣOT.Sign(skOT, πΠ||x||c||pkl||σ). Now the simulated πSim =
(c, πSim, pkl, σ, pkOT, σOT) has the same distribution as a real proof π = (c, πΠ, pkl,
σ, pkOT, σOT). Here πΠ is a real proof in the underlying updatable NIZK Π.
(iii: Black-box updatable SE): For the sake of simplicity, let the malicious
subverter Z make only a single update after an honest setup, or let Z generate
the CRS, after which point we have only a single update by an honest updater.

Recall that based on the (rewinding or straight-line) extraction property of
ZK ∈ {FS,Fischlin,Unruh} used in the CRS updates, it is possible to extract
the adversary’s contribution to the trapdoors csk and sk when the adversary
generates the CRS itself. To collapse chains of honest updates into a single
honest setup (resp. update) it is convenient that the trapdoor contributions of
the setup and update commute in our scheme.

Our proof is based on the non-BB SE proof in [DS19], replacing the un-
derlying NIZK with an updatable NIZK (SNARK) in a black-box manner.
We use simulation of the trapdoors of the EUF-CMA-secure updatable sig-
nature scheme to simulate proofs. Based on the updatability property, if A
outputs crsup = (crsΠ,up, cpkup, pkup) and (ζZK,Π,up, ζZK,cpkup , ζZK,pkup) such that
Vcrs(crsup, ζup) = 1, then by the extractability of ZK, there exists a PPT ex-
tractor ExtZK which, given cpkup, pkup, and the proofs (ζZK,pkup , ζZK,cpkup), outputs
(skup, cskup).

We note that the SE adversary A in the updatable setting, besides seeing a
pair (crs, π), may even have already updated the crs. Thus, here A has more
power than the standard SE adversary in [DS19]. To make the proof more precise,
we use the malicious updater Z for updating the crs and the adversary A against
the SE property. Note that Z and A can communicate with each other.

We recall the experiment for updatable SE in Fig. 4 and we highlight changes
between games by specifying the altered line numbers in the experiment or oracle.

20

Expbb-up-se(A, λ)

1 : (crs = (crsΠ, cpk, pk), (ζi)
n
i=1 , auxZ)← Z(1λ);

2 : (crsup, ζup)← Ucrs(crs, (ζi)
n
i=1);

3 : if Vcrs(crs, (ζi)
n
i=1) = 0 then return 0

4 : cskup ← ExtZK(cpkup, ζZK,cpkup , aux);

5 : (x, π)← AO(crsup,cskup,·)(crs, crsup, auxZ);
6 : Parse π := (c, πΠ, pkl, σ, pkOT, σOT);

7 : skup ← ExtZK(pkup, ζZK,pkup , aux);

8 : w← UP.Dec(skup, c);

9 : if (x, π) ̸∈ Q ∧ V(crsup, x, π) = 1 ∧ (x, w) ̸∈ R return 1.

10 : else return 0.

O(crsup, tc, x)

1 : (skl, pkl)← Σ.KGen(1λ); (skOT, pkOT)← ΣOT.KGen(1
λ
);

2 : ω, z ←$ Zp; c← UP.Enc(pkup, z, ω);

3 : πSim ← Π.Sim(crsup, (x, c, pkl), (z, ω, tc); σ ← Σ.Sign(skl, pkOT);

4 : σOT ← ΣOT.Sign(skOT, πSim||x||c||pkl||σ);
5 : π := (c, πΠ, pkl, σ, pkOT, σOT);

6 : Q := Q ∪ {(x, π)}; T := T ∪ {pkOT};
7 : return π;

Fig. 4. Experiment Expbb-up-se(A, λ) for black-box SE updatable NIZKs.

Game1 : This is the original experiment in Fig. 4.

Game2 : This game is the same as Game1, with the difference that Z updates
the crs instead of generating it:

Exp, line 1: (crsΠ, tcΠ, ζZK,Π)← Π.KGen(1λ); (csk, cpk, ζsk,cpk)← Σ.KGen(1λ);
(sk, pk, ζZK,pk) ← UP.KGen(1λ); crs := (crsΠ, cpk, pk), tc := (tcΠ, csk, sk),
ζ := (ζsk,Π, ζsk,cpk, ζsk,pk); return (crs, tc, ζ);

Exp, line 2: (crsup, ζup, auxZ)← Z(1λ, crs, (ζi)
n
i=1);

Game1 → Game2 : This is straightforward from the property of the updating
procedure that if Vcrs outputs 1, then there is an extractor that extracts skup
and cskup (i.e., when the adversary updates an honest CRS it is possible to
extract the updates with, e.g., the straight-line trapdoor extraction of Fischlin
for UP and Σ) and the zero-knowledge property of the NIZK. Thus, we have
Pr[Game0] ≤ Pr[Game1] + negl(λ).

Game3 : This game is the same as Game2, but ∆ ←$ H is replaced in cpk =
µ(∆) · pkl.

Exp, line 1: ∆←$ H;
Exp, line 2: crs := (crsΠ, cpk · µ(∆), pk), tc := (tcΠ, csk, sk);

Winning condition: Let Q be the set of (x, π) pairs, let T be the set of OTS
verification keys generated by the oracle O. The game outputs 1 iff: (x, π) ̸∈
Q ∧ V(crsup, x, π) = 1 ∧ pkOT ̸∈ T ∧ cpk · µ(∆) = pkl · µ(∆) · µ(csk− skl).

21

– CRS: On input (start, sid) run crs ← KGen(1λ). Send (CRS, sid, crs) to all
parties and halt.

Fig. 5. The ideal UC functionality Fcrs for UC NIZK common reference string gener-
ation [Gro06].

– Proof: On input (prove, sid, x, w) from party P ignore if (x, w) /∈ R. Send
(prove, x) to Simuc and wait for answer (proof, π). Upon receiving the answer
store (x, π) and send (proof, sid, π) to P .

– Verification: On input (verify, sid, x, π) from V check whether (x, π) is stored.
If not send (verify, x, π) to Simuc and wait for an answer (witness, w).
Upon receiving the answer, check whether (x, w) ∈ R and in that case, store
(x, π). If (x, π) has been stored return (verification, sid, 1) to V, else return
(verification, sid, 0) to V.

Fig. 6. The ideal UC functionality FNIZK, parameterized by relation R, interacts with
adversary Simuc and parties P1, . . . , Pn [Gro06].

Game2 → Game3 : This follows from [ARS20, Theorem 3] and the adaptable
and updatable EUF-CMA property of Σ.

4.2 From Black-Box SE Updatable NIZKs to UC-Secure Updatable
NIZKs

The notion of simulation extractability (SE) is roughly speaking equivalent
to UC-secure (succinct) NIZKs. We now elaborate on the relation between
SE NIZKs and UC-Secure NIZKs. Groth [Gro06] showed that the notion of
SE can be used to instantiate a NIZK ideal functionality FNIZK. More pre-
cisely, Groth [Gro06] defined two separated ideal functionalities FCRS and FNIZK

(see Figs. 5 and 6).
Similarly, Kosba et al. [KZM+15] show that a weak SE secure NIZK can be

used to realize a weaker version of the ideal functionality called Fweak-NIZK. The
main difference between the weaker and the stronger version is that the weaker
version may permit an adversary to maul an existing proof to a new proof, but
for the same statement. Both versions prevent the adversary from mauling a
proof to a related statement. Depending on the application, sometimes the weak
SE notion suffices in protocol design.

As our framework in Fig. 2 for black-box updatable (strong) SE NIZKs is
not in the conventional CRS model but the updatable CRS model, we define a
new ideal functionality Fup-CRS for the updatable CRS generation in Fig. 7. We
employ the ideal functionality FNIZK [Gro06] for the proof of a correct update.
Finally, in Theorem 4 we prove that our framework in Fig. 2 for black-box
updatable (strong) SE NIZKs realizes FNIZK in the Fup-CRS-hybrid model. We
note that, due to the fact that rewinding (used in the extraction phase in FS) is

22

– CRS: On input (start, sid, tc) from party P ignore if tc = ⊥. Generate a crs

and do as follows:
• If P is uncorrupted then send (start, crs) to Simuc and wait for answer

(proofCRS, ζ).
• If P is corrupted then send (start, crs, tc) to Simuc and wait for answer

(proofCRS, ζ).
Upon receiving the answer store (sid, crs, ζ) in Qcrs and send
(proofCRS, sid, crs, ζ) to P .

– upCRS: On input (upCRS, sid, crs, tcup) from party P ignore if (sid, crs) /∈ Qcrs

or tc = ⊥. Generate crsup and do as follows:
• If P is uncorrupted then send (upCRS, crs, crsup) to Simuc and wait for

answer (proofCRS, ζup).
• If P is corrupted then send (upCRS, crs, crsup, tc) to Simuc and wait for

answer (proofCRS, ζup).
Upon receiving the answer store (sid, crs, crsup, ζup) in Qcrs and send
(proofCRS, sid, crsup, ζup) to P .

– verCRS: On input (checkCRS, sid, crs, crsup, ζup) from P check whether
(sid, crs, crsup, ζup) is stored in Qcrs. If not send (checkCRS, crs, crsup, ζup) to
Simuc and wait for an answer (trapdoor, tcup). Upon receiving the answer,
check whether Vcrs(1λ, crsup, ζ := (crs, tcup)) = 1 and in that case, store
(crs, crsup, ζup). If (crs, crsup, ζup) has been stored return (verCRS, sid, 1) to P ,
else return (verCRS, sid, 0) to P .

Fig. 7. The ideal UC functionality Fup-CRS for UC updatable CRS generation of NIZKs,
interacts with adversary Simuc and parties.

not allowed in the UC model [Can01], we assume ZK ∈ {Fischlin,Unruh} for the
instantiation of the ZK proof.

Theorem 4. Let Π be a NIZK (SNARK) scheme satisfying perfect complete-
ness, computational updatable zero-knowledge, and computational updatable (op-
tionally knowledge) soundness, UP an EKU-PKE scheme with message spaceM
satisfying IND-CPA security and perfect correctness, Σ an EUF-CMA-secure
updatable signature scheme, and ΣOT a one-time signature scheme with strong
unforgeability. Let ZK ∈ {Fischlin,Unruh} be a non-interactive proof of knowledge
with BB extraction. Then the construction in Fig. 2 securely realizes FNIZK in
the Fup-CRS-hybrid model.

For the proof, we refer to Appendix A.7.

5 Evaluation and Instantiation

We split the evaluation into multiple parts. First we consider the costs for the
CRS updates and of the witness encryption and we compare our framework
to Lamassu. Finally, in Section 5.2 we apply BB-Lamassu to the updatable
SNARK Sonic and present the results of our benchmarks.

23

5.1 Overheads

Costs of the CRS update. For the CRS update costs, we do not consider
the overhead of the CRS update proofs for the underlying SNARK since they
depend on the underlying construction. We will discuss this overhead later using
Sonic as an example. Observe that in comparison to Lamassu, the CRS of
BB-Lamassu is extended with an UP public key which is updated in the CRS
update. Consequently, the proof of the CRS update is extended with a proof for
the UP public key update. For our UP construction from Section 3, this proof
is respect to the statement pk′up = pkup · gx, which can be proven with a simple
Σ-protocol.

Note that if the Fiat-Shamir, Fischlin or Unruh transform is applied to such
a Σ-protocol, we are able to omit the first message (commitment) as it can be
recomputed from challenge and response. Therefore, the proof consists of 2 Zp

elements for FS and 2s Zp elements for Fischlin (where s is a parameter of the
latter; see Appendix A.5 for details). The choice of s influences both the size and
the runtime of the prover. The smaller s, the smaller the proof, but the harder
it is for the prover to find suitable challenge-response pairs. For Unruh, we can
set the parameter t = 1 since the Σ-protocol has a negligible soundness error
and M = 2 since it is 2-special sound (again, see Appendix A.5 for transform
details). Therefore, for Unruh, the proofs consist of 5 Zp elements. Consequently,
except for the case s = 2, Fischlin always produces the largest proofs. When
instantiating G with an order of ≈ 256 bits, we obtain proofs of 170 bytes with
Unruh. Compared to the 64 bytes for FS, achieving UC-compatible extraction
with our technique only incurs a small overhead.
Costs of encrypting the witness. For the costs of proving consistency of the
encryption of the witness, we can focus on the number of constraints induced
by the statements as a cost metric. As this metric depends on the choice of the
involved groups, we choose the SNARK-friendly group Jubjub and can thus lift
the number of constraints from [HBHW22] for the evaluation. We split the anal-
ysis of encryption with the hybrid application UP into the EKU-PKE (ElGamal)
part and the symmetric part.

For the ElGamal-based EKU-PKE, we need to prove c1 = gr ∧ c2 = M · pkrup
for witnesses M and r. Statements of the form y = h · gw for a witness w with
respect to the Jubjub curve group can be expressed with 756 constraints. Proving
that w is in the correct range costs another 252 constraints and that h is a group
element costs 4 constraints. Hence, we require at most 1768 constraints.

Selecting a symmetric encryption scheme is more involved. The straightfor-
ward choice is AES. Since a mode supporting parallel encryption is preferable
as they allow for shallower circuits, we focus on counter (CTR) mode. All other
modes require at least the same number of AES evaluations. Since a single AES
evaluation is expensive [KPS18], choosing a different block cipher with low multi-
plicative complexity may be more desirable. While some of those primitives have
only been optimized for the use of keyless permutations to construct hashes in
the context of SNARKs, sponge-based constructions with a keyless permutation
also yield a secure stream cipher [BDPV12].

24

Table 2. Number of constraints required for symmetric-key encryption for witness of
sizes 1 KB and 32 KB.

Symmetric primitive Mode # of constraints for
1 KB 32 KB

AES128 CTR 748,694 23,878,166
AES256 (estimated) CTR 1,048,224 33,431,072

Poseidon-(1536, 2, 10, 114) Sponge 4,020 103,716
LowMC-(1602, 256, 1, 1484) Sponge 29,680 721,224
GMiMC-(256, 32, 564) CTR 1,128 36,096
GMiMC-(256, 32, 564) Sponge 4,512 41,736
Vision-(127, 14, 10) Sponge 12,600 292,600

Table 2 shows the number of constraints for various symmetric primitives
with witness sizes of 1 and 32 KiB. We consider GMiMC-(N, t,R) with a col-
lapsing round function [AGP+19], Poseidon-(N, t,Rf , Rp) with x 7→ x5 as the
SBox [GKR+21], Vision-(N, t,R) [AAB+20], and LowMC-(N, k,m,R) [ARS+15],
where N denotes the block size, t the number of branches, R the number of
rounds, Rf and Rp the number of full and partial rounds, k the key size and m
the number of SBoxes. The numbers for AES256 are extrapolated from those of
AES128 [KPS18]. The sponge constructions are all instantiated with a capacity
of ≈ 512 bits. All keys are chosen to have 256 bits and nonces have 96 bits. Over-
all, Table 2 shows that even moderately-sized witness can be handled efficiently.
Comparison with Lamassu. We recall from the evaluation of Lamassu [ARS20]
that the transformation from an updatable zk-SNARK to an updatable SE zk-
SNARK comes with an overhead that is bounded by ≈ 32 bytes for the CRS
and ≈ 256 bytes for the proofs independent of the concrete circuits. In contrast
to Lamassu, in our case the proofs for the validity of the CRS update need to
be extended for the corresponding proof of the updatable signature scheme. By
the same calculation we gave above for UP, this requires at most 170 bytes using
Unruh.

5.2 Black-Box SE Version of Sonic

Finally, as an example of our generic black-box SE updatable circuit-succinct
NIZKs, we provide a black-box SE version of Sonic [MBKM19]. Although imple-
mentations of more recent updatable NIZKs than Sonic are available, the goal of
our evaluation is to illustrate the overhead introduced by our compiler over an
(arbitrary) base scheme and therefore the choice of the base implementation is
not significant. We chose to implement our transformation on top of Sonic due
to ease of use and availability of the implementation.

Sonic uses an updatable structured reference string (uSRS). While uSRSs
are modeled in their paper, this is done in a non-black-box way and we instead
model their security in the setting of black-box SE. Here, a uSRS is a reference

25

Table 3. Runtime of our BB SE succinct NIZK compared to the non-BB SE zk-SNARK
obtained via Lamassu [ARS20] and the base non-SE zk-SNARK Sonic [MBKM19].

Input size
(bits) Scheme Prove (s) Vrfy (s) Helped Vrfy

(ms)

Pedersen hash (average over 20 iterations)

48 Sonic 0.371 0.00123 0.844
Lamassu 0.661 0.00282 0.816
This work 5.758 (15.52×) 0.0226 (18.37×) 0.719

384 Sonic 1.610 0.00649 0.843
Lamassu 1.938 0.00804 0.821
This work 6.592 (4.09×) 0.0226 (3.48×) 0.817

SHA-256 (average over 10 iterations)

512 Sonic 47.736 0.457 1.30
Lamassu 49.400 0.455 -0.111
This work 56.729 (1.18×) 0.490 (1.07×) 0.347

1024 Sonic 76.899 0.727 1.67
Lamassu 79.517 0.734 -0.444
This work 89.510 (1.16×) 0.770 (1.06×) 1.42

2048 Sonic 126.918 1.272 0.822
Lamassu 126.597 1.277 0.0132
This work 155.982 (1.23×) 1.349 (1.06×) 0.666

string with an underlying trapdoor tcΠ which has had a structure function SRS
imposed on it. SRS(tcΠ) is the reference string itself, while tcΠ is the trapdoor.

SRS of Sonic Given generators g ∈ G1, h ∈ G2 and a depth parameter d ∈ Zp,
the SRS has a trapdoor of tcΠ := (α, χ) ∈ Z∗2p . The corresponding structure
function is defined as:

SRS(tcΠ) =
(
{gχ

i

, hχ
i

, hαχ
i

}i=d
i=−d, {gαχ

i

}i=d
i=−d,i̸=0

)
We omit the ē(g, hα) term presented in [MBKM19], as this can be computed
from the rest of the uSRS and is therefore immaterial to the update procedure.

Black-box SE Sonic As we discussed in Section 4.1, in order to add the black-
box SE property to the Sonic scheme, we start with the updating procedure on
the uSRS of Sonic and give a non-interactive proof of knowledge with black-box
extraction that the update is correctly done. This is in contrast to the update
in [MBKM19], which reveals some intermediate shares in both source groups to

26

Fig. 8. Runtimes of the Prove and Verify algorithms of our BB SE succinct NIZK
compared to the non-BB SE zk-SNARK obtained via Lamassu [ARS20] and the base
non-SE zk-SNARK Sonic [MBKM19]. In the lower part we plot the overhead of our
transformation to add BB SE, which decreases as the witness size increases.

show that the update is correctly done and uses a non-falsifiable assumption to
extract the updated secret key; thus, is not black-box. We present the changes
to the uSRS and its update procedure in Appendix A.8. With these changes we
obtain the following result directly from Theorem 3:

Corollary 1. Assume that Sonic satisfies perfect completeness, updatable com-
putational zero-knowledge, and updatable computational soundness. Let ZK ∈
{FS,Fischlin,Unruh} be a non-interactive proof of knowledge with black-box ex-
traction, UP be the ElGamal EKU-PKE, and Σ be the updatable Schnorr signa-
ture scheme. Then the scheme resulting from the application of BB-Lamassu to
Sonic is a NIZK satisfying perfect completeness, updatable zero-knowledge, and
updatable simulation extractability.

Implementation We implemented BB-Lamassu as well as Lamassu [ARS20]
in Rust10 on top of Sonic11 with the updatable signature scheme from Sec-
tion 2.2 and the EKU-PKE from Section 3 (both instantiated over the Jubjub
curve group), and Schnorr signatures as sOTS. In Table 3 we report times for

10 https://github.com/nglaeser/sonic-ucse/
11 https://github.com/ebfull/sonic

27

https://github.com/nglaeser/sonic-ucse/
https://github.com/ebfull/sonic

proving and verifying knowledge of a hash preimage. Averages are taken over 20
iterations for Pedersen and 10 for SHA-256. As in [MBKM19], “Helped Verify”
is the marginal cost of verifying an additional proof when proofs are aggregated.
This number equals the cost of batch-verifying n proofs minus the cost to verify
1, divided by n − 1 (where n is the number of iterations). This number gener-
ally decreases as the witness size increases, with some fluctuations due to noise
since the marginal costs are very small (on the order of hundreds of µs). The
benchmarks were taken on an Intel Xeon 3.8 GHz quad-core CPU with 64 GB
RAM.

Figure 8 shows the overhead of adding black-box SE to Sonic. Note that
the circuit for the Pedersen hash using the Jubjub curve group is only a few
hundred constraints; for larger circuits, such as SHA-256 or even Pedersen hash
with larger inputs, the overhead of BB-Lamassu, which scales linearly in the
witness size, decreases relative to the cost of processing the original circuit with
Sonic.

6 Conclusion

In this work, we present a generic construction of UC-secure NIZKs with an up-
datable CRS and circuit-succinct proofs, which has been an open problem. While
our construction induces some overhead in the runtimes, the evaluation demon-
strates that the costs are dominated by the original circuit for moderately-sized
witnesses or large circuits. In such regimes our construction can be considered
entirely practical.
Acknowledgements. We thank the anonymous reviewers for helpful sugges-
tions, and Sean Bowe and Michael Rosenberg for helpful feedback on the imple-
mentation. This work was in part funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement n◦871473 (Kraken)
and n◦890456 (SlotMachine), and by the Austrian Science Fund (FWF) and
netidee SCIENCE under grant agreement P31621-N38 (Profet). This material
is based upon work supported by the National Science Foundation Graduate
Research Fellowship Program under Grant No. DGE 1840340. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National
Science Foundation. Work of B.A. in part done while with Max Planck Institute
for Security and Privacy. This work was also supported by the German Federal
Ministry of Education and Research BMBF (grant 16KISK038, project 6GEM).

References

AAB+20. Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and
Alan Szepieniec. Design of symmetric-key primitives for advanced cryp-
tographic protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45, 2020.
doi:10.13154/tosc.v2020.i3.1-45.

28

https://doi.org/10.13154/tosc.v2020.i3.1-45

ABK+21. Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, and Jiayu
Xu. Algebraic adversaries in the universal composability framework. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III,
volume 13092 of LNCS, pages 311–341. Springer, Heidelberg, December
2021. doi:10.1007/978-3-030-92078-4_11.

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70700-6
_1.

AGP+19. Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher,
Christian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofneg-
ger. Feistel structures for MPC, and more. In Kazue Sako, Steve Schnei-
der, and Peter Y. A. Ryan, editors, ESORICS 2019, Part II, volume
11736 of LNCS, pages 151–171. Springer, Heidelberg, September 2019.
doi:10.1007/978-3-030-29962-0_8.

AME+21. Lukas Aumayr, Matteo Maffei, Oguzhan Ersoy, Andreas Erwig, Sebas-
tian Faust, Siavash Riahi, Kristina Hostáková, and Pedro Moreno-Sanchez.
Bitcoin-compatible virtual channels. In 2021 IEEE Symposium on Secu-
rity and Privacy, pages 901–918. IEEE Computer Society Press, May 2021.
doi:10.1109/SP40001.2021.00097.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In Elis-
abeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.
doi:10.1007/978-3-662-46800-5_17.

ARS20. Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-
shift: Obtaining simulation extractable subversion and updatable SNARKs
generically. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1987–2005. ACM Press, November
2020. doi:10.1145/3372297.3417228.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Shafi Goldwasser, editor, ITCS 2012, pages
326–349. ACM, January 2012. doi:10.1145/2090236.2090263.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019. doi:10.1007/978-3-030-17653-2_4.

BDPV12. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Duplexing the sponge: Single-pass authenticated encryption and other
applications. In Ali Miri and Serge Vaudenay, editors, SAC 2011, vol-
ume 7118 of LNCS, pages 320–337. Springer, Heidelberg, August 2012.
doi:10.1007/978-3-642-28496-0_19.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988. doi:10.1145/62212.62222.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee

29

https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1109/SP40001.2021.00097
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3372297.3417228
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1145/62212.62222

Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53890-6_26.

BKSV21. Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. An-
other look at extraction and randomization of groth’s zk-snark. In Financial
Cryptography (1), volume 12674 of LNCS, pages 457–475. Springer, 2021.

BPR20. Karim Baghery, Zaira Pindado, and Carla Ràfols. Simulation extractable
versions of groth’s zk-snark revisited. In CANS, volume 12579 of LNCS,
pages 453–461. Springer, 2020.

BPW12. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume
7658 of LNCS, pages 626–643. Springer, Heidelberg, December 2012. doi:
10.1007/978-3-642-34961-4_38.

BS21. Karim Baghery and Mahdi Sedaghat. Tiramisu: Black-box simulation ex-
tractable nizks in the updatable CRS model. In CANS, volume 13099 of
LNCS, pages 531–551. Springer, 2021.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001. doi:10.1109/SFCS.2001.959888.

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and
Hadrián Rodríguez. Lunar: A toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, vol-
ume 13092 of LNCS, pages 3–33. Springer, Heidelberg, December 2021.
doi:10.1007/978-3-030-92078-4_1.

CFQ19. Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modu-
lar design and composition of succinct zero-knowledge proofs. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, ed-
itors, ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.
doi:10.1145/3319535.3339820.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_26.

CS03. Ronald Cramer and Victor Shoup. Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Per-
siano, and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer,
Heidelberg, August 2001. doi:10.1007/3-540-44647-8_33.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, vol-
ume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014.
doi:10.1007/978-3-662-45611-8_28.

DKW21. Yevgeniy Dodis, Harish Karthikeyan, and Daniel Wichs. Updatable public
key encryption in the standard model. In Kobbi Nissim and Brent Wa-
ters, editors, TCC 2021, Part III, volume 13044 of LNCS, pages 254–285.

30

https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-44647-8_33
https://doi.org/10.1007/978-3-662-45611-8_28

Springer, Heidelberg, November 2021. doi:10.1007/978-3-030-90456-2
_9.

DP92. Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowl-
edge without interaction (extended abstract). In 33rd FOCS, pages 427–
436. IEEE Computer Society Press, October 1992. doi:10.1109/SFCS.1
992.267809.

DS19. David Derler and Daniel Slamanig. Key-homomorphic signatures: defini-
tions and applications to multiparty signatures and non-interactive zero-
knowledge. Des. Codes Cryptogr., 87(6):1373–1413, 2019.

EKKV22. Felix Engelmann, Thomas Kerber, Markulf Kohlweiss, and Mikhail
Volkhov. Zswap: zk-snark based non-interactive multi-asset swaps. Proc.
Priv. Enhancing Technol., 2022(4):507–527, 2022. doi:10.56553/popet
s-2022-0120.

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowl-
edge with online extractors. In Victor Shoup, editor, CRYPTO 2005, vol-
ume 3621 of LNCS, pages 152–168. Springer, Heidelberg, August 2005.
doi:10.1007/11535218_10.

FKMV12. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the Fiat-Shamir transform. In
Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012, vol-
ume 7668 of LNCS, pages 60–79. Springer, Heidelberg, December 2012.
doi:10.1007/978-3-642-34931-7_5.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of
LNCS, pages 315–347. Springer, Heidelberg, March 2018. doi:10.1007/97
8-3-319-76578-5_11.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

GKK+22. Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Nit-
ulescu, and Michał Zając. What makes fiat–shamir zksnarks (updatable
srs) simulation extractable? In International Conference on Security and
Cryptography for Networks, pages 735–760. Springer, 2022.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_24.

GKO+23. Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira
Takahashi, and Daniel Tschudi. Witness-succinct universally-composable
snarks. In EUROCRYPT (2), volume 14005 of Lecture Notes in Computer
Science, pages 315–346. Springer, 2023.

GKR+21. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A new hash function for zero-

31

https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.56553/popets-2022-0120
https://doi.org/10.56553/popets-2022-0120
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-319-96878-0_24

knowledge proof systems. In Michael Bailey and Rachel Greenstadt, edi-
tors, USENIX Security 2021, pages 519–535. USENIX Association, August
2021.

GLS+21. Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and
Riad S. Wahby. Brakedown: Linear-time and post-quantum SNARKs
for R1CS. Cryptology ePrint Archive, Report 2021/1043, 2021. https:
//eprint.iacr.org/2021/1043.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581–612. Springer, Heidelberg, August 2017. doi:10.1007/978-3-3
19-63715-0_20.

GMM+22. Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez,
Erkan Tairi, and Sri Aravinda Krishnan Thyagarajan. Foundations of coin
mixing services. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 1259–1273. ACM Press, November
2022. doi:10.1145/3548606.3560637.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985. doi:10.1145/22145.22178.

GOP+22. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and
Daniel Tschudi. Fiat-shamir bulletproofs are non-malleable (in the al-
gebraic group model). In Orr Dunkelman and Stefan Dziembowski, edi-
tors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 397–426.
Springer, Heidelberg, May / June 2022. doi:10.1007/978-3-031-07085
-3_14.

GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. Journal of ACM, pages 1–11, 2012.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Hei-
delberg, December 2006. doi:10.1007/11935230_29.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
321–340. Springer, Heidelberg, December 2010. doi:10.1007/978-3-642
-17373-8_19.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016. doi:10.1007/978-3-662-49896-5_11.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008. doi:
10.1007/978-3-540-78967-3_24.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
doi:10.1145/1993636.1993651.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-

32

https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2021/1043
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1145/3548606.3560637
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1145/1993636.1993651

ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

HBHW22. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specification: Version 2022.2.18 [nu5 proposal], 2022.

JMM19. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting:
Almost-optimal guarantees for secure messaging. In Yuval Ishai and Vin-
cent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 159–188. Springer, Heidelberg, May 2019. doi:10.1007/978-3-030
-17653-2_6.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Hei-
delberg, December 2013. doi:10.1007/978-3-642-42033-7_1.

KKK21a. Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Composition
with knowledge assumptions. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 364–393, Virtual
Event, August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-842
59-8_13.

KKK21b. Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Mining for pri-
vacy: How to bootstrap a snarky blockchain. In Nikita Borisov and Clau-
dia Díaz, editors, FC 2021, Part I, volume 12674 of LNCS, pages 497–514.
Springer, Heidelberg, March 2021. doi:10.1007/978-3-662-64322-8_24.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press, May 2016. doi:
10.1109/SP.2016.55.

KMSV21. Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov. Snarky
ceremonies. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part III, volume 13092 of LNCS, pages 98–127. Springer,
Heidelberg, December 2021. doi:10.1007/978-3-030-92078-4_4.

KNYY19. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Exploring constructions of compact NIZKs from various as-
sumptions. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 639–669. Springer,
Heidelberg, August 2019. doi:10.1007/978-3-030-26954-8_21.

KNYY20. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Compact NIZKs from standard assumptions on bilinear maps.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 379–409. Springer, Heidelberg, May 2020.
doi:10.1007/978-3-030-45727-3_13.

KPS18. Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A
framework for efficient verifiable computation. In 2018 IEEE Symposium
on Security and Privacy, pages 944–961. IEEE Computer Society Press,
May 2018. doi:10.1109/SP.2018.00018.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer,
Heidelberg, December 2010. doi:10.1007/978-3-642-17373-8_11.

33

https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1007/978-3-662-64322-8_24
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1007/978-3-030-92078-4_4
https://doi.org/10.1007/978-3-030-26954-8_21
https://doi.org/10.1007/978-3-030-45727-3_13
https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1007/978-3-642-17373-8_11

KZM+15. Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. C∅c∅:
A framework for building composable zero-knowledge proofs. Cryptology
ePrint Archive, Report 2015/1093, 2015. https://eprint.iacr.org/2015
/1093.

LCOK21. Jeonghyuk Lee, Jaekyung Choi, Hyunok Oh, and Jihye Kim. Privacy-
preserving identity management system. IACR Cryptol. ePrint Arch., page
1459, 2021. URL: https://eprint.iacr.org/2021/1459.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
41–60. Springer, Heidelberg, December 2013. doi:10.1007/978-3-642-4
2033-7_3.

Lip19. Helger Lipmaa. Simulation-extractable snarks revisited. Cryptology ePrint
Archive, Report 2019/612, 2019. https://eprint.iacr.org/2019/612.

Lip20. Helger Lipmaa. Key-and-argument-updatable QA-NIZKs. In Clemente
Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS,
pages 645–669. Springer, Heidelberg, September 2020. doi:10.1007/978-3
-030-57990-6_32.

Lip22. Helger Lipmaa. A unified framework for non-universal snarks. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key Cryp-
tography - PKC 2022 - 25th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Virtual Event, March 8-11, 2022,
Proceedings, Part I, volume 13177 of Lecture Notes in Computer Science,
pages 553–583. Springer, 2022. doi:10.1007/978-3-030-97121-2_20.

LR22. Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable
Σ-protocols in the global random-oracle model. In Eike Kiltz and Vinod
Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages
203–233. Springer, Heidelberg, November 2022. doi:10.1007/978-3-031
-22318-1_8.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019. doi:10.1145/3319535.3339817.

NRBB22. Valeria Nikolaenko, Sam Ragsdale, Joseph Bonneau, and Dan Boneh.
Powers-of-tau to the people: Decentralizing setup ceremonies. IACR Cryp-
tol. ePrint Arch., page 1592, 2022. URL: https://eprint.iacr.org/2022
/1592.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252. IEEE Computer Society Press, May
2013. doi:10.1109/SP.2013.47.

PR18. Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted
key exchange. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 3–32. Springer, Hei-
delberg, August 2018. doi:10.1007/978-3-319-96884-1_1.

34

https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2021/1459
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-42033-7_3
https://eprint.iacr.org/2019/612
https://doi.org/10.1007/978-3-030-57990-6_32
https://doi.org/10.1007/978-3-030-57990-6_32
https://doi.org/10.1007/978-3-030-97121-2_20
https://doi.org/10.1007/978-3-031-22318-1_8
https://doi.org/10.1007/978-3-031-22318-1_8
https://doi.org/10.1145/3319535.3339817
https://eprint.iacr.org/2022/1592
https://eprint.iacr.org/2022/1592
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-319-96884-1_1

PS96. David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of
LNCS, pages 387–398. Springer, Heidelberg, May 1996. doi:10.1007/3-5
40-68339-9_33.

RWGM22. Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers.
zk-creds: Flexible anonymous credentials from zksnarks and existing iden-
tity infrastructure. Cryptology ePrint Archive, Paper 2022/878, 2022.
https://eprint.iacr.org/2022/878. URL: https://eprint.iacr.
org/2022/878.

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for univer-
sal and updatable SNARKs. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–804, Virtual
Event, August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-842
42-0_27.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer
Society Press, October 1999. doi:10.1109/SFFCS.1999.814628.

Sah01. Amit Sahai. Simulation-sound non-interactive zero knowledge. Technical
report, IBM RESEARCH REPORT RZ 3076, 2001.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990. doi:10.1007/0-387-34805-0_22.

Set20. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs with-
out trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737. Springer,
Heidelberg, August 2020. doi:10.1007/978-3-030-56877-1_25.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In David B. Shmoys, editor, 46th ACM
STOC, pages 475–484. ACM Press, May / June 2014. doi:10.1145/2591
796.2591825.

TMM21. Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2L: Anonymous
atomic locks for scalability in payment channel hubs. In 2021 IEEE Sym-
posium on Security and Privacy, pages 1834–1851. IEEE Computer Society
Press, May 2021. doi:10.1109/SP40001.2021.00111.

TMM22. Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-
Sanchez. Universal atomic swaps: Secure exchange of coins across all block-
chains. In IEEE S&P, pages 1299–1316. IEEE, 2022.

Unr15. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum
random oracle model. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 755–784. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_25.

A Omitted Definitions and Primitives

A.1 Key-Homomorphic Signatures

We recall the definition of key-homomorphic signatures as introduced in [DS19].
Parts of this section are taken verbatim from [ARS20]. Let Σ = (KGen,Sign,Verify)
be a signature scheme and the secret and public key elements live in groups

35

https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1007/978-3-662-46803-6_25

(H,+) and (E, ·), respectively. For these two groups it is required that group
operations, inversions, membership testing as well as sampling from the uniform
distribution are efficient.

Definition 7 (Secret Key to Public Key Homomorphism). A signature
scheme Σ provides a secret key to public key homomorphism, if there exists an
efficiently computable map µ : H → E such that for all sk, sk′ ∈ H it holds that
µ(sk+ sk′) = µ(sk) ·µ(sk′), and for all (sk, pk)← KGen, it holds that pk = µ(sk).

In the discrete logarithm setting, it is usually the case sk ← Zp and pk = gsk

with g being the generator of some group G of prime order p, e.g., for ECDSA
or Schnorr signatures (cf. [DS19]).

Definition 8 (Key-Homomorphic Signatures). A signature scheme is called
key-homomorphic, if it provides a secret key to public key homomorphism and
an additional PPT algorithm Adapt, defined as:

Adapt(pk,m, σ,∆) : Given a public key pk, a message m, a signature σ, and a
shift amount ∆ outputs a public key pk′ and a signature σ′,

such that for all ∆ ∈ H and all (pk, sk) ← KGen(1λ), all messages m ∈ M and
all σ ← Sign(sk,m) and (pk′, σ′)← Adapt(pk,m, σ,∆) it holds that

Pr[Verify(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

The following notion covers whether adapted signatures look like freshly gen-
erated signatures, where we do not need the strongest notion in [DS19], which
requires this to hold even if the initial signature used in Adapt is known.

Definition 9 (Adaptability of Signatures). A key-homomorphic signature
scheme provides adaptability of signatures, if for every λ ∈ N and every message
m ∈M, it holds that

[(sk, pk),Adapt(pk,m,Sign(sk,m), ∆)],

where (sk, pk)← KGen(1λ), ∆← H, and

[(sk, µ(sk)), (µ(sk) · µ(∆),Sign(sk+∆,m))],

where sk← H, ∆← H, are identically distributed.

A.2 Schnorr Signatures

We recall the Schnorr signature scheme [Sch90] together with the Adapt algo-
rithm and a common setup.

Definition 10. The Schnorr signature scheme Σ = (Pgen,KGen,Sign,Verify,Adapt)
consists of the following PPT algorithms:

PGen(1λ) : Given a security parameter λ, it outputs a prime order group (G, g, p)←
GGen(1λ) and a hash function H ←$ {Hk}k∈K.

36

KGen(PP = ((G, g, p), H)) : Given public parameters PP, it ouputs a secret key
sk←$ Zp and public key pk← gsk.

Sign(sk,M) : Given a secret key sk and a message M ∈ {0, 1}∗, it samples r ←$

Zp, computes R← gr, c← H(R∥m), y ← r+ sk · c, and outputs a signature
σ ← (c, y).

Verify(pk,M, σ = (c, y)) : Given a public key pk, a message M, and a signature
σ, it outputs 1 if c = H(pk−cgy,M) and 0 otherwise.

Adapt(pk,M, σ = (c, y), ∆) : Given a public key pk, a message M, a signature σ,
and a key update ∆ ∈ Zp, it computes pk′ ← pk · g∆, y′ ← y + c · ∆, and
outputs σ′ = (c, y′).

The signature scheme is EUF-CMA-secure in the random oracle model (ROM)
under the discrete logarithm problem in G [PS96] and satisfies the signature
adaptability notion of [ARS20].

A.3 Σ-Protocols

A Σ-protocol for language L is an interactive three move protocol between a
prover and a verifier, where the prover proves knowledge of a witness w to (x, w) ∈
RL. They are defined as follows:

Definition 11. A Σ-protocol for language L is an interactive three-move pro-
tocol between a PPT prover P = (Commit,Prove) and a PPT verifier V =
(Challenge,Verify), where P makes the first move and transcripts are of the form
(com, ch, resp) ∈ COM× CH× R. They satisfy the following properties:

Completeness: A Σ-protocol is complete, if for all security parameters λ, and
for all (x, w) ∈ RL, it holds that

Pr [⟨P (x, w) ,V (x)⟩ = 1] = 1.

s-Special Soundness: A Σ-protocol s-is special sound, if there exists a PPT
extractor Ext so that for all x, and for all sets of accepting transcripts
{(com, chi, respi)}i∈[s] with respect to x where chi ̸= chj for i ̸= j, gener-
ated by any PPT algorithm, it holds that

Pr

[
w← Ext

(
x, {(com, chi, respi)}i∈[s]

)
:

(x, w) ∈ RL

]
≥ 1− ε(λ).

Special Honest-Verifier Zero-Knowledge: A Σ-protocol is special honest-
verifier zero-knowledge, if there exists a PPT simulator Sim so that for every
x ∈ L and every challenge ch ∈ CH, it holds that a transcript (com, ch, resp),
where (com, resp) ← Sim(x, ch) is indistinguishable from a transcript result-
ing from an honest execution of the protocol.

37

A.4 Fiat-Shamir Transformation

Given Σ-protocol for language L, one can obtain a NIZK by applying the Fiat-
Shamir transform [FS87]. Essentially, the transform removes the interaction be-
tween the prover and the verifier by using a hash function H (modeled as a
random oracle) to obtain the challenge. That is, the algorithm Challenge obtains
the challenge as H(com, x). We formally recall this stronger variant of the Fiat-
Shamir transform [FKMV12, BPW12]. The original variant of the transform
does not include x in the challenge generation.

Definition 12 (FS transform). Let (PΣ ,VΣ) be Σ-protocol for relation R and
H a random oracle mapping to CH. Define a NIZK for relation R in the random
oracle model as follows:

PFS(x, w) : Start PΣ on (x, w), obtain the commitment com, answer with ch ←
H(com, x). Obtain resp and return π ← (com, resp).

VFS(x, π) : Parse π as (com, resp). Start VΣ on x and send com as first message
to the verifier. When VΣ outputs ch, reply with resp and output 1 if VΣ

accepts and 0 otherwise.

For that transform, we require the min-entropy µ of the commitment com to
be such that 2−µ is negligible in the security parameter λ. Furthermore, its
challenge space CH needs to exponentially large in the security parameter, which
can always be achieved by parallel repetition of the protocol.

A.5 Non-Interactive Proofs of Knowledge with Straight-line
Extractors

Fischlin [Fis05] showed how to turn three-move proofs of knowledge into non-
interactive ones in the random oracle model. Unlike the classical Fiat-Shamir
transformation, Fischlin’s construction (Fischlin) supports a straight-line extrac-
tor which outputs the witness from such a non-interactive proof instantaneously,
without having to rewind or fork. Additionally, the communication complexity
of Fischlin’s construction is significantly lower than for previous proofs with
straight-line extractors. In the following we recall Fischlin construction.

The starting point for Fischlin is a Σ-protocol with logarithmic challenge
length ℓ. Note that such proofs can be easily constructed from proofs with smaller
challenge length d by combining ℓ/d parallel executions. Fischlin consists of s rep-
etitions of the base protocol, where in each repetition i, the prover is allowed to
search through challenges and responses to find a tuple (x, com, i, ch, resp) whose
b least significant bits of the hash are 0⃗b for a small b. Alternatively, let H only
have b output bits which can always be achieved by cutting off the leading bits.
Instead of demanding that all s hash values equal 0⃗b, it gives the honest prover
more flexibility and let the verifier also accept proofs (comi, chi, respi)

s
i=1 such

that the sum of the s hash values H(x, ⃗com, i, chi, respi) (viewed as natural num-
bers) does not exceed some parameter S. With this we can bound the prover’s
number of trials in each execution by 2t for another parameter t, slightly larger
than b, and guarantee that the prover terminates in strict polynomial time.

38

Definition 13 (Fischlin construction [Fis05]). Let (PΣ ,VΣ) be a Σ-protocol
with challenges of ℓ = ℓ(k) = O(log k) bits for relation R. Define the parameters
b, s, S, t (as functions of k) for the number of test bits, repetitions, maximum
sum and trial bits such that bs = ω(log k), 2t−b = ω(log k), b, s, t = O(log k),
S = O(s) and b ≤ t ≤ ℓ. Define the following non-interactive proof system for
relation R in the random oracle model, where the random oracle maps to b bits.

P(x, w) : First run the prover PΣ on (x, w) in s independent repetitions to obtain
s commitments ⃗com = (com1, · · · , coms). Then P does the following for each
repetition i: for each chij = 0, 1, · · · , 2t − 1 (viewed as t-bit strings) it lets
PΣ compute the final responses respij = respij(chij), until it finds the first
one such that H(x, ⃗com, i, chij , respij) = 0⃗b; if no such tuple is found then
P picks the first one for which the hash value is minimal among all 2t hash
values. The prover finally outputs π = (comi, chij , respij)

s
i=1.

V(x, π) : Accepts if and only if VΣ accepts x with (comi, chi, respi) for each i =
1, · · · , s, and if

∑s
i=1 H(x, ⃗com, i, chi, respi) ≤ S.

Fischlin has a small completeness error. For deterministic verifiers this error can
be removed by standard techniques, e.g., by letting the prover check on behalf
of the verifier that the proof is valid before outputting it.

Theorem 5 ([Fis05]). Let (PΣ ,VΣ) be a Σ protocol for relation R. Then
the scheme Fischlin is a non-interactive zero-knowledge proof of knowledge for
relation R (in the random oracle model) with a straight-line extractor.

Unruh [Unr15] adapted Fischlin’s strategy to obtain simulation-extractable
NIZKs in the quantum ROM (QROM) that provide a straight-line extractor
and avoid the completeness error. At a high level, Unruh’s transform works as
follows: Given a s-special-sound Σ-protocol, integers t and M ≥ s, a statement
x and a random permutation G, the prover will repeat the first phase of the
Σ-protocol t times. For each of the t runs, it produces proofs to M different
randomly selected challenges. The prover applies G to each of the so-obtained
responses. The prover then selects the responses to publish for each round of the
Σ-protocol by querying the random oracle on the statement, all commitments,
all challenges and all permuted responses. We formally define it below.

Definition 14 (Unruh transform). Let (PΣ ,VΣ) be s-special sound Σ-protocol
for relation R and H a random oracle mapping to [M]t and G be permutation
of Σ’s response space. Define a NIZK for relation R in the random oracle model
as follows:

PUnruh(x, w) : 1. For i ∈ [t]: Start PΣ on (x, w) and obtain commitment comi.
Then, for j ∈ [M], set chi,j ←$ CH \ {chi,1, . . . , chi,j−1} and obtain
response respi,j for challenge chi,j. Set c⃗hi ← (chi,j)j∈[M]

2. For i, j ∈ [t]× [M], set gi,j ← G(respi,j). Set g⃗j ← (gi,j)j∈[M]

3. Let (J1, . . . , Jt)← H((comi)i∈[t], (c⃗hi)i∈[t], (g⃗i)i∈[t]).
4. Return π ← ((comi)i∈[t], (c⃗hi)i∈[t], (g⃗i)i∈[t], (respi,Ji

)i∈[t]).

39

VUnruh(x, π) : Parse π as

((comi)i∈[t], (c⃗hi)i∈[t], (g⃗i)i∈[t], (respi)i∈[t]).

1. Let (J1, . . . , Jt)← H((comi)i∈[t], (c⃗hi)i∈[t], (g⃗i)i∈[t]).
2. For i ∈ [t] check that all chi,1, . . . , chi,M are pairwise distinct.
3. For i ∈ [t] check whether VΣ accepts the proof with respect to x, commit-

ment comi, challenge chi,Ji
and response respi.

4. For i ∈ [t] check gi,Ji
= G(respi).

5. Output 1 if all checks succeeded and 0 otherwise.

Theorem 6 ([Unr15]). Let (PΣ ,VΣ) be a Σ-protocol for relation R. Then the
scheme Unruh is a non-interactive zero-knowledge proof of knowledge for relation
R (in the random oracle model) with a straight-line extractor.

In general, the overhead of Unruh is t ·M for the prover and in the proof size.
The verifier, however, has to invoke the verifier of the Σ-protocol only t times.

A.6 Properties of Updatable Signatures

Definition 15 (Updatable correctness). A signature scheme Σ is updatable
correct, if for all m ∈ M, all (csk, cpk, ζ) ← KGen(1λ) and (upcsk, cpkup, ζup) ←
Upk(cpk) such that Vpk(cpk, cpkup, ζup) = 1, we have Verify(cpk,m,Sign(csk,m)) =
1 and Verify(cpkup,m,Sign(csk + upcsk,m)) = 1.

Definition 16 (Updatable strong key hiding). For all (csk, cpk)← KGen(1λ)
and (upcsk, cpkup, ζup) ← Upk(cpk), it holds that (csk, cpk) ≈λ (cskup, cpkup) ∈
KGen(1λ) (where cskup := csk + upcsk) if one of the following settings holds:

– cpk was honestly generated and the key update verifies, i.e., (csk, cpk) ←
KGen(1λ) and Vpk(cpk, cpkup, ζup) = 1; or

– cpk verifies and the key update was honest, i.e., Vpk(cpk, ζ) = 1 and (upcsk,
cpkup, ζup)← Upk(cpk).

Definition 17 (Updatable EUF-CMA). A signature scheme Σ is updatable
EUF-CMA secure, if, for any PPT subverter Z, there exists a PPT extractor ExtZ
s.t. for all PPT adversaries A

Pr

(csk, cpk, ζ)← KGen(1λ),
(cpkup, ζup, auxZ)← Z(cpk),

upcsk ← ExtZ(cpkup),
(m⋆, σ⋆)← AO(cpkup, auxZ) :
Vpk(cpk, cpkup, ζup) = 1 ∧
cpkup = cpk · µ(upsk) ∧

m⋆ /∈ QSign ∧ Verify(cpkup,m
⋆, σ⋆) = 1

≈λ 0,

where O = Sign(csk, ·),Sign(csk + upcsk, ·), the environment keeps track of the
queries to the signing oracle via QSign. Note that Z can also generate the initial
cpk, which an honest updater Upk then updates, outputting cpkup, upcsk, and the
proof ζup. Then we require that Vpk(cpk, ζ) = 1 and we extract csk by running
ExtZ on cpk.

40

Remark 3. The above definition of updatable EUF-CMA is adapted to black-box
extractors, whereas the definition given in [ARS20] is with respect to non-black-
box extractors.

A.7 Proof of Theorem 4

In this section, we prove Theorem 4.

Theorem 4. Let Π be a NIZK (SNARK) scheme satisfying perfect complete-
ness, computational updatable zero-knowledge, and computational updatable (op-
tionally knowledge) soundness, UP an EKU-PKE scheme with message spaceM
satisfying IND-CPA security and perfect correctness, Σ an EUF-CMA-secure
updatable signature scheme, and ΣOT a one-time signature scheme with strong
unforgeability. Let ZK ∈ {Fischlin,Unruh} be a non-interactive proof of knowledge
with BB extraction. Then the construction in Fig. 2 securely realizes FNIZK in
the Fup-CRS-hybrid model.

Proof. Let A be a non-uniform polynomial time adversary. We describe an ideal
adversary Simuc so no non-uniform polynomial time environment can distin-
guish whether it is running in the Fup-CRS-hybrid model with parties P1, . . . , Pn

and adversary A or in the ideal process with FNIZK, Simuc and dummy parties
P̂1, . . . , P̂n.

Simuc starts by invoking a copy of A. It will run a simulated interaction of
A, the parties, and the environment. In particular, whenever the simulated A
communicates with the environment, Simuc just passes this information along.
And whenever A corrupts a party Pi, Simuc corrupts the corresponding dummy
party P̂i.
Simulating uncorrupted initial CRS generator in Fup-CRS. Suppose Simuc

receives (start, crs) from Fup-CRS. This means that some dummy party P̂ re-
ceived input (start, sid, tc), where tc ̸= ⊥. We must simulate the output a real
party (updater) P would make, however. We create ζup ← SimZK(crs) and return
(proofCRS, ζup) to Fup-CRS. Fup-CRS subsequently sends (proofCRS, sid, crs, ζ) to
P̂ and we deliver this message so it is output to the environment.
Simulating uncorrupted updater P in Fup-CRS: Suppose Simuc receives
(upCRS, sid, crs, crsup) from Fup-CRS. This means that some dummy party P̂
received input (upCRS, sid, crs, tcup), where (sid, crs) ∈ Qcrs and tc ̸= ⊥. We
must simulate the output a real party (updater) P would make, however. We
create ζup ← SimZK(crs, crsup) and return (proofCRS, ζup) to Fup-CRS. The func-
tionality Fup-CRS subsequently sends (proofCRS, sid, crsup, ζup) to P̂ and we de-
liver this message so it is output to the environment.
Simulating uncorrupted update checker P in Fup-CRS: Suppose Simuc re-
ceives (checkCRS, crs, crsup, ζup) from Fup-CRS. This means an honest dummy
party (update checker) P̂ has received (checkCRS, sid, crs, crsup, ζup) from the
environment. Simuc checks the proof, b← Vcrs(crs, crsup, ζup). If invalid, it sends
(trapdoor, no tcup) to Fup-CRS and delivers the consequent message (verCRS,

41

sid, 0) to P̂ , who outputs this rejection to the environment. Otherwise, if the
update argument is valid we must try to extract a trapdoor tcup. If (crs, crsup)
has ever been proved by an honest updater that was later corrupted, we will
know the tcup and do not need to run the following extraction procedure. If
the trapdoor is not known already, Simuc lets tcup ← ExtZK(crs, ζZK)). If crs,
crsup, and tcup are not consistent (tcup is invalid), it sets tcup = no tcup. It
sends (trapdoor, tcup) to Fup-CRS and delivers the resulting output message to
the update checker P̂ , who outputs it to the environment. We will later argue
that the probability of the proof being valid, yet Simuc being unable to supply
a good tcup to Fup-CRS is negligible. This means that with overwhelming proba-
bility, when ζup is an acceptable UC NIZK argument for (crs, crsup), we input
a valid trapdoor tcup to Fup-CRS.
Simulating corruption in Fup-CRS: Suppose a simulated party Pi is corrupted
by A. Then we must simulate the transcript of Pi. We start by corrupting P̂i,
thereby learning all UC proofs it has verified. It is straightforward to simulate
Pi’s internal tapes when running these verification processes. We also learn all
updates (crs, crsup) that it has proved, together with their corresponding trap-
doors tcup. Recall that the UC NIZK arguments ζup have been provided by
Simuc. Since we erased all other data, we can simulate the tape of Pi.
Simulating uncorrupted prover in FNIZK: Suppose Simuc receives (prove, x)
from FNIZK. This means that some dummy party P̂ received input (prove, sid, x, w)
where (x, w) ∈ R. We must simulate the output a real party P would make, but
we may not know w. We create π ← Sim(crsup, x, tcup) and send (proof, π) to
FNIZK. FNIZK subsequently sends (proof, sid, π) to P̂ and we deliver this message
so it is output to the environment.
Simulating uncorrupted verifiers: Suppose Simuc receives the message (
verify, x, π) from FNIZK. This means an honest dummy party V̂ has received
(verify, sid, x, π) from the environment. Simuc checks the proof: b← V(crsup, x, π).
If invalid, it sends (witness, no witness) to FNIZK and delivers the message
(verification, sid, 0) to V̂ , who outputs this rejection to the environment. Oth-
erwise, if the UC NIZK argument is valid, we must try to extract a witness w. If x
has ever been proved by an honest prover that was later corrupted, we will know
the witness and do not need to run the following extraction procedure. If the
witness is not known already Simuc lets w← UP.Dec(tcup, c). If (x, w) /∈ R it sets
w = no witness. It sends (witness, w) to FNIZK. It delivers the resulting output
message to V̂ , who outputs it to the environment. We will later argue that the
probability of the proof being valid, yet Simuc not being able to supply a good
witness to FNIZK is negligible. This means that with overwhelming probability,
when π is an acceptable UC NIZK argument for x, we input a valid witness w

to FNIZK .
Simulating corruption: Assume a simulated party Pi is corrupted by A. Then
we must simulate the transcript of Pi. We start by corrupting P̂i, thereby learn-
ing all UC NIZK arguments it has verified. It is straightforward to simulate Pi’s
internal tapes when running these verification processes. We also learn all state-

42

ments x that it has proved together with the corresponding witnesses w. Recall
that the UC NIZK arguments π have been provided by Simuc. Since we erased
all other data, we can simulate the tape of Pi.
Hybrids. We argue that no environment can distinguish between the adversary
A running with parties executing the UC NIZK protocol in the Fup-CRS-hybrid
model and the ideal adversary Simuc running in the FNIZK-hybrid model with
dummy parties. In order to do so we define several hybrid experiments and show
that the environment cannot distinguish between any of them.
H0: This is the Fup-CRS-hybrid model running with adversary A and parties
P1, . . . , Pn.
H1: We modify H0 by running (crs, tc, ζ)← KGen(1λ).12 Given crs and crsup,
we create the proofs of uncorrupted updaters as ζup ← SimZK(crs, crsup) and
the proofs of uncorrupted provers as π ← Sim(crsup, x, tcup). By zero-knowledge,
this experiment is indistinguishable from H0.
H2: Consider the case where an honest party (update checker) P and honest
party V receive (checkCRS, sid, crs, crsup, ζup) and (verify, sid, x, π), respec-
tively. Suppose ζup and π are indeed acceptable UC NIZK proofs and not simu-
lated. We run tcup ← ExtZK(crs, ζZK) and w← UP.Dec(c, skup). If tcup is invalid
and (w, x) /∈ R, give up in the simulation. By the SE property there is negligible
probability that we will ever give up, so H2 is indistinguishable from H1.
H3: This is the ideal process running with Fup-CRS, Simuc, and FNIZK. Inspection
shows that H2 and H3 are identical and therefore perfectly indistinguishable to
the environment.

A.8 Black-box SE Version of Sonic

In order to satisfy black-box SE, we follow the framework presented in Sec-
tion 4.1: We first add the public key pk of the IND-CPA-secure EKU-PKE UP
to the SRS and use a BB SE NIZK ZK ∈ {FS,Fischlin,Unruh} to prove update
correctness. Then, we use a combination of an EUF-CMA-secure updatable sig-
nature scheme Σ with BB extraction and an sOTS scheme ΣOT to add non-
malleability, together with the folklore OR-trick to enable simulation of proofs.
The final SRS contains Sonic’s original SRS, the public key pk of UP, and the
public key cpk of Σ.

Assume Sonic [MBKM19] with the SRS as in Section 5.2, the ElGamal EKU-
PKE from Section 3 with public key pk = gsk and secret key sk, and the Schnorr
updatable signature with BB extraction from Section 2.2 with public key cpk =
gcsk and signing key csk. The SRS update proof procedure of the black-box SE
Sonic works as follows:

– Choose uptc := (upα, upχ)←$ Z∗2p and compute srsup :=(
{(gχ

i

)up
i
χ , (hχ

i

)up
i
χ , (hαχ

i

)upαupiχ}i=d
i=−d,

{(gαχ
i

)upαupiχ}i=d
i=−d,i ̸=0

)
12 Without loss of generality, we assume the initial crs is honestly generated and the

updating procedure is possibly maliciously executed.

43

together with a proof ζZK,Π,up that this computation is correctly done. More
precisely, the proof ζZK,Π,up is for the language L1 :=srsup

∣∣∣∣∣∣
∃(upχ, upα) ∈ Z∗2p : srsup =(

{srsup
i
χ

1 , srs
upαupiχ
2 }i=d

i=−d, {srs
upαupiχ
3 }i=d

i=−d,i̸=0

)
where srs1 = (gχ

i

, hχ
i

), srs2 = hαχ
i

, and srs3 = gαχ
i

.
– Choose upsk ←$ Z∗p and compute pkup := pkupsk = (gsk)upsk together with a

proof ζZK,pk,up that this computation is correctly done. More precisely, the
proof ζZK,pk,up is for the language

L2 := {pkup|∃upsk ∈ Z∗p : pkup = pkuppk}.

– Choose upcsk ←$ Z∗p, compute cpkup := cpkupcpk = (gcsk)upcsk together with a
proof ζZK,cpk,up that this computation was correctly done. More precisely, the
proof ζZK,cpk,up is for the language

L3 := {cpkup|∃upcsk ∈ Z∗p : cpkup = cpkupcsk}.

44

	Circuit-Succinct Universally-Composable NIZKs with Updatable CRS

